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1  |  INTRODUC TION

The functioning of biological systems depends heavily on the in-
teraction of its constituents at various levels of organization, be it 
at the subcellular level or at the ecosystem scale. To understand 
the complexity of such interactions in a more abstract yet work-
able way, people have turned to networks as a useful representa-
tion (Gosak et al., 2018; Gysi & Nowick, 2020). The use of network 

science and its tools in biology has exploded in the past two de-
cades, owing to the burst of high-resolution data and improved 
computational capabilities. The application of network science has 
improved our fundamental understanding of many biological sys-
tems and structures, such as food webs (Dunne et al., 2002; Pascual 
& Dunne, 2006; Shaw et al., 2021), neuronal functioning and signal-
ling (Bassett & Sporns, 2017; Sporns, 2014), gene interactions and 
regulation (Costanzo et al., 2019), mutualistic interactions (Vázquez 

Received: 15 April 2021  | Accepted: 3 January 2022

DOI: 10.1111/2041-210X.13805  

A P P L I C A T I O N

Exploring noise, degeneracy and determinism in biological 
networks with the einet package

Brennan Klein1,2  |   Anshuman Swain3  |   Travis Byrum3 |   Samuel V. Scarpino1,4,5,6  |   
William F. Fagan3

1Network Science Institute, Northeastern University, Boston, MA, USA; 2Laboratory for the Modeling of Biological and Socio-Technical Systems, Northeastern 
University, Boston, MA, USA; 3Department of Biology, University of Maryland, College Park, MD, USA; 4Santa Fe Institute, Santa Fe, NM, USA; 5Vermont 
Complex Systems Center, University of Vermont, Burlington, VT, USA and 6Pandemic Prevention Institute, Rockefeller Foundation, Washington, DC, USA

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in 
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Brennan Klein and Anshuman Swain contributed equally to this work. 

Correspondence
Brennan Klein
Email: b.klein@northeastern.edu

Funding information
John Templeton Foundation, Grant/
Award Number: 61780; National Science 
Foundation, Grant/Award Number: DGE-
1632976

Handling Editor: Timothée Poisot 

Abstract
1.	 Understanding noise in networks and finding the right scale to represent a sys-

tem are important problems in network biology. Most research focuses on the 
raw, micro-scale network from data/simulations and seldom explores the scale 
dependence of properties.

2.	 Here, we introduce the einet package, which looks at the most informative 
scale in a biological network using recent concepts from information theory and 
network science.

3.	 einet uses two metrics: Effective information, which measures the inter-
play between degeneracy and determinism in a network’s edges, and causal 
emergence, which finds the scale of the network with the highest effective 
information.

4.	 einet is available in R and Python and provides tools to explore noise and scale 
dependency in networks as well as compare information flow and noise across 
networks.
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et al., 2009), epidemiological networks (Wang et al., 2015), micro-
bial interactions (Faust & Raes,  2012), and animal social networks 
(Pinter-Wollman et al., 2014).

Most network studies focus on the structure and/or the dy-
namics of the constructed network itself, and probe how its vari-
ous properties can explain or predict certain biological activity. 
However, sometimes due to noise—either inherent to the system 
or introduced via measurement and observation—the structure and 
dynamics of networks can be affected by the way the networks are 
constructed (Tsimring, 2014). The kind of noise introduced through 
observation will often be specific to particular systems under study. 
Past work has focused on the estimation, and in rare cases, the cor-
rection of such noise (Newman, 2018; Freilich et al., 2020; Swain, 
Devereux, et al., 2021). Beyond such estimation, it can often be dif-
ficult to deal with the noise that is inherently present in complex 
biological systems regardless of whether the noise is from measure-
ment or is inherent to the system in question.

Because of the high levels of noise and stochasticity associated 
with biological systems, and because such systems are often sub-
jected to random fluctuations and perturbations, biological systems 
tend to be redundant and degenerate in their functioning. This has 
led to a lot of research on the resilience and robustness of biological 
systems through degeneracy and other similar features (Edelman & 
Gally,  2001; Tononi et al.,  1999). These studies have changed our 
view about the function of degeneracy in such systems, empha-
sizing increased resilience to sudden perturbations, and functional 
equivalence of degenerate entities (see Ahn et al., 2006; Edelman 
& Gally, 2001; Klein et al., 2021). Research on biological networks 
often seeks to connect certain deterministic or partially determinis-
tic processes through the lens of redundancy, resilience and degen-
eracy (Ahn et al., 2006). Indeed, the interplay between complexity 
and degeneracy/determinism in biological systems has received a 
great deal of attention in network science and the complex systems 
literature (Hoel et al., 2013).

Generally, network methods focus on the literal constructed net-
work to explore the effects of noise, perturbations, degeneracy and 
deterministic processes—but such an approach might not be able to 
tease apart certain informative aspects of the structure of the net-
work (Klein & Hoel, 2020). Most biological networks have a certain 
form of hierarchy, and it is quite possible that despite the noise at 
the micro-scale (or the literal network), a network can possess more 
informative structure at a different scale (Klein & Hoel, 2020; Klein 
et al., 2021). The big question, then, is how to infer these higher, 
content-rich scales and to decide which scale is the most informative 
to use in analyses.

The concepts of effective information and causal emergence 
are network metrics devised to confront these problems (Klein & 
Hoel, 2020; Klein et al., 2021). These two indices, which are based 
on information theory (Hoel et al., 2013), measure the information 
associated with the structure of a network, which can be used to 
identify the presence of informative higher scales. In this work, we 
briefly describe the metrics, their interpretations and usage, through 
implementation both as an R package and a Python library.

2  |  OVERVIE W OF THE METRIC S

The deterministic nature of a network can be measured in terms of 
the uncertainty in the interactions among the nodes. That is, if activ-
ity on a given node influences or induces changes in another node’s 
behaviour, we can study the inherent uncertainty in this relationship. 
This influence may come in the form of neuronal activity, where one 
neuron’s firing could induce firing in a neighbouring neuron; in social 
networks, influence could come in the form of a connection strength, 
where my activity may depend more on a close friend than a mere 
acquaintance; or in biological systems, where the co-expression of 
two biological processes may indicate a dependency between the 
two processes.

If node j is connected to node i, and the behaviour of i sud-
denly changes, what are the chances that node j’s behaviour is also 
changed? To quantify this, we can calculate the average Shannon 
entropy of the out- and in-edges of nodes in a network. The en-
tropy (or uncertainty) of out-edges corresponds to the degree of 
determinism in the network connections, while degeneracy captures 
how evenly the in-edges are distributed across the network (see 
following section). Effective information (EI) brings these two con-
cepts (i.e. determinism, degeneracy) together, and is defined as the 
difference between the entropy of the average out-weight in the 
network minus the average entropy of the out-weights (see Klein & 
Hoel, 2020, for a detailed discussion):

where H refers to the entropy, and ⟨⟩ is the average over all nodes, de-
noted by i. Effective information varies with network size, so research-
ers typically use a size-normalized measure known as effectiveness to 
characterize networks:

where EI is normalized with respect to the number of nodes, n. Using 
these measures, we can compare different networks, highlighting 
structural properties that are associated with more or less uncertainty 
in the edges of a network. This gives researchers a lens through which 
to view network dynamics, robustness and growth, and can inform 
why we may expect different systems across nature and society to 
vary in the amount of noise contained in their connectivity structures. 
For example, researchers have studied the effectiveness of various 
biological or socio-technical systems (Klein & Hoel, 2020), protein in-
teraction networks (Klein et al., 2021), animal social networks (Swain, 
Williams, et al., 2021; van der Marel et al., 2021) and more.

2.1  |  Breaking down effective information: 
Determinism and degeneracy

As previously mentioned, the EI is defined by two key components: 
determinism and degeneracy. Determinism refers to the average 

(1)EI = H
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uncertainty over outgoing edges in a network. If a given node i has 
a single outgoing edge, there is no uncertainty about where a ran-
dom walker on node i will traverse to next—in other words, node 
i increases the network’s determinism. On the other hand, if i has 
outgoing edges to the other n nodes in a network, we are maximally 
uncertain about the subsequent location of the random walker 
(Figure 1a,b). Whereas determinism is a measure that quantifies un-
certainty about the future states of random walkers in the network, 
degeneracy captures uncertainty about the source of the random 
walkers on a given node. Consider a node with only one incoming 
edge compared to a node with n incoming edges; when few nodes 
have disproportionately many connections, the network becomes 
more uncertain, on average, about past states of random walkers 
(see Figure 1c,d). Note: the notion of random walkers is a useful—if 
incomplete—way of formalizing flow or transitions in networks. 
Because networks are such a ubiquitous tool for representing com-
plex systems, there are a number of ways to represent dynamical 
processes on networks from different domains; random walks have 
the benefit of being well-studied mathematically and are general 
enough such that they add few domain-specific assumptions. The 

prospect of re-defining a version of the effective information metric 
by replacing random walk dynamics with domain-specific dynamics 
is a rich and promising future direction of research.

Different networks display different behaviour when it comes 
to determinism and degeneracy. For example, networks with heavy-
tailed degree distributions, which are common across nature and 
society, typically have higher degeneracy (and lower EI as a result). 
Similarly, networks containing dense subgraphs and/or community 
structure typically have lower determinism (and lower EI as a result). 
Networks that are sparse and have low variance in degree have 
higher EI and have less uncertainty about the micro-scale interac-
tions that take place in the network.

In practice, determinism and degeneracy may correspond to dif-
ferent facets of biological systems. For example, a highly determin-
istic relationship in a gene expression network would correspond to 
almost one gene almost certainly causing the expression of another. 
A degenerate structure in, for example, an ecological network would 
be more sensitive, a connectivity structure where fluctuations in the 
prevalence of any of a number of species would influence the prev-
alence of a target species.

F I G U R E  1  Determinism and degeneracy. Simple networks highlighting the differences between high/low determinism and degeneracy. 
(a) In this network, random walkers on node A will traverse to node B with probability of 1.0. (b) In this network, random walkers on node 
A will traverse to any other node in the network with probability 1/n, where n is the size of the network. (c) In this network, no single node 
has a higher in-weight than any other node, which means that degeneracy has been minimized. (d) In this network, every node has a single 
outgoing edge, each of which connects to node A; this is an example of a maximally degenerate network

(a) (b)

(c) (d)
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2.2  |  Causal emergence: Informative higher scales

Networks that have higher determinism and lower degeneracy are less 
noisy and have more certainty in the interactions among their nodes; 
in this sense they are more effective (i.e. they have higher effective-
ness). One recent development in network science and information 
theory has been the introduction of causal emergence to the study of 
complex networks (Klein & Hoel, 2020); this is a phenomenon where 
the original micro-scale network is recast as a coarse-grained, macro-
scale network so as to increase the effective information of the origi-
nal network. Algorithmically, this involves selecting a subgraph of 
nodes and their edges—a subgraph with low determinism and/or high 
degeneracy—from the original network and replacing the subgraph 
with a single macro node. A core functionality of the einet package 
is that it automates this coarse-graining process, using a variety of 
techniques from spectral graph theory to find and isolate regions of 
low determinism and/or high degeneracy. Users simply input a net-
work into the causal_emergence function, and if there are highly 
noisy subgraphs, the function will use those subgraphs to create a 
higher scale macro representation of the network. We illustrate this 
process in Figure 2, using the protein–protein interaction network of 
Mycoplasma putrefaciens as an example.

Causal emergence (the quantity) is defined as the difference be-
tween the EI of the original, micro-scale network and the EI of a 
coarse-grained, higher scale representation of the network. In the 
context of ecological or biological systems, causal emergence of a 
network can be interpreted in many ways. For example, in insect so-
cial networks, we might expect to see more informative higher scales 
that capture more of the emergent coordination of the collective as 
a whole (e.g. in ant colonies; see Swain, Devereux, et al., 2021).

Higher order networks are of growing interest to network sci-
entists, and they appear to be relatively ubiquitous, appearing in 

a variety of contexts from biology to economics to social struc-
tures and more. What causal emergence adds to this growing 
body of work is the ability to quantify why certain higher scale 
structures emerge, identifying common structural properties at 
the micro-scale that tend to facilitate higher order structure. How 
to interpret a given higher order structure (i.e. output from the 
einet package) can vary greatly across different disciplines, but 
put simply: causal emergence uses the pattern of noise/uncertainty 
at the micro-scale to define the most informative scale at which 
to represent a complex system. These higher scale structures may 
hold theoretical import (e.g. by comparing the amount of causal 
emergence across different species groups or ecosystems, as in 
Klein et al., 2021), or they help uncover measurement noise that 
must be addressed before studying networks from a given system 
(similar to recent advances in network permutation testing, as in 
Puga-Gonzalez et al., 2021). Future work may also explore the use 
of causal emergence in network comparison (Hartle et al., 2020) 
or parameter selection when modelling ecological networks (e.g. 
animal social networks, species interaction networks, etc.), to con-
strain the structure of networks produced by a generative model. 
Ultimately, a comprehensive, prescriptive description of how to 
interpret higher order structure in networks requires more theo-
retical development; we view einet as important to such future 
theoretical advances.

3  |  IMPLEMENTATION AND USAGE

These tools are available through einet, both as an R package 
(GitHub) and a Python library (Github). For details about the imple-
mentation of the spectral algorithm for computing the micro-to-
macro-scale mappings, see Griebenow et al. (2019).

F I G U R E  2  Causal emergence in protein networks. To illustrate the basic steps for calculating causal emergence in networks, we use the 
protein–protein interaction network of Mycoplasma putrefaciens as an example. (a) The original (micro-scale) network. (b) The different colour 
circles are meant to highlight subgraphs in the original network that are especially noisy—either because they consist of densely connected 
nodes or because they are sources of degeneracy. (c) To calculate causal emergence, we construct a macro-scale network by grouping the 
subgraphs from (b) into macro nodes, while preserving the total in/out edge weights into the selected subgraph. Note here that the EI of the 
network in (a) and the EI from (c) are different: the macro-scale network has more effective information than the original micro-scale network

(a) (b) (c)



    |  803Methods in Ecology and Evolu
onKLEIN et al.

3.1  |  Example usage (R)

Effective information and effectiveness

>>> library(devtools)  
>>> library(igraph)  
>>> install_github("travisbyrum/einet")  
>>> library(einet)  
>>> G <- karate  
>>> ei_micro <- effective_information(G)  
>>> sprintf("EI micro: %.6f",ei_micro)  
EI micro: 2.350095  

  

>>> eff_micro <- ei_micro / log2(gorder(G))  
>>> sprintf("Effectiveness: %.6f",eff_micro)  
Effectiveness: 0.461939

Causal emergence

>>> library(einet)  
>>> library(igraph)  
>>> set.seed(2)  
>>> G <- karate  
>>> CE <- causal_emergence(G)  
>>> ei_macro <- CE$ei_macro  
>>> sprintf("EI macro: %.6f",ei_macro)  
EI macro: 2.410400

The CE object returned by the causal_emergence function 
is a list object composed of g_micro (original network), g_macro 
(coarse-grained network), mapping (a list mapping from the micro 
nodes to their corresponding macro node, after coarse-graining 
happened), ei_macro (effective information of the coarse-grained 
network), ei_micro (original network’s effective information), 
effectiveness (original network’s effective information, divided 
by log(n) (normalization), where n is the number of nodes), and ce 
(the normalized difference in effective information between the 
micro- and macro-scale networks). Because the causal_emer-
gence() function depends on the initial conditions of the search 
for the higher scale mapping, we recommend running the function 
several times and selecting the mapping with the largest effective 
information (note that this is the source of the small differences 
between the causal emergence in the R implementation and the 
Python below).

3.2  |  Example usage (Python)

Effective information and effectiveness.

>>> from ei_net import effective_information  
>>> import networkx as nx; import numpy as np  

>>> G = nx.karate_club_graph()  
>>> EI_micro = effective_information(G)  
>>> print("EI micro: %.6f"%EI_micro)  
EI micro: 2.350095

Causal emergence

>>> from ei_net import causal_emergence  
>>> import networkx as nx; import numpy as np  
>>> np.random.seed(2)  
>>> CE = causal_emergence(G)  
>>> EI_macro = CE["EI_macro"]  
>>> print("EI macro: %.6f"%EI_macro)  
EI macro: 2.415379  

  

>>> N = G.number_of_nodes()  
>>> eff_gain = (EI_macro-EI_micro)/np.log2(N)  
>>> print("Effectiveness gain: %.6f"%eff_gain)  
Effectiveness gain: 0.012832

The CE object returned by the causal_emergence function is 
a dictionary with the following keys: G_micro (original network), G_
macro (coarse-grained network), mapping (a list mapping from the 
micro nodes to their corresponding macro node, after coarse-graining 
happened), EI_macro (effective information of the coarse-grained 
network), and EI_micro (original network’s effective information). 
In the Python implementation of this software, there is an addi-
tional causal_emergence_spectral() function that leverages 
tools from spectral graph theory to compute causal emergence, and 
does so much faster than the greedy search used in causal_emer-
gence() (see Griebenow et al., 2019 for more details).
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