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Abstract
1. Understanding noise in networks and finding the right scale to represent a sys-
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raw, micro-scale network from data/simulations and seldom explores the scale
dependence of properties.

. Here, we introduce the einet package, which looks at the most informative

Handling Editor: Timothée Poisot scale in a biological network using recent concepts from information theory and
network science.

3. einet uses two metrics: Effective information, which measures the inter-
play between degeneracy and determinism in a network’s edges, and causal
emergence, which finds the scale of the network with the highest effective
information.

4. einet is available in R and Python and provides tools to explore noise and scale
dependency in networks as well as compare information flow and noise across

networks.
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1 | INTRODUCTION

science and its tools in biology has exploded in the past two de-
cades, owing to the burst of high-resolution data and improved

The functioning of biological systems depends heavily on the in-
teraction of its constituents at various levels of organization, be it
at the subcellular level or at the ecosystem scale. To understand
the complexity of such interactions in a more abstract yet work-
able way, people have turned to networks as a useful representa-
tion (Gosak et al., 2018; Gysi & Nowick, 2020). The use of network
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computational capabilities. The application of network science has
improved our fundamental understanding of many biological sys-
tems and structures, such as food webs (Dunne et al., 2002; Pascual
& Dunne, 2006; Shaw et al., 2021), neuronal functioning and signal-
ling (Bassett & Sporns, 2017; Sporns, 2014), gene interactions and
regulation (Costanzo et al., 2019), mutualistic interactions (Vazquez

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in
any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

Methods Ecol Evol. 2022;13:799-804.

wileyonlinelibrary.com/journal/mee3 799


www.wileyonlinelibrary.com/journal/mee3
mailto:﻿
https://orcid.org/0000-0001-8326-5044
https://orcid.org/0000-0002-9180-2222
https://orcid.org/0000-0001-5716-2770
https://orcid.org/0000-0003-2433-9052
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:b.klein@northeastern.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13805&domain=pdf&date_stamp=2022-02-07

800 | Methods in Ecology and Evolution

KLEIN ET AL.

et al., 2009), epidemiological networks (Wang et al., 2015), micro-
bial interactions (Faust & Raes, 2012), and animal social networks
(Pinter-Wollman et al., 2014).

Most network studies focus on the structure and/or the dy-
namics of the constructed network itself, and probe how its vari-
ous properties can explain or predict certain biological activity.
However, sometimes due to noise—either inherent to the system
or introduced via measurement and observation—the structure and
dynamics of networks can be affected by the way the networks are
constructed (Tsimring, 2014). The kind of noise introduced through
observation will often be specific to particular systems under study.
Past work has focused on the estimation, and in rare cases, the cor-
rection of such noise (Newman, 2018; Freilich et al., 2020; Swain,
Devereux, et al., 2021). Beyond such estimation, it can often be dif-
ficult to deal with the noise that is inherently present in complex
biological systems regardless of whether the noise is from measure-
ment or is inherent to the system in question.

Because of the high levels of noise and stochasticity associated
with biological systems, and because such systems are often sub-
jected to random fluctuations and perturbations, biological systems
tend to be redundant and degenerate in their functioning. This has
led to a lot of research on the resilience and robustness of biological
systems through degeneracy and other similar features (Edelman &
Gally, 2001; Tononi et al., 1999). These studies have changed our
view about the function of degeneracy in such systems, empha-
sizing increased resilience to sudden perturbations, and functional
equivalence of degenerate entities (see Ahn et al., 2006; Edelman
& Gally, 2001; Klein et al., 2021). Research on biological networks
often seeks to connect certain deterministic or partially determinis-
tic processes through the lens of redundancy, resilience and degen-
eracy (Ahn et al., 2006). Indeed, the interplay between complexity
and degeneracy/determinism in biological systems has received a
great deal of attention in network science and the complex systems
literature (Hoel et al., 2013).

Generally, network methods focus on the literal constructed net-
work to explore the effects of noise, perturbations, degeneracy and
deterministic processes—but such an approach might not be able to
tease apart certain informative aspects of the structure of the net-
work (Klein & Hoel, 2020). Most biological networks have a certain
form of hierarchy, and it is quite possible that despite the noise at
the micro-scale (or the literal network), a network can possess more
informative structure at a different scale (Klein & Hoel, 2020; Klein
et al.,, 2021). The big question, then, is how to infer these higher,
content-rich scales and to decide which scale is the most informative
to use in analyses.

The concepts of effective information and causal emergence
are network metrics devised to confront these problems (Klein &
Hoel, 2020; Klein et al., 2021). These two indices, which are based
on information theory (Hoel et al., 2013), measure the information
associated with the structure of a network, which can be used to
identify the presence of informative higher scales. In this work, we
briefly describe the metrics, their interpretations and usage, through
implementation both as an R package and a Python library.

2 | OVERVIEW OF THE METRICS

The deterministic nature of a network can be measured in terms of
the uncertainty in the interactions among the nodes. That is, if activ-
ity on a given node influences or induces changes in another node’s
behaviour, we can study the inherent uncertainty in this relationship.
This influence may come in the form of neuronal activity, where one
neuron’s firing could induce firing in a neighbouring neuron; in social
networks, influence could come in the form of a connection strength,
where my activity may depend more on a close friend than a mere
acquaintance; or in biological systems, where the co-expression of
two biological processes may indicate a dependency between the
two processes.

If node j is connected to node i, and the behaviour of i sud-
denly changes, what are the chances that node j’s behaviour is also
changed? To quantify this, we can calculate the average Shannon
entropy of the out- and in-edges of nodes in a network. The en-
tropy (or uncertainty) of out-edges corresponds to the degree of
determinism in the network connections, while degeneracy captures
how evenly the in-edges are distributed across the network (see
following section). Effective information (El) brings these two con-
cepts (i.e. determinism, degeneracy) together, and is defined as the
difference between the entropy of the average out-weight in the
network minus the average entropy of the out-weights (see Klein &
Hoel, 2020, for a detailed discussion):

1= H ((W)) — (H (W) w

where H refers to the entropy, and () is the average over all nodes, de-
noted by i. Effective information varies with network size, so research-
ers typically use a size-normalized measure known as effectiveness to

characterize networks:

El
log, (n)

Effectiveness =

()

where El is normalized with respect to the number of nodes, n. Using
these measures, we can compare different networks, highlighting
structural properties that are associated with more or less uncertainty
in the edges of a network. This gives researchers a lens through which
to view network dynamics, robustness and growth, and can inform
why we may expect different systems across nature and society to
vary in the amount of noise contained in their connectivity structures.
For example, researchers have studied the effectiveness of various
biological or socio-technical systems (Klein & Hoel, 2020), protein in-
teraction networks (Klein et al., 2021), animal social networks (Swain,
Williams, et al., 2021; van der Marel et al., 2021) and more.

2.1 | Breaking down effective information:
Determinism and degeneracy

As previously mentioned, the El is defined by two key components:
determinism and degeneracy. Determinism refers to the average
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uncertainty over outgoing edges in a network. If a given node i has
a single outgoing edge, there is no uncertainty about where a ran-
dom walker on node i will traverse to next—in other words, node
i increases the network’s determinism. On the other hand, if i has
outgoing edges to the other n nodes in a network, we are maximally
uncertain about the subsequent location of the random walker
(Figure 1a,b). Whereas determinism is a measure that quantifies un-
certainty about the future states of random walkers in the network,
degeneracy captures uncertainty about the source of the random
walkers on a given node. Consider a node with only one incoming
edge compared to a node with n incoming edges; when few nodes
have disproportionately many connections, the network becomes
more uncertain, on average, about past states of random walkers
(see Figure 1c,d). Note: the notion of random walkers is a useful—if
incomplete—way of formalizing flow or transitions in networks.
Because networks are such a ubiquitous tool for representing com-
plex systems, there are a number of ways to represent dynamical
processes on networks from different domains; random walks have
the benefit of being well-studied mathematically and are general

enough such that they add few domain-specific assumptions. The
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prospect of re-defining a version of the effective information metric
by replacing random walk dynamics with domain-specific dynamics
is a rich and promising future direction of research.

Different networks display different behaviour when it comes
to determinism and degeneracy. For example, networks with heavy-
tailed degree distributions, which are common across nature and
society, typically have higher degeneracy (and lower El as a result).
Similarly, networks containing dense subgraphs and/or community
structure typically have lower determinism (and lower El as a result).
Networks that are sparse and have low variance in degree have
higher El and have less uncertainty about the micro-scale interac-
tions that take place in the network.

In practice, determinism and degeneracy may correspond to dif-
ferent facets of biological systems. For example, a highly determin-
istic relationship in a gene expression network would correspond to
almost one gene almost certainly causing the expression of another.
A degenerate structure in, for example, an ecological network would
be more sensitive, a connectivity structure where fluctuations in the
prevalence of any of a number of species would influence the prev-

alence of a target species.
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FIGURE 1 Determinism and degeneracy. Simple networks highlighting the differences between high/low determinism and degeneracy.
(a) In this network, random walkers on node A will traverse to node B with probability of 1.0. (b) In this network, random walkers on node
A will traverse to any other node in the network with probability 1/n, where n is the size of the network. (c) In this network, no single node
has a higher in-weight than any other node, which means that degeneracy has been minimized. (d) In this network, every node has a single
outgoing edge, each of which connects to node A; this is an example of a maximally degenerate network
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2.2 | Causal emergence: Informative higher scales
Networks that have higher determinism and lower degeneracy are less
noisy and have more certainty in the interactions among their nodes;
in this sense they are more effective (i.e. they have higher effective-
ness). One recent development in network science and information
theory has been the introduction of causal emergence to the study of
complex networks (Klein & Hoel, 2020); this is a phenomenon where
the original micro-scale network is recast as a coarse-grained, macro-
scale network so as to increase the effective information of the origi-
nal network. Algorithmically, this involves selecting a subgraph of
nodes and their edges—a subgraph with low determinism and/or high
degeneracy—from the original network and replacing the subgraph
with a single macro node. A core functionality of the einet package
is that it automates this coarse-graining process, using a variety of
techniques from spectral graph theory to find and isolate regions of
low determinism and/or high degeneracy. Users simply input a net-
work into the causal emergence function, and if there are highly
noisy subgraphs, the function will use those subgraphs to create a
higher scale macro representation of the network. We illustrate this
process in Figure 2, using the protein-protein interaction network of
Mycoplasma putrefaciens as an example.

Causal emergence (the quantity) is defined as the difference be-
tween the El of the original, micro-scale network and the El of a
coarse-grained, higher scale representation of the network. In the
context of ecological or biological systems, causal emergence of a
network can be interpreted in many ways. For example, in insect so-
cial networks, we might expect to see more informative higher scales
that capture more of the emergent coordination of the collective as
a whole (e.g. in ant colonies; see Swain, Devereux, et al., 2021).

Higher order networks are of growing interest to network sci-

entists, and they appear to be relatively ubiquitous, appearing in
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a variety of contexts from biology to economics to social struc-
tures and more. What causal emergence adds to this growing
body of work is the ability to quantify why certain higher scale
structures emerge, identifying common structural properties at
the micro-scale that tend to facilitate higher order structure. How
to interpret a given higher order structure (i.e. output from the
einet package) can vary greatly across different disciplines, but
put simply: causal emergence uses the pattern of noise/uncertainty
at the micro-scale to define the most informative scale at which
to represent a complex system. These higher scale structures may
hold theoretical import (e.g. by comparing the amount of causal
emergence across different species groups or ecosystems, as in
Klein et al., 2021), or they help uncover measurement noise that
must be addressed before studying networks from a given system
(similar to recent advances in network permutation testing, as in
Puga-Gonzalez et al., 2021). Future work may also explore the use
of causal emergence in network comparison (Hartle et al., 2020)
or parameter selection when modelling ecological networks (e.g.
animal social networks, species interaction networks, etc.), to con-
strain the structure of networks produced by a generative model.
Ultimately, a comprehensive, prescriptive description of how to
interpret higher order structure in networks requires more theo-
retical development; we view einet as important to such future
theoretical advances.

3 | IMPLEMENTATION AND USAGE

These tools are available through einet, both as an R package
(GitHub) and a Python library (Github). For details about the imple-
mentation of the spectral algorithm for computing the micro-to-

macro-scale mappings, see Griebenow et al. (2019).
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FIGURE 2 Causal emergence in protein networks. To illustrate the basic steps for calculating causal emergence in networks, we use the
protein-protein interaction network of Mycoplasma putrefaciens as an example. (a) The original (micro-scale) network. (b) The different colour
circles are meant to highlight subgraphs in the original network that are especially noisy—either because they consist of densely connected
nodes or because they are sources of degeneracy. (c) To calculate causal emergence, we construct a macro-scale network by grouping the
subgraphs from (b) into macro nodes, while preserving the total in/out edge weights into the selected subgraph. Note here that the El of the
network in (a) and the El from (c) are different: the macro-scale network has more effective information than the original micro-scale network
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3.1 | Example usage (R)

Effective information and effectiveness

>>> library(devtools)

>>> library (igraph)

>>> install github ("travisbyrum/einet")
>>> library(einet)

>>> G <- karate

>>> ei micro <- effective information (G)
>>> sprintf ("EI micro: %.6f",ei micro)

EI micro: 2.350095

>>> eff micro <- ei micro / log2(gorder(G))
>>> sprintf ("Effectiveness: %.6f",eff micro)

Effectiveness: 0.461939
Causal emergence

>>> library(einet)

>>> library (igraph)

>>> set.seed(2)

>>> G <- karate

>>> CE <- causal emergence (G)

>>> ei macro <- CE$ei macro

>>> sprintf ("EI macro: %.6f",ei macro)
EI macro: 2.410400

The CE object returned by the causal emergence function
is a list object composed of g micro (original network), g macro
(coarse-grained network), mapping (a list mapping from the micro
nodes to their corresponding macro node, after coarse-graining
happened), ei macro (effective information of the coarse-grained
network), ei micro (original network’s effective information),
effectiveness (original network’s effective information, divided
by log(n) (normalization), where n is the number of nodes), and ce
(the normalized difference in effective information between the
micro- and macro-scale networks). Because the causal emer-
gence () function depends on the initial conditions of the search
for the higher scale mapping, we recommend running the function
several times and selecting the mapping with the largest effective
information (note that this is the source of the small differences
between the causal emergence in the R implementation and the

Python below).

3.2 | Example usage (Python)

Effective information and effectiveness.

>>> from el net import effective information

>>> import networkx as nx; import numpy as np

>>> G = nx.karate club graph ()
>>> EI micro = effective information (G)

>>> print ("EI micro: %.6f"$EI micro)

EI micro: 2.350095
Causal emergence

>>> from ei net import causal emergence

>>> import networkx as nx; import numpy as np
>>> np.random.seed (2)

>>> CE = causal_ emergence (G)

>>> EI macro = CE["EI macro"]

>>> print ("EI macro: %.6f"$EI macro)

EI macro: 2.415379

>>> N = G.number of nodes ()
>>> eff gain = (EI _macro-EI micro)/np.log2 (N)
>>> print ("Effectiveness gain: %.6f"%eff gain)

Effectiveness gain: 0.012832

The CE object returned by the causal emergence function is
a dictionary with the following keys: G _micro (original network), G
macro (coarse-grained network), mapping (a list mapping from the
micro nodes to their corresponding macro node, after coarse-graining
happened), EI_macro (effective information of the coarse-grained
network), and EI_micro (original network’s effective information).
In the Python implementation of this software, there is an addi-
tional causal emergence spectral() function that leverages
tools from spectral graph theory to compute causal emergence, and
does so much faster than the greedy search used in causal emer-

gence () (see Griebenow et al., 2019 for more details).
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