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Abstract

We study the network replicator equation and characterize its fixed points on arbitrary graph

structures for 2 × 2 symmetric games. We show a relationship between the asymptotic behavior

of the network replicator and the existence of an independent vertex set in the graph and also

show that complex behavior cannot emerge in 2× 2 games. This links a property of the dynamical

system with a combinatorial graph property. We contrast this by showing that ordinary rock-

paper-scissors (RPS) exhibits chaos on the 3-cycle and that on general graphs with ≥ 3 vertices

the network replicator with RPS is a generalized Hamiltonian system. This stands in stark contrast

to the established fact that RPS does not exhibit chaos in the standard replicator dynamics or the

bimatrix replicator dynamics, which is equivalent to the network replicator on a graph with one

edge and two vertices (K2).
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I. INTRODUCTION

The Hamiltonian approach to the dynamics of complicated, interacting systems has had

substantial success in providing a mathematical understanding of the world, yielding key

results in classical, celestial, statistical, and quantum mechanics. Surprisingly, the evolu-

tionary dynamics of games, which have been studied extensively over the last 40 years (see

e.g. [1–13]) can in some cases be shown to possess a Hamiltonian structure, stemming from

the dynamical description implicit in the replicator equation for the evolution of strategy

choices [14–16]. The replicator equation is one of several differential equations proposed for

evolutionary games [6, 10, 17] and it has also been generalized to many situations, including

the coevolutionary dynamics of multiple games (different payoff matrices) [14, 15, 18–20].

The simplest case is the bimatrix formulation [14, 15], with dynamics given by:⎧⎨⎩ẋi = xi (ei − x)Ay

ẏi = yi (ei − y)Bx.
(1)

Here we have two interacting species, with strategy proportion vectors x(t) and y(t) and

corresponding game matrices A and B (fully generalized in [20]). For the bimatrix repli-

cator, it has been shown that all interior equilibria (corresponding to coexisting strategies

or phenotypes within a species) are unstable [14]. As we discuss below, when each species

plays the same game (A = BT ), this is identical to the network replicator (Eq. (2)) on the

graph with two vertices and one edge (the graph K2).

When A = B is symmetric, and the bimatrix equation is further symmetrized to a single

species with x = y, then Eq. (1) becomes the ordinary replicator equation. Zeeman and

others have shown that chaotic behavior does not occur in the ordinary replicator with

three or fewer strategies [2, 3]; however chaotic behavior can emerge with four strategies

[21]. Thinking of Eq. (1) as network replicator on K2 [22–24], Sato and others have shown

[16, 25, 26] that chaotic behavior can emerge in three strategy games, however not the

ordinary rock-paper-scissors (RPS) game [16]. Similarly, for the classical replicator, work

by [12, 14–16] makes it clear that ordinary RPS and its generalizations are Hamiltonian

systems, but do not exhibit chaos.

In this paper, we show that by enlarging the network from two nodes (the bimatrix case,

K2) to three (the three-cycle, K3), the network replicator admits chaotic behavior for ordi-

nary RPS, as illustrated in Fig. 1. Moreover, the network replicator equation possesses a
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FIG. 1: Rock-Paper-Scissors dynamics in the network replicator: (Left) projection of

9-dimensional trajectories following (nested) surfaces in R3; (Right) Poincaré sections of

four different initial conditions, showing three quasi-periodic (color spectrum) and one

chaotic (grey).

generalized Hamiltonian structure on an arbitrary graph. Additionally, our analysis leads to

a surprising link between a combinatorial aspect of the graph structure and the asymptotic

behavior of the time-evolving strategy for two strategy games. Namely that in 2×2 network

replicator dynamics, the set of players that converge to a mixed strategy is always an inde-

pendent set of vertices in the graph. This work is related to but distinct from algorithmic

work in [27, 28], which uses a replicator dynamic to identify cluster structures [27] and find

maximum weighted cliques in graph [28].

Real-world system and control models are using network evolutionary games more reg-

ularly. Work in theoretical biology has begun to use evolutionary games on graphs to

understand network topologies for which evolutionary stability can be expected [22, 29] and

develop variations on the replicator dynamic (see e.g., [5, 10]). Hussein [30] investigated a

similar problem for generic network social behaviors while Pantoja and Quijano [31] inves-

tigate a distributed optimization problem on a network with the replicator. We note that

recent work by Madeo and Mocenni [32] has developed a general replicator dynamic on graph

structures, extending previous results [22, 29]. A result most closely related to this paper is

found in [33], which studies convergence of best-response strategies on graphs. The work in
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this paper is relevant because understanding that 2× 2 games produce only a special class

of convergent behaviors is critical if more complex game structures are to be used to model

physical systems. The fact that chaotic behavior can be shown to emerge on even simple

graphs with three-strategy games suggests that complex systems phenomena will emerge

readily for even simple models and that control systems must consider the management of

chaotic behavior rather than simple trajectory manipulation.

For the remainder of this paper, let G = (V,E) be a graph consisting of n > 1 vertices,

each representing a player, with V = {1, . . . , n}. For simplicity, we will use a common

(single) payoff matrix A ∈ Rm×m. Following [24], each vertex is a player who may use a

mixed strategy of dimension m in a symmetric game (repeatedly) played against neighboring

vertices. In this case, the network replicator equation is

ẋij = xij

⎛⎝ ∑︂
k∈N(i)

(ej − xi) ·Axk

⎞⎠ , (2)

where N(i) are the neighbors of vertex i. The variable xij is the probability that vertex i

plays strategy j. Network evolutionary games have been studied in the physics literature

for some time see e.g. [34–42]. The network replicator has been studied recently in the

engineering literature as well [32, 43–47] with a special focus on 2×2 games. While there are

several derivations of the network replicator in the literature, we provide a straightforward

derivation from a population model perspective in A.

The main contributions of this paper are:

1. We show that the limiting behavior of the network replicator on 2 × 2 games yields

independent vertex sets, linking a property of the dynamics with a combinatorial

property of the network on which the dynamics evolve. As a consequence, we note

that neither chaotic nor oscillating behavior emerges in the network replicator for 2×2

games consistent with [48].

2. We show that chaotic behavior emerges in rock-paper-scissors played on K3 (the com-

plete graph on 3 vertices). This is in contrast to observations in [16], which (unin-

tentionally) show that chaos is not present for the network replicator on K2. This

shows that the graph structure itself is responsible for the emergence of chaos. This

is further illustrated with more complex graph structures.
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3. We show that this system results from generalized Hamiltonian chaos, where the or-

dinary Hamiltonian is replaced by a generalized Hamiltonian. We then illustrate the

relation between this generalized Hamiltonian and a degenerate Hamiltonian for the

linearized system near the interior fixed point, thus explaining the presence of nested

tori near the fixed point in the context of the KAM theorem.

The remainder of this paper is organized as follows: In Section II we discuss results on

2 × 2 games in the network replicator. In Section III we show that chaos emerges in rock-

paper-scissors (RPS) (on K3, contrasting this to the simple dynamics that we discussed in

Section II. In Section IV we show that the RPS dynamics onK3 are Generalized Hamiltonian,

suggesting the chaotic behavior is a kind of generalized Hamiltonian chaos. We then show

that the linearization of the RPS dynamics near its interior elliptic fixed point are degenerate

Hamiltonian, explaining the nested tori seen in Fig. 1. Conclusions and future directions

are presented in Section V. Appendices with more detailed derivations are also provided.

II. ASYMPTOTIC BEHAVIOR OF 2× 2 GAMES

We first show that the dynamics of 2× 2 games are in some sense simple and, unsurpris-

ingly, do not admit any chaotic behavior. This fact could be readily deduced from network

reciprocity results as discussed in [49]. More surprisingly, we show that when the payoff

matrix does not admit a dominant strategy, the long-run behavior of the dynamics yields an

independent set of vertices. Thus relating a combinatorial property of the network to the

long-run dynamics of the network replicator.

We begin by characterizing the fixed points of Eq. (2) in 2 × 2 games. Without loss of

generality (see B), assume the payoff matrix is of the form:

A =

⎡⎣0 r

s 0

⎤⎦ .

This includes anti-coordination games (r > 0, s > 0) and Prisoner’s Dilemma-type games

(rs < 0). The fact that we have only two strategies (j ∈ {1, 2}) simplifies the analysis

substantially. Let xi ∈ [0, 1] be the fraction of the time player i plays Strategy 1, and
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xi = ⟨xi, 1− xi⟩. Then the network replicator for node i becomes

xi̇ = xi(1− xi)

⎛⎝ ∑︂
j∈N(i)

r − (r + s)xj

⎞⎠ . (3)

Thus any fixed point x∗ = ⟨x∗
1, . . . , x

∗
n⟩ of Eq. (3) must have, for each vertex i, either xi = 0,

xi = 1 (the pure strategies), or

1

|N(i)|
∑︂

j∈N(i)

xj =
r

r + s
, (4)

(assuming r+ s ̸= 0). This final condition specifies the average of the neighboring strategies

surrounding i.

The stability of any x∗ is determined by the eigenvalues of the corresponding Jacobian

matrix. For the network replicator, these eigenvalues must be real for 2× 2 games (see B).

To examine the stability of x∗, we define S ⊂ V to be the set of vertices for which the player

is playing a mixed strategy, i.e. if i ∈ V , then x∗
i ∈ (0, 1). Let G[S] denote the subgraph of

G generated by the vertices in S. We now analyze the fixed points in two distinct cases:

(i) r and s have opposite signs (Prisoner’s Dilemma type). The right hand side of Eq. (4)

cannot be in [0, 1], so there can be no vertices with a mixed strategy. Thus S = ∅, and x∗ is

a pure strategy fixed point. In this case the Jacobian matrix is diagonal, consequently x∗ is

hyperbolic and admits no circulation. Moreover, the defect strategy will be asymptotically

stable for all players.

(ii) r and s have the same sign. Assume r, s > 0 without loss of generality; it is now

possible for S to be non-empty. Analysis of the Jacobian matrix shows that x∗ is unstable

whenever G[S] has an edge (see B). Thus the asymptotic dynamics are linked to a combi-

natorial property of the graph structure.

Consistent with [49], neither circulation nor chaotic behavior is possible in the 2×2 payoff

matrix case in any graph structure. In general, solutions always converge to a (neutrally)

stable fixed point as a result of the compactness of the manifold ∆m
k , since the eigenvalues

of the Jacobian are always real. However, we have shown the more surprising property that

any vertices that play mixed strategies must form an independent set in the graph (i.e. are

not connected by an edge); this effectively limits the number of vertices that can play a

mixed strategy at equilibrium. Thus the network replicator predicts that, in any ecological

network defined by a 2 × 2 game, no two interacting species can both include coexisting

strategies at equilibrium.
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FIG. 2: The evolution of the network replicator on the Karate Club graph for a 2× 2

anti-coordination game: (Left) convergence to a steady state x∗ from random initial

conditions; (Right) structure of x∗, showing pure (circles) and mixed (star-shape) strategy

vertices, with color distinguishing strategy choice (see text).

A. Experimental Results

It is known that finding the largest independent set of a graph is NP-complete. This

raises the question of whether or not there are starting conditions in the case when rs > 0

that lead to a maximum cardinality independent set. We show experimentally that if such

initial conditions exist they may be difficult to identify. To test this, we randomly generated

10 Barabási-Albert graphs [50–52] with 100 vertices and 1 new edge at each step of the

generation algorithm and 10 Barabási-Albert graphs with 100 vertices and 2 new edges

at each step of the generation algorithm. These two models will be denoted BA(100, 1)

and BA(100, 2). We then solved the network replicator on these graphs from 200 random

starting points using the payoff matrix with r = s = 1, modeling an anti-coordination game.

We compared the size of the independent mixed strategy player vertex set to the size of

the largest independent set in the graph. In all experiments, the dynamical systems did

converge and that players with mixed strategies were confirmed to form an independent set

of vertices. Results for BA(100, 1) graphs are shown in Fig. 3. In Fig. 3a we see that the size

of the independent sets generated by the network replicator are small compared to the size

of the largest independent set of vertices. However, Fig. 3b suggests that the distributions
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FIG. 3: (Left) A histogram of ratio of the independent set size resulting from the network

replicator on a BA(100, 1) to the size of the largest independent set is shown. Combined

results are shown for 10 BA(100, 1) graphs with 200 different initial conditions. (Right)

The 10 smoothed histograms (one per graph) over the 200 different initial conditions show

similarity for the 10 different BA(100, 1) graphs.

over the 10 random BA(100, 1) graphs are similar.

Results for BA(100, 2) graphs are shown in Fig. 4. In Fig. 4a we see the size of the

independent sets generated by the network replicator are larger but still no more than

roughly half the size of the largest independent set. We also note that the distributions are

unimodal in the BA(100, 2) case while they exhibit multi-modal behavior in the BA(100, 1)

case. This is most likely a result of the difference between the graph structures.

To determine how these distributions might change for large scale-free graphs, we also ran

a small-scale experiment on 10 random graphs drawn from a BA(5000, 1) model. Because

of the graph size, we used only 10 random initial conditions and we compared the size of the

independent set identified through the network replicator to an independent set identified by

a greedy algorithm. The NP-completeness of the problem prevented identifying the largest

independent set in these graphs. Cumulative results shown in Fig. 5. We note that the

multi-modal distribution present with the BA(100, 1) model (see Fig. 3) have disappeared

but the ratio of the size of the independent set resulting from the network replicator to the

size of the independent set identified by the greedy algorithm is quantitatively similar to the

ratios identified when using the BA(100, 1) model. If we assume that this trend is consistent

over larger graph sizes, the experimental results suggest that for this anti-coordination game
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FIG. 4: (Left) A histogram of ratio of the independent set size resulting from the network

replicator on a BA(100, 2) to the size of the largest independent set is shown. Combined

results are shown for 10 BA(100, 2) graphs with 200 different initial conditions. (Right)

The 10 smoothed histograms (one per graph) over the 200 different initial conditions show

similarity for the 10 different BA(100, 2) graphs. Unlike the BA(100, 1) case these re

unimodal.

0.030 0.035 0.040 0.045
0.00

0.05

0.10

0.15

Proportion of Max. Independent Set Size

P
ro
po
rt
io
n

FIG. 5: A histogram of ratio of the independent set size resulting from the network

replicator on a BA(5000, 1) to the size of an independent set recovered through a greedy

algorithm. Combined results are shown for 10 BA(5000) graphs with 10 different initial

conditions.

the size of the independent set identified by the network replicator is roughly 4% of the size

of the largest independent set, though this has not been proven; it is merely an empirical

observation. These experiments suggest it may be difficult to find initial conditions that

lead to a maximal independent set. Study of this behavior is reserved for future work.
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III. CHAOTIC DYNAMICS IN SIMPLE 3-STRATEGY GAMES

While the dynamics of the network replicator are simple for 2 × 2 games, we show nu-

merically that chaotic behavior emerges in the classic (symmetric) RPS game when played

on a three node network with three edges (the 3-cycle K3); note that no chaotic behavior

is observed on the two node network, as shown (unintentionally) in [16] for the classic RPS

as a bimatrix game. In the standard replicator, this game has a single interior elliptic fixed

point. Generalizations of the RPS game are discussed in [8], whose dynamics are entirely

classified by Zeeman, who showed that no limit cycles can emerge [2]. In addition to this

classic result, substantial work has been done on RPS (in both spatial and aspatial settings)

with and without assuming a replicator dynamic its generalizations [53–63]. In an example

of a very recent generalization, Kabir & Tanimoto study pairwise evolution in RPS with

noise [48].

Consider the network replicator on K3, with the three nodes playing RPS defined by the

payoff matrix

A =

⎡⎢⎢⎢⎣
0 −1 1

1 0 −1

−1 1 0

⎤⎥⎥⎥⎦ . (5)

Straightforward analysis shows that the system has an infinite number of fixed points (see

C), which can be classified into three pure strategies, a continuum of boundary strategies

(where one strategy is chosen with zero probability), and one interior fixed point
⟨︁
1
3
, 1
3
, 1
3

⟩︁
.

Define the vector valued function F : ∆3
3 → R9 so that the network replicator dynamics

are ẋ = F(x). Simple computation shows that ∇ · F = 0, i.e., the system is conservative.

As a consequence, the interior fixed point must be a non-linear (elliptical) center, and

the boundary fixed points are non-attracting. We show that this property of the network

replicator leads to periodic, quasi-periodic and chaotic dynamics, a result similar to what

is found in [26], but with simpler dynamics. We also note, this is a variation on the result

in [14] which argues that the ordinary replicator on two species preserves a certain volume

form.

Long phase portraits from various starting points illustrate both quasi-periodic and

chaotic motion. The phase portraits in Fig. 6 were constructed using a ternary transform

on the dynamics of Vertex 1 alone for the K3 network, and shows that chaotic behavior
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seems to emerge as the initial condition is moved further from the interior fixed point. A

corresponding three-dimensional trajectory slice is shown Fig. 1 (Left). These surfaces are

symmetric and illustrate the relationships between rock at Vertex 1, paper at Vertex 2 and

scissors at Vertex 3. A two dimensional Poincaré section is shown in Fig. 1 (Right) with

the corresponding chaotic trajectory shown in Fig. 6, in which densely packed orbits ap-

pear relatively well-behaved when the initial condition is close to the interior fixed point.

However, when the orbit is started further away, it oscillates filling up more space. This is

qualitatively similar to the double pendulum, which when started close to its hanging equi-

librium displays simple motion, but exhibits chaotic motion when released far away from

the equilibrium point [64]. Simple, neutrally stable orbits also exist, as we show in E.

To quantify (and in some sense prove numerically) that this system is chaotic, we com-

puted the Lyapunov exponents using the technique in [65] and implemented in [66–68]. The

maximum Lyapunov exponent in this case is shown in Fig. 7 (Top). The fact that the

maximum Lyapunov exponent is positive and the domain of the dynamics is compact (i.e.,

∆3
3) is sufficient to show that the system exhibits chaos [65, 69]. The sum of the computed

Lyapunov exponents is 1.3 × 10−7, consistent with the conservative nature of the flow in

phase space (see e.g., Page 57 of [70]). We illustrate the sensitive dependence on initial con-

ditions in Fig. 7 (Bottom) by computing the (discrete) entropy of trajectories with various

initial conditions. The figure displays the fine structure associated with chaotic behavior.

(Details are provided in D and D1.) In F, we illustrate the behavior of these dynamics

R P

S

R P

S

FIG. 6: Rock-paper-scissors on a K3 network: phase portraits for Vertex 1 with initial

conditions close to (Left) and far from (Right) the interior fixed point.
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FIG. 7: Sensitive dependence on initial conditions in the RPS game: (Top) computed

maximum Lyapunov exponent for the dynamics [65]; (Bottom) density plot showing

(discrete) entropy of trajectories as a function of initial point in the simplex.

on the Karate Club network, (a larger network), and compare it to the behavior on K3.

The results indicate that the complexity of the graph structure and the resulting coupling

of the dynamics is the cause of the chaotic behavior. Moreover, chaotic behavior appears

much closer to the interior fixed point in the more complex graph. Thus we conclude that

as the graph structure becomes more complex, chaotic behavior is more common. This is

further supported by an analysis of the network replicator on the complete graph K4, whose

behavior is illustrated in Fig. 8 (see the next section and H).
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IV. GENERALIZED HAMILTONIAN DYNAMICS

Motivated by the presence of quasi-periodic orbits and the emergence of chaotic behavior

in this system, we show that a generalized Hamiltonian exists for a diffeomorphic trans-

formation of RPS on a general graph. To help explain the complex conjugate momenta

identified in the generalized Hamiltonian, we show that the linearized behavior of the RPS

game on K3 near the interior fixed point is a degenerate Hamiltonian system with more

readily explainable (ordinary) conjugate momenta.

We first consider the general case of an arbitrary graph G = (V,E) with n vertices and

using an arbitrary payoff matrix A. We derive a generalized Hamiltonian dynamics for a

diffeomorphic transformation of the network replicator (see G for details). Applying the

approach in [15, 25, 26], where each strategy proportion is normalized by the last nonzero

strategy, we define:

ui,j = log

(︃
xi,j

xi,n

)︃
. (6)

Following Sato et al. [25, 26], this can be interpreted in an information-theoretic way, since

each xi,j/xi,n is just a relative probability; i.e each log-probability is an information measure

for each vertex i. Moreover, this is a diffeomorphism on the interior of the phase space ∆n
m.

Using this transformation, the modified dynamics are:

u̇i,j =
∑︂

k∈N(i)

(ej − em) ·A exp(uk)

1 +
∑︁

l ̸=m exp(uk,l)
. (7)

Using the RPS payoff matrix and simplifying yields:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
u̇i,1 =

∑︂
k∈N(i)

(︄
1− 3euk,2

1 +
∑︁

j ̸=m euk,j

)︄

u̇i,2 =
∑︂

k∈N(i)

(︄
−1 +

3euk,1

1 +
∑︁

j ̸=m euk,j

)︄
.

(8)

Examining Eq. (8), we see that ui,1 is in a sense conjugate to a nonlinear combination of

uk,2 (k ∈ N(i)) while ui,2 is similarly conjugate to a nonlinear combination of uk,1. This is

made explicit by defining:

H =
∑︂
i

∑︂
j

ui,j −
∑︂
i

3 log (1 + eui,1 + eui,2) . (9)

13



FIG. 8: Network replicator phase portraits for RPS on the four-cycle graph K4: (top)

trajectories for initial conditions near the interior fixed point; (bottom) chaotic trajectories

for initial conditions further away.

Differentiating this generalized Hamiltonian shows that:

for i = 1, 2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u̇i,1 =

∑︂
k∈N(i)

∂H
∂uk,2

u̇i,2 =
∑︂

k∈N(i)

− ∂H
∂uk,1

.

(10)

The existence of a generalized Hamiltonian explains the presence of chaotic behavior far

from the interior elliptic fixed point (Fig. 7), and also indicates that for RPS, the network

replicator provides an example of a generalized Hamiltonian system satisfying Lioville’s

Theorem. Fig. 8 shows this generalized Hamiltonian chaos in the complete four species

network K4. As in K3, the trajectories are well behaved when the initial conditions are near

the interior fixed point (Fig. 8-top), but chaos seems to emerge for initial condition further

away from the interior fixed point (Fig. 8-bottom).

This relationship between coordinates and conjugate momenta can be better understood

conceptually by linearizing the network replicator around the RPS interior fixed point, which

leads to a degenerate Hamiltonian system. We illustrate this for K3 here, but the approach

is similar for arbitrary graphs. Let xi,3 = 1 − xi,1 − xi,2 for i = 1, 2, 3. This reduces the

dimension of the network replicator to six. Linearizing this system near the elliptic interior
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fixed point yields:

ẋi,1 =
1

3

(︄∑︂
j ̸=i

−xj,1 − 2xj,2

)︄

ẋi,2 =
1

3

(︄∑︂
j ̸=i

2xj,1 + xj,2

)︄
.

If we define the following (conjugate momenta) variables:

pi,1 =
∑︂
j ̸=i

xj,2 pi,2 =
∑︂
j ̸=i

xj,1,

then the linearized reduced dimensional system can be written as:

∀i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3ẋi,1 = −pi,2 − 2pi,1

3ẋi,2 = 2pi,2 + pi,1

3ṗi,1 = 4xi,1 + 2xi,2 +
∑︂
j ̸=i

2xj,1 +
∑︂
j ̸=i

xj,2

3ṗi,2 = −2xi,1 − 4xi,2 −
∑︂
j ̸=i

xj,1 −
∑︂
j ̸=i

2xj,2.

(11)

The conjugate momenta for xi,1 have game-theoretic meaning: the pi,1 are the strategies

of other players that result in non-zero payoff for strategy 1, while the pi,2 are strategies

resulting in non-zero payoffs for strategy 2.

The Hamiltonian for this linearized system is:

3H0 =
∑︂
i

p2i,1 + p2i,2 + pi,1pi,2 +
∑︂
i

2x2
i,1 + 2x2

i,2+∑︂
j

2xi,1xi,2 +
∑︂
i

∑︂
j>i

2xi,1xj,1+∑︂
i

∑︂
j>i

2xi,2xj,2 +
∑︂
i

xi,2

∑︂
j ̸=i

xj,1. (12)

Thus the reduced dimensional system behaves like a degenerate (12 dimensional) Hamil-

tonian system near the fixed point. Consequently, we expect to see quasi-periodic orbits

tracing foliated n-tori reasonably close to the interior fixed point (Fig. 1). A similar analysis

shows that on K4, near the interior fixed point, the linearized system exhibits degenerate 16

dimensional Hamiltonian dynamics (see H). This result should generalize to arbitrary graph

structures.
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V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we showed that the dynamics of the network replicator in two-strategy games

are inherently simple: there is no circulation in phase space, and trajectories correspond-

ingly must always converge to some stable fixed point. The stability of these underlying

fixed points is related both to the payoff matrix and the structure of an independent set

composed of vertices playing mixed strategies. Our results raise an interesting question on

the relationship between the combinatorial properties of graphs and equilibria of the net-

work replicator, since determining the independence number of a graph is NP-hard [71].

Empirical evidence suggests that finding an initial condition leading to a maximal indepen-

dent set is difficult or impossible, but this has not been proven. We contrast this result by

showing that chaotic behavior emerges in ordinary rock, paper scissors when played on the

3-cycle. Furthermore, we show that for any graph with more than two vertices, the network

replicator with RPS is a generalized Hamiltonian system. We hypothesize that the resulting

nested manifolds observed near the interior fixed point are generalized KAM surfaces. To

support this, we show that for K3 the linearized dynamics near the fixed point results in a

degenerate Hamiltonian system in 12 dimensional space. This result is extended to larger

graphs in an appendix.

While the well-known KAM Theorem applies most directly to systems with a proper non-

integrable Hamiltonian, there may be extensions of the KAM theorem for more generalized

Hamiltonian dynamics, such as the type we have found here. This is clearly an area for

future research. Beyond this, there remains the question of whether there is any deeper

meaning to the Hamiltonian structure of these equations that might involve the entropy of

evolving strategy choices in network evolutionary systems [25, 26]. Moreover, since there are

multiple conserved quantities in play, it is worth investigating whether there is a generalized

bracket as in [72] that allows the network replicator to emerge naturally.
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Appendix A: Derivation of the Network Replicator

We use x = ⟨x1, . . . , xn⟩ to denote a column vector in Rn. Let ∆m denote the m − 1-

dimensional simplex embedded in Rm defined by:

∆n =

{︄
x ∈ Rm :

m∑︂
i=1

xi = 1 and 0 ≤ xi ≤ 1

}︄
. (A1)

Let G = (V,E) be a graph consisting of n > 1 vertices. For simplicity, let V = {1, . . . , n}.

Following [24], each vertex is a player (type) who may use a mixed strategy in a symmetric

game (repeatedly) played against other vertices and governed by the payoff matrix A ∈

Rm×m. Let Xij(t) be a count of the number of times Player (vertex) i has played strategy

j ∈ {1, . . . ,m} at time t. If:

Mi(t) =
∑︂
j

Xij(t), (A2)

and:

xij(t) =
Xij(t)

Mi(t)
, (A3)

then the vector xi(t) = ⟨xi1(t), . . . , xin(t)⟩ represents the current mixed strategy of Player

i at time t. For simplicity, we will suppress time in the notation unless needed for the

remainder of this paper. Suppose the strategy counts of the players change according to the

expected payoff rule :

Ẋ ij = Xij

⎛⎝ 1

|N(i)|
∑︂

k∈N(i)

ej ·Axk

⎞⎠ . (A4)

Here (·) denotes the standard Euclidean dot product and N(i) denotes the graph-theoretic

neighborhood of Player (Vertex) i. This approach is precisely the one taken in [20] when

vertices are treated as species while the strategies at each vertex are treated as sub-species.

Unlike [20] the exact species proportions (vertex counts) are fixed, making the analysis of

Eq. (A4) simpler. For completeness, we note in the dynamics of Eq. (A4), it is possible for

counts to decrease if ∑︂
k∈N(i)

ej ·Axk < 0.
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In this case, we might assume a player “forgets” his prior plays. In general, this can be

ignored by rescaling A so it is always positive; additionally we will only be concerned with

proportions throughout the remainder of this paper.

Following the derivation in [20] – i.e. applying the quotient rule to compute ẋij yields:

ẋij =
1

|N(i)|
xij

⎛⎝ ∑︂
k∈N(i)

(ej − xi) ·Axk

⎞⎠ .

The constants |N(i)| adjust the flow speed and can be eliminated to obtain the ordinary

network replicator:

ẋij = xij

⎛⎝ ∑︂
k∈N(i)

(ej − xi) ·Axk

⎞⎠ ,

which is Eq. (2).

Appendix B: Analysis of the Jacobian of 2× 2 Games

For an arbitrary 2× 2 game, assume the payoff matrix has form:

A =

⎡⎣0 r

s 0

⎤⎦ .

For the network replicator, (as in the ordinary replicator [5]), an arbitrary payoff matrix can

be modified by subtracting or adding (different) constants to each column without changing

the structure of fixed points so long as the ordering of the entries remains fixed. Consequently

the network replicator for a 2× 2 payoff matrix is

xi̇ = xi(1− xi)

⎛⎝ ∑︂
j∈N(i)

r − (r + s)xj

⎞⎠ .

Differentiating, we see that the components of the Jacobian matrix J(x) are:

Jij(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1− 2xi)

(︂∑︁
j∈N(i) r − (r + s)xj

)︂
if i = j

−xi(1− xi)(r + s) if j ∈ N(i)

0 otherwise.

(B1)

For fixed point x∗, and let S ⊂ V be the set of vertices that do not have a pure strategy;

i.e. if i ∈ V , then x∗
i ∈ (0, 1). Let G[S] denote the subgraph generated by the vertices in
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S. We’ll analyze the possible fixed points and eigenvalues of the corresponding Jacobian

matrix in cases.

Case I: If r and s are opposite sign, then:

r

r + s
̸∈ [0, 1],

and thus there are no vertices with a mixed strategy. In this case S = ∅ and G[S] has no

edges. From Eq. (B1), the Jacobian matrix must be diagonal with real eigenvalues given by:

λi = (1− 2xi)

⎛⎝ ∑︂
j∈N(i)

r − (r + s)xj

⎞⎠ . (B2)

Consequently x∗ is hyperbolic and admits no circulation. Moreover, when r > 0 > s, then

r− (r+s)xj > 0 for all j because xj ∈ {0, 1}. This implies that any eigenvalue λi < 0 if and

only if xi = 1. It follows that the only stable equilibrium is the consensus strategy where all

players play Strategy 1. Similarly, when s > 0 > r, then the only stable equilibrium is the

consensus strategy where all players play Strategy 2. This shows that in Prisoner’s dilemma

type games, the defect strategy is always stable for all players.

Case II: Suppose r and s have the same sign and without loss of generality suppose that

r, s > 0. In this case, it is possible for S to be non-empty.

From Eq. (B1), if j ̸∈ N(i), then Jij(x
∗) = 0 for i ̸= j. So row i of J(x∗) contains non-zero

entries only at the neighbors of i. To solve det(J(x∗) − λI) = 0, apply row reduction. We

have already noted that if i ∈ V \ S, then row i has a single non-zero entry on the diagonal

and J(x∗) has an eigenvalue given by Eq. (B2). If any of these values are positive, then x∗

is unstable.

Suppose i ∈ S. By our previous assertion using row reduction on J(x∗) − λI, we can

remove any non-zero element in the columns corresponding to j ∈ V \ S, leaving only the

rows and columns corresponding to S to be diagonalized. Let Adj(G[S]) be the (symmetric)

adjacency matrix of the subgraph G[S]. Let Q(x) be the sub-matrix of the partial row-

reduction just discussed. For i ∈ S, Jii(x
∗) = 0. Careful inspection shows that:

Q(x) = −(r + s)D ·Adj(G[S])− λI,

whereD is a diagonal matrix with xi(1−xi) on the diagonal. Note thatD is positive definite,

and thus has a (diagonal) square root, which we denote B. The remaining eigenvalues of
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the Jacobian are exactly those of D · Adj(G[S]). This matrix shares eigenvalues with the

symmetric matrix B ·Adj(G[S]) ·B, and thus all these eigenvalues are real by the Principal

Axis Theorem.

Thus we have shown that there is no circulation in the phase portrait of the network

replicator in 2 × 2 games because all eigenvalues of the Jacobian matrix must be real.

Consequently, any center manifold indicates directions of neutral stability or instability.

If G[S] has any edges, then since Tr(Adj(G[S])) = 0, it follows that Adj(G[S]) has both

a positive and negative eigenvalue. Since D is positive definite, the positive eigenvalues

of Adj(G[S]) imply that D · Adj(G[S]) has a positive eigenvalue. Similarly, the negative

eigenvalues of Adj(G[S]) mean that D ·Adj(G[S]) has a negative eigenvalue. Since r + s

can only be zero when sgn(r) ̸= sgn(s) and we assumed this was not the case, it follows that

there is a positive eigenvalue whenever G[S] has an edge. Therefore we have shown that x∗

is unstable whenever G[S] has an edge.

To summarize, we have shown the following two results:

1. If x∗ is a fixed point and the corresponding subgraph G[S] has an edge, then this fixed

point has an unstable manifold. It immediately follows that any interior fixed points

are unstable.

2. For any fixed point x∗, of the network replicator with a 2 × 2 payoff matrix, the

eigenvalues of the Jacobian J(x∗) are real and therefore for any initial point x0 ∈ ∆n
2 ,

the solution curves will tend to a rest point ω(x0) ∈ ∆n
2 on the boundary. That is,

neither circulation nor chaotic behavior is possible in the network replicator with a

2× 2 payoff matrix.

In network terms, these results imply that like pure strategies will tend to be adjacent

(when possible) in coordination games, while in anti-coordination games, opposite pure

strategies will tend to be adjacent, when possible. The latter is illustrated in the main text.
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Appendix C: Fixed Points of RPS on K3

Let

A =

⎡⎢⎢⎢⎣
0 −1 1

1 0 −1

−1 1 0

⎤⎥⎥⎥⎦ ,

and consider the network replicator on K3. Algebraic analysis shows that the system has

an infinite collection of fixed points that can be organized into three classes as shown in

Table I. The parameters a, b, c and r, s, t used in specifying the boundary fixed points are

chosen from the set {1, 2, 3} with elimination. For example, one of the 36 fixed points sets

r = 1, s = 2 and t = 3 and a = 2, b = 3 and c = 1 to obtain the fixed point: x1,1 = 0,

x1,2 = p, x1,3 = 1 − p, x2,1 = 0, x2,2 = 1
3
(2 − 3p), x2,3 = 1

3
(1 + 3p) and x3,1 = 2

3
, x3,2 = 0,

x3,3 = 1
3
for p ∈

[︁
0, 2

3

]︁
. We can analyze the stability of the fixed points using a reduced

Strategy Type Fixed Points

Pure Strategy
x1 = ei1 , x2 = ei2 ,

x3 = ei3

Boundary

xra = p, xrb = 1− p,

xrc = 0

xsa = 1
3(2− 3p),

xsb =
1
3(1 + 3p), xsc = 0

xta = 0, xtb =
1
3 , xtc =

2
3

Interior x1 = x2 = x3 =
⟨︁
1
3 ,

1
3 ,

1
3

⟩︁
TABLE I: The three classes of fixed points in the rock-paper-scissors replicator dynamic

produce an infinite set of possible fixed points.

dimensional representation by eliminating the redundant equation and variables; i.e., letting

xi,3 = 1− xi,1 − xi,2 for i ∈ {1, 2, 3}.

The set of eigenvalues of the Jacobian matrix varies slightly depending on the pure

strategy type (e.g., whether the pure strategy contain a representative rock, paper and

scissors). Ignoring multiplicities, the possible sets of eigenvalues are:

Λpure ∈ {{±2} , {−4,±2, 1} , {4,±2,−1} , {±1}} .
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Thus, the pure strategies are hyperbolic with a non-empty unstable manifold. The eigen-

values of the Jacobian matrix about the fixed points on the boundary fall into two classes.

and (ignoring multiplicities):

Λboundary ∈
{︃{︃

−2, 0, 3p, 2− 3p,±2

3

√
σ

}︃
,

{︃
2, 0,−3p,−2 + 3p,±2

3

√
σ

}︃}︃
,

where σ = 9p2 − 6p − 1. Since p ∈
[︁
0, 2

3

]︁
, σ ≤ 0, and therefore, these fixed points have

stable and unstable manifolds as well (possibly) as slow and center manifolds because
√
σ

is pure imaginary. After discussing the interior fixed point, we show a that this system has

a special property that allows us to avoid complicated analysis in this case.

The eigenvalues of Jacobian matrix of the interior fixed point with multiplicities are:

Λint =

{︃
± 2i√

3
,± i√

3

}︃
.

As we show in the main text, this must be an elliptic fixed point because the divergence of

the phase flow is zero everywhere. This also allows us to conclude that the boundary fixed

points are non-attracting (i.e., hyperbolic).

As a consequence of volume preservation on the interior of the state space, the following

quantity is also conserved in the network replicator with RPS on K3:

τ =
3∏︂

i=1

3∏︂
j=1

xij.

This is a novel extension of conservation of strategy products observed in [73]. It is also

a variation on the result in [14] which argues that the replicator on two species preserves

a certain volume form; in our case, the volume form is the classical Euclidean volume,

consistent with the form of τ .

Appendix D: Sensitive Dependence on Initial Conditions

To measure the sensitive dependence on initial conditions, we computed the entropy of

symbolized trajectories with varying initial conditions for the strategy at Vertex 1. The

strategies of the other two vertices where initialized at the interior fixed point
⟨︁
1
3
, 1
3
, 1
3

⟩︁
. To

symbolize, space was broken into 1
10

× 1
10

grids. Then a path γ = [x11(t), x12(t), x13(t)] for

t ∈ [0, 1000] was converted into the corresponding sequence of grids. The ratio of the entropy

of this sequence to the possible maximum entropy (of a uniform random variable) was then

22



computed. The results are shown in Fig. 4b of the main text using a temperature scale.

When orbits are started close to the interior fixed point, they remains close to that fixed

point and consequently have lower entropy. As the initial condition of Vertex 1 is moved

closer to the boundary, the orbit becomes more chaotic and the entropy approaches that of

a uniform random variable. Close observation of the figure shows color striation indicative

of nested behavior boundaries, as would be expected.

To see this effect in specific, Fig. 9 shows x1,1(t) when started from two nearby starting

points:

x1(0) = x2(0) = x3(0) =
⟨︁

9
10
, 5
100

, 5
100

⟩︁
x′
1(0) =

⟨︁
901
1000

, 495
1000

, 495
1000

⟩︁
x′
2(0) = x′

3(0) =
⟨︁

9
10
, 5
100

, 5
100

⟩︁
.

As we expect from a chaotic system, the solutions start close to each other, but after t = 150,

the dynamics begin to diverge substantially.

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Time

x 1
,1
[t
]

Illustration of Sensitive Dependence on Initial Conditions

FIG. 9: Sensitive dependence on initial conditions is illustrated for the network replicator

with RPS on K3.

1. Transition to Chaos in Solution Spectra

The transition from simple (quasi) periodic motion near the fixed point to chaotic motion

close to the boundary can be illustrated by an analysis of the spectra of one of the solution

components. In Fig. 10 the spectrum of x11(t) is computed using a sampling rate of 100 Hz.
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FIG. 10: The figure illustrates the transition from periodic solutions close to the interior

fixed point to a chaotic solution far from the fixed point. In this figure

x2(0) = x3(0) =
⟨︁
1
3
, 1
3
, 1
3

⟩︁
. While x1(0) is constructed so that

x12(0) = x13(0) =
1
2
(1− x11(0)) always and x11(0) is chosen in the set

{0.35, 0.6, 0.8, 0.9, 0.99}.
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The initial condition of the dynamical system is constructed so that:

x2(0) = x3(0) =
⟨︁
1
3
, 1
3
, 1
3

⟩︁
,

while x1(0) is constructed so that:

x12(0) = x13(0) =
1

2
(1− x11(0)) ,

and x11(0) is chosen in the set {0.35, 0.6, 0.8, 0.9, 0.99}. Near the fixed point the spectrum

shows two dominant frequencies and the orbit is periodic. As x11(0) increase (toward the

boundary), additional frequency components enter the signal. The periodic signal becomes

quasi-periodic as the orbit traces out a high-dimensional surface. Interestingly, the signal

continues to exhibit these wild swings back toward its initial value. However, this behavior

changes after t = 400 when x11(0) = 0.99. In this case, a new behavioral regime is entered.

We note that the spectrum at this point is rich with frequencies and is consistent with the

spectra of other chaotic signals (see e.g., Page 60-61 of [74]).

Appendix E: Neutrally Stable Orbits

Within the dynamics, one can identify neutrally stable cycles that start arbitrarily far

from the interior fixed point as well. Simply requiring x1,r(t) = x2,r(t) = x3,r(t) for r = 1, 2, 3,

the resulting dynamical system has solution curves identical to those of simple ordinary RPS

with the replicator dynamic. However, these are not the only neutrally stable cycles that

can emerge. Within the chaotic dynamics of the system, there are neutrally stable closed

orbits that are identical to the orbits of traditional rock-paper-scissors running backwards

in time. To see this, note that if we impose the restriction:

x1,1(t) = x2,2(t) = x3,3(t) (E1)

x1,2(t) = x2,3(t) = x3,1(t) (E2)

x1,3(t) = x2,1(t) = x3,2(t), (E3)
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then the system of nine differential equations in the network replicator collapses to a system

of three differential:

ẋ1,1 = x1,1 (x1,2 − x1,3) (E4)

ẋ1,2 = x1,2 (−x1,1 + x1,3) (E5)

ẋ1,3 = x1,3 (x1,1 − x1,2) . (E6)

Since the strategies are in order of rock, paper, scissors, these dynamics are precisely the

negative of the evolutionary ordinary RPS replicator dynamics; i.e., there are solution curves

in this system that cause the ordinary RPS dynamics to run backwards in time for each

vertex. Any initial condition satisfying Eqs. (E1) to (E3) will lead to such curves. This

is shown in Fig. 11. This behavior was somewhat surprising, since it runs counter to the

R P

S

FIG. 11: A set of neutrally stable orbits exists within the chaotic dynamics of RPS in the

network replicator on K3. These orbits act like ordinary RPS in the replicator running

backwards in time.

ordinary expectation that rock will promote its predator paper, which in turn will promote

scissors. The phenomenon can be explained by noting that the populations at the vertices

are not self-interacting. Therefore, when Eqs. (E1) to (E3) hold, then (e.g.) the population

of scissors must be growing at the vertex dominated by rock that is adjacent to the vertex

dominated by paper. Thus the observed behavior at each vertex will operate in reverse from

the ordinary RPS [8]. However, spatially, the strategies will move around K3 in a manner

consistent with classical RPS. To see this, re-write Eqs. (E4) to (E6) using Eqs. (E1) to (E3)
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to obtain:

ẋ1,k = x1,1 (−x2,k + x3,k) (E7)

ẋ2,k = x2,1 (−x3,k + x1,k) (E8)

ẋ3,k = x3,1 (−x1,k + x2,k) , (E9)

for k = 1, 2, 3. These are the ordinary RPS equations when Vertex 1 acts as rock, Vertex

2 acts as paper and Vertex 3 acts as scissors. The phase portraits for the strategies are

shown in Fig. 12 showing the strategies cycling among the vertices of K3 and cycling in the

opposite direction of the trajectories in Fig. 11.

�� ��

��

�� ��

��

�� ��

��

FIG. 12: Phase portraits for the ternary transform of (x1,k, x2,k, x3,k) illustrating spatial

“chasing” around the graph.

Appendix F: Chaotic Behavior in the Karate Club Network

We compare the dynamics of Player 1 and Player 2 in K3 and the Karate Club Network

using rock-paper-scissors. We initialize all players except Player 1 at the interior equilibrium⟨︁
1
3
, 1
3
, 1
3

⟩︁
. Player 1 is started a x1(0) = ⟨0.33, 0.33, 0.34⟩, close to the equilibrium point.

Fig. 13 shows the projection of the dynamics of Player 1 and 2 onto ∆3. Because the

dynamics stay near the interior fixed point, we do not show the larger structure of ∆3.

Notice that both Figs. 13a and 13b show a periodic or quasi-periodic orbit that is not

chaotic. The orbits shown Figs. 13c and 13d are Poincaré tangles exhibiting highly complex

(chaotic) behavior. This difference is being caused by the underlying graph structure itself.

This further illustrates our thesis that the graph structure is contributing to the chaotic

behavior of the dynamical system.
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(a) Player 1, K3 (b) Player 2, K3

(c) Player 1, Karate Club (d) Player 2, Karate Club

FIG. 13: From a similar starting point near the interior fixed point, the dynamics on K3

are substantially less chaotic than the corresponding dynamics on the Karate Club. This

further illustrates that it is the graph structure itself contributing to the chaotic behavior

of the dynamical system.

Appendix G: Detailed Derivation of the Generalized Hamiltonian

We show that the general system is not a simple Hamiltonian system, but a generalized

Hamiltonian system [75]. (We note this expression is similar to Eq. (6) of [76], which also

satisfies Liouville’s Theorem.) To see this, we apply the analysis in [15] in which strategy 3

(scissors) is divided out, leaving (again) a 6 dimensional system. In full generality, suppose
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we have an m strategy game on a graph G = (V,E) with |V | = n. Define:

yi,j =
xi,j

xi,m

i ∈ {1, . . . , n}, j ∈ {1, . . . ,m− 1},

then by substitution and the quotient rule we have:

ẏi,j =
xi,j

xi,m

⎛⎝ ∑︂
k∈N(i)

(ej − em) ·Axk

⎞⎠ =

xi,j

xi,m

⎛⎝ ∑︂
k∈N(i)

xk,m (ej − em) ·A
xk

xk,m

⎞⎠ . (G1)

Necessarily, yi,m = 1 and therefore ẏi,m = 0, which we will henceforth ignore. Note that:

1

xk,m

= 1 +
∑︂
l ̸=m

xk,l

xk,m

, (G2)

because xk,1 + · · · + xk,m = 1. Substituting Eq. (G2) into Eq. (G1) and noting that yk,j =

xk,j/xk,m everywhere yields:

ẏi,j = yi,j

⎛⎝ ∑︂
k∈N(i)

(ej − em) ·Ayk

1 +
∑︁

l ̸=m yk,l

⎞⎠ . (G3)

Making the substitution:

ui,j = log(yi,j)

and noting that:

u̇i,j =
ẏi,j
yi,j

,

we see that:

u̇i,j =
∑︂

k∈N(i)

(ej − em) ·A exp(uk)

1 +
∑︁

l ̸=m exp(uk,l)
,

which is Eq. (7).

We now construct equations explicitly for RPS. We have:

exp(uk) =

⎡⎢⎢⎢⎣
euk,1

euk,2

1

⎤⎥⎥⎥⎦
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because yk,3 ≡ 1 and uk,3 = log(yk,3) = 0. Substituting this into Eq. (7) yields:

u̇i,1 =
∑︂

k∈N(i)

euk,1 − 2euk,2 + 1

1 + euk,1 + euk,2
(G4)

u̇i,2 =
∑︂

k∈N(i)

2euk,1 − euk,2 − 1

1 + euk,1 + euk,2
. (G5)

In general note that:

eu − 2ev + 1

1 + eu + ev
=

1 + eu + ev

1 + eu + ev
+

−3ev

1 + eu + ev
= 1− 3ev

1 + eu + ev

and
2eu − ev − 1

1 + eu + ev
=

3eu

1 + eu + ev
− 1 + eu + ev

1 + eu + ev
= − 1 +

3eu

1 + eu + ev
.

Applying these identities to yields:

u̇i,1 =
∑︂

k∈N(i)

(︃
1− 3euk,2

1 + euk,1+uk,2

)︃

u̇i,2 =
∑︂

k∈N(i)

(︃
−1 +

3euk,1

1 + euk,1+uk,2

)︃
,

as required. It is now straightforward to see that the Hamiltonian given in Eq. 9 of the

main text:

H =
∑︂
i

∑︂
j

ui,j −
∑︂
i

3 log (1 + eui,1 + eui,2)

has the property that:

∀i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u̇i,1 =

∑︂
k∈N(i)

∂H
∂uk,2

u̇i,2 =
∑︂

k∈N(i)

− ∂H
∂uk,1

,

as given in Eq. 10 of the main text. Thus the system is a generalized Hamiltonian system

obeying Liouville’s Theorem.

Appendix H: Linearization of RPS on K4 near the Interior Fixed Point

We briefly show that as in the case for K3, near the fixed point the network replicator

with RPS on K4 behaves as a degenerate Hamiltonian system. First set xi,3 = 1−xi,1−xi,2
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for all i. This reduces the dimension of the dynamical system from 12 to 8. Linearizing

about the interior fixed point we see:

ẋi,1 = −1

3

(︄∑︂
k ̸=i

xk,1 + 2xk,2

)︄
(H1)

ẋi,2 =
1

3

(︄∑︂
k ̸=i

2xk,1 + xk,2

)︄
. (H2)

As conjugate momenta, define:

pi,1 =
∑︂
k ̸=i

xk,2 (H3)

pi,2 =
∑︂
k ̸=i

xk,1. (H4)

Then we see that:

ẋi,1 = −1
3
(pi,1 + 2pi,2) (H5)

ẋi,2 =
1
3
(2pi,1 + pi,2) (H6)

ṗi,1 =
1
3

(︄
6xi,1 + 3xi,2 +

∑︂
k ̸=i

4xj,1 +
∑︂
k ̸=i

2xj,2

)︄
(H7)

ṗi,2 =
1
3

(︄
3xi,1 + 6xi,2 +

∑︂
k ̸=i

2xj,1 +
∑︂
k ̸=i

4xj,2

)︄
. (H8)

It is possible to construct an explicit Hamiltonian:

H =
1

3

(︄∑︂
i

p2i,1 + p2i,2 + pi,1pi,2 +
∑︂
i

3x2
i,1 + 3x2

i,2 +
∑︂
i

3xi,1xi,2+

∑︂
i

∑︂
j>i

4xi,1xj,1 +
∑︂
i

∑︂
j>i

4xi,2xj,2 +
∑︂
i

∑︂
j>i

2xi,1xj,2 +
∑︂
i

∑︂
j>i

2xi,2xj,1

)︄
. (H9)

However the fact that the time derivatives of the conjugate momenta can be expressed

solely in terms of the state variables and the time derivatives of the state variables can be

expressed solely in terms of the conjugate momenta is sufficient to show that the system is

a Hamiltonian system.

[1] P. D. Taylor and L. B. Jonker, Mathematical Biosciences 40, 145 (1978).

31



[2] E. C. Zeeman, in Global Theory of Dynamical Systems, Springer Lecture Notes in Mathematics

No. 819 (Springer, 1980).

[3] P. Schuster and K. Sigmund, Journal of Theoretical Biology 100, 533 (1983).

[4] M. A. Nowak and R. M. May, Nature 359, 826 (1992).

[5] J. W. Weibull, Evolutionary Game Theory (MIT Press, 1997).

[6] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge

University Press, 1998).

[7] F. Slanina and Y.-C. Zhang, Physica A: Statistical Mechanics and its Applications 289, 290

(2001).

[8] J. Hofbauer and K. Sigmund, Bulletin of the American Mathematical Society 40, 479 (2003).

[9] M. A. Nowak and K. Sigmund, Science 303, 793 (2004).

[10] G. B. Ermentrout, C. Griffin, and A. Belmonte, Phys. Rev. E 93 (2016).

[11] J. Tanimoto, Fundamentals of evolutionary game theory and its applications (Springer, 2015).

[12] D. Friedman and B. Sinervo, Evolutionary games in natural, social, and virtual worlds (Oxford

University Press, 2016).

[13] J. Tanimoto, Evolutionary Games With Sociophysics (Springer, 2019).

[14] I. Eshel and E. Akin, Journal of mathematical biology 18, 123 (1983).

[15] J. Hofbauer, J. Math. Bio 34, 675 (1996).

[16] Y. Sato, E. Akiyama, and J. D. Farmer, Proceedings of the National Academy of Sciences

99, 4748 (2002).

[17] W. H. Sandholm, Population Games and Evolutionary Dynamics (MIT Press, Boston, 2010).

[18] A. Traulsen, J. C. Claussen, and C. Hauert, Phys. Rev. Lett. 95, 238701 (2005).

[19] H. N. Alishah and P. Duarte, Journal of Dymamics and Games 2, 33 (2014).

[20] E. Paulson and C. Griffin, Mathematical Biosciences 278, 56 (2016).

[21] B. Skyrms, Journal of Logic, Language and Information 1, 111 (1992).

[22] H. Ohtsuki and M. A. Nowak, Journal of Theoretical Biology 243, 86 (2006).
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