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S U M M A R Y
We derive exact expressions for the thermal expansivity, heat capacity and bulk modulus
for assemblages with arbitrarily large numbers of components and phases, including the
influence of phase transformations and chemical exchange. We illustrate results in sim-
ple two-component, two-phase systems, including Mg–Fe olivine-wadsleyite and Ca–Mg
clinopyroxene-orthopyroxene and for a multicompontent model of mantle composition in
the form of pyrolite. For the latter we show results for the thermal expansivity and heat ca-
pacity over the entire mantle pressure–temperature regime to 40 GPa, or a depth of 1000 km.
From the thermal expansivity, we derive a new expression for the phase buoyancy parameter
that is valid for arbitrarily large numbers of phases and components and which is defined
at every point in pressure–temperature space. Results reveal regions of the mantle where
the magnitude of the phase buoyancy parameter is larger in magnitude than for those phase
transitions that are most commonly included in mantle convection simulations. These regions
include the wadsleyite to garnet and ferropericlase transition, which is encountered along hot
isentropes (e.g. 2000 K potential temperature) in the transition zone, and the ferropericlase and
stishovite to bridgmanite transition, which is encountered along cold isentropes (e.g. 1000 K
potential temperature) in the shallow lower mantle. We also show the bulk modulus along a
typical mantle isentrope and relate it to the Bullen inhomogeneity parameter. All results are
computed with our code HeFESTo, updates and improvements to which we discuss, including
the implementation of the exact expressions for the thermal expansivity, heat capacity and bulk
modulus, generalization to allow for pressure dependence of non-ideal solution parameters
and an improved numerical scheme for minimizing the Gibbs free energy. Finally, we present
the results of a new global inversion of parameters updated to incorporate more recent results
from experiment and first principles theory, as well as a new phase (nal phase), and new
species: Na-majorite and the NaAlO2 end-member of ferropericlase.

Key words: Composition and structure of the mantle; Equations of state; High-pressure
behaviour; Phase transitions; Mantle processes.

1 I N T RO D U C T I O N

The thermodynamic properties of the mantle are central to our understanding of mantle dynamics, the interpretation of seismological
observations and the interpretation of mantle-derived rocks. For example, mantle convection is driven largely by thermal buoyancy, the
magnitude of which is determined by the thermal expansivity. The heat capacity governs the thermal response to changes in energy, for
example due to radioactive decay. The bulk modulus is central to our understanding of seismic wave propagation and Earth structure.

The mantle is a multiphase assemblage, and as such displays thermodynamic properties that may differ in magnitude and sign from those
of a single phase. In the presence of phase transitions, the thermal expansivity may reverse sign, as in the case of the bridgmanite forming
reaction, stabilizing the flow against convection locally (Schubert et al. 1975; Christensen & Yuen 1985; Tackley et al. 1993). Depending on
the sign of the Clapeyron slope of the phase transition, the thermal expansivity may also be locally enhanced by orders of magnitude, as in
the case of the olivine to wadsleyite transition (Schubert et al. 1975). Phase transitions affect the heat capacity: the change in enthalpy with
temperature upon crossing a phase transition includes the heat of reaction and so is greater than the heat capacity of the transforming phases
(Schubert et al. 1975). The response of the mantle to seismic wave propagation is usually assumed to occur in the isomorphic limit, in which
phase transformations and chemical exchange are not excited by the passage of the seismic wave; the bulk modulus sensed by seismology
may differ by orders of magnitude from the equilibrium value of the transforming assemblage, leaving scope for bulk attenuation at finite
frequency (Jackson 2007; Li & Weidner 2008; Ricard et al. 2009; Durand et al. 2012).
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1120 L. Stixrude and C. Lithgow-Bertelloni

Early studies of the effects of phase transformations on mantle convection did not include all phase transformations, rather a discrete
subset that are narrow and so appeared in linearized approximations. For example, Schubert et al. (1975) and many subsequent studies
considered the olivine to wadsleyite to ringwoodite transitions, and the post-ringwoodite transition. While some subsequent studies included
a larger set of discrete phase transformations (Nakagawa & Tackley 2004; Ichikawa et al. 2014; Arredondo & Billen 2017), this approach is
limited because some important phase transitions may not be included in the list of those considered and because phase transformations in the
mantle are not limited to those that are narrow. Indeed, phase transformations and chemical exchange occur at every pressure–temperature
point in the upper 800 km of the mantle. Previous studies of the effects of phase transformations on bulk attenuation have also focused on
individual phase transformations, particularly the olivine to wadsleyite transformation (Jackson 2007; Li & Weidner 2008; Ricard et al. 2009;
Durand et al. 2012).

The advent of thermodynamic methods capable of producing comprehensive models of mantle phase equilibria and physical properties
(Connolly 2005; Ricard et al. 2005; Stixrude & Lithgow-Bertelloni 2005a; Khan et al. 2006; Piazzoni et al. 2007; Stixrude & Lithgow-
Bertelloni 2011) motivates a different strategy for investigating the influence of phase transformations on geophysical processes. With
this capability, it is no longer necessary to explicitly treat individual phase transformations discreetly, nor to linearize their influence on
thermodynamic properties. Thermodynamic properties can now be computed at every point in pressure–temperature space for compositions
of arbitrarily large numbers of components, and assemblages consisting of arbitrarily large number of phases. The set of thermodynamic
properties that can be computed include, in principle, all equilibrium properties of any equilibrium state of the system (Callen 1960). An
exception has been the properties of interest here. We are not aware of any previous derivation of the thermal expansivity, heat capacity, or
bulk modulus in transforming assemblages. Instead, previous approaches have estimated these quantities via finite difference, including our
own earlier work (Stixrude & Lithgow-Bertelloni 2007).

Our goal is two-fold: (1) to derive exact expressions for the thermal expansivity, heat capacity, and bulk modulus that include the influence
of phase transformations and (2) to illustrate the results over the entire pressure–temperature regime relevant to the upper 1000 km of the
mantle, focusing on pyrolite as a model bulk composition. To better compare with previous studies of mantle convection, we express our results
also in terms of a generalized phase buoyancy parameter, a quantity that has proved useful in understanding the role of phase transformations
in mantle convection (Christensen 1995). Our results lead us to highlight two transitions that have not been widely considered in previous
mantle convection studies and which may have an important influence on dynamics. We focus mainly on the upper 1000 km because this
is where our knowledge of the phase equilibria and physical properties is most secure and because this is where the influence of phase
transformations on thermodynamic properties are most important, although we do explore also effects of the perovskite to post-perovskite
transition on the bulk modulus.

To apply our theory to mantle assemblages, we make use of our code, HeFESTo (Stixrude & Lithgow-Bertelloni 2005b, 2011). We
have expanded the capabilities of HeFESTo as part of this study to include the computation of the thermal expansivity, heat capacity and
bulk modulus. In the course of generalizing the code, we found that the computation of these properties provides a very sensitive test of the
quality of the Gibbs free energy minimization algorithm. We have therefore undertaken a modification of the minimization algorithm, which
substantially improves the quality of the solutions (Appendix A). In order to provide the best estimates of the values of thermal expansivity,
heat capacity and bulk modulus of mantle assemblages, we have accounted for continuing rapid advance in experimental and theoretical
petrology and mineral physics, by expanding the scope of HeFESTo via the addition of new phases and species and a new global inversion of
parameter values (Appendix B).

2 T H E O RY

2.1 Overview and background

We derive analytical expressions for the thermal expansivity, heat capacity, and bulk modulus. We begin with thermodynamic background
starting with the fundamental thermodynamic relation: the Gibbs free energy expressed as a function of pressure, temperature, and the
amounts of the species. We then proceed with the derivation of the desired thermodynamic quantities, focusing initially on computing the
temperature or pressure dependence of the amounts of the species. Finally, we provide a generalization of the phase buoyancy parameter.

The Gibbs free energy of a multiphase assemblage

G(P, T, "n) =
species∑

i

niµi (P, T, "n) =
species∑

i

ni [Gi (P, T ) + RT ln ai ("n)] , (1)

where ni, µi, Gi and ai are, respectively, the amount, chemical potential, Gibbs free energy in the magnetically and cation-ordered pure form,
and activity of species i. We assume that the quantity RTln fi, where fi is the activity coefficient of species i, is independent of temperature,
but permit linear variations in this quantity with pressure, a generalization of our previous work (Stixrude & Lithgow-Bertelloni 2011) that
is further discussed in Appendix A3. This assumption permits non-ideal enthalpy and volume of solution, and neglects the contribution of
non-ideality to the entropy, because such contributions are small compared with uncertainties in the entropy at mantle pressure and temperature
(Stixrude & Lithgow-Bertelloni 2011).
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Thermal expansivity 1121

We focus our study on conditions of thermodynamic equilibrium. Equilibrium is a reasonable assumption throughout much of the Earth’s
mantle because of the high temperatures that are typical of this region: the time scale required to achieve equilibrium is short compared with
that of most geological processes. We discuss the implications of departures from equilibrium that may occur, for example, in the colder
portions of the mantle, as might be encountered in subducted slabs, and in the process of seismic wave propagation, where the time scale of
deformation may be very short compared to that needed to achieve equilibrium.

Eq. (1) is a fundamental thermodynamic relation in the sense of Callen (1960): a single functional relationship that contains complete
information of all equilibrium properties of all equilibrium states of the system. For example, the first derivatives of G yield the volume and
entropy of the assemblage

V =
(

∂G
∂ P

)

T,"n
=

∑

i

ni

(
∂µi

∂ P

)

T,"n
=

∑

i

ni V̄i (2)

S = −
(

∂G
∂T

)

P,"n
= −

∑

i

ni

(
∂µi

∂T

)

P,"n
=

∑

i

ni S̄i , (3)

where the derivatives are taken at constant values of the amounts of all species ni, and V̄i and S̄i are, respectively, the partial molar volume
and entropy of species i. If RTln fi is independent of pressure and temperature, then V̄i = Vi and S̄i = Si − R ln ai , where Vi and Si are,
respectively, the volume and entropy of pure species i.

The thermal expansivity, heat capacity and bulk modulus are given by pressure and temperature derivatives of V and S in a closed system
in equilibrium

α = 1
V

(
∂V
∂T

)

P,"b
(4)

CP = T
(

∂S
∂T

)

P,"b
(5)

KT = −V
(

∂ P
∂V

)

T,"b
(6)

and the derivatives are taken at constant bulk composition and at chemical equilibrium so that
∑

iµidni = 0.
Proceeding with the thermal expansivity as an example, combining eqs (2) and (4)

α = 1
V

∑

i

ni

(
∂V̄i

∂T

)

P,"n
+ 1

V
∑

i

V̄i

(
∂ni

∂T

)

P,"b
= 1

V
∑

i

ni V̄iαi + 1
V

∑

i

V̄i

(
∂ni

∂T

)

P,"b
= αiso + αmet. (7)

The thermal expansivity consists of two contributions. The first term

αiso = 1
V

(
∂V
∂T

)

P,"n
(8)

is the isomorphic term, and differs from the total thermal expansivity (eq. 4) in that the derivative is taken at constant amounts of all species
"n rather than at constant bulk composition "b. The isomorphic term depends only on the properties of the end-member species, including their
thermal expansivity αi. The second term αmet is the metamorphic term and depends on how the amounts of species change with increasing
temperature in equilibrium at constant bulk composition.

Similarly, the heat capacity is, combining eqs (3) and (5)

CP = T
∑

i

ni

(
∂S̄i

∂T

)

P,"n
+ T

∑

i

S̄i

(
∂ni

∂T

)

P,"b
=

∑

i

ni CPi + T
∑

i

S̄i

(
∂ni

∂T

)

P,"b
= Ciso + Cmet, (9)

where the isomorphic term Ciso depends only on the heat capacities of the end-member species CPi. The bulk modulus is related to the
compressibility kT by, combining eqs (2) and (6)

1
KT

= kT = − 1
V

∑

i

ni

(
∂V̄i

∂ P

)

T,"n
− 1

V

∑

i

V̄i

(
∂ni

∂ P

)

T,"b
= 1

V

∑

i

ni
Vi

KT i
− 1

V

∑

i

V̄i

(
∂ni

∂ P

)

T,"b
= kiso + kmet, (10)

where the isomorphic contribution to kiso = 1/Kiso depends only on the bulk moduli and volumes of the end-member species KTi, and the
metamorphic term kmet depends on the variation of the amounts of the species with pressure.

The definition of the thermal expansivity, heat capacity and bulk modulus are often given as the isomorphic contribution alone with
derivatives taken at constant "n, for example eq 8 for the thermal expansivity (Callen 1960). However in multiphase systems, the isomorphic
term accounts for only part of the change in volume with temperature, and is equal to the thermal expansivity only in the special case
that no chemical exchange occurs between coexisting phases on heating, either because no chemical exchange occurs in equilibrium (e.g.
olivine+quartz) or because equilibrium cannot be established on the time scale of the experiment. The thermal expansivity, heat capacity,
and bulk modulus (eqs 4–6), including contributions from phase transformations, have sometimes been referred to as effective values in the
geophysics literature (Schubert et al. 1975; Christensen 1995; Nakagawa et al. 2009).
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1122 L. Stixrude and C. Lithgow-Bertelloni

2.2 Thermal expansivity, heat capacity and bulk modulus

The thermodynamic properties (eqs 7, 9 and 10) have two contributions: an isomorphic term, which is readily computed as it depends only on
the properties of the end-member species, and a metamorphic term, for which we must derive an expression for the temperature and pressure
dependence of the amounts of the species ni in equilibrium and at constant bulk composition. We begin with the temperature dependence of
ni; the derivation of the pressure dependence is similar. Throughout this derivation we assume the Einstein summation convention. We start
with the thermodynamic identity
(

∂µ j

∂ni

)

P,T

(
∂ni

∂T

)

P

= −
(

∂µ j

∂T

)

P,"n
= S̄ j (11)

or

Hji

(
∂ni

∂T

)

P

= −
(

∂µ j

∂T

)

P,"n
, (12)

where

Hi j =
(

∂µi

∂n j

)

P,T

=
(

∂2G
∂ni∂n j

)

P,T

(13)

is the Hessian matrix, a square, symmetric s × s matrix, where s is the number of species. In Appendix A1, we derive the analytical expression
of the Hessian for the asymmetric regular solution model. Eq. (12) is a linear system of equations relating known quantities: the Hessian
matrix, and the partial molar entropies to the desired quantities: the temperature dependence of the ni. However, this system of equations
is ill-posed as written: it has no solution because the Hessian matrix is singular; the singularity of the Hessian matrix follows from the
Gibbs–Duhem equation. We cast a well-posed problem by applying the constraint of constant bulk composition.

We seek temperature-dependent changes in the ni that satisfy the bulk composition

ri j n j = bi , (14)

where rij is the c × s matrix of stoichiometric coefficients, and the vector bi specifies the amounts of the c components that make up the bulk
composition. We apply the constraint of constant bulk composition by introducing the matrix Vij, the columns of which are the vectors that
span the null space of eq. (14). The dimensions of Vij are therefore s × l with l = s − c, and we have

V T
ik Vkj = δi j (15)

since the columns are normalized and mutually orthogonal; δij is the Kroenecker delta. We find the matrix Vij via singular value decomposition,
as in our previous work in which we used Vij to apply the constraint of constant bulk composition to our minimization of the Gibbs free
energy (Stixrude & Lithgow-Bertelloni 2011). In that paper we showed a simple example of the structure of the matrix Vij: in the case of the
two-component olivine-wadsleyite transition, Vij has two columns which can be taken to represent the Mg–Fe cation exchange reaction and
changes in the proportions of ol and wa phases.

Applying the constraint of constant bulk composition to eq. (12)

Ĥlk V T
ki

(
∂ni

∂T

)

P,"b
= −V T

l j

(
∂µ j

∂T

)

P,"n
, (16)

where

Ĥlk = V T
l j Hji Vik (17)

with dimensions l × l is the Hessian projected onto the null space of eq. (14), and we have made use of eq. (15). Multiplying both sides of
eq. (16) by the inverse of Ĥ and then by VT we have finally
(

∂ni

∂T

)

P,"b
= −Mi j

(
∂µ j

∂T

)

P,"n
(18)

where

Mi j = Vik Ĥ−1
kl V T

l j (19)

is an s × s matrix, which depends only on the Hessian and the vectors spanning the null space. The derivation is valid for all but univariant
phase transitions for which (∂ni/∂T )P,"b is singular.

We now derive analytical expressions for the thermodynamic quantities, dispensing with the Einstein summation convention, and writing
out sums explicitly. Substituting eq. (18) into eq. (7) and using eq. (3), the thermal expansivity

α = αiso + 1
V

species∑

i, j

Mi j S̄ j V̄i . (20)
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Thermal expansivity 1123

The isobaric heat capacity is, combining eqs (3), (9) and (18)

CP = Ciso + T
species∑

i, j

Mi j S̄ j S̄i . (21)

The derivation for the isothermal bulk modulus proceeds in much the same way, but this time involving the pressure derivative of the species
amounts
(

∂ni

∂ P

)

T,"b
= −

species∑

j

Mi j

(
∂µ j

∂ P

)

T,"n
= −Mi j V̄ j . (22)

We find, combining eqs (2), (10) and (22)

kT = kiso + 1
V

species∑

i, j

Mi j V̄ j V̄i . (23)

Other quantities are computed from those already given

CV = CP

1 + αγ T
(24)

KS = KT (1 + αγ T ) (25)

γ = VαKT

CP − V α2 KT T
, (26)

where CV is the isochoric heat capacity, KS is the adiabatic bulk modulus, and γ is the Grüneisen parameter. We give the derivation of eq.
(24) in Appendix C.

2.3 Phase buoyancy parameter

The phase buoyancy parameter has proved useful in understanding the influence of phase transformations on mantle convection. The
conventional definition is (Christensen & Yuen 1985)

% = &ρ(

ρ2αgh
, (27)

where ( is the Clapeyron slope of the phase transition, &ρ is the density change across the phase transition, g is the gravitational acceleration
and h is the height of the convecting fluid. We generalize this definition to resolve the ambiguity in the definition of ( and &ρ for all but
univariant phase transformations, and to permit computation of % across pressure–temperature space.

We define % as

% = α/αiso − 1
d)/dπ

= αmet/αiso

d)/dπ
, (28)

where π = P/ρgh is the reduced pressure and ) is the fraction of the high pressure phase assemblage, which varies from 0 to 1 across the
phase transition. To compute d)/dπ , we begin with the phase proportions

ψi =
∑species

j fi j n j
∑phases

k

∑species
j fk j n j

, (29)

where fij is the number of atoms in the formula unit of species i in phase j. We have

phases∑

i

ψi = 1 (30)

and

phases∑

i

∂ψi

∂π
= 0. (31)

The phase proportions ψ i are atomic fractions, that is the fraction of the total number of atoms that are contained in phase i. We have
previously discussed the advantages of this measure of phase proportion as opposed to, e.g. mole fractions: the ψ i are independent of the
choice of chemical formula (Xu et al. 2008). Then we have

d)

dπ
=

∑′
i dψi/dπ

ψT
(32)
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1124 L. Stixrude and C. Lithgow-Bertelloni

(a) (b) (c) (d)

Figure 1. (a) Mg2SiO4-Fe2SiO4 phase diagram at 1800 K (red lines), the bulk composition at which we show the physical properties of the assemblage
(thin black line), and the fraction of wa at that bulk composition (red dashed line, top axis). The remaining panels show the total (red) and isomorphic (blue)
contributions to the (b) thermal expansivity (c) bulk modulus (KT: bold red, KS: thin red) and (d) heat capacity (CP: bold red, CV: thin red). Computed with
HeFESTo.

where the prime indicates that only phases i which increase in proportion with increasing pressure are included (dψ i/dπ > 0) and ψT is the
transforming phase fraction. We compute the transforming phase fraction as the mean phase fraction weighted by the rate at which the phase
fractions vary with pressure

ψT = 2

∑
i ψi |dψi/dπ |∑

i |dψi/dπ | . (33)

where we compute the dψ i/dπ by combining eqs (29) and (22) and the factor 2 guarantees that ) vary from 0 to 1 across the transition.

3 R E S U LT S

The example of the olivine to wadsleyite transition illustrates our method (Fig. 1). The metamorphic contributions to the thermal expansivity,
compressibility, and heat capacity are all positive for this transition. The thermal expansivity exceeds the isomorphic contribution by more
than a factor of 10 within the transformation interval, the bulk modulus is 30 times less than the isomorphic value, and the heat capacity is
30 per cent larger than the isomorphic value. The metamorphic contributions grow with increasing pressure throughout the transformation
interval because the wadsleyite fraction grows at an increasing rate with increasing pressure. The non-linear dependence of the yield of
the high pressure phase is a consequence of the Lever rule and has been discussed previously in the context of the seismic reflectivity of
mantle phase transformations (Stixrude 1997). The metamorphic contributions to the isentropic compressibility and isochoric heat capacity
are smaller than than their isothermal and isobaric counterparts, respectively.

The following approximate analysis yields additional insight into the magnitude of the metamorphic contributions

αmet = 1
V

∑

i

V̄i

(
∂ni

∂T

)

P,"b
≈ & ln V

&T
≈ (

& ln V
&P

= (
& ln ρ

&P
, (34)

where & ln V and &ln ρ are, respectively, the fractional changes in volume and density across the transition, and &P is the pressure interval
over which the transition occurs. The approximate equalities recognize that the value of αmet varies throughout the transformation interval,
and that ( has no unique definition for multi-component systems, although for sufficiently narrow transitions a sensible estimate of ( is
possible. Similarly

Cmet = T
∑

i

S̄i

(
∂ni

∂T

)

P,"b
≈ T &S

&T
≈ T (

&S
&P

, (35)

where &S is the entropy of transition, and the metamorphic contribution to the compressibility

kmet = − 1
V

∑

i

V̄i

(
∂ni

∂ P

)

T,"b
≈ −& ln V

&P
= & ln ρ

&P
(36)

is always positive so that

KT = [kT + kmet]
−1 (37)
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Thermal expansivity 1125

Figure 2. (a) Mg2Si2O6-CaMgSi2O6 phase diagram at 3 GPa computed with HeFESTo (solid red lines) compared with experimental measurements of the
compositions of the coexisting phases from Carlson & Lindsley (1988): opx (squares), cpx (circles). Also shown for comparison are the equilibria computed
by HeFESTo in the CMAS system (dashed red lines) as compared with experimental observations in CMAS (Klemme & O’Neill 2000) (diamonds). The black
dashed line shows the composition at which the thermal expansivity is computed. The remaining panels show the total (red) and isomorphic (blue) contributions
to the (b) thermal expansivity (c) bulk modulus and (d) heat capacity at Ca/(Ca+Mg)=20 per cent.

is always less than the isomorphic bulk modulus. Taking & ln ρ = 5.3 per cent, &P = 0.30 GPa, ( = 2.56 MPa K−1, &S = 5.5 J mol−1 K−1,
eqs (34)–(37) recover values of the metamorphic contributions within the transition interval as shown in Fig. 1.

Two pyroxene equilibria on the Ca−Mg join illustrate the metamorphic contribution to thermal expansivity due to cation exchange
across a very broad phase transformation (Fig. 2). The phase diagram of this system is well constrained experimentally, as are the properties
of the end-member species (Domeneghetti et al. 1995; Tribaudino et al. 2001; Nestola & Tribaudino 2003). The metamorphic term grows
with increasing temperature because the rate (∂ni/∂T) at which phase proportions change with increasing temperature increases. The positive
sign of the metamorphic term is due to the positive volume of the cation exchange reaction

CaMgSi2O6(cpx : di) + Mg2Si2O6(opx : en) ↔ CaMgSi2O6(opx : odi) + Mg2Si2O6(cpx : cen) (38)

which proceeds to the right with increasing temperature. The positive volume of reaction can be traced to the volume of the (fictive) odi
end-member being significantly larger than the volume of di, based on linear regression of the volumes of a suite of natural orthopyroxenes
(Domeneghetti et al. 1995). Crystallographically, the positive volume of this reaction can be traced to the different configurations of the M2
site (octahedral in opx and an irregular eight-fold site in cpx): the smaller octahedral site in opx expands more upon replacement of Mg by Ca
than does the larger eight-fold site. The abbreviations for the names of phases and species in this paragraph and throughout the remainder of
the text are specified in Table A1.

Phase transformations may produce α < 0, for phase transformations other than the widely studied bridgmanite-forming reactions. We
highlight another transformation that produces α < 0 that has not been widely appreciated: wa=gt+fp (Fig. 3). We show results for a model
mantle composition [pyrolite, Workman & Hart (2005)] that we have examined in our previous work (Stixrude & Lithgow-Bertelloni 2011,
2012), and which consists of six oxide components: (SiO2, MgO, FeO, CaO, Al2O3, Na2O). The 18 GPa isobar (522 km depth) shows a series
of three transformations with increasing temperature: ri+st → gt, ri → wa, and wa → gt+fp. The last causes the density to increase with
increasing temperature from 2200 to 2500 K corresponding to α < 0. Whereas the thermal expansivity may take on either sign, the bulk
modulus and heat capacity are uniformly positive. We can understand the signs of the metamorphic contributions by combining eqs (34)–(36)
with ( = &S/&V

αmet = (kmet (39)

Cmet = (2V T kmet. (40)

Since kmet > 0, this shows that αmet has the sign of the Clapeyron slope while Cmet > 0 regardless of the sign of (.
The thermal expansivity of pyrolite shows large variability over the upper 1000 km of the mantle (Fig. 4). Regions of negative thermal

expansivity include the transition wa=gt+fp at high temperature and fp+st=bg at low temperature, in addition to the more widely studied
bridgmanite forming reactions (ri=bg+fp and ak=bg), which occur along an average mantle isentrope. Variations in the isomorphic thermal
expansivity are more subtle: αiso tends to decrease with increasing pressure in the upper mantle and transition zone and then increases on
crossing the bridgmanite forming reactions.

The role of phase transformations is more clearly seen in the ratio α/αiso (Fig. 5, Table 1). In regions where α/αiso > 1, chemical exchange
enhances thermal buoyancy, for example, within the ol = wa transition. In regions where α/αiso < 0, chemical exchange reverses the normal
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1126 L. Stixrude and C. Lithgow-Bertelloni

Figure 3. (a) Density (red) and phase proportions in pyrolite (grey) along the 18 GPa isobar. Total (red) and isomorphic contributions (blue) to the (b) thermal
expansivity (c) bulk modulus and (d) heat capacity. Computed with HeFESTo.

Figure 4. Left-hand panel: the thermal expansivity α of pyrolite and (right-hand panel) the isomorphic thermal expansivity α. Thin black lines represent phase
transformations and text annotations indicate stability fields. Also plotted (orange lines) are self-consistently computed isentropes with potential temperatures
of 1000, 1500 and 2000 K, and an estimate of the solidus and liquidus of pyrolite (green lines) from Stixrude et al. (2009) and based on the results of Ito et al.
(2004), Tronnes & Frost (2002), Zhang & Herzberg (1994) and Stixrude & Karki (2005). Computed with HeFESTo on a regular pressure–temperature grid
with spacings of 0.01 GPa and 1 K.

thermal buoyancy and heating increases the density, for example within the wa + gt = wa + gt + fp transition, the fp + st = bg transition,
and the bridgmanite forming reactions. In regions where α/αiso ≈ 1, chemical exchange has little influence on the thermal expansivity, for
example the high temperature (T > 1500 K) lower mantle regime in which the metamorphic contribution to the thermal expansivity, due to
Mg-Fe exchange between bg and fp, is small.
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Thermal expansivity 1127

Figure 5. Left-hand panel: the ratio α/αiso and (right-hand panel) the phase buoyancy parameter % of pyrolite. The lines representing phase transitions are
suppressed in these graphs so as not to obscure the properties of phase transitions, such as ak = bg and ri = bg + fp which occur over a very narrow range
of pressure. The labels of phase stability fields, and the curves representing isentropes and the melting interval are the same as in Fig. 4. In our calculation of
the phase buoyancy parameter the pressure is normalized by ρgh with ρ = 4423 kg m–3, the mean density of the mantle in the PREM model (Dziewonski &
Anderson 1981), g = 10 m s–2 and h = 2891 km, yielding ρgh = 128 GPa. Computed with HeFESTo on a regular pressure–temperature grid with spacings of
0.01 GPa and 1 K.

Table 1. Properties of some mantle phase transformations.

Transition Tmin Tmax Ta P(Tmin) P(Tmax) Pa % α/αiso

K K K GPa GPa GPa

ol=wa 1162 2677 1920 11.75 15.85 13.89 +0.0247 +13.8

ak=bg (fp) 1563 1359 1461 24.39 25.49 24.96 −0.0547 −534

ak=bg (ri) 1844 1563 1704 22.70 24.39 23.57 −0.0191 −1680

ri=bg+fp (bg) 2138 1563 1851 23.17 24.39 23.83 −0.0350 −592

ri=bg+fp (fp) 2311 2138 2225 22.77 23.17 22.97 −0.0254 −330.

wa=gt+fp 2323 2101 2306 15.37 19.12 18.08 −0.0795 −0.231

fp+st=bg 1240 800 1020 26.75 35.58 31.40 −0.104 −10.0

Notes: Transitions are reported with the low pressure assemblage first, and in parentheses, in case of multiple transitions
involving the same transforming low and high pressure assemblage, a phase that appears on both sides of the transition.
Tmin and Tmax are, respectively, the minimum and maximum temperature at which the transition occurs, and P(Tmin) and
P(Tmax) are the corresponding pressures. The phase buoyancy parameter and the thermal expansivity ratio are evaluated at
intermediate temperature Ta and the corresponding pressure P(Ta). For the wa = gt + fp transition, minimum and maximum
pressure and temperature values correspond to the low pressure side of the phase stability region, whereas the characteristic
pressure and temperature are taken to be near the middle of the phase stability region along the 2000 K isentrope.

The phase buoyancy parameter shows variations in pressure and temperature that are very similar to those of the ratio α/αiso (Fig. 5,
Table 1). Phase transitions for which α/αiso > 1 (e.g. ol = wa) show a positive phase buoyancy parameter, and those with α/αiso < 1 (e.g. ri =
bg + fp) show a negative phase buoyancy parameter. Typically the magnitude of the phase buoyancy parameter increases with the magnitude
of α/αiso − 1, but this is not always the case. For example, within some of the broad low temperature stability fields, including ri + gt + st,
α/αiso − 1 is nearly zero, but d)/dπ is also very small (the reaction gt = ri + st proceeds gradually to the right with increasing pressure)
so that the phase buoyancy parameter is the ratio of two small numbers, and takes on a large value (% > 0.1). We note a final ambiguity
in the definition of the phase buoyancy parameter % suffered by the conventional definition and by our generalization. In some regions of
the mantle, we find αmet )= 0 yet no pressure dependent change in phase proportions. An example is the assemblage bg+fp+capv. Within
the scope of our model, the only chemical exchange permitted: Mg–Fe cation exchange between bg and fp, leaves the phase proportions
invariant, d)/dπ = 0, and % undefined. In our results below, in regions where d)/dπ = 0, we report % = 0. This expedient does not fully
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1128 L. Stixrude and C. Lithgow-Bertelloni

Figure 6. The heat capacity CP. The lines representing phase transitions are suppressed so as not to obscure the properties of narrow phase transitions. The
labels of phase stability fields, and the curves representing isentropes and the melting interval are the same as in Fig. 4. Computed with HeFESTo on a regular
pressure–temperature grid with spacings of 0.01 GPa and 1 K.

capture the influence of chemical exchange on buoyancy, since the cation exchange reaction does contribute to the thermal expansivity, but
the contribution, as we show is small (Fig. 4).

The heat capacity is everywhere larger and more variable than the isomorphic contribution (Fig. 6). For example, along the 1500 K
isentrope, CP is similar to 1.2 J g–1 K–1 and similar to CPiso over most of the pressure range that we have explored, but deviates by large
amounts from this value in the vicinity of phase transformations. For example, at the olivine to wadsleyite transition, the heat capacity is 1.6
J g–1 K–1. At the ri = bg + fp transition, CP = 15 J g–1 K–1, much larger than in the case of the olivine to wadsleyite transition because the
bridgmanite forming reaction is much narrower.

To illustrate the influence of phase transformations on the bulk modulus, we consider the quantity (Fig. 7)

η = KSiso

KS
. (41)

For pyrolite along the 1500 K adiabat, the value of η deviates significantly from unity due to phase transformations. For example, the most
prominent peaks, near 70, 410 and 660 km depth are due, respectively, to the plg=sp, ol=wa and ri=bg+fp transitions, while the peak near
2600 km depth is due to the bg=ppv transition, which is crossed once on the 1500 K isentrope. The value of η is very nearly unity throughout
most of the lower mantle (deviations of less than 10−5 from 721 to 2530 km depth), because Mg–Fe exchange between bg and fp has a small
volume of reaction which does not depend strongly on pressure, as also found experimentally (Nakajima et al. 2012).
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Thermal expansivity 1129

Figure 7. (top panel) The bulk modulus KS (red) and the isomorphic contribution KSiso (blue) of pyrolite along the 1500 K adiabat. (bottom) The ratio η =
KSiso/KS of pyrolite along the 1500 K adiabat (thin red line), and η smoothed with a 200 km box filter (bold red line) compared with the value of ηB from seismic
models PREM (black solid line, Dziewonski & Anderson 1981), AK135f (black longer dashed line) (Montagner & Kennett 1996) and EK137 Kennett (2020)
(black shorter dashed line). (bottom inset) η of pyrolite along the 1500 K adiabat on a logarithmic scale. All red and blue curves computed with HeFESTo.

4 D I S C U S S I O N

Along a typical isentrope, our results show values of the phase buoyancy parameter for the most widely studied transitions: ol=wa and the
bg-forming reactions that are similar to values of % that have been explored in previous mantle convection studies (Tackley et al. 1994, Fig. 5,
Table 1). Our values are somewhat smaller than those that have typically been assumed because of improved knowledge of the equations of
state and Clapeyron slopes of the transforming phases that are now incorporated in HeFESTo (Appendix B).

Our results also show that the phase buoyancy along hotter and colder isentropes differs significantly from that along the average mantle
isentrope (Fig. 5, Table 1). For example, along the 2000 K isentrope, which may be representative of hot mantle plumes, or the early Earth,
the wa = gt + fp transition may significantly impede flow: the phase buoyancy parameter of the wa = gt + fp transition is more negative than
that of the usual bridgmanite forming reactions (ri = bg + fp and ak = bg). The wa = gt + fp transformation can be written in terms of the
magnesian end-members

Mg2SiO4(wa) = MgSiO3(gt) + MgO(fp). (42)

This transition occurs at supersolidus conditions in the MgO−SiO2 system and the stability field of the right-hand side expands to lower
temperature, subsolidus conditions with the addition of Al and Ca to the bulk composition, components which dissolve in the garnet phase,
but not in the wadsleyite phase (Akaogi & Akimoto 1979). Ferropericlase is most commonly thought of as a lower mantle phase. However,
several experimental phase equilibrium studies have found gt and fp coexisting within our predicted gt + fp stability field for bulk silicate
Earth-like compositions (Zhang & Herzberg 1994; Gasparik 2000; Tronnes & Frost 2002; Hirose 2002; Frost 2003a; Ishii et al. 2018),
and ferropericalse has been found in diamond inclusions from the transition zone (Brey et al. 2004). A previous mantle convection study
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1130 L. Stixrude and C. Lithgow-Bertelloni

considered the wa = gt + fp transformation (Ichikawa et al. 2014), finding that it tends to impede flow, although using a phase diagram that
does not agree well with the experimental evidence. The influence of phase buoyancy may be greater along hotter geotherms for the same
value of % because the viscosity is smaller and the typical length scale of flow is smaller. A number of mantle convection studies have found
that the influence of phase buoyancy grows with increasing Rayleigh number or decreasing length scale of the flow (Christensen & Yuen
1985; Tackley 1995).

Along the 1000 K isentrope, bridgmanite forms via the reaction fp + st = bg, which has a much more negative phase buoyancy parameter
than the usual bridgmanite forming reactions (ri = bg + fp and ak = bg) (Fig. 5, Table 1). The transition occurs at depths considerably deeper
than 670 km: 27 GPa or 740 km along the 1000 K isentrope. This transition may therefore impede the descent of cold subducting slabs at
740 km depth. Kinetics may play an important role at such low temperatures in the mantle. The transition may be kinetically hindered in
downgoing slabs and may occur at depths even greater than 740 km. The fp + st stability field that we predict in peridotitic bulk compositions,
as well as in simple end-member compositions such as MgSiO3 and Mg2SiO4 (Stixrude & Lithgow-Bertelloni 2011), has not been observed
experimentally, yet it does not violate experimental observations.

Understanding the effect of phase transformations on thermal expansivity is not only important for the mantle, but for practical
applications as well. Considerable effort is devoted to finding materials exhibiting large negative thermal expansion, with those that show α <

−10 × 10−5 K−1, classified as ‘giant’ or ‘colossal’ negative thermal expansivity materials (Takenaka 2012; Takenaka et al. 2017). Much of the
attention in this field is focused on systems that undergo phase transformations (Azuma et al. 2011; Nabetani et al. 2015). Indeed, the mantle
exceeds the colossal negative thermal expansivity threshold at many pressures and temperatures in the vicinity of phase transformations
(Fig. 4, Table 1). Negative thermal expansivity occurs in some pure phases, the most famous example being water, but the magnitude is
much smaller (<2 × 10−5 K−1). Examples of pure phases that exhibit negative thermal expansivity include several minerals, such as ice
(Fortes 2018), cordierite (Milberg & Blair 1977) and β-eucryptite (Gillery & Bush 1959). The origin of negative thermal expansivity in these
crystalline materials, which tends to be restricted to low temperatures, is well understood and originates in bond-bending modes that are
disproportionately populated at low temperature (Barron 1957).

Before discussing the comparison of η (eq. 41) to the Bullen inhomogeneity parameter (Bullen 1975), we review the relationship between
these two quantities, starting with

η = KSiso

KS
=

(
∂ P
∂ρ

)

S,"n
/

(
∂ P
∂ρ

)

S,"b
= KSiso

ρ

1
ρg

(
∂ρ

∂z

)

S,"b
. (43)

The denominator has also been called the equilibrium or zero frequency bulk modulus ((Brown & Shankland 1981; Heinz & Jeanloz 1983;
Li & Weidner 2008; Ricard et al. 2009), and is the bulk modulus that governs Earth structure, a relationship that we make explicit in the
last relation of eq. (43) by assuming that the source of pressure is hydrostatic. The numerator is the bulk modulus probed by high frequency
seismic waves and has also been referred to as the frozen or high frequency bulk modulus as it expresses the response to pressure variations
that occur on time scales much shorter than those of chemical exchange (Jackson 2007; Ricard et al. 2009). If we generalize the derivative of
density to permit variations in entropy and bulk composition with depth, and substitute φ = KS/ρ = φ = V 2

P − 4/3V 2
S into eq. (43), where VP

and VS are, respectively, the seismologically observed values of the longitudinal and shear wave velocity, we have the Bullen inhomogeneity
parameter

ηB = φ

ρg
∂ρ

∂z
. (44)

In adiabatic, chemically homogeneous regions, we expect η = ηB, whereas in regions containing no phase transformations, we have in addition
η = 1. In the presence of phase transformations, the ratio η must be greater than or equal to unity because any chemical exchange or phase
transition that occurs in response to an increase in pressure increases the density at least as much as would occur in the frozen limit.

We compare our value of η to values of ηB derived from seismological models ek137 (Kennett 2020), ak135f (Kennett et al. 1995)
and PREM (Dziewonski & Anderson 1981) in Fig. (7). Throughout most of the lower mantle, η and ηB are similar to unity. This agreement
does not necessarily demonstrate that the lower mantle is close to adiabatic and homogeneous, because the density gradient, and therefore
ηB is not well constrained by seismic observations (Masters 1979). Limited depth resolution means that we must also be cautious in drawing
conclusions regarding the presence or absence of the bg = ppv feature in ηB near 2600 km depth. There may be small differences between η

and ηB, even in adiabatic, chemically homogeneous regions (quite apart from the limitation imposed by the finite spatial resolution of Earth
models). The isomorphic bulk modulus KSiso is derived in the limit of uniform stress among coexisting grains, known as the Reuss limit
(Watt et al. 1976). However, the passage of a seismic wave may excite stress heterogeneity among coexisting grains and as a result sense a
bulk modulus greater than the Reuss limit. Because of this effect, ηB may exceed η (Heinz & Jeanloz 1983). We must also consider the finite
frequency of seismic waves: low frequency waves may have periods comparable to the time scale of chemical exchange. In this case the value
of KS sensed by the seismic probe is less than the frozen limit and ηB < η (Jackson 2007; Li & Weidner 2008; Ricard et al. 2009; Durand
et al. 2012). These two source of deviations of ηB from η are of interest because they are associated with bulk attenuation: a property of the
mantle, the source of which is still uncertain, but which may lend valuable insight into the nature of phase transformations at depth (Durand
et al. 2012).

Because of the trade-off between resolution and precision in the seismological models (Masters & Gubbins 2003), we have attempted to
provide a more direct comparison between η and ηB by computing a smoothed version of η (Fig. 7). Our smoothed version of η shows values
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Thermal expansivity 1131

greater than unity over the upper 800 km of the mantle, reflecting the influence of phase transformations in this region. Values of ηB > 1 also
appear in the transition zone in the PREM model and in ek137, and in many earlier seismological models (Masters 1979). However, in the
ak135 model, ηB is less than unity in the transition zone, and is even slightly less than zero near 400 km depth, emphasizing that caution is
needed in interpreting ηB. In the uppermost mantle, all seismological models show ηB < 1. This feature can be explained by the upper thermal
boundary layer: because temperature increases rapidly with increasing depth in this non-isentropic layer, thermal expansion counteracts and
can even overcome the effect of pressure on the density, causing the density to decrease with increasing depth (Stixrude 2007).

As we have shown, it is now possible rigorously to compute in thermodynamic equilibrium, the thermal expansivity, heat capacity, and
bulk modulus of the mantle, including the influence of phase transformations. An active area of research that lies well beyond the scope of
this paper is the practical and robust implementation of the effect of phase transformations in geophysical fluid dynamical codes, whether
focused on mantle convection, post-glacial rebound, or seismic wave attenuation. One way to appreciate the challenges is to consider the
value of the thermal expansivity at the nodes of a finite spatial grid. As typical finite element grids are much coarser than the width of many
phase transitions, the region in which αmet is large in magnitude may be entirely missed. Some approaches to this problem include computing
the thermal expansivity and heat capacity by finite difference (Nakagawa et al. 2009), and reformulating the governing equations in terms of
independent variables other than pressure and temperature (Voller & Prakash 1987; Connolly 2009). Moreover, while many computational
schemes neglect the time derivative of the density in the mass conservation equation, this may not be justified: because the spatial gradient of
the density may be large in the vicinity of phase transformations, flow through the phase transition entails time variations of the density that
may not be negligible (Gassmoller et al. 2020).

5 C O N C LU S I O N S

We have derived expressions for the thermal expansivity, bulk modulus, and heat capacity in assemblages with an arbitrary number of phases
and components, and including the influence of phase transformations. This result will be important for furthering our understanding of the
influence of phase transformations on geophysical processes, and in other fields as well, including materials science. Computations of these
properties for a model mantle composition show potentially important effects of phase transformations on mantle dynamics beyond those
transitions usually considered. Along hot isentropes, the wadsleyite to garnet and ferropericlase transition may impede the ascent of plumes
or affect dynamical layering in the early Earth. Along cold isentropes, the transformation of oxides to bridgmanite may impede the descent
of slabs. It will be important to investigate the possible influence of these transformations on mantle convection, including in simulations
that are able to account for the much reduced viscosity along hot isentropes, and the possible influence of kinetics along cold isentropes. The
ability to compute the bulk modulus analytically may facilitate the consideration of the effects of phase transformations other than the olivine
to wadsleyite transition on bulk attenuation.
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A P P E N D I X A : H e F E S To : AVA I L A B I L I T Y A N D A L G O R I T H M I C I M P ROV E M E N T S

We have made HeFESTo publicly available on GitHub at https://github.com/stixrude/HeFESToRepository. We have made several algorithmic
improvements to HeFESTo, including expanding the scope of the code to include the computation of the thermal expansivity, bulk modulus
and heat capacity of multiphase, multicomponent assemblages as described in the main text. In this appendix, we report further improvements
including the analytical computation of the Hessian, the inclusion of non-ideal volume of mixing, a generalization of the treatment of the
Landau terms, and more efficient and reliable minimization of the Gibbs free energy.

A1 Hessian for the asymmetric regular solution model

We derive explicit results for the asymmetric van Laar theory (Holland & Powell 2003), which is incorporated in HeFESTo. The chemical
potential is

µi = Gi − RT
sites∑

k



Sik ln Nk −
c∑

j

si jk ln N jk



 −
∑

β>α

Wiαβ (δiα − φα)
(
δiβ − φβ

)
, (A1)

where

N jk =
species∑

i

si jkni (A2)

Nk =
c∑

j

N jk (A3)

Sik =
c∑

j

si jk (A4)

are, respectively, the number of atoms of component j on site k, the total number of atoms on site k and the sum over the stoichiometric
coefficients of component j on site k in species i. Note the further relationship between these quantities and eq. (14): ri j =

∑si tes
k si jk . Sums

over sites and species extend over all sites and species of the phase to which the species i belongs. In the sum over α, β only terms β > α

are included, that is, each pair interaction is counted once and like terms ∝Wiαα are excluded as these are assumed to be contained in Gi . The
size-weighted proportion of species α (Holland & Powell 2003)

φα = nαdα∑
γ nγ dγ

, (A5)

where dα is the size parameter and the sum is over all species in the phase containing species α, the size-weighted interaction parameter

Wiαβ = 2di

dα + dβ

Wαβ (A6)

and δij is the Kronecker delta.
The Hessian is

Him =
(

∂µi

∂nm

)

P,T

= −RT
∑

k



 Sik Smk

Nk
−

c∑

j

si jksmjk

N jk



 +
∑

β>α

Wiαβ

[
∂φα

∂nm

(
δiβ − φβ

)
+ ∂φβ

∂nm
(δiα − φα)

]
, (A7)

where the derivatives

∂φα

∂nm
= δαmdα∑

γ nγ dγ

− nαdαdm
(∑

γ nγ dγ

)2 . (A8)

A2 Landau contributions

We now take the reference state, for which the Landau contribution is zero, to be the low temperature, ordered phase, rather than the high-
temperature, disordered phase as in our original formulation and that of many other studies (Putnis 1992; Holland & Powell 1998; Stixrude
& Lithgow-Bertelloni 2011). We write the Landau contribution to the Gibbs free energy

GL = SD

[
(T − TC )(Q2 − 1) + 1

3
TC0(Q6 − 1)

]
, (A9)
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where the order parameter

Q4 = TC − T
TC0

(A10)

for T < TC and Q = 0 otherwise. We continue to assume that the transition temperature varies linearly with pressure

TC = TC0 + VD

SD
P. (A11)

We derive other thermodynamic properties from pressure and temperature derivatives of GL . For example, the Landau contribution to the
volume and entropy are, respectively

VL (P, T ) =
(

∂GL

∂ P

)

T

= −VD(Q2 − 1)SL (P, T ) =
(

∂GL

∂T

)

P

= −SD(Q2 − 1). (A12)

The expression for VL differs from that given in (Stixrude & Lithgow-Bertelloni 2011). The reason is that we have recast the order pa-
rameter Q. We note that most studies of Landau transitions focus on isobaric, usually 1 bar conditions. The order parameter is then
commonly written as Q = 1 − T/TC and TC = TC0. But the generalization of the order parameter to encompass a range of pressure
is non-unique. The usual formulation implies that Q = 1 at T = 0 for all pressures. But the structure of the low temperature phase
changes with pressure even at zero temperature, and this should be reflected in a variation of Q with pressure at zero temperature. For
example, the structure of the low temperature alpha phase of quartz varies with pressure at low temperature in such a way that it be-
comes increasingly distinct from the high temperature beta form, for example, by narrowing the inter-tetrahedral angle (Jorgensen 1978).
In our formulation this is reflected in the increase of Q with increasing pressure at zero temperature (for VD/SD > 0), and allowing Q
to adopt values greater than unity. An inconvenience is that at very high pressure, well outside the stability field of the phase, Q may
become very large, with the result that the phase can become artificially restabilized. We mitigate this problem by limiting the max-
imum value of Q to 2. Our formulation of the order parameter (eq. A10) recovers the usual Q2 dependence of VL found in isobaric
studies.

We have included Landau contributions for a much greater variety of phases than in (Stixrude & Lithgow-Bertelloni 2011). In addition to
quartz and stishovite, we now include Landau contributions for all iron bearing phases, corresponding to the magnetic disordering transitions
either observed, or expected in these phases.

A3 Pressure dependent regular solution

We have generalized our treatment of the non-ideal contributions to the chemical potentials by allowing for pressure dependence of the regular
solution parameters Wij. We assume the linear form

Wαβ (P) = W 0
αβ + PVαβ (A13)

and that the Vαβ are independent of pressure and temperature. The partial molar volume of species i is the pressure derivative of eq. (A1)

V̄i =
(

∂µi

∂ P

)

P,"n
= Vi −

∑

β>α

Viαβ (δiα − φα)
(
δiβ − φβ

)
(A14)

with

Viαβ = 2di

dα + dβ

Vαβ . (A15)

A4 Gibbs free energy minimization

We have modified our previous Gibbs free energy minimization algorithm by replacing the quasi-Newton method with that of se-
quential least-squares quadratic programming (SLSQP, Kraft 1994) as coded in the publicly available package nlopt (Johnson 2021).
We find that SLSQP is more efficient than quasi-Netwon: the minimum Gibbs free energy assemblage is found in fewer iter-
ations. In Figs (A1,A2) we show the same tests of efficiency that we presented in our previous paper (Stixrude & Lithgow-
Bertelloni 2011). SLSQP also provides more straightforward implementation of the non-negativity constraint (Stixrude & Lithgow-
Bertelloni 2011). Otherwise, we continue to follow the numerical strategy outlined in Stixrude & Lithgow-Bertelloni (2011), in-
cluding by imposing the constraint of fixed bulk composition via minimizing over the null-space of the linear problem (eq. 14),
explicitly removing species and phases with vanishingly small abundances, and adding phases according to the chemical affinity
criterion.

The greatest advantage of SLSQP is its reliability. No non-linear multidimensional minimization algorithm is perfect and
finding the global minimum in G cannot be guaranteed by any algorithm. Nevertheless, the number of failures is now van-
ishingly small. Our results for the thermal expansivity, heat capacity, and bulk modulus (Figs 4–7) provide a stringent
and convenient test of failure which would appear as irregularities in the variation of these quantities with pressure or
temperature.
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Figure A1. Evolution of (blue) wa fraction (green) the partition coefficient K = nfanmgwa/nfonfewa and (red, right-hand axis) the Gibbs free energy with SLSQP
iterations. Olivine is adopted as the initial guess to the phase equilibria at conditions within the ol-wa phase coexistence loop at 12.95 GPa and 1500 K and
with bulk XFe = 0.1.

Figure A2. Evolution of (blue) phase proportions and (red, right-hand axis) the Gibbs free energy with SLSQP iterations for a pyrolitic composition (Workman
& Hart 2005) for which plg+opx+cpx+ol is adopted as the initial guess to the phase equilbria at lower mantle conditions (40 GPa, 1600 K).

A P P E N D I X B : N E W PA R A M E T E R S E T

We performed a new global inversion of all parameters based on the approach described in our previous publications (Stixrude & Lithgow-
Bertelloni 2005b, 2011) and based on new results from experiment and first principles theory (Tables A1–A5). We have also made several
changes and additions to the list of species and phases considered as described below. The new parameter set is publicly available at
https://github.com/stixrude/HeFESTo Parameters 010121. Some of the improvements that are contained in this new parameter set also
appeared in an intermediate parameter set, which we described briefly in Wei et al. (2020), and which is also publicly available at https:
//github.com/stixrude/HeFESTo Parameters 270914.

We replaced the Na-bearing end-member of the garnet phase with one of Na-majorite composition. In our previous work, we chose
a Na end-member of jadeite composition, which disagrees with results from crystallography and phase equilibria. Crystallography shows
that sodium substitution occurs via VIIIMg2 + + VIAl3 + → VIIINa1 + + VISi4 +, yielding the end-member sodium composition of Na-majorite
Na2Mg1Si5O12 (Bindi et al. 2011). Our new choice agrees with the experimentally observed topology of phase diagrams along the Mg2Si2O6

− NaAlSi2O6 and CaMgSi2O6 − NaAlSi2O6 joins, which show that garnet stability is limited to half of the bulk compositional range on
these two joins (Fig. A3).
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Table A1. Properties of mantle species.
Phase Species Formula F0 V0 KT0 K ′

T 0 θ0 γ 0 q0 G0 G ′
0 ηS0 Ref.

(kJ mol−1) (cm3 mol−1) GPa K GPa

feldspar (plg) Anorthite (an) Ca[Al2Si2]O8 −4013 (4) 100.61 84 (5) 6.7 (10) 752 (2) 0.38 (5) 1.0 (10) 40 (3) 1.1 (5) 1.6 (10) 1–6
feldspar Albite (ab) Na[AlSi3]O8 −3720 (4) 100.45 60 (5) 2.8 (10) 720 (12) 0.58 (3) 1.0 (10) 36 (5) 1.4 (5) 1.0 (10) 1,6–8
spinel (sp) Spinel (sp) (Mg3Al)(Al7Mg)O16 −8680 (22) 159.05 195 (1) 4.6 (1) 856 (23) 0.98 (4) 4.1 (6) 109 (0) 0.6 (0) 2.4 (3) 1,9–11
spinel Hercynite (hc) (Fe3Al)(Al7Fe)O16 −7356 (35) 163.37 209 (2) 4.6 (10) 794 (34) 1.19 (7) 4.1 (10) 84 (13) 0.6 (5) 2.5 (10) 1,2,12
olivine (ol) Forsterite (fo) Mg2SiO4 −2055 (2) 43.60 128 (2) 4.2 (2) 809 (1) 0.99 (3) 2.1 (2) 82 (2) 1.5 (1) 2.3 (1) 1,13–16
olivine Fayalite (fa) Fe2SiO4 −1372 (1) 46.29 136 (1) 4.9 (1) 619 (2) 1.08 (7) 2.9 (2) 51 (0) 0.9 (1) 1.7 (2) 1,6,14,16,17
wadsleyite (wa) Mg-Wadsleyite (mgwa) Mg2SiO4 −2028 (2) 40.52 169 (2) 4.1 (1) 845 (8) 1.20 (9) 2.2 (10) 112 (2) 1.5 (0) 2.6 (3) 1,6,18–21
wadsleyite Fe-Wadsleyite (fewa) Fe2SiO4 −1358 (7) 42.80 169 (13) 4.1 (10) 647 (21) 1.20 (30) 2.2 (10) 72 (12) 1.5 (5) 1.0 (10) 18,22
ringwoodite (ri) Mg-Ringwoodite (mgri) Mg2SiO4 −2017 (2) 39.49 185 (2) 4.2 (2) 875 (8) 1.11 (10) 2.4 (4) 123 (2) 1.4 (1) 2.3 (5) 1,6,23–25
ringwoodite Fe-Ringwoodite (feri) Fe2SiO4 −1359 (3) 41.86 213 (7) 4.2 (10) 663 (9) 1.27 (23) 2.4 (10) 92 (10) 1.4 (5) 1.8 (10) 23,26,27
orthopyroxene (opx) Enstatite (en) MgMgSi2O6 −2914 (2) 62.68 107 (2) 7.0 (4) 812 (4) 0.78 (4) 3.4 (4) 77 (1) 1.5 (1) 2.5 (1) 1,28–33
orthopyroxene Ferrosilite (fs) FeFeSi2O6 −2228 (4) 65.94 101 (4) 7.9 (0) 683 (11) 0.72 (8) 3.4 (10) 52 (5) 1.5 (5) 1.1 (10) 1,2,28,34,35
orthopyroxene Mg-Tschermaks (mgts) MgAl[SiAl]O6 −3002 (9) 59.14 107 (10) 7.0 (10) 784 (24) 0.78 (30) 3.4 (10) 93 (10) 1.5 (5) 2.4 (10) 1
orthopyroxene Ortho-Diopside (odi) CaMgSi2O6 −3016 (3) 68.05 107 (10) 7.0 (10) 745 (9) 0.78 (30) 3.4 (10) 58 (10) 1.5 (5) 1.3 (10) 1
clinopyroxene (cpx) Diopside (di) CaMgSi2O6 −3030 (2) 66.04 114 (1) 4.8 (2) 783 (3) 1.01 (5) 0.6 (3) 73 (0) 1.7 (1) 1.1 (3) 1,6,14,36,37
clinopyroxene Hedenbergite (he) CaFeSi2O6 −2677 (45) 67.87 119 (4) 4.8 (3) 702 (2) 0.97 (6) 0.6 (10) 61 (1) 1.7 (5) 1.0 (10) 1,6,14,38,39
clinopyroxene Clinoenstatite (cen) MgMgSi2O6 −2907 (3) 62.50 114 (10) 4.8 (10) 807 (8) 1.01 (30) 0.6 (10) 77 (10) 1.7 (5) 1.4 (10) 40
clinopyroxene Ca-Tschermaks (cats) CaAl(SiAl)O6 −3119 (5) 63.57 114 (10) 4.8 (10) 804 (5) 0.82 (0) 0.6 (10) 74 (10) 1.7 (5) 1.7 (10) 41,42
clinopyroxene Jadeite (jd) NaAlSi2O6 −2855 (3) 60.51 142 (2) 4.8 (10) 821 (12) 0.90 (8) 0.8 (14) 85 (2) 1.7 (5) 1.9 (10) 1,6,43–45
HP-clinopyroxene (hpcpx) HP-Clinoenstatite (hpcen) Mg2Si2O6 −2905 (3) 60.76 116 (1) 6.2 (3) 823 (6) 1.12 (5) 0.2 (5) 88 (1) 1.8 (1) 2.1 (5) 46
HP-clinopyroxene HP-Clinoferrosilite (hpcfs) Fe2Si2O6 −2224 (4) 63.85 116 (10) 6.2 (10) 699 (11) 1.12 (30) 0.2 (10) 75 (10) 1.8 (5) 1.0 (10) 1,47
Ca-perovskite (cpv) Ca-Perovskite (capv) CaSiO3 −1460 (7) 27.45 236 (4) 3.9 (2) 799 (39) 1.89 (7) 0.9 (16) 155 (12) 2.2 (5) 1.2 (10) 48-51
akimotoite (ak) Mg-Akimotoite (mgak) MgSiO3 −1410 (2) 26.35 211 (4) 5.2 (0) 933 (11) 1.19 (13) 2.2 (1) 132 (8) 1.8 (0) 3.4 (3) 1,6,52,53
akimotoite Fe-Akimotoite (feak) FeSiO3 −1048 (21) 26.85 211 (10) 5.2 (10) 781 (103) 1.19 (30) 2.2 (10) 161 (10) 1.8 (5) 3.4 (10) 1
akimotoite Corundum (co) AlAlO3 −1582 (1) 25.58 253 (5) 3.9 (2) 932 (3) 1.31 (4) 1.7 (2) 163 (2) 1.8 (5) 2.6 (7) 1,6,14,16,54,55
garnet (gt,mj) Pyrope (py) Mg3AlAlSi3O12 −5937 (10) 113.08 170 (2) 4.1 (3) 823 (4) 1.01 (6) 1.4 (5) 94 (2) 1.4 (2) 1.0 (3) 1,14,60–62
garnet Almandine (al) Fe3AlAlSi3O12 −4933 (29) 115.43 174 (2) 4.9 (2) 741 (5) 1.06 (6) 1.4 (10) 96 (1) 1.4 (1) 2.1 (10) 1,14,61,63
garnet Grossular (gr) Ca3AlAlSi3O12 −6275 (11) 125.12 167 (1) 3.9 (2) 823 (2) 1.05 (6) 1.9 (2) 109 (4) 1.2 (1) 2.4 (1) 1,16,30,61,63,64
garnet Mg-Majorite (mgmj) Mg3MgSiSi3O12 −5693 (9) 114.32 165 (3) 4.2 (3) 822 (4) 0.98 (7) 1.5 (5) 85 (2) 1.4 (2) 1.0 (3) 1,14,24,62,65,66
garnet Na-Majorite (namj) (Na2Mg)SiSiSi3O12 −5303 (27) 110.84 172 (3) 5.2 (6) 845 (28) 1.25 (5) 0.1 (12) 115 (1) 1.4 (5) 2.5 (10) 67-69
quartz (qtz) Quartz (qtz) SiO2 −860 (1) 22.42 61 (1) 19.8 (1) 884 (33) −0.04 (6) 1.0 (10) 45 (1) 0.0 (1) 2.4 (10) 1,70–73
coesite (coes) Coesite (coes) SiO2 −856 (1) 20.66 104 (1) 2.9 (1) 880 (16) 0.29 (3) 1.0 (10) 62 (0) 0.5 (1) 2.8 (10) 1,74,75
stishovite (st) Stishovite (st) SiO2 −817 (1) 14.02 306 (8) 4.0 (1) 1092 (13) 1.56 (6) 2.2 (20) 228 (12) 1.9 (1) 4.4 (10) 1,76–78
seifertite (seif) Seifertite (seif) SiO2 −793 (2) 13.67 327 (2) 4.0 (1) 1129 (17) 1.56 (30) 2.2 (10) 227 (2) 1.8 (1) 4.6 (10) 40,77
bridgmanite (bg) Mg-Bridgmanite (mgbg) MgSiO3 −1362 (2) 24.45 251 (3) 4.1 (1) 880 (6) 1.54 (5) 0.8 (4) 173 (2) 1.7 (0) 1.7 (4) 1,48,79–83
bridgmanite Fe-Bridgmanite (febg) FeSiO3 −1003 (5) 25.32 271 (10) 4.0 (1) 747 (24) 1.54 (30) 0.8 (10) 130 (40) 1.4 (0) 2.1 (10) 84–87
bridgmanite Al-Bridgmanite (albg) AlAlO3 −1518 (3) 24.94 242 (10) 4.1 (5) 858 (9) 1.54 (30) 0.8 (10) 169 (10) 1.6 (1) 2.3 (5) 88–91
post-perovskite (ppv) Mg-Post-Perovskite (mppv) MgSiO3 −1314 (3) 23.53 292 (1) 3.7 (1) 941 (8) 1.77 (7) 2.0 (3) 171 (4) 1.9 (1) 1.3 (3) 1,97–100
post-perovskite Fe-Post-Perovskite (fppv) FeSiO3 −982 (15) 24.65 292 (10) 3.7 (10) 794 (35) 1.77 (30) 2.0 (10) 130 (5) 1.3 (1) 1.7 (10) 86,101
post-perovskite Al-Post-Perovskite (appv) AlAlO3 −1336 (4) 23.85 249 (20) 4.0 (1) 723 (8) 1.89 (2) 2.0 (10) 92 (10) 1.8 (1) 2.5 (2) 91,102,103
ferropericlase (fp) Periclase (pe) Mg2Mg2O4 −2278 (1) 44.98 161 (3) 3.9 (0) 771 (38) 1.45 (6) 1.5 (1) 131 (1) 2.1 (1) 2.6 (2) 1,6,14,16,60,105–10
ferropericlase Wüstite (wu) Fe2Fe2O4 −975 (5) 49.02 161 (3) 4.0 (2) 454 (83) 1.45 (30) 1.5 (10) 59 (1) 1.4 (1) 0.1 (10) 14,108–112
ferropericlase a-NaAlO2 (anao) Na2Al2O4 −2115 (25) 45.42 161 (10) 3.9 (10) 753 (74) 1.45 (30) 1.5 (10) 108 (10) 2.1 (5) 0.8 (10) 113
Ca-ferrite (cf) Mg-Ca-Ferrite (mgcf) MgAlAlO4 −2123 (4) 36.14 213 (6) 4.1 (3) 831 (16) 1.57 (11) 1.0 (10) 130 (0) 1.9 (0) 1.3 (10) 116–121
Ca-ferrite Fe-Ca-Ferrite (fecf) FeAlAlO4 −1774 (21) 37.22 213 (10) 4.1 (10) 734 (54) 1.57 (30) 1.0 (10) 160 (10) 1.9 (5) 2.3 (10) 40
Ca-ferrite Na-Ca-Ferrite (nacf) NaAlSiO4 −1835 (5) 36.27 220 (1) 4.1 (1) 683 (17) 1.57 (30) 1.0 (10) 135 (1) 1.9 (5) 1.4 (10) 122–124
NAL-phase (nal) Mg-NAL-Phase (mnal) NaMg2(Al5Si)O12 −6167 (15) 109.88 204 (2) 4.3 (1) 858 (18) 1.43 (5) 1.0 (10) 129 (1) 1.7 (0) 1.9 (10) 118,121,126–128

Downloaded from https://academic.oup.com/gji/article/228/2/1119/6375416 by UCLA user on 26 October 2021



1142
L.Stixrude

and
C

.Lithgow
-B

ertelloni

Table A1. Continued
Phase Species Formula F0 V0 KT0 K ′

T 0 θ0 γ 0 q0 G0 G ′
0 ηS0 Ref.

(kJ mol−1) (cm3 mol−1) GPa K GPa

NAL-phase Fe-NAL-Phase (fnal) NaFe2(Al5Si)O12 −5475 (74) 112.05 204 (10) 4.3 (10) 795 (80) 1.43 (30) 1.0 (10) 150 (10) 1.7 (5) 2.7 (10) 129
NAL-phase Na-NAL-Phase (nnal) NaNa2(Al3Si3)O12 −5567 (42) 109.40 204 (10) 4.3 (10) 850 (51) 1.43 (30) 1.0 (10) 144 (10) 1.7 (5) 2.4 (10) 130
kyanite (ky) Kyanite (ky) Al2SiO5 −2446 (4) 44.23 160 (1) 4.0 (0) 943 (8) 0.93 (7) 1.0 (10) 118 (10) 1.7 (5) 2.9 (10) 1,131–133
nepheline (neph) Nepheline (neph) NaAlSiO4 −1994 (21) 53.87 53 (1) 4.0 (10) 744 (13) 0.70 (2) 1.0 (10) 31 (1) 1.3 (5) 0.6 (10) 2,14,134,135

Notes:1. Smyth & McCormick (1995) 2. Bass (1995) 3. Angel et al. (1988) 4. Krupka et al. (1979) 5. Robie et al. (1978) 6. Fei (1995) 7. Brown et al. (2006) 8. Downs & Palmer (1994) 9. Zou et al. (2013) 10. Fiquet et al. (1999) 11. Anderson & Isaak (1995) 12.
Harrison et al. (1998) 13. Zha et al. (1996) 14. Robie & Hemingway (1995) 15. Bouhifd et al. (1996) 16. Anderson & Isaak (1995) 17. Speziale et al. (2004) 18. Sinogeikin et al. (1998) 19. Wang et al. (2014) 20. Fei et al. (1992) 21. Li et al. (2001) 22. Hazen
et al. (2000) 23. Sinogeikin et al. (2003) 24. Higo et al. (2008) 25. Sinogeikin et al. (2001) 26. O’Neill et al. (1993) 27. Mao et al. (1969) 28. Jackson et al. (1999) 29. Flesch et al. (1998) 30. Thieblot et al. (1999) 31. Krupka et al. (1985) 32. Jackson et al.
(2003) 33. Jackson et al. (2007) 34. HughJones & Angel (1997) 35. HughJones (1997) 36. Sang & Bass (2014) 37. Isaak et al. (2006) 38. Kandelin & Weidner (1988b) 39. Hu et al. (2015) 40. This work (2010) 41. Haselton et al. (1984) 42. Etzel et al. (2007)
43. Kandelin & Weidner (1988a) 44. Hemingway et al. (1998) 45. Zhao et al. (1997) 46. Kung et al. (2005) 47. HughJones et al. (1996) 48. Shim & Duffy (2000) 49. Shim et al. (2000) 50. Wang et al. (1996) 51. Karki & Crain (1998) 52. Weidner & Ito (1985)
53. Zhou et al. (2014) 54. Gieske & Barsch (1968) 55. Dewaele & Torrent (2013) 56. Finger & Hazen (1980) 57. Liebermann & Schreiber (1968) 58. Liu et al. (2003) 59. Saito (1965) 60. Sinogeikin & Bass (2000) 61. Thieblot et al. (1998) 62. Sinogeikin &
Bass (2002b) 63. Jiang et al. (2004) 64. Haselton & Westrum (1980) 65. Sinogeikin & Bass (2002a) 66. Wang et al. (1998) 67. Bindi et al. (2011) 68. Pacalo et al. (1992) 69. Dymshits et al. (2014) 70. Ohno et al. (2006) 71. Kimizuka et al. (2007) 72. Richet
et al. (1982) 73. Ackerman & Sorrell (1974) 74. Chen et al. (2015) 75. Bourova et al. (2006) 76. Jiang et al. (2009) 77. Karki et al. (1997) 78. Wang et al. (2012) 79. Sinogeikin et al. (2004) 80. Murakami et al. (2007) 81. Fiquet et al. (2000) 82. Katsura et al.
(2009) 83. Zhang et al. (2013) 84. Dorfman et al. (2013) 85. Kiefer et al. (2002) 86. Dorfman & Duffy (2014) 87. Stackhouse et al. (2006a) 88. Oganov & Ono (2005) 89. Lin et al. (2004) 90. Duan et al. (1999) 91. Stackhouse et al. (2005) 92. Liu et al. (2018)
93. Bykova et al. (2016) 94. This work (2019) 95. This work (2016) 96. This work (2020) 97. Sakai et al. (2016) 98. Guignot et al. (2007) 99. Zhang et al. (2016) 100. Tsuchiya et al. (2004) 101. Stackhouse et al. (2006b) 102. Ono et al. (2006) 103. Caracas
& Cohen (2005) 104. Shim et al. (2009) 105. Jackson & Niesler (1982) 106. Murakami et al. (2009) 107. Dorogokupets & Dewaele (2007) 108. McCammon & Liu (1984) 109. Solomatova et al. (2016) 110. Stolen et al. (1996) 111. Jacobsen et al. (2002) 112.
Marquardt et al. (2009) 113. Reid & Ringwood (1968) 114. Reichmann & Jacobsen (2004) 115. Levy et al. (2004) 116. Kojitani et al. (2007) 117. Sueda et al. (2009) 118. Imada et al. (2012) 119. Skinner (1966) 120. This work (2013) 121. Dai et al. (2013)
122. Yamada et al. (1983) 123. Dubrovinsky et al. (2002) 124. Mookherjee (2011) 125. Ricolleau & Fei (2016) 126. Kojitani et al. (2011) 127. Pamato et al. (2014) 128. Shinmei et al. (2005) 129. This work (2014) 130. Mookherjee et al. (2012) 131. Comodi
et al. (1997) 132. Hemingway et al. (1991) 133. Gatta et al. (2006) 134. Hovis et al. (2009) 135. Hovis et al. (2003) 136. Adams et al. (2006) 137. Rotter & Smith (1966) 138. Basinski et al. (1955) 139. Stixrude et al. (1994) 140. Zaretsky & Stassis (1987) 141.
Dewaele et al. (2006) 142. Antonangeli & Ohtani (2015).
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Table A2. Interaction parameters1

Phase Species 1 Species 2 W 0
12 Ref.2

(kJ mol−1)

plg an ab 13 (2) Holland & Powell (2003)
sp sp hc − 0.5 (90)
ol fo fa 4.7 (21)
wa mgwa fewa 13.2 (25)
ri mgri feri 7.6 (17)
opx en odi 32.2 (10)
opx fs odi 32.2 (10) 3
opx mgts odi 48 (11)
cpx di cen 24.7 (20) Holland et al. (1979)
cpx di cats 26 (4) Benisek et al. (2007)
cpx di jd 24.3 (20) Holland (1983)
cpx he cen 24.7 (20) 3
cpx he cats 26 (4) 3
cpx he jd 24.3 (20) 3
cpx cen cats 60.1 (88)
cpx cen jd 46.0 (45)
cpx cats jd 10 (4) Cohen (1986)
ak mgak co 59.3 (64)
ak feak co 59.3 (64) 3
gt py gr 21.1 (71)
gt py mgmj 22.7 (69)
gt py namj 22.7 (69) 4
gt al gr 21.1 (71) 3
gt al mgmj 22.7 (69) 3
gt gr mgmj 61 (17)
gt gr namj 61 (17) 4
gt mgmj namj 71 (15)
bg mgbg febg − 11.4 (18)
bg mgbg albg 35.0 (35)
ppv mppv fppv − 11.0 (35)
ppv mppv appv 35.0 (100) 5
ppv fppv appv 35.0 (100) 3
fp pe wu 44.0 (4) Frost (2003a)
fp pe anao 120 (40)
fp wu anao 120 (40) 3
cf mgcf nacf 61 (12)
cf fecf nacf 61 (12) 3
nal mnal nnal − 61 (12)
nal fnal nnal − 61 (12) 3

Notes: 1. Size parameters dα = 1 for all species except dcats = 3.50 and dnacf = 4.06.
Non-ideal volume parameters V12 = 0 for all species except Vpy − gr = 1.03 cm3

mol−1 (Bosenick & Geiger 1997) and Vpe − wu = 0.44 cm3 mol−1 (Frost 2003a). 2.
From our global inversion of phase equilibria unless otherwise noted. 3. Assumed
to be the same as the interaction with the magnesian end-member, for example
Wfs − odi = Wen − odi. 4. Assumed the same as the interaction with mgmj, for example
Wpy − mgmj = Wpy − namj. 5. Assumed to be the same as the corresponding interaction
in bg, for example Wmgbg − albg = Wmppv − appv.

We have added the NaAlO2 end-member to the ferropericlase phase. This addition agrees with observations from experiment and
from natural samples that ferropericlase accepts sodium in mantle-like bulk compositions (Brey et al. 2004; Gasparik 2000; Wood 2000;
Irifune 1994; Hirose 2002). In fact, experiments show that ferropericlase is the dominant host of Na in the lower mantle in peridotitic
compositions. Results of HeFESTo agree reasonably well with experimental observations of the Na content of ferropericlase in a variety of
bulk compositions (Fig. A4). The addition of the NaAlO2 end-member to ferropericlase is also important because it yields agreement with
experimental observations of phase equilibria in peridotitic compositions. Ferropericlase provides a host for Na in the lower mantle other
than the cf phase which, in our previous parameter set, was the only Na-bearing phase in the lower mantle and which was therefore present
throughout the lower mantle for bulk compositions that contained Na, in disagreement with experimental observations that find no cf in
peridotitic bulk compositions at typical lower mantle temperatures. With our new parameter set, we find no cf in the lower mantle in peridotite
(Fig. 4).

We have added the sodium-aluminum rich phase (nal); which is an important lower mantle phase, especially in basaltic compositions in
the shallow lower mantle (Perrillat et al. 2006; Ricolleau et al. 2008). Experiments show that nal and cf may coexist in basaltic compositions,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
2
8
/2

/1
1
1
9
/6

3
7
5
4
1
6
 b

y
 U

C
L
A

 u
s
e
r o

n
 2

6
 O

c
to

b
e
r 2

0
2
1



1144 L. Stixrude and C. Lithgow-Bertelloni

Table A3. Landau parameters.

Species TC0 SD VD Ref.1

(K) (J mol−1 K−1) (cm3 mol−1)

hc2 5.00 53.53 0.00
fa 65.00 26.76 0.00 Aronson et al. (2007)
fewa 5.00 26.76 0.00
feri 5.00 26.76 0.00
fs 5.00 26.76 0.00
he 5.00 13.38 0.00
fec2 5.00 26.76 0.00
feil 5.00 13.38 0.00
al 7.50 40.14 0.00 Anovitz et al. (1993)
qtz 847.00 5.76 1.36 Mirwald & Massone (1980)
st3 −4250 0.001 0.012 Andrault et al. (1998); Ono et al. (2002)
febg 5.00 13.38 0.00
fppv 5.00 13.38 0.00
wu 191.00 53.53 0.00 Stolen et al. (1996)
fecf 5.00 13.38 0.00
fnal 5.00 26.76 0.00
neph 467.00 10.00 0.80 Holland & Powell (1998)

Notes: 1. Sources of data in addition to those cited in Table A1. 2. Unless otherwise noted, the transition is
assumed to be that of magnetic ordering with TC = 5 K, VD = 0 and SD = mRln (5) where m is the number
of Fe atoms in the formula unit. 3. Values of VD and SD chosen to be vanishingly small.

indicating subtle energetics in the relative stability of these two phases. Indeed, experiments on the MgAl2O4−NaAlSiO4 show wide ranges
of coexistence of cf and nal that we also find in our calculations using our new parameter set (Fig. A5).

We have updated the parameters of several species, including the elasticity and/or equation of state of wadsleyite (Wang et al. 2014),
diopside (Sang & Bass 2014), hedenbergite (Hu et al. 2015), akimotoite (Zhou et al. 2014), corundum (Dewaele & Torrent 2013), Na-majorite
(Dymshits et al. 2013), coesite (Chen et al. 2015), stishovite (Wang et al. 2012), bridgmanite (Dorfman et al. 2013; Zhang et al. 2013; Dorfman
& Duffy 2014), post-perovskite (Sakai et al. 2016), NAL and calcium-ferrite phases (Imada et al. 2012; Dai et al. 2013; Kojitani et al. 2011;
Pamato et al. 2014; Mookherjee et al. 2012) and regular solution parameters of the Calcium-Ferrite (cf) phase to better describe cf-nal phase
relations (Ono et al. 2009; Imada et al. 2011). We have also updated phase equilibria, for example by including experimental data that build
on more recent developments in pressure calibration such as the study of the ri=bg+fp transition by Ye et al. (2017).

The ideal contribution to the chemical potential is completely specified by the chemical formulae of the end-member species (Table A1),
as discussed at some length in our previous publication (Stixrude & Lithgow-Bertelloni 2011) and briefly reviewed here. The formulae as
written in Table A1 therefore convey not only chemical, but also structural information related to the number of mixing sites, the cations
that occupy them, and the nature of the mixing. In order to convey this information, we have found it convenient to adopt the following
conventions for writing the chemical formulae. (0) In multisite phases, mixing on sites is independent (uncorrelated). (1) Sites are specified
by stoichiometric coefficients: one coefficient for each site (we follow the usual chemical convention of supressing unit coefficients). (2) The
number of sites of each end-member of a given phase are the same. (3) The sites appear in the same order in all end-members. (4) Two or
more distinct cations that occupy the same crystallographic site in random arrangement are joined by parentheses. (5) Two or more distinct
cations that occupy the same site and do not mix are surrounded by square brackets.

A P P E N D I X C : D E R I VAT I O N O F T H E R E L AT I O N S H I P B E T W E E N T H E I S O B A R I C A N D
I S O C H O R I C H E AT C A PA C I T Y

The derivation of eq. (24) further illustrates the relationship between isomorphic and metamorphic quantities and makes use of our derivation
of the pressure derivative of the species amounts (eq. 22). Expressing the entropy as a function of pressure, temperature, and composition,
the differential

dS =
(

∂S
∂ P

)

T,"n
dP +

(
∂S
∂T

)

P,"n
dT +

∑

i

(
∂S
∂ni

)

P,T,n j )=i

dni . (C1)

Now take the derivative with respect to temperature at constant volume and bulk composition
(

∂S
∂T

)

V,"b
=

(
∂S
∂ P

)

T,"n

(
∂ P
∂T

)

V,"b
+

(
∂S
∂T

)

P,"n
+

∑

i

(
∂S
∂ni

)

P,T,n j )=i

(
∂ni

∂T

)

V,"b
. (C2)

Mulitplying by the temperature and using thermodynamic identities

CV = CPiso − T VαisoαKT + T
∑

i

S̄i

(
∂ni

∂T

)

V,"b
, (C3)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/2
2
8
/2

/1
1
1
9
/6

3
7
5
4
1
6
 b

y
 U

C
L
A

 u
s
e
r o

n
 2

6
 O

c
to

b
e
r 2

0
2
1



Thermal expansivity 1145

Table A4. Summary of phase equilibria data: stability.

Species N Pmin Pmax Tmin Tmax Ref.
(GPa) (GPa) (K) (K)

fo 4 12.00 13.90 1063 1876 Morishima et al. (1994)
mgwa 17 14.88 18.08 1023 1773 Suzuki et al. (2000)

12.10 14.30 1025 1624 Morishima et al. (1994)
21.56 22.46 2173 2173 Fei et al. (2004)

mgri 11 14.98 19.50 923 1273 Suzuki et al. (2000)
22.49 24.61 1544 2383 Ye et al. (2017)

mgbg+pe 2 22.49 24.61 1544 2383 Ye et al. (2017)
en 12 0.00 0.00 823 823 Grover (1972)

0.00 0.00 1360 1360 Yang & Ghose (1995)
0.83 0.83 1823 1823 Boyd et al. (1964)
7.70 10.30 1273 1973 Pacalo & Gasparik (1990)
0.00 10.60 1830 2353 Presnall et al. (1998)

mgc2 15 8.20 14.20 1223 1973 Pacalo & Gasparik (1990)
14.50 15.50 1273 1673 Ito & Navrotsky (1985)
11.80 14.90 2373 2463 Presnall et al. (1998)

mgmj 2 16.50 16.50 2473 2473 Presnall et al. (1998)
21.20 21.20 2273 2273 Hirose et al. (2001)

mgil 3 20.00 20.00 1273 1873 Ito & Navrotsky (1985)
22.13 22.13 1873 1873 Fei et al. (2004)

mgbg 16 21.56 24.56 1673 2173 Fei et al. (2004)
21.54 21.54 2273 2273 Hirose et al. (2001)
119.00 149.30 2170 4200 Tateno et al. (2009)
25.00 25.00 2900 2900 Stixrude & Karki (2005)

mgwa+st 5 16.00 18.00 1273 1873 Ito & Navrotsky (1985)
mgri+st 2 19.10 19.10 1373 1673 Ito & Navrotsky (1985)
fs 8 5.00 7.00 1173 1578 Woodland & Angel (1997)

1.35 1.53 1173 1323 Bohlen et al. (1980)
fec2 10 5.50 7.50 1173 1568 Woodland & Angel (1997)

8.30 9.40 1063 1483 Akimoto & Syono (1970)
feri+st 3 9.40 9.80 1063 1423 Akimoto & Syono (1970)
wu+st 4 17.40 19.80 1473 1873 Katsura et al. (1998)
fa 5 4.18 5.56 1073 1473 Yagi et al. (1987)
feri 18 4.32 6.28 773 1473 Yagi et al. (1987)

14.80 17.20 1273 1673 Katsura et al. (1998)
di 8 0.00 0.00 1665 1665 Boyd & England (1963)

14.00 14.00 2400 2400 Gasparik (1996a)
16.50 17.50 1273 2073 Akaogi et al. (2004)

capv+mgwa+st 4 17.50 19.00 1273 1673 Akaogi et al. (2004)
capv+mgri+st 4 19.00 20.50 1473 1673 Akaogi et al. (2004)
capv+mgil 6 20.50 22.50 1473 2073 Akaogi et al. (2004)
capv+mgbg 3 22.30 23.00 1873 2073 Akaogi et al. (2004)
capv+co 2 24.27 26.16 1673 1873 Takafuji et al. (2002)
st 27 101.00 127.00 800 3000 Murakami et al. (2003)

7.71 11.36 800 1803 Zhang et al. (1996)
apbo 4 124.00 151.00 2040 2420 Murakami et al. (2003)
mppv 8 136.10 171.00 1640 4380 Tateno et al. (2009)
pe+co 4 20.00 27.00 1473 1873 Akaogi et al. (1999)

45.00 45.00 1 1 Ono et al. (2008)
mgcf 4 27.00 27.00 1873 2173 Akaogi et al. (1999)

45.00 45.00 1 1 Ono et al. (2008)
jd+st 3 22.00 22.00 1073 1473 Yagi et al. (1994)
nacf+st 2 23.00 23.00 1273 1473 Yagi et al. (1994)
ab 12 1.60 3.30 873 1473 Holland (1980)
jd+qtz 1 1.65 1.65 873 873 Holland (1980)
coes 16 7.91 8.62 1258 1507 Zhang et al. (1996)

2.48 2.98 673 1273 Bohlen & Boettcher (1982)
qtz 11 2.46 2.95 673 1273 Bohlen & Boettcher (1982)
cats 3 1.72 2.85 1573 1773 Gasparik (1984)
gr+co 3 1.77 2.88 1573 1773 Gasparik (1984)
fa+qtz 4 1.10 1.40 1073 1273 Bohlen et al. (1980)
ky 4 0.75 0.82 1073 1073 Harlov & Milke (2002)
qtz+co 2 0.70 0.75 1073 1073 Harlov & Milke (2002)
gr+ky+qtz 24 2.20 3.10 1373 1673 Goldsmith (1980)
an 1 3.00 3.00 1673 1673 Goldsmith (1980)
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1146 L. Stixrude and C. Lithgow-Bertelloni

Table A4. Continued

Species N Pmin Pmax Tmin Tmax Ref.
(GPa) (GPa) (K) (K)

jd 1 2.38 2.38 1473 1473 Gasparik (1985)
neph+ab 1 2.33 2.33 1473 1473 Gasparik (1985)
jd+anao 6 16.00 19.00 1273 1873 Akaogi et al. (2002)
nacf 6 18.00 27.00 1273 1873 Akaogi et al. (2002)
sp+jd+anao 16 12.00 30.00 1273 1873 Ono et al. (2009)
mnal+nnal 6 14.50 23.00 1273 1873 Ono et al. (2009)

47.00 47.00 1800 1800 Imada et al. (2011)
mgcf+nacf 1 24.00 24.00 1873 1873 Ono et al. (2009)
co 5 96.90 106.40 1600 3000 Kato et al. (2013)
albg 11 99.90 169.70 1670 3540 Kato et al. (2013)
appv 5 148.90 186.00 2590 3510 Kato et al. (2013)
mgbg+albg 1 137.00 137.00 2000 2000 Tateno et al. (2005)
mppv+appv 1 175.00 175.00 2000 2000 Tateno et al. (2005)
wu+co+st 1 35.00 35.00 2000 2000 Dorfman et al. (2012)
jd+cen 2 13.50 13.50 1823 2373 Gasparik (1992)
py+namj 2 13.50 13.50 1823 2373 Gasparik (1992)

Table A5. Summary of phase equilibrium data: reactions.

Species N Pmin Pmax Tmin Tmax Ref.
GPa GPa K K

py+capv=gr+mgmj 1 19.90 19.90 1873 1873 Saikia et al. (2008)
mgc2=py+mgmj 1 12.50 12.50 1923 1923 Gasparik (1989)
en+di=odi+cen 14 3.00 3.00 1173 1773 Carlson & Lindsley (1988)
he+en=di+fs 1 1.50 1.50 1263 1263 Lindsley (1983)
fo+wu=fa+pe 13 11.00 11.00 1673 1673 Frost (2003b)
fo+al=fa+py 10 0.91 0.91 1273 1273 Hackler & Wood (1989)
mgri+wu=feri+pe 51 11.00 23.50 1273 1873 Frost et al. (2001)
pe+fewa=wu+mgwa 15 13.00 14.50 1673 1673 Frost (2003b)
fo+fewa=fa+mgwa 1 12.87 12.87 1673 1673 Frost (2003b)
mgwa+feri=fewa+mgri 1 12.87 12.87 1673 1673 Frost (2003b)
mgbg+wu=febg+pe 2 25.00 25.00 2000 2541 Nakajima et al. (2012)
mgil+febg=feil+mgbg 2 25.50 25.50 1373 1373 Ito & Yamada (1982)

24.00 24.00 2073 2073 Ohtani et al. (1991)
fo+hc=fa+sp 13 0.00 0.00 1573 1573 Jamieson & Roeder (1984)
mgts+en=co+py 1 1.65 1.65 1123 1123 Gasparik & Newton (1984)
mgts=en+py 23 2.07 4.01 1173 1773 Perkins et al. (1981)
en+sp=mgts+fo 6 0.99 2.56 1573 1773 Gasparik & Newton (1984)
mgts+di+cen=cats+en+odi 6 2.70 2.70 1773 1773 Klemme & O’Neill (2000)

2.50 2.50 1173 1173 Perkins & Newton (1980)
gr+py+cen=di+cats 1 2.50 2.50 1173 1173 Perkins & Newton (1980)
gr+py=co+di+cats+cen 1 3.25 3.25 1573 1573 Gasparik (1984)
jd+di=qtz+ab 21 0.85 1.60 873 873 Holland (1983)
mgc2=cen+jd 1 13.50 13.50 1923 1923 Gasparik (1992)
mgc2+mgmj=namj+py 1 14.00 14.00 1923 1923 Gasparik (1992)
mnal+nacf=nnal+mgcf 1 23.00 23.00 1873 1873 Ono et al. (2009)
mnal+nnal=nacf+mgcf 1 23.00 23.00 1873 1873 Ono et al. (2009)
mnal=mgcf+nacf 1 25.00 25.00 1873 1873 Ono et al. (2009)
fnal+mgcf=mnal+fecf 2 23.00 23.00 1673 2073 This Work (2014)
febg+mgcf=mgbg+fecf 2 60.00 60.00 2000 2400 Hirose et al. (2005)
mgil+co=mgbg+albg 2 27.00 27.00 2300 2300 Liu et al. (2017)
febg+mgbg=wu+pe+st 2 22.00 22.00 2273 2273 Tange et al. (2009)

where we have also used the definition of the partial molar entropy. We can express the temperature derivative of the species amounts
(

∂ni

∂T

)

V,"b
=

(
∂ni

∂T

)

P,"b
+

(
∂ni

∂ P

)

T,"b

(
∂ P
∂T

)

V,"b
(C4)

which we substitute into eq. (C3) yielding

CV = CP − T VαKT αiso + T αKT

∑

i

S̄i

(
∂ni

∂ P

)

T,"b
(C5)
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Thermal expansivity 1147

Figure A3. Phase equilibria computed with HeFESTo at 1923 K (red lines) compared with experimental observations of stability (large symbols) or phase
compositions (small symbols). (Left) the enstatite-jadeite join with composition plotted as mole fraction (MgMg/(NaAl+MgMg). (right) the jadeite-diopside
join with composition plotted as mole fraction (CaMg/(CaMg+NaAl). Also shown in the right hand figure are contours of the atomic fraction of capv within
the capv + gt stability field, from left to right: 10 per cent, 20 per cent, 30 per cent, 40 per cent. Experimental data: cpx (open circles) (Canil 1994; Akaogi et al.
2004; Gasparik 1996b, 1992); ab + neph (filled circles) (Gasparik 1985); opx (filled squares) (Pacalo & Gasparik 1990); hpcpx (open diamond) (Pacalo &
Gasparik 1990); gt (open square) (Gasparik 1992; Akaogi et al. 2004; Gasparik 1996b); ak and ak + capv (filled diamond) (Ito & Takahashi 1989; Gasparik
1990; Ito & Navrotsky 1985; Fei et al. 2004; Akaogi et al. 2004); bg (open triangle) (Ito & Takahashi 1989; Fei et al. 2004); cf + st (left-pointing open triangle)
(Liu 2006).

and we have also used eq. (9). Now, we substitute our result for the pressure derivative of the species amounts (eq. 22)

CV = CP − T VαKT αiso − T αKT

∑

i j

S̄i Mi j V̄ j . (C6)

According to eq. (20), the sum is just Vαmet (Mij is symmetric), so combining terms

CV = CP − T VαKT α (C7)

Finally, we combine this equation with the definition of the Grüneisen parameter

γ = VαKT

CP
(C8)

to obtain eq. (24). The derivation of the relationship between adiabatic and isothermal bulk moduli (eq. 25) is similar. The equation for the
Grüneisen parameter (eq. 26) follows from eqs (24) and (25) and the definition of γ .
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1148 L. Stixrude and C. Lithgow-Bertelloni

Figure A4. Na+Al content of the ferropericlase phase computed with HeFESTo: solid lines (KLB-1 bulk composition), dashed line (Tinaquillo lherzolite),
dash–dotted line (chondritic composition of (Gasparik 2000)) compared with experimental measurements: triangles (Irifune 1994), squares (Hirose 2002),
diamonds (Wood 2000) and circles (Gasparik 2000). All lines and symbols are colour-coded according to the temperature scale shown.
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Thermal expansivity 1149

Figure A5. Phase equilibria on the join MgAl2O4 − NaAlSiO4 as computed with HeFESTo at 1873 K (red lines) and according to experimental measurements
with large symbols indicating observations of stability and small symbols indicating measurements of phase compositions according to the legend. Sources of
data are: nal stability (Ono et al. 2009), cf stability (Ono et al. 2009; Akaogi et al. 2002, 1999; Imada et al. 2011), co+pe stability (Ono et al. 2009; Akaogi
et al. 1999), sp stability (Ono et al. 2009; Akaogi et al. 1999), jd+sp stability (Ono et al. 2009; Akaogi et al. 2002), cf+nal stability (Ono et al. 2009; Imada
et al. 2011), sp+nal stability (Ono et al. 2009), jd+fp+nal stability (Ono et al. 2009), jd+fp+sp stability (Ono et al. 2009), neph stability (Akaogi et al. 2002),
cf and nal compositions (Ono et al. 2009).
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