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Abstract

1. Meiofauna (invertebrates that pass through a 1-mm mesh sieve, but are retained
on a 40-um mesh) represent the most abundant and diverse animal group on
Earth, but empirical evidence of their role in benthic respiration, production and
carbon cycling across ecosystems is not well documented. Moreover, how mei-
ofauna respond to changing oxygen conditions is poorly understood.

2. We further developed an incubation system, in which oxygen and temperature
conditions are easily controlled and single meiofaunal nematode respiration is
resolved in glass capillary tubes, using Clark-type oxygen microsensor. We per-
formed the respiration measurements after exposing nematodes to different
ambient oxygen concentrations, which resulted in 3-60 uM O, during hypoxic
and 80-210 uM O, during oxic incubations in close proximity to the respective
nematodes.

3. Individual nematode respiration rates ranged from 0.02 to 1.30 nmol O, ind. Y day™
and were 27% lower during hypoxic than oxic incubations. Rates derived from
established allometric relations were on average fourfold higher than our direct
measurements.

4. The presented method is suitable for single nematode respiration measurements
and can be adapted to a wide range of experimental conditions. Therefore, it can
be used to assess meiofauna contribution to ecosystem processes and investigate
species-specific responses to changing environmental conditions, for example,

oxygen stress, increasing water temperature.
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1 | INTRODUCTION

Oxygen respiration is typically measured as a proxy for metabolic or
biological activities and express how much an organism contributes
to carbon cycling in a given environment. Individual meiofauna (in-
vertebrates that pass through a 1-mm mesh sieve, but are retained
on a 40-um mesh) are large enough to be physically handled, but res-
piration measurement is challenging due to insufficient sensitivity
of standard respirometry approaches (Moens et al., 1996; Moodley
et al., 2008). To date, only the manometric Cartesian diver method
(Linderstrom-Lang, 1937) has been able to detect single nematode
respiration by monitoring density changes associated with oxygen
consumption by a nematode inside a sealed glass vessel (Wieser
et al., 1974). However, due to its complexity, the Cartesian diver
approach has never been used for routine meiofauna respiration
measurements. Instead, nematode respiration has been measured
by pooling up to several hundreds of individuals in an enclosed res-
piration chamber and then recalculating obtained data to an individ-
ual respiration rate (IRR) or to respiration per microgram of biomass
(Moens et al., 1996; Moodley et al., 2008). By doing so, oxygen con-
sumption of microscopic specimens can be detected when using
regular polarographic or optic oxygen sensors, yet it is difficult to ac-
curately assess IRR as a function of species, age and sex by standard
procedures. Moreover, respiration rate may depend on the number
of animals incubated in the chamber.

A recently developed microsensor-based nanorespiration sys-
tem has enabled respiration measurements of sessile microscopic
organisms such as individual copepod eggs and bovine embryos. The
method is based on the fact that a respiring organism on the bot-
tom of one-end-open tube and a continuous oxygen supply from the
overlying water will create a linear concentration gradient between
the top and the bottom of the tube after certain incubation time
(Hammervold et al., 2015; Lopes et al., 2005; Nielsen et al., 2007).
The oxygen flux towards an organism (i.e. respiration rate) can then
be calculated based on the slope of the measured gradient. However,
this approach has never been used for respiration measurements
of mobile organisms that are likely to escape the tubes. Moreover,
these previous nanorespiration measurements could not be done
under in situ oxygen conditions. This is important because generally
oxygen penetrates only few millimetres or a centimetre into the sed-
iment (Glud, 2008). Therefore, plethora of already produced meio-
fauna respiration data might only poorly reflect in situ respiration
rates (Braeckman et al., 2013).

Here we present an improved microsensor-based system for res-
piration measurements on single meiofaunal specimens, which can
distinguish between abiotic conditions and variation of respiration
rates among individuals. We applied this method to the most abun-
dant and diverse animal group in aquatic sediments—nematodes,
while exposing them to a range of relevant oxygen and temperature
conditions (Giere, 2008). To evaluate its applicability, we targeted
nematodes with potentially diverse metabolic rates by sampling
two sites with naturally contrasting oxygen levels in the Baltic Sea:

an oxic (~70% air saturation, ~240 uM O, at the sediment-water

interface) and a severely hypoxic site (2% air saturation, 13 uM O,).
Finally, all measured IRR were compared to the rates that were de-

rived from widely used theoretical allometric assessments.

2 | MATERIALS AND METHODS
2.1 | Sampling and experimental design

Nematodes were collected at the oxic site (58.81012N, 17.61653E)
in November 2019 and June 2020, and at the long-term hypoxic site
(59.19086N, 18.60434E) in November 2019 (Table 1).

Bottom water temperature was 5°C in November and 15°C in
June.

Right before the experiment, the top 1-cm sediment layer was
sliced off and sieved. Individuals retained on a 40-um sieve were
handpicked, photographed for later body length and width deter-
minations (Supporting Information Text S1) and placed into sepa-
rate capillary tubes filled with twice-filtered in situ water (pore size
0.2 um). Nematodes were placed into the tubes by gently picking
each nematode and transferring it into a submerged tube using a
tungsten wire. The tubes were then kept in an aquarium for a 3-hour
incubation at 10°C in darkness (Figure 1a,b). Incubations were done
at ~210 uM (oxic) and at 60 uM (hypoxic) ambient oxygen concentra-
tions (Table 1), while the concentration on the bottom of the tubes
varied depending on animal-specific respiration rate. Thus, based
on the observed oxygen profiles, the incubations resulted in steady
state oxygen levels ranging from 3 to 60 uM O, during hypoxic in-
cubations and from 80 to 210 uM O, during oxic incubations at the
bottom of the tubes.

2.2 | Incubation system

Capillary tubes containing nematodes were incubated in a 1-L

capped plexiglass aquarium (9 x 9 x 16 cm; KreativPlast). The lid was

TABLE 1 Number of nematodes incubated under oxic and
hypoxic conditions

Oxic incubation  Hypoxic
Site Genus (ind.) incubation (ind.)
Oxic Paracanthonchus 9 8
Sabatieria 9 9
Desmolaimus 17 19
Eleutherolaimus 7 6
Oncholaimidae 1
Sphaerolaimus 3 3
Hypoxic  Paracanthonchus 1 1
Sabatieria 5 5
Axonolaimus 2 1
Leptolaimus 5 4
Chromadorita 9 7
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FIGURE 1 Incubation setup (a, b)
1-microprofiling unit, 2-incubation
aquarium, 3-elevation stand, 4-oxygen
microsensor, 5-temperature sensor, 6-
gas outlet, 7-gas inlet, 8-capillary tubes
secured on two holders, 9-magnetic
stirring bar, 10-covered air stone. Note:
15-L tank and cooling coil are not shown
(see Figure S1). Measurement setup (c, d)
11-micromanipulator, 12-motor. Capillary
tube with a nematode inside (e). Red dots
indicate oxygen concentration obtained
from the microsensor readings
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equipped with a temperature sensor (TP2000, tip diameter 2 mm,
Unisense), oxygen sensor (OX-50, tip diameter 50 um, Unisense),
an air stone and a magnetic stirring bar (Figure 1b). The incubation
aquarium was placed in a 15-L tank connected to a thermostatic
circulator to control the temperature (LKB Bromma 2219, Haake;
Figure S1).

The core of the incubation system is a set of capillary tubes
(inner @ 0.6 mm, length 3 mm, Supporting Information Text S2;
VitroTubes™, VitroCom) secured on a plastic holder which can eas-
ily be attached and removed from the side wall of the incubation
aquarium (Figure 1d). The only source of oxygen to the capillary
tubes is the overlying water in the aquarium. The respiring organ-
ism on the bottom of the tube acts as an oxygen sink, and thus the
diffusion will establish a vertical linear concentration gradient to-
wards the animal (Figure 1e; Nielsen et al., 2007). At steady state,
the concentration close to the organism reaches a constant level
and the oxygen consumption by the organism equals the oxygen
supply.

Right before the measurements, the lid of the aquarium was
removed and the oxygen microsensor was mounted on the motor-
ized micromanipulator. The microsensor tip was positioned 0.5 mm
above the opening of the tube (Figure 1c,d). The gradient in each
tube was then measured at 0.1-mm depth intervals down to 2-mm

depth, meaning that approximately 15 s were needed to complete

the measurements in one tube by the applied sensor (Figure 1e).
Every fourth tube was left empty for parallel blank measurements.

2.3 | Calculation of measured and theoretical IRR

The oxygen flux at steady state (J) was quantified by Fick's first law
of diffusion:

= —DOZ (dC/dx), where dC/dx is the vertical oxygen concentra-
tion gradient inside the capillaries from 0.1- to 2-mm depth and Do,
is the molecular diffusivity of oxygen at the specific temperature and
salinity. Do, vues were obtained from Broecker and Peng (1974). IRR
was then calculated from the oxygen flux (J) by multiplying it by the
cross-sectional area of capillary (A) and was corrected for blank mea-
surements followed by data quality control (Supporting Information
Text S3).

Theoretical IRR for all nematodes were calculated as described
in Kennedy (1994), by taking into account nematode's body volume,
feeding group-specific metabolic constant and metabolic scaling
exponent. The calculations are described in Supporting Information
Text S4. Theoretical nematode respiration rates represent nema-
tode IRR at 20°C. Thus, the rates were scaled to 10°C, assuming that
thermal sensitivity of meiofauna metabolic rates (Q,,) is equal to 2
(Braeckman et al., 2013).



1844 | Methods in Ecology and Evolution

MACIUTE €T AL.

2.4 | Supporting model calculations

A mathematical model describing the vertical diffusive oxygen
transport in a capillary tube was developed to estimate the time
required to establish 97.5% of oxygen gradient at steady state and
project ambient oxygen levels around the nematodes. The model
provides non-steady state one-dimensional solutions to Fick's sec-
ond law of diffusion: dC/dt = Do, (d°C/dx%), where C is the oxygen
concentration, t is time, DO2 is oxygen molecular diffusivity, x is dis-
tance from the top of the tube. This equation was solved numerically
using a group of numerical methods called control volume approach
(Patankar, 1980), and a separation of the 3-mm-tall water column in-
side the tube into 100 control volumes. The incubation time required
to reach the steady state was estimated for a range of molecular ox-
ygen diffusivities between 1.05 x 107> em?/s (T = 0°C, § = 35%o) and
2.75 x 107> cm?/s (T = 30°C, § = 0%o). These times were independent

of nematode metabolism and the ambient oxygen concentration.

3 | RESULTS AND DISCUSSION

The new method can be implemented in any laboratory because all
components are commercially available and easy to assemble. In ad-
dition, the presented mathematical model can be used as a guide for
optimizing the incubation time depending on inner tube diameter or
temperature and salinity conditions. For example, the model indi-
cated that at our experimental conditions (T = 10°C, S = 8%o), 2.6-hr
incubation was sufficient to establish 97.5% of the oxygen gradient
at steady state (Figure 2a,b), meaning that after this time, measured
O, gradients remained the same. Furthermore, the model can be
used to estimate the O, concentration at the bottom of the tube, if
an approximate respiration rate is known.

Based on visual inspection of capillary tubes after the measure-
ments, all nematodes remained at the bottom and only five nem-
atodes, in total, escaped the tubes during the incubations. Due to
imposed mixing, oxygen concentration outside the capillary tubes
was constant, while the profiles within the capillary tubes, contain-
ing single nematodes, showed a linear decrease in oxygen concen-
tration (Figure 3). This indicates that the method allows incubating
individuals at desired temperature and oxygen conditions. Other
water parameters such as pH and salinity can also be easily manipu-
lated. The exact oxygen concentration that animal will experience at
steady state can be calculated using the model's results (Figure S2).

Although we detected minor oxygen gradients in a few blank cap-
illaries, overall the oxygen concentration in blanks was near-constant
with depth (Figure 3). In a previous work using a microsensor-based
method, oxygen gradients were also detected in blank capillaries
(Nielsen et al., 2007). Hence we recommend (a) using filtered in situ
water; (b) including at least one blank per four samples in each in-
cubation; (c) ensuring that the steady state is reached before the
measurements (Figure 2b); (d) using Clark-type microelectrodes
(Unisense, DK) with low stirring sensitivity and oxygen consumption;

(e) starting the measurements from the opening of the tube towards
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FIGURE 2 (a) An example of modelled (red lines) development

of oxygen concentration gradient throughout 154 min incubation
of a nematode with a respiration of 1.01 nmol ind. * day ™.
Numbers in parentheses indicate the percentage of oxygen
gradient at steady state. Black circles represent the measured
oxygen concentration gradient after 3-hr incubation inside a
tube containing the nematode at T = 10°C, S = 8 %o and 215 pM
O, ambient water oxygen concentration. The steepness of the
gradients are dependent on nematode metabolism. (b) Time it
takes to reach 97.5% of oxygen gradient at steady state when
oxygen molecular diffusivity (Doz) varies from 1.05 to 2.75 x 10~
5 em?/s (T=0°C, S = 35%o to T = 30°C, S = 0%o). T = Temperature,
S = Salinity. The times are independent of nematode metabolism

the bottom avoiding excessive water mixing, and (f) quickly measur-
ing the developed oxygen gradient that is, <1 s waiting time between
the microsensor steps.

We are certain that 0.6-mm diameter of a capillary tube is
enough to detect respiration of single meiofaunal organism, but if
necessary, the sensitivity of the method could be further increased
by using tubes with smaller inner diameter. The oxygen diffusion in

narrow tubes is lower, allowing oxygen concentration gradient to
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FIGURE 3 Examples of measured oxygen profiles in capillary
tubes containing single nematodes (black circles) and in empty
tubes without nematodes (yellow circles). Oxygen profiles were
measured at steady state under either oxic or hypoxic conditions.
The data points from -0.5 mm to O mm were measured above the
capillary tubes. Horizontal dashed line represents the top of the
tubes

establish even at low respiration rates. The exact effects of this can
be explored by applying the presented mathematical model.

The combined dataset of IRR measured under oxic and hypoxic
conditions correlated significantly with theoretical IRR (R? = 0.79,
p < 0.001, Spearman correlation; Figure 4a). However, theoreti-
cal IRR tended to be on average fourfold higher compared to the
measured rates (V = 8,776, p < 0.001, dependent Mann-Whitney U
test; Figure 4b). Of note, theoretical IRR coefficients were derived
by studies that measured respiration under 100% air saturation
(Price & Warwick, 1980), while generally, sediments are not 100%
air saturated. In addition, calculations of theoretical IRR are based on
feeding group-specific metabolic constants as well as theoretically
calculated body volume or mass that often cannot be measured di-
rectly. Therefore, it is most likely that the assumptions behind body
mass or volume calculations together with oxygen conditions in the
ambient water have introduced errors in theoretical IRR and contrib-
uted to the observed fourfold overestimation.

The new method was tested on 131 nematodes belonging to
nine genera from sediments with contrasting oxygen conditions
and with a body mass ranging by almost two orders of magnitude.
Moreover, the nematodes were exposed to a range of oxygen levels
during incubations. As a result, the respiration rates varied by almost
a factor of 90, with the lowest recorded nematode IRR of 0.02 nmol
ind.” day™ (Leptolaimus, 0.16-ug wet weight, hypoxic incubation),
and the highest - 1.30 nmol ind. - day’1 (Paracanthonchus, 3.09-ug
wet weight, oxic incubation; Figure 5). Great variation in IRR among
individuals is due to both different body sizes and potentially differ-
ent activity levels, as even similarly sized individuals may have up to
threefold difference in respiration rates (Wieser & Kanwisher, 1961).

Thus, when measuring single animal respiration, the importance of

—
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FIGURE 4 (a) Correlation between measured and theoretical
individual respiration rates (IRR). Theoretical respiration rate varies
depending on nematode body volume and feeding group. Dashed
diagonal line indicates a 1:1 relationship between the two rates. (b)
Comparison of measured (blue) and theoretical (pink) nematode IRR
in relation to body weight. Data from both sampling sites, oxic and
hypoxic incubations were combined (n = 131)

body mass, physiology and activity levels can be assessed more ac-
curately. We recommend that future studies analyse enough individ-
uals belonging to the same genus or feeding group in order to realize
ecologically meaningful comparisons.

Individual respiration rates were only 27% lower under hypoxia
than under oxic conditions (H = 5, p = 0.03, Scheirer-Ray-Hare test).
In contrast, Enoploides longispiculosus biomass-standardized respira-
tion rates decreased fourfold when oxygen concentration in respi-
ration chambers decreased from 230 uM O, (normoxia) to 23 uM
O, (severe hypoxia) (Braeckman et al., 2013). In the present study,
effects of hypoxia on IRR was overall small, most likely because

nematodes were incubated under relatively mild hypoxic (60 uM O,)
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FIGURE 5 Individual respiration rate (IRR) and mass standardized respiration rate (MR) after hypoxic (red) and oxic (blue) incubations.
The incubations resulted in oxygen steady state concentrations of 3-60 pM during hypoxic incubations, and of 80-210 uM during oxic
incubations at the bottom of the tubes. To reduce the effect of over-plotting, data points were jittered on the y-axis, while the x-axis position
was preserved. Note: different individuals were used for oxic and hypoxic incubations

conditions. In addition, future studies should incubate same individ-
uals under both oxic and hypoxic conditions.

The large variation in IRR at the respective conditions might
be related to different tolerances to low oxygen conditions
between nematode taxa and traits (Jensen, 1995; Steyaert
et al., 2005), feeding group as a result of different lifestyles (Teal
& Wieser, 1966) or historical exposure to oxygen stress (Wetzel
et al., 2001). Clearly, our method offers the possibility to investi-
gate all of these factors.

Taken together, when measuring respiration of single animals,
the effects of changing environmental conditions or intra- and in-
terspecific differences in physiology on respiratory rates can be
assessed more accurately, resulting in more realistic estimates of

meiofauna contribution to carbon cycling.
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