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Abstract

Modal analysis has emerged as a globally accepted tool to formulate and

optimize the behavioral functions of engineering structures, which assists in

assessing structural failure and laying out a plan for their maintenance. Modal

analysis aims at determining the frequencies, damping ratios, and mode

shapes of the system under excitation. However, conventional mode shape

measurement methods like contact sensors are prone to precision and

accuracy issues owing to the sensor's weight and low spatial resolution. In this

paper, we improve upon various existing methods for mode shape

determination and introduce the idea of a full-field pixel sensor for mode

shape prediction. The proposed computer vision-based deep learning

architecture predicts the mode shape of a vibrating structure with significant

precision. Besides, a ModeShape dataset consisting of the vibration recording

video and finite element analysis (FEA) based label has been curated.

Specifically, we introduce a convolutional neural network, long short-term

memory (CNN-LSTM) computer vision-based non-contact vibration

measurement technique for automated mode shape prediction. The key idea is

to use each pixel of a RGB camera as a sensor and process the captured

spatio-temporal data to enable mode shape prediction. Our CNN-LSTM model

takes the video streams of a vibrating structure as input and yields the

fundamental mode shapes. The proposed technique is non-invasive and can

extract information at relatively high spatial density. The CNN-LSTM model is

proficient by utilizing experimental outcomes. The robustness of the deep

learning model has been scrutinized by utilizing specimens of an assortment

of different materials and fluctuating dimensions.
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1 | INTRODUCTION

Modal analysis (MA) is the study of the dynamic properties of systems in the frequency domain. In recent decades, MA
has emerged as one of the prominent tools to optimize and refine the dynamic characteristics of vibrating engineering
structures. Structures, including bridges, buildings, dams, pipelines, aircraft, ships, among others, are complex
engineered systems forming an integral part of our society and ensuring our economic and social well-being.1 To evalu-
ate the remaining useful life (RUL) and monitor damage occurrence in a structure, subject to the severe working condi-
tions, various government bodies, like the department of transportation and construction, use structural health
monitoring (SHM) methods to ensure public safety.2 The modal analysis finds extensive application in vibration-based
structural health monitoring (SHM) of bridges3 and wind turbines.4 Apart from structural engineering, MA has also
found increasing applications in mechanical engineering, aeronautics, acoustics, space structures, and bio-mechanical
engineering. One of the essential components of MA is the modal shape determination. Mode shape is a dynamic struc-
tural property, which is defined as a specific pattern of vibrations underwent by particles, of a mechanical system, at a
specific frequency, and directly reflects the proportion of structural damage. Fundamentally, damage leads to a change
in the structure and subsequently brings about a change in structural properties, such as stiffness and mass, and in turn,
affects the mode shape.5 Thus mode shape forms one of the most critical dynamic features of the structure, incorporat-
ing damage information that helps in diagnostics and prognostics of structural health.

The vibration-based SHM falls into four broad categories: natural frequency-based method, curvature mode shape-
based method, mode shape-based method, and the methods using both mode shapes and frequencies.6 Each of these
techniques has its own sets of disadvantages. There are two main limitations of the frequency-based SHM method.
First, at times, significant damage may give rise to insignificant changes in natural frequencies, particularly for large
structures, which makes it difficult to detect any defect. Second, measurement errors or variations in ambient condi-
tions can cause uncertainty in measured frequencies.7 The curvature-based method is more sensitive to the small
defects and can solve the problems associated with the frequency-based SHM method. However, for the higher modes,
the difference in modal curvature generates several peaks not only at the damage location but also at other positions,
which may lead to a false signal of damage. Besides, if the dataset is collected considering a single mode, then there
may be fallacious damage indications.8 Compared with the approaches mentioned above, the advantage of the mode
shape-based method can be enumerated as follows. First, mode shape is more sensitive to local damages and can be
used directly for multiple damage detection. Second, the mode shapes are less vulnerable to environmental effects, such
as noise and temperature.9 Due to these advantages, the mode shape surfaces as the aptest choice among various
dynamic structural properties when it comes to health monitoring.

Conventional modal analysis methods can be broadly categorized into three major classes—the theoretical modal
analysis (TMA), the experimental modal analysis (EMA), and operational modal analysis (OMA). TMA, also known as
direct methods, investigate dynamic structural properties based on the mass and the stiffness matrix. On the other
hand, EMA records the output response of vibrating structures subject to input excitation. The output response func-
tions like impulse response function (IRF) and the frequency response function (FRF), obtained from field experiments,
manifest the dynamic behavior of the structure. These functions help to calculate modal attributes such as mode
shapes, modal frequencies, and other modal parameters. However, the measurement of theses two functions tends diffi-
cult for large structures. Besides, at times, the EMA is unable to accurately simulate both the real-world applications
and the involved boundary conditions.

To address the problems accompanying the TMA and EMA, the operational modal analysis, also known as output-
only analysis or ambient excitation, is established and widely used in applications involving towers, buildings, bridges,
and off-shore platforms.10–13 OMA utilizes the response, from structures operating in their ambient natural environ-
ment, to estimate the modal parameters. OMA is both fast to conduct and cost-effective. It encompasses the dynamic
characteristics of the entire system rather than focusing on a few of the individual components, thus generating a more
comprehensive representation of the working points. In OMA, the real-time loading features get linearized due to the
involved random broad-band excitations. OMA efficiently handles the repeated modes or even the closed-spaced modes,
rendering itself suitable for complex structures operating in their natural environment. Tremor-based health monitor-
ing and structural control also use OMA. OMA requires dynamic measurements from physically-attached wired or
wireless sensors (such as accelerometers).14–17 Andreas et al18 reported a multiplexed sensor array of fiber Bragg grat-
ings (FBGs) as a quasi-distributed sensor to capture the mode shapes for beams. Based on a high-speed demodulator
and a fast computation algorithm, the proposed method can determine the mode shapes. Sensor displacement tech-
niques had always played a vital role in enhancing the quality of the captured modal analysis data, especially the mode
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shape. In previous studies,19–22 the authors outlined different algorithms such as distributed wolf algorithm, improved
artificial bee colony (IABC) algorithm, genetic algorithm, and multiobjective genetic algorithm to optimize the location
and number of sensors on different structures like bridge and beam.

However, OMA with physically attached sensors has its limitations. First, the sensors' weight could result in mass-
loading on lightweight structures that ultimately alter the structure's dynamics. Second, the spatial resolution of sensor-
metric data collection is low as the sensors themselves are placed in a sparse grid over the whole structure under moni-
toring. The low spatial resolution of the sensor critically limits the accuracy of mode shape measurements and hinders
the precise gauging of the associated dynamic properties. Finally, sensors' installation is a time consuming and labor-
intensive process. Installation errors also influence the data sampling and prediction accuracy that requires specialized
pre-processing of the acquired data.

Non-contact vibration measurement techniques attempt to address issues associated with contact-type measurement
techniques. Huang et al23 put forward the optical system called the AF-ESPI method, where the out-of-plane displace-
ment estimation technique is employed to investigate the vibrational behavior of square-shaped isotropic plates. Ruan
et al24 introduced a vibration displacement measurement system based on the photoelectric method, which consists of
a laser source, a linear charge-coupled device, and a corresponding software platform. The proposed method has been
successfully applied to the multi-location displacement measurement. Even though these methods are non-contact and
have relatively high accuracy, the overall equipment setup requires the deployment of lasers and is quite complicated.
The cost of the complete equipment setup is pretty high due to the precision parts like the mirrors and filters, which
makes it difficult for the large-scale application. These systems also require seismic isolation and a relatively quiet ambi-
ance that makes them less robust to the noisy data. Schajer et al25 used a similar technique called electronic speckle pat-
tern interferometry (ESPI) to measure the vibration mode shapes of circular and band saws. It avoids the need to
spread the powder over the saw blade surface and can identify low-frequency vibrations. However, the main disadvan-
tages of ESPI are the cost and complexity of the equipment required and the need to color the target surface with reflec-
tive paint. Besides, the entire process is time-consuming. Improving upon ESPI, continuous scan laser Doppler
vibrometry (CSLDV) came as a solution for mode shape measurement of the beams and the wind turbines.26–28 None-
theless, the primary shortcoming of CSLDV is the occurrence of speckle-noise during the high-speed laser scanning of
the target surface. Speckle noise changes the intensity pattern of the laser light and adversely affects the measurement
accuracy.

Recently, vision-based methods are gaining popularity. These methods make use of techniques like digital image
correlation (DIC), pattern matching, and optical flow for the vibration displacement or the mode shape estimation
task.29–33 Feng et al34 developed a novel non-contact vision-based method, utilizing a camera, for measuring simulta-
neous multipoint displacements. The method comprises of two different subpixel template matching techniques named
upsampled cross-correlation (UCC) and orientation code matching (OCM). This method demonstrated high robustness,
while extracting the local substructural displacements, even in a hostile environment. Nevertheless, it still requires sig-
nificant pre-processing, such as cross-correlation calculations and peaks search. Significant pre-processing aggravates
the involved complexity in generating useful results.

Compared with the conventional vision-based SHM method, the computer vision-based deep learning processing
approach offers a new channel for excavating the massive data from an SHM system towards autonomous, accurate
and robust processing of the monitoring data.35 Kohiyama et al36 utilize support vector machine (SVM) and deep neural
network (DNN) models to classify the structural damage patterns. The DNN is first used for the data feature extraction
from the input data, and then SVM can realize different unlearned damages patterns based on the features from DNN.
Besides the DNN, CNN has demonstrated superb data abstraction capabilities in the SHM domain. Tang and his col-
league37 build up a CNN-based structural anomaly detection, which can learn the time and frequency domain features
of the raw SHM data. The original data are transformed into the image format and then the CNN model is applied for
the visual feature extraction. Based on these features, the CNN model can determine the class of the defect. Similarly,
Khodabandehlou et al.38 apply the 2D CNN model to predict the predefined damage states with recorded (acceleration)
vibration response data from the actual highway bridge. The proposed CNN model can achieve a 100% classification
accuracy for four different kinds of damage, which verifies the efficiency of the CNN model in the SHM domain.
Besides the image level defect detection problem (classification), the CNN can also be utilized to solve the crack detec-
tion39 and semantic segmentation problem. 40

Besides the single deep learning model, recently, the hybrid deep learning model involving two architectures such
as the CNN-LSTM is already in use in the domains of action recognition, text generation,41,42 speech recognition, and
sentiment analysis.43–45 The reason for choosing the CNNs is its ability to automatically select useful features, whereas
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LSTMs demonstrate superior learning ability from the sequential data. Xu et al46 use CNN-LSTM architecture for face
anti-spoofing by learning temporal features from the different videos dataset, which can extract features locally and
densely as well as exploring the temporal structure from a continuous video stream. CNN-LSTM model has also been
used for modal frequency identification problems.47 The qualities mentioned above of both the CNNs and LSTMs make
them the ideal candidates for modeling the spatio-temporal dependencies pervasive in the vibrational analysis of a
structure. To train the deep learning architecture, we deemed mode-shapes as the video stream features that the CNN-
LSTM model could recognize. Compared with other modalities like sensor data, the equipment and process for video
stream acquirement are cheaper and more accessible. The video stream captured by a regular camera or high-speed
camera is enough for further modal analysis. To accurately estimate the structural mode shape variations for SHM, we
propose and outline, in this paper, a novel full-field computer vision-based modal shape analysis method. This method
does not need structural surface preparation or image pre-processing and can be implemented relatively efficiently and
autonomously. Also, each pixel of frames from the vibration video stream acts as a sensor capturing useful information
for mode shape prediction. Thus, hundreds of thousands of pixel-sensors ensure the excellent performance of the pro-
posed computer vision-based method, which is a considerable improvement compared with discrete physically attached
sensors. The proposed computer vision-based mode shape prediction method requires only a camera, which further
simplifies the inspection process, reduces the inspection cost, and thus ensures high precision at the same time. Specifi-
cally, we introduce a CNN-LSTM (convolutional neural network, long short-term memory) computer vision-based non-
contact vibration measurement technique for automated mode shape prediction. In addition, two comparison methods
called CNN- recurrent neural network (RNN),48 and CNN-gated recurrent unit (GRU),49 which have been used for the
time-sequential data analysis, are selected to verify the superiority of the CNN-LSTM model for mode shape
determination task.

This exploration endeavors to improve the intricate and lumbering vision-based techniques through a CNN-LSTM
based AI approach. Primarily, we present an all-encompassing computer vision-based deep learning technique that dis-
cards any image pre-processing necessities and straightforwardly crumbles the vibration video outlines into fundamen-
tal mode shapes. Our deep learning computational pipeline is increasingly self-governing and displayed better
execution when contrasted with recently referenced vision-based strategies.

The main contributions of this paper are as follows:

1. A state-of-the-art computer vision-based deep learning architecture that enables the fundamental mode shapes the
perception of a vibrating structure.

2. A unique and non-existing dataset comprising auxiliary vibration recordings and their corresponding FEA-based
modal displacements has been created.

3. The devised and outlined model performs proficiently, and the empirical outcomes are witness to its significant
levels of extrapolation precision on an unseen dataset. Compared with two comparison methods CNN-RNN and
CNN-GRU, the proposed CNN-LSTM performs better on mode shape prediction.

This paper is structured as follows: In Section 2, we discuss the process of visual vibration information collection
that forms the basis for mode shape dataset generation. Section 3 outlines the main components of CNN-LSTM archi-
tecture that forms the backbone of our computational pipeline. Section 4 put forward the metrics for evaluating the
architecture performance. Section 5 presents a formal and critical investigation of the obtained results. Finally, the
main conclusions of our work are outlined, along with future avenues of related research.

2 | DATA COLLECTION

2.1 | Beam vibration frame generation

A shaker-based sweep test was performed to experimentally determine the mode shape of the test specimen in a more
controlled setting to avoid noise in the data and incorrect data acquisition. The experiment was conducted with the help
of a controller, shaker, and laser vibrometer (Figure 1).

Six different cantilever beam (continuous-type) structures with different materials and dimensions were used to col-
lect data. The experimental specimen set consists of two aluminum beams, two copper beams, one brass beam, and one
steel beam (Figure 2). Dimension, density, and Young's modulus of the six specimens are tabulated in Table 1. Basler's
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high-speed camera was used to perform video measurements of the structure at a frame rate of 200 frames per second.
For each specimen, we recorded five different vibration videos. The length of each video is around 3 min.

To additionally test the robust fitness of the CNN-LSTM model, another set of vibration videos, from two different
viewpoints, was recorded for the six beam specimens. We trained our deep learning model on the video frames for the
front viewpoint and then tested the same on top viewpoint data. The experimental setup for the top viewpoint is shown
in Figure 3.

FIGURE 1 Vibration data collection setup

FIGURE 2 Six beam samples for data collection. From left to right: aluminum-long, aluminum-standard, brass, copper-narrow, copper-

wide, and steel
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The length of the video segment that contains perceptible vibration in each raw video is about 90 seconds. We uti-
lize the OpenCV library50 to extract frames of beam vibration from each video. The size of each raw frame is 728*544*3.
Before feeding these raw frames into our proposed CNN-LSTM model, all raw frames were re-sized into 64*64*3 as the
input data. In total, we select 88,800 frames from corrected dataset. Each consecutive set of 200 frames forms one
sequential input data for the fundamental mode shape regression task. On the whole, there are 444 data samples in the
data set. We split the entire dataset into 306 training samples, 48 validation samples, and 90 test samples. The vibration
frames of each beam come from the five different videos of the same beam, prone to various combinations of the vacil-
lating lighting conditions, vibration amplitudes, and other attributes such as reflected light streams, heat and sensor
illumination etc. The distance between the camera and the beam and illumination conditions in each of the videos are
slightly different. Varying recording conditions amount to what we can refer to as the additional noise in the training
dataset. Figure 4 displays the image frames from two different videos of the same steel beam.

For the top viewpoint vibration dataset, we collect 3000 frames for each beam resulting in a total of 18000 frames
(for six beams) from the top view experiment. These frames were used to test the trained model for its robustness on
viewpoint change. The vantage point for the top viewpoint is depicted in Figure 5. The ModeShape database is located
at GitHub.51

TABLE 1 The parameter of six cantilever beams

Material Young's modulus (GPa) Density (kg/m3) Dimension (mm) (L; W; T)

Aluminum-long 2700 69 354; 50.2; 2.57

Aluminum-standard 2700 69 273; 63.5; 1.27

Brass 8730 97 406; 25; 3.46

Copper-narrow 8960 128 305; 25.5; 3.31

Copper-wide 8960 128 305; 50.8; 1.8

Steel 7850 200 305; 50.75; 3.46

FIGURE 3 The new top view vibration experiment setup
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2.2 | Mode shape label generation

As a supervised learning architecture, our model learns a mapping between the input video-frames and the
corresponding output labels, that is, fModel: [XVideo � frames] ! YModeShape. Herein, we generate the output labels, the
point-wise displacements for the respective mode shapes, using FEA-based methodology. Although the physical
experiments help to characterize the dynamic behavior of a structure in terms of its modes of vibration, they have
certain disadvantages associated with them. First of all, it is difficult to accurately measure the particle displacement
using a shaker based experimental setup. We can measure specific indirect attributes, such as frequency response
functions (FRFs), related to mode shapes. However, converting these parameters to actual mode shapes is in itself a
long haul. Second, the deployment of a vibration shaker for gigantic outdoor specimens is not practically feasible.
Finite element analysis (FEA) provides a solution to the issues, as mentioned above, related to the experimental
vibration setup.

Although FEA is a numerical modeling approach, contrary to the sensor-based approach of the vibration shaker
experiment, the FEA comes with a set of specific advantages which makes up for the involved assumptions. First of all,
it outputs an overall results set demonstrating the physical response of the system, to the input vibration stimulus, at
any location. Many of these physical responses get ignored in the actual physical or analytical approach owing to the
system complexities. Second, FEA provides an option to execute safe simulation for potentially destructive or impracti-
cal vibrating conditions and failure modes. Third, the FEA model can be used to extrapolate the actual experimental
results. Additionally, the FEA model ensures efficiency on the economic front. Hence, in this paper, the FEA model
serves as a base-line model for generating the training labels, that is, the point-wise modal displacements and also for
validating the outputs of the proposed deep learning model.

The first three eigenfrequencies and mode shapes are derived by eigenfrequency study in COMSOL multiphysics
based FEA. The physics used in the model is the solid mechanics module under the structural mechanics component
that provides a range of equations for specifying subdomains, boundaries, edges, and points. The materials are linear
elastic with the isotropic model that has mechanical properties, as specified in Table 1. The boundary condition defined
for each beam is clamped-free. The clamping side has fixed constraints with zero displacements in all directions in the
selected boundaries. The boundary condition for each beam is defined as a fixed constraint for the clamp side of the
beam, which means the displacement is zero in all directions in the selected boundaries (Figure 6). Mode shapes

FIGURE 4 The two frames of steel vibration from two different front view videos

FIGURE 5 The top view of specimen beam vibration frames
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provide the relative position of the points of the structure concerning each other. Another frequency study, for absolute
deflections, is performed by exciting the structure under each of natural frequencies. For analysis, we divided each
beam into five equal proportions along the length of the beam, resulting in six sample points on the beam. Due to one
fixed end on each beam, for each mode shape, we obtain displacement values of five discrete points (Figure 6).

In the frequency domain, acceleration and displacement are related to each other by following equation

abase ¼ð2∗π ∗ f Þ2 ∗ubase ð1Þ

where abase, f, and ubase are base acceleration, frequency, and base deflection, respectively. From Equation (1), we get
the base deflection and add that to relative deflection coming from the FEA model. The governing equations of the
FEA model for linear elastic materials in the eigenfrequency study are defined as

�ρω2u¼r:S ð2Þ

�iω¼ λ ð3Þ

S¼C : ϵ ð4Þ

C¼CðE,υÞ ð5Þ

ϵ¼ 1=2½ruT þru� ð6Þ

where ρ, u, ω, S, λ, E, υ, and ϵ are density, displacement field, angular frequency, stress, eigenvalue, Young's modulus,
Poisson's ratio, and strain, respectively.

We performed the finite element analysis (FEA) to characterize the structural dynamics by constructing a numerical
model. To compensate for the assumptions made during the numerical modeling, we compared the frequency response
functions (FRFs) as obtained from both the FEA and the experimental shaker-based experiment. Closer proximity in
results, from both the experiment and the FEA, substantiates the accuracy of the FEA in modeling the vibrational
dynamics. Figure 7 illustrates one such comparative analysis between the frequency response functions for different
beam specimen, as obtained from both the FEA and the experimental setup.

One possible source of minor deviations, as depicted in Figure 7, between the results of physical experiments and
the FEA is that the boundary conditions might be slightly different. For example, the flexibility of the clamped side of
the beam mounted on the shaker is assumed as rigid in FEA, which may not be completely rigid in the physical experi-
ment. Additionally, possible imperfections present in the beam can also affect the results in the physical experiment.

FEA results from the COMSOL software determines the absolute displacement values of the sample points used for
labeling and training purposes. Figure 8 shows an example of the FEA-based mode shape for the brass specimen beam.
As mentioned earlier, five points were monitored continuously for different orders of mode shape. In total, for each
specimen, the corresponding training labels contain 15 displacement values for 3 mode shapes (5 values per mode), as
displayed in Table 2.

FIGURE 6 The boundary condition and five sample points on the brass beam
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FIGURE 7 Comparison of velocity frequency response functions (FRF) between experiment and FEA, from top left: AL standard, AL

long, brass, steel, copper narrow, and copper wide

FIGURE 8 The displacement point sampling of aluminum-standard beam

TABLE 2 The absolute mode shape (mm) of all cantilever beams

Material/Specimen First mode shape Second mode shape Third mode shape

Aluminum-long 1.25, 3.51, 6.69, 10.36, 14.03 3.96, 9.31, 8.09, �0.87, �13.41 8.15, 7.39, �6.42, �5.67, 13.40

Aluminum-standard 1.89, 3.75, 6.38, 9.39, 12.49 3.31, 7.89, 6.86, �0.62, �11.12 6.86, 6.11, �5.39, �4.98, 10.94

Brass 1.96, 4.27, 7.68, 11.61, 15.49 4.35, 9.92, 8.65, �0.97, �14.41 8.79, 7.78, �6.74, �5.78, 14.60

Copper-narrow 1.01, 2.82, 5.41, 8.45, 11.40 3.29, 7.67, 6.63, �0.74, �11.01 6.67, 5.95, �5.30, �4.48, 11.15

Copper-wide 0.89, 2.90, 5.62, 8.81, 12.14 3.50, 8.10, 7.25, �0.65, �11.76 7.26, 6.64, �5.75, �5.08, 11.85

Steel 0.99, 2.92, 5.75, 8.90, 12.25 3.60, 8.25, 7.22, �0.766, �11.88 7.19, 6.39, �5.77, �5.01, 11.87
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3 | ARCHITECTURE DESCRIPTION

In general, image processing techniques are computationally expensive and require non-trivial image transformations.
What is needed are efficient computational pipelines to extract the mode shapes of the vibrating structures. In this
section, we introduce a CNN-LSTM based deep learning architecture that exploits the time series dependency among
the frames of the video acquired through a monocular camera to automate the entire mode shape identification process.
The outlined CNN-LSTM method alleviates the need for conventional contact sensors while achieving significant levels
of accuracy. The overall computational pipeline is depicted in Figure 9.

3.1 | CNN

The convolutional neural network (CNN) has shown exemplary performance in numerous computer vision and pat-
tern recognition problems. The role of CNN in our architecture is to identify the structural features in the regular
lattice of pixels. Our proposed CNN model comprises alternate layers of convolution and max-pooling, followed by a
fully connected layer. Attributes determining the performance of the CNN model are feature maps, kernel size, and
spatial strides. The convolution layer consists of several neurons, and each of them acts as a convolution kernel.
These kernels work by dividing the vibration frame image into smaller blocks to extract motif features. We deploy a
rectified linear unit (ReLU) activation function to map the non-linearity between the inputs and outputs of the
CNN model. The ReLU activation is applied just after the convolution layer of the CNN model and can be
expressed as

ReLUðxÞ¼maxðx,0Þ ð7Þ

This activation function helps to process the information gathered by the convolution operator. After convolution
comes to the max-pooling layer. Max-pooling layer helps to downsample the image and extricate relatively dominant
features from the field neighborhood. Pooling operation helps to reduce the size of feature-map, thus reducing the net-
work complexity and also improving the generalizability of the model. After the last pooling layer, we have a flatten
layer that transforms the image tensor into a vector of size equal to that of the number of elements in the input tensor.
As one training sample contains 200 frames, so each time, 200 images are fed into the CNN model with 3*3 kernel size
and 64 feature maps. After convolution and max poling operations with 2*2 pooling size, each image gets converted to

FIGURE 9 Computational pipeline
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a feature vector of size 1*4096. Two hundred different feature vectors are sent to the LSTM layer with specific hidden
units to predict the first three mode shapes. The used CNN architecture and associated hyperparameters are depicted in
Figure 10.

3.2 | LSTM

LSTMs have emerged as one of the most effective tools for processing sequential datasets. Due to their recurrent
processing capabilities, they have been used to solve the state-of-the-art problems in domains of acoustic speech model-
ing, video analysis, and audio synthesis. Another essential feature of the LSTM architecture block is its information
retention ability. Each LSTM cell has a memory unit that assists in maintaining its state over time. Besides, few gating
units regulate inflow and outflow of information within the cell.

The overall CNN-LSTM architecture has the CNN and the LSTM blocks interacting periodically. Herein we feed the
output, tensor imbibing the pixel information, of the CNN model into the LSTM cells in sequential order. If xt is one of
the CNN model outputs at any time step t, the LSTM cell will take that as input for that particular time instant, process it,
and generate the hidden activations a t represented by Equation (10). This activation value goes through a series of recur-
rent processing steps to generate the final output and thus forming a memory flow over time that aids in modeling long
term Spatio-temporal dependencies present in a sequence of video frames. Each LSTM cell consists of a latent cell state c t,
calculated using Equation (9), which serves as a memory and helps hidden units a t in retaining information from the past.
We use c�t as a placeholder, using Equation (8), to initially replace c t. The memory state c t is generated by combining
c t � 1, a t � 1, and the input features at time step t. Figure 11 showcases the LSTM cell. LSTM cell takes the input xt from

FIGURE 10 The architecture of the CNN part for the proposed architecture

FIGURE 11 The architecture of the LSTM cell
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the current step and the inherited information a t � 1 from the previous time step to generate the cell activation a t. Since
a t is the total of information from all the previous time steps, it is pivotal in determining the final output.

c�t ¼ tanhðWc
aa

t�1þWc
xxtÞ ð8Þ

ct ¼ f t ⨂ ct�1þut ⨂ c�t ð9Þ

at ¼ ot ⨂ tanhðctÞ: ð10Þ

Here, we use the weight parameters, Wc
a and Wc

x , to generate candidate cell state and pretermit the bias terms as
they get absorbed into weight matrices. Thereafter, we introduce a forget gate layer f t, an update gate layer u t, and an
output gate layer o t, as

f t ¼ σðWf
aa

t�1þWf
xxtÞ ð11Þ

ut ¼ σðWu
aa

t�1þWu
xxtÞ ð12Þ

ot ¼ σðWo
aa

t�1þWo
xxtÞ ð13Þ

All the input video frames from sample data go through the abovementioned processing order. The final output is
the 15 point displacements for three different mode shapes. Figure 12 showcases the architecture of the proposed CNN-
LSTM model.

4 | EVALUATION METRICS

4.1 | Generalizability

The generalizability refers to the ability of a learned model to fit an unseen instance within its training input domain
range. In this paper, we use MSE (mean squared error) as the evaluation criteria for generalizability. MSE is the quanti-
fication of the average squared errors between the prediction and ground truth values.

FIGURE 12 The architecture of the CNN-LSTM model
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The MSE can be expressed by Equation (14):

MSE¼
Pn

i¼1ðŷi� yiÞ2
n

ð14Þ

where ŷ is the predicted value, y is the ground truth value, and n is the sample size.
Here, the MSE value between predicted mode shape and real mode shape in three different natural frequencies for

six different beams is chosen to evaluate the model performance.

4.2 | Robustness on noisy data

Robustness appraises a model's performance in the presence of noisy data and unstructured state space. Higher
the robustness, the greater is the model's capability to accomplish even in the presence of imprecise measurements.
A robust model proves to be efficacious in real-life situations where, most of the time, we have a corrupt dataset
at hand.

Vacillating lighting conditions, vibration amplitudes, and other attributes such as reflected light streams, heat, and
sensor illumination constitute what is known as noisy data. Vibration videos of the same beam are prone to various
combinations of the above mentioned noisy experimental conditions that often tends to taint the training data with
noise. We create a comprehensive training dataset, comprising vibration videos of six different sample beams. The dis-
tance between camera and beam and illumination conditions in each of the videos are slightly different. Figure 4 dis-
plays the images from two different videos of the steel beam.

Table 1 lists the six specimen beams used to train the model for testing its robustness on the noisy data. We train
the model with three recordings comparing to every one of the six beams and test them, for the mode shape expectation
task, on the remaining two recordings of the individual beams.

4.3 | Extrapolability

Extrapolability is the measure of performance of a model beyond the range of initial training data. In other words,
extrapolability is the model's prescient capability to predict accurately on data not seen by the model during the training
stage. Unlike the robustness to noise metric, the extrapolability metric measures the ability of the outlined CNN-LSTM
model to predict the mode shapes of a test specimen that is not part of initial training data.

To compute the extrapolability metric, we train the CNN-LSTM model on data samples obtained from five out of six
beams and use the trained model for predicting the mode shape of the sixth beam (excluded information that was not
utilized during the training of the model). In total, we performed six different examinations—each trial comprise train-
ing on data samples acquired from five beams, trailed by testing on the remaining one.

4.4 | Robustness on viewpoint change of video

Changing the viewpoint of the camera can change the background, foreground, and the size and appearance of the
test specimen observed through the camera. It is therefore essential to measure the robustness of the CNN-LSTM
model in the presence of camera viewpoint changes. The two different viewpoints of six different beams vibration
frames have been discussed in Section 2. The model is trained on front view video frames and tested on the top view
frames.

4.5 | Computational resources

The network is trained using Keras (Tensorflow GPU 1.14.0 backend), CUDA 10.0 toolkit, and cuDNN 7.0 support in a
machine of Alienware R8 desktop, which has 16GB RAM and a 8 GB video RAM RTX 2080 super GPU.
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4.6 | Hyperparameter tuning

Hyperparameter tuning refers to the process of determining ideal or optimal values of hyperparameters (knobs for tun-
ing and enhancing the performance) for a learning algorithm.52 LSTM layer nodes, learning rate, number of CNN
layers/nodes, and batch size as principle hyperparameters in our CNN-LSTM model. Moreover, early stopping calcula-
tions are applied during the preparation process to avoid the over-fitting issue (when the trained model tries to predict
a trend in data that is too noisy). We utilize the L2 regularization and early-stopping calculations to avoid any over-
fitting. L2 regularization calculation works by applying penalties on layer parameters. L2 norm characterizes the regu-
larization term as the aggregate of the squares of all the component loads.

4.6.1 | Tuning for robustness on noisy data

Various combinations of hyperparameter values were utilized to prepare our CNN-LSTM model for the mode shape
prediction in three different regular frequencies. The box plot of MSE values, over the test set, for five of the chosen
models are shown in Figure 13. Table 3 lists the details of hyper-parameter sensitivity analysis for five different models.
Among the five models, the fifth model obtains the best performance with an MSE value of 0.0049 on the test dataset.

FIGURE 13 The box plot of MSE value for five separate CNN-LSTM models with different hyperparameters

TABLE 3 Hyper-parameters of CNN-LSTM architecture for robustness on noisy data (k: kernel size, c: channel number, n: node

number)

Configuration 1 2 3 4 5

Convolutional layer k(3 � 3)/c(16) k(3 � 3)/c(16) k(3 � 3)/c(16) k(3 � 3)/c(16) k(5 � 5)/c(16)

Max pooling layer k(2 � 2) k(2 � 2) k(2 � 2) k(2 � 2) k(2 � 2)

Convolutional layer k(3 � 3)/c(32) k(3 � 3)/c(32) k(3 � 3)/c(32) k(3 � 3)/c(32) k(5 � 5)/c(32)

Max pooling layer k(2 � 2) k(2 � 2) k(2 � 2) k(2 � 2) k(2 � 2)

Convolutional layer k(3 � 3)/c(64) k(3 � 3)/c(64) k(3 � 3)/c(64) k(3 � 3)/c(64) k(5 � 5)/c(64)

Max pooling layer k(2 � 2) k(2 � 2) k(2 � 2) k(2 � 2) k(2 � 2)

LSTM layer n(60) n(50) n(30) n(50) n(30)

Dense layer c(15) c(15) c(15) c(15) c(15)

Learning rate 0.001 0.001 0.001 0.01 0.001

Batch size 10 5 10 5 10
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The batch size and learning rate are set to 10 and 0.001, respectively. The whole training process involving 100 epochs
takes about 1.22 h, and the training and validation loss is 3.6 � 10�6 and 5.12 � 10�5.

Besides the hyper-parameters mentioned above, the image size is another significant parameter that affects the
model's prediction performance over the test dataset. The smaller image can realize the time and memory-efficient
training process, which may affect the prediction accuracy due to the feature limitation problem. On the contrary, the
bigger image obtaining more valuable features will utilize higher computational resources and longer training time.
There is a trade-off between prediction accuracy and computational cost. In this paper, the three different sizes of the
images, including 40 � 40 � 3, 64 � 64 � 3, and 128 � 128 � 3, are applied to select the best image size for the mode
shape prediction problem. Due to the hardware limitation, the image size bigger than 128 � 128 � 3 will cause the
memory exhaust problem, so no image bigger than 128 � 128 � 3 is considered in this test. The training time for each
image size involves 100 epochs, and the bigger image size requires a longer training time. The trained model's perfor-
mance for 64 � 64 � 3 and 128 � 128 � 3 is the same that the MSE value over the validation dataset is both 0.0013.
However, the computational time for 128 � 128 � 3 is around 5 times of 64 � 64 � 3 image. Even though the smallest
image size only needs 1 h for 100 epochs training, the performance is much worse than the other two images. Based on
these comparisons, the image size for all training in this paper is selected as 64 � 64 � 3 (Table 4).

4.6.2 | Tuning for extrapolability

The hyperparameter tuning process for computing extrapolation metrics, for the most part, centers around the learning
rate, batch size, early stop calculation, and L2 regularization. The early-halting calculation utilized the “patience”
parameter with a magnitude of 5. The incentive for kernel regularization and bias regularization are both set as 0.015
for L2 regularization. The batch size is set as 5, and the training epoch is set as 100.

4.6.3 | Tuning for robustness on viewpoint change

A distinct mix of the learning rate, L2 regularization values were tried on robustness to camera viewpoint change tasks.
The value for kernel regularization and bias regularization are both set as 0.01 for L2 regularization. The batch size is
set as ten, and the training epoch is set as 100. The “patience” parameter of the early-stop algorithm is set as 10 to solve
the over-fitting problems, affecting the number of epochs and the whole training time.

5 | RESULTS

5.1 | Robustness on noisy data

Figure 14 shows the box plots of the CNN-LSTM model's MSE value for the robustness of noisy data tests. The mean
value for MSE is around 0.008. A low value of MSE showcases the superior performance of our CNN-LSTM model for
the mode shape determination task. Table 5 is the compilation of “robustness on noisy data” metric values for the three
mode shapes. Table 6 shows the MSE values for each beam sample obtained by the CNN-LSTM model and two
comparison methods. The CNN-RNN model gets the worst performance among the three models, especially for the
copper-wide and steel beam. The average MSE value for all six beams of CNN-RNN is 1.028. The CNN-GRU model real-
izes better prediction accuracy than the CNN-RNN model for all six samples with an average MSE value of 0.097. Since

TABLE 4 The model performance for different input size

Input image size Training time (h) MSE value over validation dataset

40 � 40 � 3 1 0.004

64 � 64 � 3 1.22 0.0013

128 � 128 � 3 6.25 0.0013
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the LSTM and GRU can maintain information in the memory longer than the original RNN, the CNN-GRU, and CNN-
LSTM can achieve better performance than the CNN-RNN model.

The first column in Figure 17 shows the mode state, represented by five distinct point displacements (absolute), of
six beams in three distinctive regular frequencies generated by the outlined CNN-LSTM model. The depicted results
(from top to bottom) are aluminum-long, aluminum-standard, brass, copper narrow, copper wide, and steel beam speci-
mens. The red triangle line represents ground truth (FEA-based values for the three mode shapes) while the blue, cyan,
and green dashed lines represent predicted values of the first, second, and third mode shapes, respectively. In every one
of the six plots, on the left, these three prediction lines nearly trace the ground truth for five spatial points on the
respective beams. The leftmost column of Figure 17 further demonstrate the efficacy of the CNN-LSTM model and also
provides a possible reason behind a low MSE value of 0.004.

5.2 | Extrapolability

Table 7 tabulates the extrapolatability metric values of three basic mode shapes, outside the training domain range, for
the six beams. Figure 15 depicts the MSE values of the best CNN-LSTM model as a box plot. Although the test dataset

FIGURE 14 The box plot for the proposed CNN-LSTM model's ability of robustness for noisy dataset

TABLE 5 The mode shape results (mm) of robustness on noisy data

Material/specimen First mode shape Second mode shape Third mode shape

Aluminum-long 1.25, 3.59, 6.78, 10.32, 13.95 4.04, 9.3, 8.06, �0.82, �13.45 8.16, 7.45, �6.37, �5.71, 13.42

Aluminum-standard 1.85, 3.75, 6.39, 9.28, 12.43 3.32, 7.93, 6.92, �0.61, �11.24 6.91, 6.28, �5.31, �4.99, 10.98

Brass 2, 4.39, 7.76, 11.57, 15.39 4.44, 9.96, 8.62, �0.89, �14.46 8.82, 7.82, �6.67, �5.89, 14.64

Copper-narrow 0.99, 2.87, 5.47, 8.43, 11.36 3.34, 7.7, 6.64, �0.75, �11.93 6.69, 6.03, �5.25, �4.53, 11.19

Copper-wide 0.93, 2.99, 5.57, 8.83, 12.08 3.58, 8.14, 7.29, �0.61, �11.84 7.42, 6.58, �5.77, �5.08, 11.93

Steel 0.98, 2.99, 5.86, 8.94, 12.23 3.68, 8.34, 7.22, �0.72, �12.01 7.18, 6.44, �5.73, �5.08, 11.97

TABLE 6 The MSE value for mode shape prediction of three models on noisy dataset

Model

Beam

Aluminum-long Aluminum-standard Brass Copper-narrow Copper-wide Steel

CNN-RNN 0.057 0.046 0.028 0.037 0.37 0.49

CNN-GRU 0.012 0.017 0.0076 0.028 0.2 0.32

CNN-LSTM 0.004 0.006 0.006 0.0025 0.0054 0.0063
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is totally outside the training domain range, CNN-LSTM models perform well on the mode shape prediction task.
Extrapolation results specified in Table 7 demonstrate the viability of the CNN-LSTM to model for mode shape extrapo-
lation task. Table 8 illustrates the three model's performance over extrapolability dataset. The CNN-RNN and CNN-
GRU model still get worse performance than the CNN-LSTM model due to the shorter period of information analysis
ability that the average MSE value is about 1.63 and 1.65. The CNN-RNN and CNN-GRU model both obtain the best
mode shape prediction value for a copper wide beam that the MSE value is 0.66 and 0.41 separately.

The middle column of Figure 17 diagrams the basic mode shapes as predicted, by the proposed CNN-LSTM model,
on an extrapolated dataset. The predicted results (from top to bottom) are aluminum-long, aluminum-standard, brass,
copper narrow, copper wide, and steel beam specimens. The red triangle line represents the ground truth (FEA-based
values for the three mode shapes) while the blue, cyan, and green dashed lines represent predicted values of the first,
second, and third mode shapes, respectively.

The MSE values for extrapolation tests are greater when contrasted to that of the robustness to noise tests. However,
it is to be noted that in the robustness to noise tests, training models have access to data samples from the identical
material beams. On the other hand, in extrapolation tests, the CNN-LSTM model, despite having no access to the same

FIGURE 15 The box plot for the proposed CNN-LSTM model's extrapolability on six different beams

TABLE 7 The mode shape results (mm) of extrapolability

Material/specimen First mode shape Second mode shape Third mode shape

Aluminum-long 1.57, 3.5, 6.47, 9.85, 13.36 3.82, 8.56, 7.57, �0.86, �12.91 7.25, 6.9, �6.02, �5.03, 12.44

Aluminum-standard 1.85, 4.15, 5.43, 8.55, 11.9 2.8, 7.47, 6.47, �0.61, �12.1 6.62, 5.78, �6.25, �5.59, 10.6

Brass 1.81, 3.72, 6.96, 10.94, 14.1 3.98, 9.69, 7.96, �0.9, �13.69 8.11, 7.1, �5.95, �5.21, 13.53

Copper-narrow 0.89, 2.94, 5.74, 9.09, 12.5 3.27, 8.03, 7.05, �1.19, �12.64 6.53, 5.85, �5.67, �4.91, 10.96

Copper-wide 1.36, 3.58, 5.99, 9.27, 12.79 3.69, 8.08, 7.08, �0.64, �12.67 7.37, 6.58, �5.67, �5.17, 12.11

Steel 0.63, 2.63, 5.5, 8.65, 12.1 2.89, 7.77, 6.51, �1.22, �12.67 6.89, 6.01, �6.34, �5.69, 11.46

TABLE 8 The MSE value for mode shape prediction of three models on extrapolability

Model

Beam

Aluminum-long Aluminum-standard Brass Copper-narrow Copper-wide Steel

CNN-RNN 1.43 0.84 2.86 2.79 0.66 1.15

CNN-GRU 0.65 1.53 3.5 2.4 0.41 1.42

CNN-LSTM 0.31 0.35 0.51 0.21 0.19 0.24
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material data samples during training, has a very similar predictive ability to FEA. The best predictive values (an MSE
value of 0.19) of the CNN-LSTM model were witnessed in the case of “copper wide” beam specimen, which is quite a
decent performance for a data-driven model on an utterly unseen dataset. However, the performance for the “brass”
beam specimen had room for improvement, where the MSE value surpasses the 0.51 mark. One experimental barrier
that thwarted the model performance is the poor lighting conditions that existed in data collection experiments due to
the cramped space requirements of the experimental setup. Poor lighting prevents the beam sample from being suffi-
ciently illuminated and puts a greater onus on the CNN-LSTM model, fed with low-quality picture frames, to assimilate
actionable information from the pixels.

Additionally, regardless of the camera speed being just 200 frames per second, which is less than the third-order nat-
ural frequency of the beams, our CNN-LSTM model shows quite a decent performance even on an unseen/novel speci-
men test dataset. This good prescient ability of the CNN-LSTM model can be attributed to the judicious design
amalgamation of CNN and LSTM layers. The spatio-temporal nature of the CNN-LSTM architecture encourages it to
extract useful information from the nearby sub-structural pixel arrangement and across different frames (time-steps),
compensating for the inadequacies of the camera.

FIGURE 16 The box plot for the proposed CNN-LSTM model's robustness on viewpoint change

TABLE 9 The mode shape results (mm) on viewpoint change

Material/specimen First mode shape Second mode shape Third mode shape

Aluminum-long 1.28, 3.47, 6.39, 10.03, 13.32 3.8, 8.5, 7.56, �0.85, �12.16 7.65, 6.9, �5.95, �5.36, 12.89

Aluminum-standard 1.63, 3.59, 6.13, 9.12, 12.33 3.27, 7.78, 6.81, �0.53, �11.25 6.9, 6.22, �5.29, �4.96, 11

Brass 2, 3.41, 6.92, 11.11, 14.85 4.11, 9.01, 7.83, �0.81, �13.63 8.51, 7.45, �6.91, �5.23, 13.91

Copper-narrow 0.98, 2.75, 5.36, 8.52, 11.29 2.86, 7.41, 6.62, �0.73, �12.68 5.95, 5.35, �5.77, �5.08, 10.26

Copper-wide 0.87, 3.35, 5.87, 9.1, 13.11 3.47, 8.7, 7.13, �0.88, �12.27 7.55, 6.13, �6.39, �5.47, 12.53

Steel 1.24, 3.35, 5.96, 9.88, 12.64 3.08, 8.3, 7.22, �0.72, �12.46 7.09, 6.37, �5.55, �4.99, 11.73

TABLE 10 The MSE value for mode shape prediction of three models on viewpoint change

Model

Beam

Aluminum-long Aluminum-standard Brass Copper-narrow Copper-wide Steel

CNN-RNN 0.84 1.33 1.79 1.61 0.73 0.53

CNN-GRU 1.39 0.61 1.37 2.63 0.61 0.47

CNN-LSTM 0.29 0.11 0.34 0.22 0.28 0.15
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FIGURE 17 The ground truth and prediction value of six beam's mode shape
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5.3 | Robustness on view-point change

Figure 16 depicts the MSE value calculation of the optimal CNN-LSTM model for the robustness for the view-point
change task. Table 9 shows the mode shape prediction values of the CNN-LSTM model on robustness for view-point
change in the video. The outlined CNN-LSTM model mimics the ground truth precisely. Table 10 states the three deep
learning models' performance for viewpoint change task. Among all the beam specimens, our CNN-LSTM model gives
the best results for the “Aluminum-standard” beam with an MSE value over the three mode shapes being 0.11. The
model provides the poorest prediction for the “brass” sample. However, even in the “brass” sample, the model registers
a good and acceptable MSE value of 0.34. The CNN-RNN and CNN-GRU achieve similar prediction results for all six
beams, in which the average MSE values are 1.14 and 1.18, respectively.

The rightmost column of Figure 17 exhibits that the view-point change does not lead to results that are different
from the ground truth.

6 | CONCLUSION AND FUTURE SCOPE

The paper outlines a CNN-LSTM deep learning model for a computer vision-based vibration estimation system that
could be used to predict the mode shapes of various beam specimens. We utilized FEA based displacement values as
the ground truth to compare the predictive performance of the CNN-LSTM model. The CNN-LSTM model is also
compared with two architectures (1) CNN-RNN and (2) CNN-GRU. As is evident from the results, the performance of
CNN-LSTM based computer vision model is comparable to the traditional procedures for the mode shape prediction
task. It obtains better performance than two comparison models for all three different metrics since the LSTM unit
can handle the information in memory for a more extended period than the conventional RNN unit. The outlined
CNN-LSTM model showcases superior performance for robustness to noise and camera viewpoint change aspects.
Likewise, on the extrapolability aspect (performance on unseen data) measurements, the CNN-LSTM model accom-
plishes palatable degrees of mode shape forecasting precision. The performance of the CNN-LSTM model gives sup-
port to the possible deployment of a non-contact computer vision-based approach for mode shape prediction
problems.

The outlined work has concentrated on the excitation of various beams exposed to the time-varying load. The gro-
und truth values of the first three mode shapes predicted by FEA are very close to the predictions made by our deep
learning architecture. One future avenue for research in the SHM domain is to identify structural defects directly from
the video recordings of the vibrating structure. Besides, future work can also focus on generating the pixel-wise dis-
placement color map directly from the video stream of a vibrating structure. The produced displacement map could
serve as a potential substitute for the FEA-based results of the vibration analysis.
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