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Abstract—The deployment of future intelligent transportation
systems is contingent upon seamless and reliable operation of
connected and autonomous vehicles (CAVs). One key challenge
in developing CAVs is the design of an autonomous controller
that can make use of wireless connectivity and accurately execute
control decisions, such as a quick acceleration when merging
to a highway and frequent speed changes in a stop-and-go
traffic. However, the use of conventional feedback controllers
or traditional machine learning based controllers, solely trained
by the CAV’s local data, cannot guarantee a robust controller
performance over a wide range of road conditions and traffic
dynamics. In this paper, a new federated learning (FL) framework
enabled by the CAVs’ wireless connectivity is proposed for the
autonomous controller design of CAVs. In this framework, the
learning models used by the controllers are collaboratively trained
among a group of CAVs. To capture the varying CAV participation
in FL and the diverse local data quality among CAVs, a novel
dynamic federated proximal (DFP) algorithm is proposed that
accounts for the mobility of CAVs, the wireless channel dynamics,
as well as the unbalanced and non-independent and identically
distributed data across CAVs. A rigorous convergence study is
performed for the proposed algorithm under realistic wireless
environments. Then, the impact of varying CAV participation
in FL process and diverse local data quality of CAVs on the
convergence is explicitly analyzed. Simulation results that use
real vehicular data show that the proposed DFP-based controller
can accurately track the target speed over time and under
different traffic scenarios, and it yields a distance error two
times smaller than controllers designed using traditional machine
learning solutions trained with the CAV’s local data. The results
also show that the proposed DFP algorithm is well-suited for
the autonomous controller design in CAVs when compared to
popular FL algorithms, such as federated averaging (FedAvg)
and federated proximal (FedProx) algorithms.

I. INTRODUCTION

As a key component of tomorrow’s intelligent transportation
systems (ITSs), connected and autonomous vehicles (CAV)
are promising solutions to reduce traffic accidents, alleviate
road congestions, and increase transportation efficiency. CAVs
leverage both sensors and wireless systems to increase their
situational awareness and use such awareness for their motion
planning and automatic control. However, to operate a full-
fledged CAVs, we need to address a number of challenges,
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ranging from management of wireless resources to reliable
controller design. Among these challenges, designing an au-
tonomous controller to achieve target movements for CAVs is
important to accomplish the target tasks and achieve the oper-
ation safety. In particular, a CAV’s controller must accurately
execute navigation decisions so that the CAV can quickly adapt
to the dynamic road traffic. For example, the controller must
generate frequent slow-down and speed-up for CAVs in a stop-
and-go traffic, whereas a rapid acceleration will be the target
output for the controller when CAVs merge into highways.

There are two common methods to design an autonomous
controller for CAVs. The first method uses a conventional
feedback controller. In particular, the conventional feedback
controller first needs to determine the CAV’s dynamic models
(e.g., the tire model [1]) and the road conditions (e.g., road
slope [2] and slip ratio between the road and tire [3]), and
then optimize the controller design based on these settings.
However, due to the changes in payload, various types of
roads, dynamic road traffic, and varying weather, the vehicle
dynamics and road conditions change constantly over time.
Hence, the conventional feedback controller cannot guarantee
the controller performance over a wide range of environmental
parameter changes. To ensure that the CAVs can adapt to the
changing vehicle dynamics and road conditions, the second
method is to use adaptive controllers, based on machine
learning (ML), for the CAV’s autonomy. For example, in [4],
the authors propose a learning-based model predictive control
(MPC) design where the recorded trajectory data is trained
to optimize the parameterization of the MPC controller that
leads to the optimal closed-loop performance. Also, a database-
driven proportional-integral-derivative (PID) controller is pro-
posed in [5] where ML algorithms are used to train the local
database to tune control parameters. However, when using
learning methods that require training (e.g., neural networks)
for the adaptive controller design, the local training data can
be insufficient due to the limited on-chip memory available at
CAVs [6]. In addition, due to limited storage, only data pertain-
ing to the most recent driving can be stored and such data can
be skewed and of poor quality. As a result, when changing to a
new traffic environment or less frequently occurred events, e.g.,
traffic accidents, a controller solely trained by the local data can
fail to adapt to the changes. A cooperative training framework
among multiple CAVs will be needed for the controller design.

To this end, one can leverage the wireless connectivity in
CAVs and use federated learning (FL) to enable CAVs to
collaboratively train the learning models used by the controllers
[7]. In essence, FL can allow each CAV to train the local model
for the controller based on its own data, and it will use the
wireless cellular network to share the trained model parameters



used by its adaptive controller with a parameter server, such as
a base station (BS). The parameter server will then aggregate
the received model parameters and send the aggregated model
parameters back to the CAVs. In this way, the learning model
can be collaboratively trained among multiple CAVs, and such
a trained model can enable the CAV’s controller to adapt
to new traffic scenarios unknown to the particular CAV but
experienced by other CAVs.

For example, as shown in Fig. 1(a), the CAVs participating
in FL can learn from each other to operate in a wide range
of scenarios, such as crash, traffic jam, and road work areas.
Moreover, the FL process is naturally privacy-preserving as the
CAVs do not share their local data, e.g., the history trajectory,
location, and speed information. To reap all these benefits,
we need to address two challenges. First, due to the CAV’s
mobility and uncertainty of wireless channels, the participation
of CAVs in the FL process will vary over time and a good
training performance can be challenging to guarantee. Second,
because of the unbalanced and non-independent and identically
distributed (non-IID) local data across CAVs, the data quality
will vary among CAVs and such diverse data quality can impact
the FL performance. An effective FL framework for the CAV’s
controller design must solve these two challenges.

The main contribution of this paper is a novel dynamic feder-
ated proximal (DFP) framework that can address the aforemen-
tioned challenges of FL-based controller design, in presence
of CAV mobility, uncertainty of wireless channels, as well as
unbalanced and non-IID data. We prove the convergence of the
proposed algorithm, under realistic wireless environments, and
we theoretically study how the varying CAV participation in
the FL process and the presence of diverse local data quality
among CAVs affect the convergence of FL. We also extend the
results to other case studies, e.g., using the federated averaging
(FedAvg) for the controller design and the controller design for
electric CAVs with stringent energy constraints. To the best
of our knowledge, this is the first work that develops an FL
framework to optimize the autonomous controller design for
CAVs, under realistic wireless environments. Using real data
traces, we show that our proposed framework can generate a
more accurate speed compared to the controller solely trained
by the local data. Furthermore, simulation results show that the
proposed algorithm outperforms other popular FL algorithms,
i.e., FedAvg [8] and federated proximal (FedProx) algorithms
[9], when designing the autonomous controller for CAVs.

II. SYSTEM MODEL

Consider a set N of N CAVs moving along the roads,
as shown in Fig. 1(a). To guarantee the safety and achieve
the target movement, CAVs will perceive their surrounding
environment and accordingly adjust the controller decisions.
By collaboratively training the controller via FL, CAVs can
automatically change their control parameters, execute the
control decisions, and become adapted to the local traffic.
Here, we introduce the controller, communication, and learning
models used for the FL-based autonomous controller design.
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Fig. 1. Illustration of our system model. The traffic model is presented
in (a) where green triangles and red squares, respectively, represent
CAVs that do and do not participate in the FL process. The adaptive
controller and learning models are shown in (b).

A. Adaptive Longitudinal Controller Model
To perceive the surrounding environment, the CAVs will

use sensors and communicate wirelessly with nearby objects,
e.g., other CAVs. This perception can enable the longitudinal
controller of each CAV to automatically adjust its acceleration
or deceleration and maintain a safe spacing and target speed.
Here, due to the simplicity and easy implementation, we use the
PID controller to control the longitudinal movement of CAVs,
and the acceleration un(t) of vehicle n ∈ N at sample t is
defined in a discrete-time manner as follows [10]:

un(t)=un(t− 1)+(Kn,p +Kn,i∆t+
Kn,d

∆t
)en(t)

+(−Kn,p −
2Kn,d

∆t
)en(t− 1)+

Kn,d

∆t
en(t− 2), (1)

where Kn,p,Kn,i, and Kn,d are non-negative coefficients cor-
responding to the proportional gain, integral time constant, and
derivative time constant used by the PID controller in CAV n.
∆t is the sampling period and en(t)=vn,r(t)−vn,a(t) captures
the difference between the target reference speed vn,r(t) and
the actual speed vn,a(t) at sample t. Note that the target
reference speed is decided by the motion planner in the CAV
based on the environmental perception1.

According to (1), we can calculate the actual speed at
sample t + 1 as vn,a(t + 1) = vn,a(t) + un(t)∆t and the
distance traversed between samples t and t + 1 as dn,p =
vn,a(t+1)+vn,a(t)

2 ∆t. It is clear that achieving the target speed
and safe spacing will depend on the control parameter setting
of each CAV’s PID controller, and it is imperative to adjust
these control parameters adaptively to deal with varying traffic
dynamics and road conditions. In particular, instead of using
a time-consuming manual tuning for the control parameters
Kn,p,Kn,i, and Kn,d, n ∈ N , we assume that the CAV will
use an adaptive PID controller enabled by an artificial neural
network (ANN)-based auto-tuning unit, as shown in Fig. 1(b).
In this case, in order to adapt to various traffic conditions, the
CAVs will train the auto-tuning unit using its own history of
speed data and then adjust the control parameters accordingly.

1As the motion planner design has been extensively studied by the prior art
and is not the main scope of this work, we omit details about the process of
choosing the target speed and we refer readers to [11].



B. FL Model
The ANN based auto-tuning unit in Fig. 1(b) can adaptively

tune the PID control parameters to achieve the target speed.
However, the CAV’s local training data, i.e., the speed history,
is constrained by the onboard memory of the CAV, and thus,
is limited to a few of traffic scenarios. For example, vehicles
on the highway will mostly drive with a high speed, whereas
in urban settings, the speed of CAVs will vary constantly in
a lower speed region due to frequent stops and accelerations.
Hence, by solely training the local data for the auto-tuning unit,
the controller can only be used in limited traffic scenarios. To
this end, we can use the wireless connectivity of CAVs to build
a cooperative training framework, i.e., FL, among multiple
CAVs for the controller design.

Here, we consider CAVs will involve in an FL process
to collaboratively train the ANN auto-tuning units for the
adaptive controller design. In particular, the BS, operating as
a parameter server, will first generate an initial global ANN
model parameter w0 for the auto-tuning unit and send it
wirelessly to all CAVs over a broadcast downlink channel.
Then, in the first communication round, all CAVs will use the
received model parameters w0 to independently train the model
based on their local data for I iterations. In the uplink, the
CAVs transmit their trained model parameters to the BS. Next,
the BS will aggregate all the received local model parameters
to update the global model parameters which is then sent to
all CAVs. This FL process is repeated over uplink-downlink
channels and the local and global ANN models are sequentially
updated. Ultimately, the ANN model parameters used by the
CAVs will converge to the optimal model as follows [8]:

arg min
w(1),...,w(N)∈Rd

N∑
n=1

sn∑
i=1

1

sN
fn(w(n), ξi), (2)

s.t. w(1) = w(2) = ... = w(N) = w, (3)
where sN =

∑
n∈N sn is the size of the entire training data of

all CAVs with sn being the size of the local data at CAV n.
fn(w(n), ξi) captures the loss function of CAV n when using
the ANN model parameters w(n) in the auto-tuning unit for
the selected data ξi. Note that, the loss function plays a pivotal
role in determining the performance of the trained auto-tuning
unit. The loss function used for the controller design can be
either convex [12] or non-convex [13]. We assume f(w) to be
the value of objective function (2) when w(n) = w, n ∈ N .

When training the local ANN models at CAVs, we can
calculate the computing delay as tn,comp = I s̄cφn , where s̄ is
the size of randomly selected data at each iteration, c is the
number of computing cycles needed per data bit, and φn is the
frequency of the central processing unit (CPU) clock of CAV
n ∈ N . However, due to the mobility of CAVs and wireless
fading channels, it is possible that not every CAV in the set N
can transmit the trained model parameters to the BS within the
duration t̄ of each communication round. With this in mind,
next, we present the communication model used to determine
whether the locally trained model at a particular CAV can be
used in the model aggregation.

C. Communication Model
For the uplink from local CAVs to the BS, we consider

an orthogonal frequency-division multiple access (OFDMA)
scheme where each CAV in set N will use a unique and
orthogonal resource block to transmit the trained ANN model
parameters to the BS. The uplink data rate from CAV n ∈ N
to the BS will be

rn = B log2

(
1 +

Pnhnd
−α
n

ρn +BN0

)
, (4)

where B is the bandwidth of each orthogonal resource block,
Pn is the transmit power of CAV n, and hn denotes the
Rayleigh fading channel gain. Moreover, dn is the distance
between CAV n and the BS, α is the path-loss exponent,
and N0 is the noise power spectral density. In addition,
ρn =

∑
j 6∈N Pjhjd

−α
j is the received interference power

generated by other CAVs outside of setN and sharing the same
resource block with CAV n. From (4), the uplink transmission
delay for CAV n ∈ N can be calculated as tn,comm = s(w(n))

rn
,

where s(w(n)) is the size of the data packet that depends on
the trained model parameters w(n) transmitted by CAV n.

In the downlink, since the BS can have a much higher
transmit power and larger bandwidth for the broadcast channel,
the downlink transmission delay is considered to be negligible
compared to the uplink transmission delay. In addition, given
the higher computing power of BSs, the computing delay at
the BS can be ignored in contrast to its counterpart at CAVs.
Hence, to identify whether the local learning model update
from CAV n ∈ N can be used for the model aggregation
in the BS, we can compare the time for uplink transmission
and local computing at the CAV with the duration t̄ of the
communication round. In this case, the probability that CAV
n ∈ N participates in FL (the locally trained model at CAV n
is used in the model aggregation) can be thereby calculated as
ptn = P(tn,comp + tn,comm ≤ t̄).

When designing the FL framework for the CAV’s controller
design, it is important to explicitly consider the following two
factors. The first factor is that the BS can only aggregate a
subset Nt ⊆ N to update the global model at each com-
munication round. This is because the mobility of CAVs and
uncertainty of wireless fading channels make the participation
probability ptn, n ∈ N , to be a time-varying parameter that
is different for each CAV. It will be challenging to guarantee
a good training performance for the controller design when
the participation of CAVs in the FL process varies over time
[7]. The second factor is the fact that the distribution and size
of the local dataset can largely vary among CAVs because
of the heterogeneity of the CAVs’ local data (generated over
different trajectories, traffic, and road incidents). As such, the
local datasets at different CAVs will be unbalanced and non-
IID distributed. This non-IID and unbalanced local data can
adversely affect the convergence of the FL model [9]. To sum
up, when designing the FL framework for a CAV, we must
account for the varying CAV participation in FL and the diverse
local data quality across CAVs.



III. DYNAMIC FEDERATED AVERAGING ALGORITHM FOR
CAV CONTROLLER DESIGN

To consider the aforementioned two factors in FL, we now
propose a new DFP algorithm customized for the autonomous
controller design of CAVs. In particular, we study the impact of
the varying participation of CAVs in the FL process and non-
IID and unbalanced data on the learning model convergence.
We will first introduce the proposed DFP algorithm and then
study its convergence performance.
A. Proposed Dynamic Federated Averaging Algorithm

The proposed learning algorithm is summarized in Algo-
rithm 1. In particular, instead of solely optimizing the loss
function using the whole training dataset at the CAVs, we
assume that the CAVs will run I iterations of stochastic
gradient descent (SGD) at each communication round. In each
iteration of SGD, the model update at CAV n ∈ N will solve
the following optimization problem that minimizes the sum of
the loss of a randomly selected local training sample ξ ∈ Sn
and an L2 regularizer:

arg min
w∈Rn

fn(w, ξ) +
γt
2
||w −wt||2, ξ ∈ Sn, (5)

where γt is the coefficient for the regularizer and wt cap-
tures the received learning model parameters from the BS at
communication round t. The purpose of introducing the L2

regularizer is to guarantee that the trained model parameters
w of CAV n ∈ N will be close to wt, reducing the variance
introduced by the non-IID and unbalanced data. In particular,
after I iterations of SGD at the communication round t, we
can obtain the trained model parameters of CAV n as follows:

fn(w
(n)
t+1,I)=wt+ηt

I−1∑
i=0

(
∇fn(w

(n)
t,i , ξi)+γt(w

(n)
t,i −wt)

)
.

Then, due to the uncertainty of wireless channels and CAVs’
mobility, the BS will aggregate the trained model parameters
from a subset Nt of Nt CAVs that is able to finish local
computing and communication within time constraint t̄.
B. Convergence of the Proposed DFP Algorithm

To prove the convergence of the proposed scheme in Algo-
rithm 1, we make the following standard assumptions:
• The gradient ∇fn(w), n ∈ N , is uniformly Lipschitz

continuous with positive parameter L.
• The variance of SGD with respect to the full gradient

descent is upper bounded for CAV n ∈ N and w ∈ Rd,
which is given by Eξ∈Sn ||∇fn(w, ξ) −∇fn(w)||22 ≤
σ2,∀n∈N ,∀w∈Rd, where σ2 is the upper bound.

Both assumptions are commonly used by many literature, like
[14]. The first constraint can be satisfied by some popular loss
functions used in control theory, such as the squared error loss
function. The second constraint is often adopted in stochastic
optimization where the gradient estimator is always assumed
to have a bounded variance. Using these two assumptions, we
can bound the expected loss function at communication round
t+ 1 as shown by the following theorem.

Theorem 1. Given that the BS sends the global learning model
parameters wt to all CAVs at communication round t, an upper

Algorithm 1 Dynamic Federated Proximal (DFP) Algorithm
Iutput: N , Nt, Sn, ηt, w0, I , ut, γt, sn, n = 1, ..., N

Output: ANN-based auto-tuning unit for the CAV’s controller
for t = 0... do

1. The BS sends wt to all N CAVs.
2. CAV n ∈ N updates its trained model parameters wt for I iterations
of SGD on the local dataset Sn with a step size as ηt of (5) and obtain
w

(n)
t+1,I which will be sent to the BS.

3. Due to the mobility and time-varying channels, the BS can only
aggregate the trained model parameters from a subset Nt of Nt CAVs
and update the global model parameters as wt+1=

∑
n∈Nt

sn
sNt

w
(n)
t+1,I

with sNt =
∑

n∈Nt sn.
end

bound for the expected loss function at communication round
t+ 1 can be written as

Eξ,n(f(wt+1))≤f(wt)−
(ηt+γtηt)

∑N
n=1 p

t
ns

2
nI||∇fn(wt)||22

2sN
∑N
j=1 p

t
jsj

+

(
ηt

2sN
Lη2

t I
2+

ηtγt
2sN

(I+I2(1+ηt)
2)+Lη2

t I

)∑N
n=1 p

t
ns

2
n∑N

j=1 p
t
jsj

σ2,

(6)
if the following two conditions are satisfied:

L2η2
t I

2 + γtI
2(1 + ηt)

2 + 2sNLηtI ≤ 1, (7)

L2η2
t γtI

2 + γ2
t η

2
t I

2 + 2sNηtγtLI ≤ 1, (8)

where ptn = exp

(
− In+BN0

Pnd
−α
n

(
2

s(wn,t)

B(∆t−I s̄c
φn ) − 1

))
.

Proof: The proof is provided in the journal extension [15]. �

By using Theorem 1, we can calculate how much the total
loss decreases between two consecutive communication rounds
and determine the speed with which the model converges
to the optimal auto-tuning model in (2). In particular, as
observed from Theorem 1, the convergence speed depends
on the participation probability ptn, n ∈ N , captured by the
mobility of CAVs and the quality of wireless fading channel. In
addition, to identify how the participation of a particular CAV
in FL can impact the convergence in Theorem 1, we also need
to consider the size and distribution of local data at CAVs. To
do so, in the following corollary, we will first mathematically
define the local data quality of CAVs and study the impact of
local data quality on the convergence of learning models.
Corollary 1. When the local data quality of CAV n ∈
N is defined as βn = s2

n[
(
ηt

2sN
+ γtηt

2sN

)
I||∇fn(wt)||22 −(

ηt
2sN

Lη2
t I

2+Lη2
t I
)
σ2+ ηtγt

2sN
(I+I2(1+ηt)

2)σ2], the setN can
be divided into two subsets N(1) and N(2) with the negative
and positive data quality, respectively. In this case, the results
in (6) can be simplified as

f(wt)− Eξ,n(f(wt+1)) ≥
∑
n∈N(1)

ptnβn∑N
j=1 p

t
jsj

+
∑

n∈N(2)

ptnβn
sN

.

Proof: The proof is provided in the journal extension [15]. �

From Corollary 1, it is clear that the participation of CAVs
within the subset N(1) in FL will impede the FL convergence
while the CAVs in subset N(2) will improve the FL conver-
gence. In other words, depending on the value of data quality



βn, n ∈ N , the convergence gain contributed by different

CAVs can be negative or positive. In the following corollary,

we also extend Theorem 1 to the case where the vanilla FedAvg

is used for the autonomous controller design.

Corollary 2. When using the vanilla FedAvg algorithm, i.e., no

L2 regularizer in each SGD, we can replace γt = 0 in Theorem

1 and obtain the following upper bound for the expected loss:

Eξ,n(f(wt+1)) ≤ f(wt)− ηt
2sN

∑N
n=1 p

t
ns

2
nI||∇fn(wt)||22∑N
j=1 p

t
jsj

+

(
ηt
2sN

Lη2t I
2 + Lη2t I

) ∑N
n=1 p

t
ns

2
n∑N

j=1 p
t
jsj

σ2,

if L2η2t I
2 + 2sNLηtI ≤ 1.

By comparing Theorem 1 and Corollary 2, we can prove

that, when both constraints (7) and (8) are satisfied, the

proposed DFP algorithm can achieve a smaller upper bound for

the expected loss than the vanilla FedAvg algorithm. In other

words, the proposed DFP can achieve a faster convergence for

the controller design in comparison to the FedAvg algorithm,

leading to a quick adaption to the traffic dynamics for CAVs.

IV. SIMULATION RESULTS

To show the performance of the proposed DFP algorithm,

we use two real datasets: The Berkeley deep drive (BDD) data

[16] and the dataset of annotated car trajectories (DACT) [17].

BDD data is a large-scale driving video dataset with extensive

annotations for heterogeneous tasks, and such dataset is col-

lected under diverse geographic, environmental, and weather

conditions across the United States. DACT data is a collection

of trajectories collected in the city of Columbus, Ohio, where

each trajectory records more than 10 minutes of driving data

and can be divided into multiple segments annotated by the

operating pattern, like speed-up and slow-down. In terms of

the traffic model, we consider a 2 km ×2 km square area

with 20 lanes randomly located around the center of the square

area. When using BDD data and the DACT data, we assume

that CAVs are randomly assigned to these 20 lanes and all the

training data is randomly split among CAVs. Similar to [18],

the CAVs’ velocity is determined by the headway distance

to the preceding CAVs. Other simulation parameters include

η = 0.01, γ = 0.1, I = 20, P = 0.6 W, Δt = 1 s, κ = 10−28,

c=103, φ=109 cycles/s, and N0=−174 dBm/Hz.

Fig. 2 shows the velocity tracking performance comparison

between the autonomous controllers solely trained by the local

data (i.e., smooth slow-down) and trained by our proposed DFP

algorithm under different traffic scenarios. In this simulation,

we consider three traffic scenarios from the DACT dataset.

In particular, we choose a use case with a dramatic speed

decline to represent a harsh brake in a traffic accident, the

speed variations around zero as the stop-and-go traffic in

a congestion, and the change of the average speed as the

speed limit changes in a roadwork zone. As shown in Fig.

2, the controller trained by our proposed DFP algorithm can

accurately execute the control decisions and track the target

speed under all three traffic scenarios. However, when using the

Fig. 2. Velocity variations over different traffic scenarios where x-
axis is the time with unit (s) and y-axis is the velocity with unit
(miles/hour). The figures from left to right, respectively, refer to harsh
brake in a traffic accident, stop-and-go traffic in a congestion, and
speed limit changes in a work zone. The blue solid line, magenta
dash line, and red dash-dot line, respectively, denote target reference
speed, actual speed trained by the DFP algorithm, and actual speed
trained only by the local data.

Fig. 3. Velocity variations
over time.

Fig. 4. The CDF distribution of
absolute distance errors.

controller trained with the local data, we can face large speed

variations around the target values. For example, as shown in

the left plot of Fig. 2, to achieve a harsh brake, the controller

trained by the local data will generate sequential deceleration

and acceleration instead of a constant deceleration as done

by the controller trained by our proposed DFP algorithm.

In the traffic congestion and roadwork zone in Fig. 2, the

controller trained by the local data will have a more frequent

switch between acceleration and deceleration than the target

speed traces, adversely impacting the driving experience of the

passengers. Also, in Fig. 2, the controller trained by the local

data can make aggressive deceleration and acceleration and

such behaviors will not only increase the CAVs’ maintenance

costs, but it will also endanger following or preceding CAVs

especially when the spacing is small.

Fig. 3 shows the velocity tracking performance comparison

between the autonomous controllers solely trained by the local

data (i.e., smooth speed-up) and trained by our proposed DFP

algorithm. In this simulation, the trajectory data in the DACT

dataset is randomly assigned to the CAVs. Fig. 3 shows that

the DFP-based controller design can accurately track the target

velocity over time. However, the actual velocity generated by

the controller trained with local data can deviate from the target

value. In particular, at time t = 311 s, the error between the

actual and target velocities can be as large as 3.17 miles/hour

(1.42 meters/second), violating the commonly used two design

criteria for the vehicle’s controller, i.e., 0.5 meters/second

error upper bound [19] and 5% maximal allowable error [20].

Hence, the autonomous controller based on the proposed DFP

algorithm outperforms the baseline scheme that solely relies

on the local data for training.

Fig. 4 shows the cumulative distribution function (CDF)

when the controllers tracks the DACT dataset. In particular, the



Fig. 5. Comparison between the proposed DFP, FedAvg, and FedProx
algorithms.

autonomous controllers are trained, respectively, by local data

and by our proposed DFP algorithm with different bandwidth.

Also, the absolute distance error is calculated by the absolute

difference between the target distance in the DACT dataset and

the actual distance traversed by the CAV with the designed

controller at the end of each trajectory. As observed from Fig.

4, the controller trained by the proposed DFP algorithm yields

a much smaller distance error compared with the case in which

the CAVs only use their local data to train the controller model.

In particular, with a 0.90 probability, the controller solely

trained with local data will generate an absolute distance error

of less than 80 m, two times larger than the error resulting from

the DFP-based autonomous controller. Moreover, as shown

in Fig. 4, for a larger bandwidth, the proposed DFP-based

controller design will more likely yield a smaller distance

error. For example, when the bandwidth B = 10 MHz, the

probability that the distance error generated by DFP-based

controller remains below 20 m is around 0.80, while the

counterpart for the case with a bandwidth B = 1 MHz is

around 0.68. That is because with a larger bandwidth, more

CAVs can meet the time constraint t̄ and participate in the FL,

leading to a better training performance. As shown in Figures

2-4, it is clear that the autonomous controller based on the

proposed DFP algorithm outperforms the baseline scheme that

solely relies on the local data for training.

Fig. 5 compares the proposed DFP with the vanilla FedAvg

[8] and FedProx [9]. To test the ability of dealing with unbal-

anced and non-IID data for these three algorithms, we choose a

larger BDD dataset. As observed from Fig. 5, when faced with

unbalanced and non-IID training data, FedAvg and FedProx fail

to converge near zero loss over 100 communication rounds. In

particular, after 100 communication rounds, the loss values for

the vanilla FedAvg and FedProx are near, respectively, 0.62
and 0.38. However, as shown in Fig. 5, our proposed DFP

algorithm only needs around 20 communication rounds (i.e.,

0.2 s) to achieve convergence, much faster than the counterparts

of FedAvg and FedProx. Hence, using the proposed DFP

algorithm, the CAV can quickly adapt to the traffic dynamics

and correctly track the target speed.

V. CONCLUSIONS

In this paper, we have developed an FL framework to enable

collaborative training of the autonomous controller model

among CAVs. In particular, we have proposed a new DFP algo-

rithm for the FL that can account for the varying participation

of CAVs in FL process as well as diverse data quality across

CAVs. We have performed a rigorous theoretical convergence

analysis for the proposed algorithm and have explicitly studied

the impact of CAVs’ mobility, uncertainty of wireless channels,

as well as unbalanced and non-IID local data on the overall

convergence performance. Simulation results from using the

real traces have shown that the autonomous controller designed

by the proposed algorithm can track the target speed more

accurately than the adaptive controller trained by the local

data and the FDA algorithm can lead to a better controller in

comparison to the FedAvg and FedProx algorithms. As future

extension of the proposed approach, DFP algorithm can be

studied for lateral controller design and MPC design in CAVs.
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