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Abstract—The deployment of future intelligent transportation
systems is contingent upon seamless and reliable operation of
connected and autonomous vehicles (CAVs). One key challenge
in developing CAVs is the design of an autonomous controller
that can make use of wireless connectivity and accurately execute
control decisions, such as a quick acceleration when merging
to a highway and frequent speed changes in a stop-and-go
trafficc. However, the use of conventional feedback controllers
or traditional machine learning based controllers, solely trained
by the CAV’s local data, cannot guarantee a robust controller
performance over a wide range of road conditions and traffic
dynamics. In this paper, a new federated learning (FL) framework
enabled by the CAVs’ wireless connectivity is proposed for the
autonomous controller design of CAVs. In this framework, the
learning models used by the controllers are collaboratively trained
among a group of CAVs. To capture the varying CAV participation
in FL and the diverse local data quality among CAVs, a novel
dynamic federated proximal (DFP) algorithm is proposed that
accounts for the mobility of CAVs, the wireless channel dynamics,
as well as the unbalanced and non-independent and identically
distributed data across CAVs. A rigorous convergence study is
performed for the proposed algorithm under realistic wireless
environments. Then, the impact of varying CAV participation
in FL process and diverse local data quality of CAVs on the
convergence is explicitly analyzed. Simulation results that use
real vehicular data show that the proposed DFP-based controller
can accurately track the target speed over time and under
different traffic scenarios, and it yields a distance error two
times smaller than controllers designed using traditional machine
learning solutions trained with the CAV’s local data. The results
also show that the proposed DFP algorithm is well-suited for
the autonomous controller design in CAVs when compared to
popular FL algorithms, such as federated averaging (FedAvg)
and federated proximal (FedProx) algorithms.

I. INTRODUCTION

As a key component of tomorrow’s intelligent transportation
systems (ITSs), connected and autonomous vehicles (CAV)
are promising solutions to reduce traffic accidents, alleviate
road congestions, and increase transportation efficiency. CAVs
leverage both sensors and wireless systems to increase their
situational awareness and use such awareness for their motion
planning and automatic control. However, to operate a full-
fledged CAVs, we need to address a number of challenges,
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ranging from management of wireless resources to reliable
controller design. Among these challenges, designing an au-
tonomous controller to achieve target movements for CAVs is
important to accomplish the target tasks and achieve the oper-
ation safety. In particular, a CAV’s controller must accurately
execute navigation decisions so that the CAV can quickly adapt
to the dynamic road traffic. For example, the controller must
generate frequent slow-down and speed-up for CAVs in a stop-
and-go traffic, whereas a rapid acceleration will be the target
output for the controller when CAVs merge into highways.
There are two common methods to design an autonomous
controller for CAVs. The first method uses a conventional
feedback controller. In particular, the conventional feedback
controller first needs to determine the CAV’s dynamic models
(e.g., the tire model [1]) and the road conditions (e.g., road
slope [2] and slip ratio between the road and tire [3]), and
then optimize the controller design based on these settings.
However, due to the changes in payload, various types of
roads, dynamic road traffic, and varying weather, the vehicle
dynamics and road conditions change constantly over time.
Hence, the conventional feedback controller cannot guarantee
the controller performance over a wide range of environmental
parameter changes. To ensure that the CAVs can adapt to the
changing vehicle dynamics and road conditions, the second
method is to use adaptive controllers, based on machine
learning (ML), for the CAV’s autonomy. For example, in [4],
the authors propose a learning-based model predictive control
(MPC) design where the recorded trajectory data is trained
to optimize the parameterization of the MPC controller that
leads to the optimal closed-loop performance. Also, a database-
driven proportional-integral-derivative (PID) controller is pro-
posed in [5] where ML algorithms are used to train the local
database to tune control parameters. However, when using
learning methods that require training (e.g., neural networks)
for the adaptive controller design, the local training data can
be insufficient due to the limited on-chip memory available at
CAVs [6]. In addition, due to limited storage, only data pertain-
ing to the most recent driving can be stored and such data can
be skewed and of poor quality. As a result, when changing to a
new traffic environment or less frequently occurred events, e.g.,
traffic accidents, a controller solely trained by the local data can
fail to adapt to the changes. A cooperative training framework
among multiple CAVs will be needed for the controller design.
To this end, one can leverage the wireless connectivity in
CAVs and use federated learning (FL) to enable CAVs to
collaboratively train the learning models used by the controllers
[7]. In essence, FL can allow each CAV to train the local model
for the controller based on its own data, and it will use the
wireless cellular network to share the trained model parameters



used by its adaptive controller with a parameter server, such as
a base station (BS). The parameter server will then aggregate
the received model parameters and send the aggregated model
parameters back to the CAVs. In this way, the learning model
can be collaboratively trained among multiple CAVs, and such
a trained model can enable the CAV’s controller to adapt
to new traffic scenarios unknown to the particular CAV but
experienced by other CAVs.

For example, as shown in Fig. 1(a), the CAVs participating
in FL can learn from each other to operate in a wide range
of scenarios, such as crash, traffic jam, and road work areas.
Moreover, the FL process is naturally privacy-preserving as the
CAVs do not share their local data, e.g., the history trajectory,
location, and speed information. To reap all these benefits,
we need to address two challenges. First, due to the CAV’s
mobility and uncertainty of wireless channels, the participation
of CAVs in the FL process will vary over time and a good
training performance can be challenging to guarantee. Second,
because of the unbalanced and non-independent and identically
distributed (non-IID) local data across CAVs, the data quality
will vary among CAVs and such diverse data quality can impact
the FL performance. An effective FL framework for the CAV’s
controller design must solve these two challenges.

The main contribution of this paper is a novel dynamic feder-
ated proximal (DFP) framework that can address the aforemen-
tioned challenges of FL-based controller design, in presence
of CAV mobility, uncertainty of wireless channels, as well as
unbalanced and non-IID data. We prove the convergence of the
proposed algorithm, under realistic wireless environments, and
we theoretically study how the varying CAV participation in
the FL process and the presence of diverse local data quality
among CAVs affect the convergence of FL. We also extend the
results to other case studies, e.g., using the federated averaging
(FedAvg) for the controller design and the controller design for
electric CAVs with stringent energy constraints. 7o the best
of our knowledge, this is the first work that develops an FL
framework to optimize the autonomous controller design for
CAVs, under realistic wireless environments. Using real data
traces, we show that our proposed framework can generate a
more accurate speed compared to the controller solely trained
by the local data. Furthermore, simulation results show that the
proposed algorithm outperforms other popular FL algorithms,
i.e., FedAvg [8] and federated proximal (FedProx) algorithms
[9], when designing the autonomous controller for CAVs.

II. SYSTEM MODEL

Consider a set N' of N CAVs moving along the roads,
as shown in Fig. 1(a). To guarantee the safety and achieve
the target movement, CAVs will perceive their surrounding
environment and accordingly adjust the controller decisions.
By collaboratively training the controller via FL, CAVs can
automatically change their control parameters, execute the
control decisions, and become adapted to the local traffic.
Here, we introduce the controller, communication, and learning
models used for the FL-based autonomous controller design.
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Fig. 1. Illustration of our system model. The traffic model is presented

in (a) where green triangles and red squares, respectively, represent

CAVs that do and do not participate in the FL process. The adaptive
controller and learning models are shown in (b).

A. Adaptive Longitudinal Controller Model

To perceive the surrounding environment, the CAVs will
use sensors and communicate wirelessly with nearby objects,
e.g., other CAVs. This perception can enable the longitudinal
controller of each CAV to automatically adjust its acceleration
or deceleration and maintain a safe spacing and target speed.
Here, due to the simplicity and easy implementation, we use the
PID controller to control the longitudinal movement of CAVs,
and the acceleration u,(t) of vehicle n € N at sample ¢ is
defined in a discrete-time manner as follows [10]:
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where K, ,,, K,, ;, and K, 4 are non-negative coefficients cor-
responding to the proportional gain, integral time constant, and
derivative time constant used by the PID controller in CAV n.
At is the sampling period and e,, (t) =v, ,(t) —vy, o (t) captures
the difference between the target reference speed v, ,-(t) and
the actual speed v, o(t) at sample ¢. Note that the target
reference speed is decided by the motion planner in the CAV
based on the environmental perception'.

According to (1), we can calculate the actual speed at
sample ¢t + 1 as v, o(t + 1) = vna(t) + un(t)At and the
distance traversed between samples ¢ and ¢t + 1 as d,, =
MAt. It is clear that achieving the target speed
and safe spacing will depend on the control parameter setting
of each CAV’s PID controller, and it is imperative to adjust
these control parameters adaptively to deal with varying traffic
dynamics and road conditions. In particular, instead of using
a time-consuming manual tuning for the control parameters
K, p, Ky, and K, g,n € N, we assume that the CAV will
use an adaptive PID controller enabled by an artificial neural
network (ANN)-based auto-tuning unit, as shown in Fig. 1(b).
In this case, in order to adapt to various traffic conditions, the
CAVs will train the auto-tuning unit using its own history of
speed data and then adjust the control parameters accordingly.

! As the motion planner design has been extensively studied by the prior art
and is not the main scope of this work, we omit details about the process of
choosing the target speed and we refer readers to [11].



B. FL Model

The ANN based auto-tuning unit in Fig. 1(b) can adaptively
tune the PID control parameters to achieve the target speed.
However, the CAV’s local training data, i.e., the speed history,
is constrained by the onboard memory of the CAV, and thus,
is limited to a few of traffic scenarios. For example, vehicles
on the highway will mostly drive with a high speed, whereas
in urban settings, the speed of CAVs will vary constantly in
a lower speed region due to frequent stops and accelerations.
Hence, by solely training the local data for the auto-tuning unit,
the controller can only be used in limited traffic scenarios. To
this end, we can use the wireless connectivity of CAVs to build
a cooperative training framework, i.e., FL, among multiple
CAVs for the controller design.

Here, we consider CAVs will involve in an FL process
to collaboratively train the ANN auto-tuning units for the
adaptive controller design. In particular, the BS, operating as
a parameter server, will first generate an initial global ANN
model parameter w, for the auto-tuning unit and send it
wirelessly to all CAVs over a broadcast downlink channel.
Then, in the first communication round, all CAVs will use the
received model parameters w to independently train the model
based on their local data for I iterations. In the uplink, the
CAVs transmit their trained model parameters to the BS. Next,
the BS will aggregate all the received local model parameters
to update the global model parameters which is then sent to
all CAVs. This FL process is repeated over uplink-downlink
channels and the local and global ANN models are sequentially
updated. Ultimately, the ANN model parameters used by the
CAVs will converge to the optimal model as follows [8]:
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where sy = Zne wSn 18 the size of the entire training data of
all CAVs with s,, being the size of the local data at CAV n.
fn(w(™ &) captures the loss function of CAV n when using
the ANN model parameters w("™) in the auto-tuning unit for
the selected data &;. Note that, the loss function plays a pivotal
role in determining the performance of the trained auto-tuning
unit. The loss function used for the controller design can be
either convex [12] or non-convex [13]. We assume f(w) to be
the value of objective function (2) when w™ = w,n € N.

When training the local ANN models at CAVs, we can
calculate the computing delay as ¢, comp = 1 % where s is
the size of randomly selected data at each iteration, c is the
number of computing cycles needed per data bit, and ¢,, is the
frequency of the central processing unit (CPU) clock of CAV
n € N. However, due to the mobility of CAVs and wireless
fading channels, it is possible that not every CAV in the set N
can transmit the trained model parameters to the BS within the
duration t of each communication round. With this in mind,
next, we present the communication model used to determine
whether the locally trained model at a particular CAV can be
used in the model aggregation.

C. Communication Model

For the uplink from local CAVs to the BS, we consider
an orthogonal frequency-division multiple access (OFDMA)
scheme where each CAV in set A/ will use a unique and
orthogonal resource block to transmit the trained ANN model
parameters to the BS. The uplink data rate from CAV n € N/

to the BS will be
P hpd, @ >

r, = Blo 1+ 4
where B is the bandwidth of each orthogonal resource block,

P, is the transmit power of CAV n, and h, denotes the
Rayleigh fading channel gain. Moreover, d,, is the distance
between CAV n and the BS, « is the path-loss exponent,
and Ny is the noise power spectral density. In addition,
Pn = Dign Pihjd; is the received interference power
generated by other CAVs outside of set A/ and sharing the same
resource block with CAV n. From (4), the uplink transmission

delay for CAV n € N can be calculated as tn,comm = S(T‘T’ifn))
where s(w(™) is the size of the data packet that depends on
the trained model parameters w ™ transmitted by CAV n.

In the downlink, since the BS can have a much higher
transmit power and larger bandwidth for the broadcast channel,
the downlink transmission delay is considered to be negligible
compared to the uplink transmission delay. In addition, given
the higher computing power of BSs, the computing delay at
the BS can be ignored in contrast to its counterpart at CAVs.
Hence, to identify whether the local learning model update
from CAV n € AN can be used for the model aggregation
in the BS, we can compare the time for uplink transmission
and local computing at the CAV with the duration ¢ of the
communication round. In this case, the probability that CAV
n € N participates in FL (the locally trained model at CAV n
is used in the model aggregation) can be thereby calculated as
pfq, = IP)(tn,comp + tn,comm S D

When designing the FL framework for the CAV’s controller
design, it is important to explicitly consider the following two
factors. The first factor is that the BS can only aggregate a
subset N; C N to update the global model at each com-
munication round. This is because the mobility of CAVs and
uncertainty of wireless fading channels make the participation
probability pl, n € N, to be a time-varying parameter that
is different for each CAV. It will be challenging to guarantee
a good training performance for the controller design when
the participation of CAVs in the FL process varies over time
[7]. The second factor is the fact that the distribution and size
of the local dataset can largely vary among CAVs because
of the heterogeneity of the CAVs’ local data (generated over
different trajectories, traffic, and road incidents). As such, the
local datasets at different CAVs will be unbalanced and non-
IID distributed. This non-IID and unbalanced local data can
adversely affect the convergence of the FL. model [9]. To sum
up, when designing the FL framework for a CAV, we must
account for the varying CAV participation in FL and the diverse
local data quality across CAVs.



ITII. DYNAMIC FEDERATED AVERAGING ALGORITHM FOR
CAV CONTROLLER DESIGN

To consider the aforementioned two factors in FL, we now
propose a new DFP algorithm customized for the autonomous
controller design of CAVs. In particular, we study the impact of
the varying participation of CAVs in the FL process and non-
IID and unbalanced data on the learning model convergence.
We will first introduce the proposed DFP algorithm and then
study its convergence performance.

A. Proposed Dynamic Federated Averaging Algorithm
The proposed learning algorithm is summarized in Algo-
rithm 1. In particular, instead of solely optimizing the loss
function using the whole training dataset at the CAVs, we
assume that the CAVs will run [ iterations of stochastic
gradient descent (SGD) at each communication round. In each
iteration of SGD, the model update at CAV n € N will solve
the following optimization problem that minimizes the sum of
the loss of a randomly selected local training sample £ € S,
and an Lo regularizer:
argmin f, (w, §)
Rn,

we
where ~; is the coefficient for the regularizer and w; cap-
tures the received learning model parameters from the BS at
communication round ¢. The purpose of introducing the Lo
regularizer is to guarantee that the trained model parameters
w of CAV n € N will be close to w;, reducing the variance
introduced by the non-I1ID and unbalanced data. In particular,
after I iterations of SGD at the communication round ¢, we

can obtain the trained model parameters of CAV n as follows:
-1

fn (wgi)l = wt+ntZ(an(w£'i)’ Z)+ryt(w§’i)7/lUt))
i=0
Then, due to the uncertainty of wireless channels and CAVs’
mobility, the BS will aggregate the trained model parameters
from a subset N; of N; CAVs that is able to finish local
computing and communication within time constraint .

+ ol —wlP e S (3)

B. Convergence of the Proposed DFP Algorithm

To prove the convergence of the proposed scheme in Algo-

rithm 1, we make the following standard assumptions:

o The gradient Vf,(w),n € N, is uniformly Lipschitz
continuous with positive parameter L.

o The variance of SGD with respect to the full gradient
descent is upper bounded for CAV n € A and w € R¢,
which is given by Eees, ||V f,(w,€) - Vu(w)|3 <
o2, YneN,Vw cR?, where o2 is the upper bound.

Both assumptions are commonly used by many literature, like
[14]. The first constraint can be satisfied by some popular loss
functions used in control theory, such as the squared error loss
function. The second constraint is often adopted in stochastic
optimization where the gradient estimator is always assumed
to have a bounded variance. Using these two assumptions, we
can bound the expected loss function at communication round
t + 1 as shown by the following theorem.

Theorem 1. Given that the BS sends the global learning model
parameters w; to all CAVs at communication round ¢, an upper

Algorithm 1 Dynamic Federated Proximal (DFP) Algorithm
Tutput: N, N, Sn, ¢, wo, I, ut, vt Snyn=1,..., N

Output: ANN-based auto-tuning unit for the CAV’s controller

for t = 0... do

1. The BS sends w; to all N CAVs.

2. CAV n € N updates its trained model parameters w; for I iterations
of SGD on the local dataset S;, with a step size as 1y of (5) and obtain
w<j_) 1.7 Which will be sent to the BS.

3. Due to the mobility and time-varying channels, the BS can only
aggregate the trained model parameters from a subset N; of Ny CAVs

and update the global model parameters as w¢+1 =2, 'wii)l I
with sy, =37, cnr, Sn-

Sn_
neNy SNy

end

bound for the expected loss function at communication round
t + 1 can be written as

Ef,n(f(wﬂ»l))gf(w ) (nt+7tnf)zm1 pn 711||vfn(wf)”2

25N ijl pjsj

Mt Y SNt g2
+(23Ln312 Son (I+1%(1+m,)? )+Lnff) Ln=1Pnn 2
N

N
>j=1Pisi
(6)
if the following two conditions are satisfied:
LPni I + 5 IP(1 +ny)* 4 2sn L d < 1, (7
L I® + 47 I* + 2snmn LT < 1, ®)
s(wnp,t)
where p!, = exp (—w (2 (ai-132) _ 1))

Proof: The proof is provided in the journal extension [15]. W

By using Theorem 1, we can calculate how much the total
loss decreases between two consecutive communication rounds
and determine the speed with which the model converges
to the optimal auto-tuning model in (2). In particular, as
observed from Theorem 1, the convergence speed depends
on the participation probability p%, n € A/, captured by the
mobility of CAVs and the quality of wireless fading channel. In
addition, to identify how the participation of a particular CAV
in FL can impact the convergence in Theorem 1, we also need
to consider the size and distribution of local data at CAVs. To
do so, in the following corollary, we will first mathematically
define the local data quality of CAVs and study the impact of
local data quality on the convergence of learning models.

Corollary 1. When the local data quality of CAV n €
N s defined as B, = s2[( 138 ) 1|V f(wi) 3 -
(2:“1\, Ln?I?+Ln} I) 0%+ 30 (4% (1493, )?)0'®], the set N can
be divided into two subsets /\/'(1 and N(9) with the negative
and positive data quality, respectively. In this case, the results

in (6) can be simplified as
Zn N, pnﬁn n
) ~ Be(fwns)) 2 T2y 5 B,
Zy 1ijJ neN(z)

Proof: The proof is provided in the journal extension [15]. ]

JeNt
+ 28N

From Corollary 1, it is clear that the participation of CAVs
within the subset /\/'(1) in FL will impede the FL convergence
while the CAVs in subset ./\/(2) will improve the FL conver-
gence. In other words, depending on the value of data quality



Bn,n € N, the convergence gain contributed by ¢
CAVs can be negative or positive. In the following cc
we also extend Theorem 1 to the case where the vanilla
is used for the autonomous controller design.

Corollary 2. When using the vanilla FedAvg algorithm,
Ly regularizer in each SGD, we can replace 7, = 0in T
1 and obtain the following upper bound for the expected loss:

N2 2
B (fwein)) < flay) — gl nmt Pun IV (o)l

N
25N Zj:l pé‘sj
N t .2
S
+ (27715 L’I]?IQ +L77§I) Zr;\]:lp? 710_27
SN j=1P;5j

if L2n2I% + 2sy L < 1.

By comparing Theorem 1 and Corollary 2, we can prove
that, when both constraints (7) and (8) are satisfied, the
proposed DFP algorithm can achieve a smaller upper bound for
the expected loss than the vanilla FedAvg algorithm. In other
words, the proposed DFP can achieve a faster convergence for
the controller design in comparison to the FedAvg algorithm,
leading to a quick adaption to the traffic dynamics for CAVs.

IV. SIMULATION RESULTS

To show the performance of the proposed DFP algorithm,
we use two real datasets: The Berkeley deep drive (BDD) data
[16] and the dataset of annotated car trajectories (DACT) [17].
BDD data is a large-scale driving video dataset with extensive
annotations for heterogeneous tasks, and such dataset is col-
lected under diverse geographic, environmental, and weather
conditions across the United States. DACT data is a collection
of trajectories collected in the city of Columbus, Ohio, where
each trajectory records more than 10 minutes of driving data
and can be divided into multiple segments annotated by the
operating pattern, like speed-up and slow-down. In terms of
the traffic model, we consider a 2 km X2 km square area
with 20 lanes randomly located around the center of the square
area. When using BDD data and the DACT data, we assume
that CAVs are randomly assigned to these 20 lanes and all the
training data is randomly split among CAVs. Similar to [18],
the CAVs’ velocity is determined by the headway distance
to the preceding CAVs. Other simulation parameters include
n=001,y=01,1=20,P=06 W, At=1s, x=10"28,
c=103, ¢ =107 cycles/s, and Ny=—174 dBm/Hz.

Fig. 2 shows the velocity tracking performance comparison
between the autonomous controllers solely trained by the local
data (i.e., smooth slow-down) and trained by our proposed DFP
algorithm under different traffic scenarios. In this simulation,
we consider three traffic scenarios from the DACT dataset.
In particular, we choose a use case with a dramatic speed
decline to represent a harsh brake in a traffic accident, the
speed variations around zero as the stop-and-go traffic in
a congestion, and the change of the average speed as the
speed limit changes in a roadwork zone. As shown in Fig.
2, the controller trained by our proposed DFP algorithm can
accurately execute the control decisions and track the target
speed under all three traffic scenarios. However, when using the
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Fig. 2. Velocity variations over different traffic scenarios where x-
axis is the time with unit (s) and y-axis is the velocity with unit
(miles/hour). The figures from left to right, respectively, refer to harsh
brake in a traffic accident, stop-and-go traffic in a congestion, and
speed limit changes in a work zone. The blue solid line, magenta
dash line, and red dash-dot line, respectively, denote target reference
speed, actual speed trained by the DFP algorithm, and actual speed
trained only by the local data.
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over time.

controller trained with the local data, we can face large speed
variations around the target values. For example, as shown in
the left plot of Fig. 2, to achieve a harsh brake, the controller
trained by the local data will generate sequential deceleration
and acceleration instead of a constant deceleration as done
by the controller trained by our proposed DFP algorithm.
In the traffic congestion and roadwork zone in Fig. 2, the
controller trained by the local data will have a more frequent
switch between acceleration and deceleration than the target
speed traces, adversely impacting the driving experience of the
passengers. Also, in Fig. 2, the controller trained by the local
data can make aggressive deceleration and acceleration and
such behaviors will not only increase the CAVs’ maintenance
costs, but it will also endanger following or preceding CAVs
especially when the spacing is small.

Fig. 3 shows the velocity tracking performance comparison
between the autonomous controllers solely trained by the local
data (i.e., smooth speed-up) and trained by our proposed DFP
algorithm. In this simulation, the trajectory data in the DACT
dataset is randomly assigned to the CAVs. Fig. 3 shows that
the DFP-based controller design can accurately track the target
velocity over time. However, the actual velocity generated by
the controller trained with local data can deviate from the target
value. In particular, at time ¢ = 311 s, the error between the
actual and target velocities can be as large as 3.17 miles/hour
(1.42 meters/second), violating the commonly used two design
criteria for the vehicle’s controller, i.e., 0.5 meters/second
error upper bound [19] and 5% maximal allowable error [20].
Hence, the autonomous controller based on the proposed DFP
algorithm outperforms the baseline scheme that solely relies
on the local data for training.

Fig. 4 shows the cumulative distribution function (CDF)
when the controllers tracks the DACT dataset. In particular, the
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Fig. 4. The CDF distribution of
absolute distance errors.
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Fig. 5. Comparison between the proposed DFP, FedAvg, and FedProx
algorithms.

autonomous controllers are trained, respectively, by local data
and by our proposed DFP algorithm with different bandwidth.
Also, the absolute distance error is calculated by the absolute
difference between the target distance in the DACT dataset and
the actual distance traversed by the CAV with the designed
controller at the end of each trajectory. As observed from Fig.
4, the controller trained by the proposed DFP algorithm yields
a much smaller distance error compared with the case in which
the CAVs only use their local data to train the controller model.
In particular, with a 0.90 probability, the controller solely
trained with local data will generate an absolute distance error
of less than 80 m, two times larger than the error resulting from
the DFP-based autonomous controller. Moreover, as shown
in Fig. 4, for a larger bandwidth, the proposed DFP-based
controller design will more likely yield a smaller distance
error. For example, when the bandwidth B = 10 MHz, the
probability that the distance error generated by DFP-based
controller remains below 20 m is around 0.80, while the
counterpart for the case with a bandwidth B = 1 MHz is
around 0.68. That is because with a larger bandwidth, more
CAVs can meet the time constraint ¢ and participate in the FL,
leading to a better training performance. As shown in Figures
2-4, it is clear that the autonomous controller based on the
proposed DFP algorithm outperforms the baseline scheme that
solely relies on the local data for training.

Fig. 5 compares the proposed DFP with the vanilla FedAvg
[8] and FedProx [9]. To test the ability of dealing with unbal-
anced and non-IID data for these three algorithms, we choose a
larger BDD dataset. As observed from Fig. 5, when faced with
unbalanced and non-IID training data, FedAvg and FedProx fail
to converge near zero loss over 100 communication rounds. In
particular, after 100 communication rounds, the loss values for
the vanilla FedAvg and FedProx are near, respectively, 0.62
and 0.38. However, as shown in Fig. 5, our proposed DFP
algorithm only needs around 20 communication rounds (i.e.,
0.2 s) to achieve convergence, much faster than the counterparts
of FedAvg and FedProx. Hence, using the proposed DFP
algorithm, the CAV can quickly adapt to the traffic dynamics
and correctly track the target speed.

V. CONCLUSIONS

In this paper, we have developed an FL framework to enable
collaborative training of the autonomous controller model
among CAVs. In particular, we have proposed a new DFP algo-
rithm for the FL that can account for the varying participation
of CAVs in FL process as well as diverse data quality across
CAVs. We have performed a rigorous theoretical convergence

analysis for the proposed algorithm and have explicitly studied
the impact of CAVs’ mobility, uncertainty of wireless channels,
as well as unbalanced and non-IID local data on the overall
convergence performance. Simulation results from using the
real traces have shown that the autonomous controller designed
by the proposed algorithm can track the target speed more
accurately than the adaptive controller trained by the local
data and the FDA algorithm can lead to a better controller in
comparison to the FedAvg and FedProx algorithms. As future
extension of the proposed approach, DFP algorithm can be
studied for lateral controller design and MPC design in CAVs.
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