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Abstract—Today there is a significant amount of fake cy-
bersecurity related intelligence on the internet. To filter out
such information, we build a system to capture the provenance
information and represent it along with the captured Cyber
Threat Intelligence (CTI). In the cybersecurity domain, such
CTI is stored in Cybersecurity Knowledge Graphs (CKG). We
enhance the exiting CKG model to incorporate intelligence
provenance and fuse provenance graphs with CKG. This pro-
cess includes modifying traditional approaches to entity and
relation extraction. CTI data is considered vital in securing our
cyberspace. Knowledge graphs containing CTI information along
with its provenance can provide expertise to dependent Artificial
Intelligence (AI) systems and human analysts.

Index Terms—Cybersecurity, Fake Data, Provenance, Cyber
Threat Intelligence.

I. INTRODUCTION

Cyber Threat Intelligence (CTI) is crucial for security
organizations to discover and analyze cyber-risks. A recent
report [1], mentions data quality as one of the most critical
components of CTI. We have also seen that the poor quality of
threat intelligence entails huge costs to organizations that use
them [2]. Significant threat vectors include generated fake CTI
[3]. Recent reports also suggest that the majority of security
organizations use CTI that is of no use anymore [4], and that
leads to incorrect decisions causing harm to organizations.
With news articles talking about the impact of bad quality
threat-intelligence becoming rampant, the cybersecurity com-
munity is waking up to address these concerns.

The data sources for CTI can be both structured and
unstructured. However, using open-source intelligence for CTI
is a common practice. An National Security Agency (NSA)
report suggests that some countries, like Russia, rely on open-
source for 90% of the threat-intelligence that they gather [5].
Unstructured open-source intelligence can come from a variety
of places, and it is difficult to verify the information present
in them. These sources can be social media posts, blogs,
technical reports from organizations with varying degrees of
reputation. It is imperative that we record key information
about the source of the threat-intelligence. For example, if
a CTI originating from a Twitter post suggests that a cyber-
threat can be mitigated by updating Adobe Acrobat, it should
carry less weight than a CTI from Adobe Security Bulletin
that says otherwise. Recording provenance level information

provides us with the ability to create additional filters on the
threat-intelligence that practitioners use.

In order to effectively use CTI to evaluate and mitigate risks,
organizations need to process the raw data feeds and appropri-
ately represent them. Cybersecurity Knowledge Graphs (CKG)
are becoming popular to represent CTI. This is because CKG
has reasoning capabilities that are applied on the intercon-
nected entities. These reasoning capabilities enforce rules that
help in preserving credible information and discarding the rest.
Additionally, classes capturing the provenance can be added
in the schema of the CKG that can give us more information
about the source of the data. In our paper, we improve an
existing CKG schema that records CTI with additional classes
and relationships that indicate provenance.

The schema of the CKG, as mentioned before, tells us the
entity-classes and the relationship-classes. After the schema
is defined, various semantic triples are asserted in the CKG.
The semantic triples record a specific relationship existing
between pairs of entities. Unstructured sources for CTI need
to be processed to extract the entities and relationships. We
use Natural Language Processing (NLP) techniques to extract
the CTI information representing a cyber-attack or a malware,
along with the information related to the provenance. The ob-
jective of our paper is to associate provenance with the entities
asserted in the CKG. Once the entities are associated with the
corresponding provenance, we also come up with a provenance
score for a set of entities and relationships. In order to improve
the current schema to capture provenance related information,
we update current CKG schema to include provenance specific
entity-classes and relationship-classes. After that, we extract
the entities and relationships using Machine Learning (ML)
based NLP techniques.

The summary of our key contributions is as follows:

e Creating a novel schema for a CKG that accounts for

provenance related entity-classes and relationship-classes.

o Using ML and NLP-based methods for extracting prove-

nance from open-source text.

o Associating entities of existing CKG with provenance.

o Creating a score for provenance quality across a set of

entities and relationships representing a CTIL.

We organize our paper as follows. In Section II, we discuss
some of the relevant papers for our research. The new ontology
and the data extraction techniques are discussed in Section



III. In Section IV, we discuss some of the results and the
knowledge graph outputs. Finally, we conclude and discuss
the next steps for our research in Section V.

II. RELATED WORK

With the rapid growth of knowledge graphs in the domain
of cybersecurity, the authenticity of the information becomes
prominent. To identify the information source and reliability,
we propose to embed such information with the existing
solutions. In this section, we talk about relation extraction and
similar works in this domain.

A. Named Entity Recognition

Malware Entity Extractor (MEE) is the first step that helps
in identifying the entities required for assertion in the CKG.
MEE is a malware-specific Named Entity Recognizer (NER),
is a subtask of information extraction and classification. It
is a ‘sequence-to-sequence’ classification task. The goal of
this task is to parse an unstructured text and map each word
to one of the predefined classes that we derive from an
ontology. Piplai et al. in their paper [6], describe an MEE using
Conditional Random Fields (CRF) and Regular Expressions.
There have been other NERs that were built using Support
Vector Machines (SVM) [7], neural networks [8], [9], LSTM
[10], and Bi-directional LSTM [11]. LSTM and Bi-directional
LSTM are widespread for language processing tasks due to
context evaluation. But for entity identification, context is
not of primary choice. The process constitutes two phases,
detection of desired entities and classification of such entities
accordingly. Ekbal et al. have proposed in their paper [7]
classifying language-independent named entities using SVM.
Piplai et al. [6] have demonstrated a similar task for cy-
berthreats using CRF. In our case, we configure the Stanford
NER to classify provenance from Cyber Threat Intelligence
(CTD).

B. Relationship Extraction

The cybersecurity knowledge graphs (CKGs) are asserted
with semantic triples. Relation extraction establishes a rela-
tionship between pairs of entities that were found by the MEE.
This yields semantic triples that form the building block of the
CKG. Obtaining a relation between entities is not as straight-
forward as it seems. Not all entities always hold a relation. The
ambiguity of data and its schema structure makes relationship
extraction necessary to connect the interlinked entity pairs
hidden underneath. Relationship extractors can be classified
into global and mention levels depending on their approach.
Mention level determines if a relation holds between two
entities. On other hand, the global level determines all entity
pairs that hold a specific relation. The approach behind such
can be either supervised, semi-supervised or unsupervised.
Based on all that, a relationship extractor can be either binary
or n-ary. Binary determines if a relation holds between two
entities and, n-ary determines if any relation from the relation
set holds between two entities.

TransE(h,r,t) model [12] is used to extract one-to-one re-
lation(r) between head(h) and tail(t) using L1 or L2 norms
on vector plane. But TransE cannot determine many-to-many
relations. Thus TransH(h,r,t) [13] is used to find many-to-many
relations by projecting the entity-pair(h,t) on a hyper-plane. As
TransH uses the same hyperplane for entity-pair(h,t) relation
determination, thus the aspect of the relationship is overlooked.
To address the context of the relationship, TransR(h,r,t) [14] is
used to find similar many-to-many relations by using multiple
relation hyper-plane for an entity-pair(h,t) so that the aspect
of that relationship is also addressed. While addressing the
aspect, for better accuracy the entities are also clustered at
entity space. That is called CTransR, which is another variant
of TransR. But for the heavy computation requirement of
TransR, the TransD approach is also used. In TransD, entity-
pair(h,t) are projected using different projection matrices on
hyperplane, making more computation efficient and similarly
accurate. [15]

Pingle et al. [16] developed a supervised relationship ex-
tractor that classifies pairs of entities into one relationship
class of a predefined ontology. Word2Vec [17] was used as an
embedding model to generate vectors of fixed dimensions for
the extracted Named Entities. The supervised model is a feed-
forward neural network and it produces an entity-relationship
set as an output based on an underlying UCO ontology
[18]. Some dependent systems include [6], [16], [19]-[27].
The output entity relationships are constructed using many-
to-many, many-to-one, and one-to-one relations. Obtained
relation set can be further used to fetch necessary real-time
information by various sources, e.g., malware detection, using
CKG. However, this model fails to incorporate provenance
scores of the semantic triples. In our paper, we redefine the
schema of UCO 2.0 [16]. The updated schema helps to find
provenance scores of the semantic triples using a more refined
relationship extraction.

C. Cybersecurity Knowledge Graphs(CKGs)

A knowledge graph represents a collection of interlinked
descriptions of subjects, predicates, and objects. Knowledge
graphs put data in context via linking subject and object using
a predicate. In this way, it provides a framework for data
integration, unification, analytics, and sharing. Cybersecurity
Knowledge Graphs have widely been used to represent Cyber
Threat Intelligence (CTI). This gives cybersecurity analysts a
significant edge in querying the system over the information.
The cyber threat reports obtained from After Action Reports
(AARs) published by organizations and open-source blogs get
stored in CKG as semantic triples.

A CKG has mainly two parts, A schema or ontology, and
numerous cybersecurity-related semantic triples. Pingle et al.
in their paper [16], have developed a cybersecurity ontology
called Unified Cybersecurity Ontology (UCO 2.0). UCO 2.0
is developed on top of UCO 1.0 [18] using Structured Threat
Information Expression (STIX 2.0) [28]. Such improvements
have opened new possibilities for CKG. Piplai et al. in their



paper [6], showcased that further malware analysis using
machine learning algorithms is possible using CKG.

D. Provenance and Trust Aware Inference Framework

Provenance is information about entities, activities, and
people involved in producing a piece of data or thing, which
can be used to form assessments about its quality, reliability,
or trustworthiness [29]. With the rapid growth of the internet,
data, and computation, generating automated information and
relation from open source and official data becomes trouble-
some due to the trust factor. To process data in an orderly
manner and generate authentic information, the authenticity
of the data classification needs to be addressed. The work
of Ding et al. [30] proposes to filter and classify data based
on provenance. The framework rates authenticity of an RDF
graph based on its origin. It encodes the origin information by
drawing relation from the triples and then calculating with trust
indexing. The processed output data helps to discover facts
from the given data set with more authenticity and confidence.
The kind of provenance information and level of granularity
are two major design issues considered in their work. The
RDF graph is decomposed based upon grounded nodes into
RDF molecules using naive and functional decomposition and
heuristic merge-operations. RDF molecules are then converted
from triple to quad format (subject, predicate, object, source)
to add provenance. [31]

III. METHODOLOGY

We use our pipeline to assert malware entities and the
corresponding provenance to add in CKG. Our Malware Entity
Extractor (MEE) extracts cybersecurity entities from data
sources like blogs, tweets, After Action Reports (AARs) [6].
We have extended MEE to enable provenance extraction. The
re-trained Provenance Extractor (ExP) extracts and represents
provenance triples from the data source according to our
ontology. The generated provenance sub-graph is then merged
with CKG.

Our pipeline contains four components:

o Cyber Threat Intelligence (CTI): We represent CTI in our
Cybersecurity Knowledge Graph. For our experiments
in this paper, we consider threat information present in
AARs and cybersecurity blogs.

e CKG Extraction Pipeline: We use the existing CKG
extraction pipeline, developed by Piplai et al. to process
the CTI and populate the CKG. It involves 3 major parts,
UCO, MEE, and RelExt [6], [16].

e Provenance System: The provenance system has two
parts, Provenance Extractor (ExP) and Provenance En-
coder (EnP). Provenance Extractor (ExP) extracts the
triples according to our ontology classes (described be-
low). Then we generate the provenance graph using
Provenance Encoder (EnP).

e Provenance Fusion System: A Provenance Fusion System
(PrF) merges the extracted provenance sub-graph with
existing intelligence present in the CKG. The merged

CKG includes the provenance graph together with the
intelligence details.

Next, we describe each of the 4 components in detail.

A. Cyber Threat Intelligence (CTI)

An After Action Report (AAR) is a form of retrospective
analysis on a given sequence of security-oriented actions
complied by a cybersecurity professional [6]. The purpose
of an AAR is to analyze the management or response to
an incident, exercise, or event by identifying strengths to be
maintained and built upon, as well as identifying potential
areas of improvement [32]. There are two forms of AAR,
‘Literary AAR’ intended for recreational use, and ‘Analytical
AAR’ exercised as part of a process of performance evaluation
and improvement. In most cases, AARs include both. The
Homeland Security Exercise and Evaluation Program by the
United States Department of Homeland Security has mandated
the format to share exercises and evaluations to make the
information sharing consistent across jurisdictions [6].

In the domain of cybersecurity, an AAR contains a detailed
report about cyber-attacks and associated entities. It also
includes mechanisms to detect such events and mitigating
strategies. Security organizations like, Kaspersky [33], FireEye
[34] also publish AAR along with government agencies. It
includes ‘malware’, ‘threat-actors’ used in the campaign, with
targeted applications and attack vectors. The detailed overview
gives a clear picture of the attack and how a user should detect
and react. An AAR includes much more detailed insights
compared to internet blogs. When written according to the
mandated format it becomes a vital source of intelligence.
Along with this, most AARs are published by reputed orga-
nizations, making them a more reliable source. Such nature
makes these reports a credible source of intelligence, as
opposed to mining data from dark web logs, or social media
as demonstrated by Mittal et al. [19], [20].

Piplai et al. [6] also include in their solution internet blogs
and Open Source Intelligence (OSINT) [35] [36] to improve
data and knowledge diversity. These blogs are commonly
written by independent authors and might not be authentic
from an organizational standpoint. On top of that hackers
try to poison training models using data poisoning to satisfy
their malicious intent [3], [37]. Therefore, our solution adds
a provenance information to the CKG. We extract provenance
entity information using our Provenance Extractor and include
it in our CKG.

B. CKG Extraction Pipeline

Piplai et al. in their paper [6] described a CKG extraction
pipeline to represent malware-specific information. The CKG
schema is based on UCO 2.0 [18]. Some of the classes have
been modified to better capture malware-specific information.
A CKG for each unstructured text report about malware is
constructed. The pipeline has three components:

« MEE: A Malware Entity Extractor that is based on
Conditional Random Fields and Regular Expressions. The
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Fig. 1. Architecture Pipeline Diagram.

extractor maps words to known classes of the predefined
schema.

o Relationship Extractor (RelExt): The Relationship Ex-
tractor establishes a relationship between pairs of entities
extracted by the MEE. Pairs of entities that can have no
credible relationship between them are filtered out and
are not passed to the Relationship extractor. This is a
neural network classifier that takes word embeddings of
pairs of entities and maps it to one of the 6 relationship
classes of the predefined schema. Another class for ‘no
relationship’ is added to the list of possible classes.

o Knowledge Graph Assertion and Fusion: Once the rela-
tionship extraction has found out the correct relationship
between pairs of entities, we have semantic triples of the
form ‘Entity - Relationship - Entity’. Each unstructured
text report leads to a CKG, that is merged with others
if they share the same or similar entities. The ‘owl:
SameAs’ assertion is used for merging entities of two
different CKGs and this step is called the ‘fusion’. If
two entities are not exactly the same, the Edit Distance
algorithm is used to see if the entities are similar enough

to be fused.
TABLE I
MODIFIED UCO CLASSES AND RELATIONSHIPS.
Type List
Classes Software, Exploit-Target, Malware, Indicator, Vulner-
ability, Course-of-Action, Tool, Attack-Pattern, Cam-
paign, Filename, Hash, IP Addresses
Relationships attributedTo, indicates, hasProduct, hasHash, miti-
gates, hasVulnerability, uses

In Table I, we can see the classes and relationships used
to represent malware-specific information from After Action
Reports. This can be used to represent the same information
from any technical report about malware that comprises un-
structured text.

In our paper, we use this pipeline to generate CKGs from
unstructured text reports about malware. The CKGs that result

from this pipeline have a schema that does not capture
the provenance level information. The schema is a modified
version of UCO 2.0, and we use this to represent the threat
information. We keep the existing schema of this paper, and
we include more classes and relationships to create a more
enriched schema that helps us capture the information we can
use for provenance.

C. Provenance System

The provenance system is to gather CKG sources to address
the authenticity of that data. We consider URL, Publisher,
etc. as a source. In Provenance Extractor we extract triples
mentioned in UCO 3.0 from the data source to draw relations
among them using the Provenance Encoder.

1) Provenance Extractor (ExP): Syed et al. [18] in their pa-
per have developed the Unifed Cybersecurity Ontology (UCO)
1.0, which was updated to UCO 2.0 [16]. These updates in the
ontology have been in line with the updates in STIX from 1.0
to 1.2 [28]. We extend UCO 2.0 to add provenance information
into the CKG by redefining the existing schema and possible
relations. Next, we explain various provenance classes that
have been added in UCO 3.0, which inherits the cybersecurity
schema and domain knowledge from UCO 2.0.

o Intelligence-1d: An entity class that refers to a unique CTI
represented in our CKG.

e URL: An entity class that refers to the originating URL
from where the CTI was collected.

o Organization-Name: An entity class that refers to a name
of an organization that published the CTIL

e Author: An entity class that refers to the name of the
author of the CTL.

e Country: An entity class that refers to the originating
country. Such as USA, Canada, Israel, etc.

e Origin-Type: An entity class that refers to the type of
CTI, such as AAR or Blog etc.

o Creation-Date: An entity class that refers to the date of
the publishing.



o Provenance-Score: A value that refers to the amount of
knowledge the CKG posses on that entity.

ExP is an updated version of MEE. It was trained using
UCO 3.0 to identify the provenance entities from various
CTI sources. As UCO 3.0 is developed on top of UCO 2.0,
it contains all the entity classes in UCO 2.0 along with
the above-listed classes. While executing, the Provenance
Extractor parses the CTI sources and classifies the intelligence
according to UCO 3.0. While parsing each CTI, we generate a
unique Intelligence-1d to identify cybersecurity knowledge and
allow graph fusion. Based on the Provenance Extractor results
and entity vector embeddings obtained using Word2Vec [17],
we determine provenance relationships for the particular CTI
intelligence. We also keep the count of an entity occurrence
to calculate the CKG confidence score for a specific CTI, this
informs the value of the Provenance-Score.
2) Provenance Encoder (EnP): In this phase, we create a
provenance relation encoder that helps represents provenance
in semantic triples. Then we merge the encoded provenance
sub-graph with CKG using our Provenance Fusion System
(PES). The following is the description of our defined schema
to add provenance into CKG. Each class and possible relations
have been defined in UCO 3.0:
o mentionedintelligence: Domain: All UCO 2.0 entities,
Range: Intelligence-1d

o mentionedUrl: Domain: Intelligence-Id, Range: URL

o wasGeneratedBy: Domain: URL, Range: Organization-
Name

e authorName: Domain: URL, Range: Author

e wasDerivedFrom: Domain: URL, Range: URL

o countryOfOrigin: Domain: Organization-Name, Range:

Country

e isTypeOf: Domain: URL, Range: Origin-Type

o createdOn: Domain: URL, Range: Creation-Date

e usedBy: Domain: URL, Range: Organization-Name

e hasProveance: Domain: Provenance-Score, Range:

“URL”, “Organization-Nam”, “Author”, “Origin-Type”
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Fig. 2. Provenance Relationship diagram.
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Our encoder was trained by modifying the existing
Word2Vec based RelExt developed by Pingle et al. [16].
While determining relations among UCO 3.0 entities, we also

generate triple between all identified UCO 2.0 entities with
Intelligence-1d using mentionedintelligence relation. The main
reason behind creating such a relation is to enable graph
fusion in CKG and maintain entity-specific origins. Along
with this we also relate intelligence with its origin URL using
mentionedUrl relation.

In our approach, each AAR/CTI source is mapped with
a unique Intelligence-Id. Thus, all entities coming from a
similar source should point to the same Intelligence-Id. But,
any entity can point to multiple Intelligence-Id as the same
entity can be derived from various data sources. Once the
relation triples generation among the provenance entities, we
calculate entity weight. The entity weight is calculated using
the softmax function. After calculating the weights of each
entity, we calculate the entity confidence score by computing
the mean score of all the associated entities. While calculating,
we exclude “URL”, “CreationTime”, and “Type” from keeping
the count. All URLs are considered separate entities in our
provenance model. We only pre-set the “Type” weight values
for AAR, OSINT, and Blogs. We set the provenance score for
AAR as 0.7 and Blog as 0.3. Using this method we compute
the CKG confidence score of an URL entity node. We set the
value based on our available data-set comparison. The outcome
of our Provenance Encoder is a Provenance Knowledge Graph.
We then fuse the graph with CKG in the Provenance Fusion
System.

D. Provenance Fusion System (PFS)

Once relation extraction and confidence calculation have
completed, we fuse the provenance graph with CKG by
identifying the correct entities. We fuse the graph by relating a
particular entity to Intelligence-Id using mentionedlIntelligence
relation. As the output of our encoder system “EnP” is
an existing provenance graph therefore we merge the two
graphs using the union finding method. Ding et al. in their
paper [30] has proposed molecular mechanism while graph
decomposition. Their solution includes lossless decomposition
of a graph by removing BNodes using molecules with their
characteristics. In our solution, while executing graph fusion,
we keep the same molecular join without adding any BNodes.
This ensures efficiency in our representation. Figure 3, de-
scribes the relation set among UCO 3.0 entities after graph
fusion.

IV. EXPERIMENTAL RESULT

We assert the extracted entities and relationships relating
to provenance to a CKG that contains CTI information.
We generate a CKG with malware-specific information and
provenance. Figure 4 is a parsed output of CKG with a
provenance on two AAR generated by “Lookout” organi-
zation on “Dark Caracal” and ‘“Pegasus” malware. In the
diagram, the fused CKG with provenance using UCO 3.0
is shown. The existing CKG adhering UCO 2.0 remains the
same. Here we fuse the Provenance graph with CKG by
intelligence-id: “Intl-101721” and “Intl-102121”. Each intelli-
gence refers to the URL by the mentionedURL attribute. “Intl:
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101721” points to “Lookout-Dark-Caracal” AAR URL. “Intl-
102121 points to the “Lookout-Pegasus-Android-technical-
Report” AAR URL. Now “Dark-Caracal” AAR Url is derived
from multiple URLs. Those can be of type either AAR
or Blog. For example, “Lookout-Dark-Caracal” points to “i-
got-a-letter-from-the-government” using wasDerivedFrom re-
lation, which is type AAR. Similarly points to “T1093”,
“trident-pegasus”, “pegasus-android” with the same was-
DerivedFrom relation but these are of type Blog. In the same
manner ‘“Lookout-Pegasus-Android-technical-Report” points
to “Lookout-Pegasus-Technical-Analysis” which is another
AAR generated by Lookout. A URL also keeps track of
its creation date using createdOn relation. Here we can see
that “Lookout-Dark-Caracal” was createdOn “01/18/2018”
and “Lookout-Pegasus-Android-technical-Report” was create-
dOn “04/01/2017”. Along with an URL keeps its origin
information using wasGeneratedBy attribute. Here we can
see “Lookout-Dark-Caracal” and “Lookout-Pegasus-Android-
technical-Report” both wasGeneratedBy the “Lookout” orga-
nization, which has “countryOfOrigin” “USA”. An URL also
keeps track of its author using authorName attribute. For
example, here we can see “Mike Murray” is the author of
the blog “pegasus-android”.

Apart from the provenance graph, all entities, which were
found from a specific data source are also pointed to their
corresponding Intelligence-Id to keep track of its origin. For
example we can see that malware “Pegasus” uses tools like
“Skype”, “C2-Server”, “SMS”, “SSH” etc. to execute its

operation. Thus after provenance fusion, all the entities point
to “Intl-102121” to keep track that all the data was mentioned
in URL “Lookout-Pegasus-Android-technical-Report” using
one-to-one mapping. In the same manner “Dark-Caracal” uses
“Pallas”, thus it points to “Intl-01/18/2018”. In this manner
all entities from UCO 2.0 point to its origin intelligence. The
main advantage of such implementations is that while querying
CKG about the relations, we can get not only the data but the
source where it was derived from. Which is the main purpose
of our solution. Refer to the following diagram for further
details on the Provenance Graph.

According to Figure 4, if we want to find the names of
the malware which are mentioned in AAR, then we can place
query like following:

SELECT ?x WHERE {
?7x a CKG: Malware ;
?7x a CKG: mentionedIntelligence ?y
?7y CKG: Intelligence —1Id ?z.
?z CKG: mentionedURL ?q.
?7q CKG:isType AAR . }

The query would return “Dark Caracal” and “Pegasus”.

Similarly, to find the CTI URL that refer to malware
“Pegasus” and was reported on 01/01/2017, then we can place
query like following:

SELECT ?y WHERE {
?7x a CKG: Intelligence —-1d ;
?7x a CKG:mentionedUrl ?y.
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7y a CKG:createdOn ?z REFERENCES

7z a CKG: Creation —Date
m a CKG:Malware

CKG: Pegasus and

m a CKG: mentionedIntelligence ?i ;
?i a CKG:Intelligence -Id: ?x . }

The query would return “Lookout-Pegusas-Android-
technical”  URL: “https://info.lookout.com/rs/051-ESQ-
475/images/lookout-pegasus-android-technical-analysis.pdf”
as the creation date is “04/01/2017” and “Pegasus”
mentioned in the CTIL.

04/01/2017;

is

V. CONCLUSION

Cybersecurity Knowledge Graphs (CKG) are useful for
storing a large number of semantic triples about cybersecurity
entities. Encoding the provenance of such CTI data, helps
us determine the authenticity and reliability of the included
knowledge. In this paper, we have successfully updated the
existing CKG generation pipeline and incorporated provenance
in CKG. The system extracts provenance data about the
mined CTI and fuses such data with CKG entities. Includ-
ing provenance information helps end-users get cybersecurity
information along with its origins. In the future, we can use
graph neural models to create node embeddings of entities
that incorporate provenance information encoded in our CKG.
Such a solution can help incorporate a trust dimension in
these representations. We can also extend the schema of our
ontology to capture more information on provenance, which
would lead to more informed resolutions by our CKG reasoner.
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