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ARTICLE INFO ABSTRACT
Keywords: Superior mechanical response of twinnable materials fundamentally arises from an elevation of
Twin Boundaries Critical Resolved Shear Stresses (CRSS) due to Dislocation-Twin Boundary (D-TB) reactions.
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Nanotwinned materials

These reactions exhibit rich variety with several possible outcomes and exhibit complex depen-
dence on microstructural properties, causing state-of-the-art models to adopt a case-by-case
simulation of each reaction relying on empirical potentials or twin-interaction parameters. We
develop an analytical “Evolving Dislocation Core” (EDC) model devoid of empiricism, capable of
predicting the CRSS-elevation for any reaction, given the microstructural properties (elastic
constants, twin crystallography, etc.). The approach is fundamentally rooted in energy-
minimization within a fully-anisotropic framework revealing the evolution of dislocation cores
with progression of the reaction. The core-structure of complex dislocations (e.g. stair-rod) in the
reaction is proposed, for the first time in literature, as a non-planar composite of disregistries
distributed on slip and twin planes. The model is applied to multiple slip-incorporation reactions
in several Face-Centered-Cubic (FCC) materials (Pb, Ag, Cu, Ni-Co alloys and Ni-Ti alloys and
high-entropy alloy FeNiCoCrMn). The predicted CRSS-elevations show agreement with atomistic
simulations (Ni) and experiment (FeNiCoCrMn). The model further establishes a strong correla-
tion of the elevation with unstable stacking/twinning fault energy and the magnitude of the
sessile dislocation’s Burgers vector, while revealing poor correlation with the stable intrinsic
stacking fault energy which is a common benchmark. Thus the analytical EDC model developed in
this study advances understanding of slip-twin interactions on multiple fronts while serving as an
effective predictive model for CRSS-elevation instrumental in materials design.

1. Introduction

Mechanical behavior of materials is a macroscopic manifestation of fundamental mechanisms at the microstructural level. These
mechanisms predominantly involve activity of crystalline defects such as point defects (e.g. vacancies, solutes), line defects (slip
dislocations), and surface defects (e.g. free surfaces, twin boundaries, and grain boundaries) in the material. Onset of their activity and
their mutual interaction during progression of material deformation have critical implications on mechanical performance metrics
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such as flow stress, strength, fracture toughness, and fatigue resistance. One of the major classes of such microstructural phenomena is
the interaction of slip dislocations with Twin Boundaries (TB). These interactions are complex phenomena encompassing several
possible routes and outcomes exemplifying the wide variety of behavioral responses that materials can exhibit on a microstructural
level. Dislocation — Twin Boundary (D-TB) interactions can either result in blockage of the incoming slip at the TB or result in a
“dislocation reaction” where the incoming slip can transform into distinct product dislocations (Ezaz et al., 2011; Hartley and Blachon,
1978; Mahajan and Chin, 1973; Miillner and Solenthaler, 1997; Robertson et al., 2005; Samaee et al., 2021; Sangid et al., 2011). Such
interactions effectively emulate a barrier to dislocation motion to elevate local CRSS (Critical Resolved Shear Stress) of active slip
systems in the material (Rémy, 1981). This elevation manifests as desirable enhancements in strength (Chowdhury et al., 2016; Rémy,
1981; Sim et al., 2017; Valentino et al., 2021), strain-hardening (Bonisch et al., 2018; Steinmetz et al., 2013), dynamic Hall-Petch
behavior (Bouaziz and Guelton, 2001; Zhao et al., 2020), and particularly a marked improvement in fatigue resistance (Alkan
et al., 2016; Alkan and Sehitoglu, 2017; Bonisch et al., 2018; Brenne et al., 2020; Chowdhury et al., 2013; Rémy, 1981; Sidharth et al.,
2020a). Dislocation reactions also play a critical role in functional materials such as Shape Memory Alloys (SMAs), dictating the rate of
slip emission from disconnections on internal twin boundaries (Brenne et al., 2020; Mohammed and Sehitoglu, 2020, 2021), ultimately
manifesting in the damping and fatigue response of SMAs (Sidharth et al., 2020a; Sidharth et al., 2021; Sidharth et al., 2020b).

Understanding D-TB reactions has been a subject of interest over the past five decades (Bonisch et al., 2018; Chassagne et al., 2011;
Chou, 1966; Kaschner et al., 2007; Lee et al., 1989; Mahajan, 1971; Mahajan and Chin, 1973; Rémy, 1977, 1981; Solenthaler, 1990;
Steinmetz et al., 2013; Xu et al., 2016; Yamakov et al., 2003). The earliest studies were dedicated to evidencing individual dislocation
reactions through microscopy (optical and electron microscopy) and crystallographic analysis, establishing the Burgers vectors of
dislocations involved in the reactions (Kaschner et al., 2007; Lee et al., 1990; Li et al., 2011; Mahajan and Chin, 1973; Rémy, 1977,
1981; Solenthaler, 1990). Subsequently, models were developed to quantify how the D-TB reaction elevates the CRSS of the incoming
slip system (Gu et al., 2014a; Jin et al., 2008; Jin et al., 2006; Shabib and Miller, 2009; Zhu et al., 2007; Zhu et al., 2011). The first
analytical models recognized that the incoming slip system approaching the TB encounters additional resistance in the form of an
elastic “image interaction force” (Alkan and Sehitoglu, 2017; Chen et al., 2007; Hirth and Lothe, 1983) thereby elevating the CRSS.
This force however encounters a singularity at the intersection of the dislocation at the TB pushing the elevation to infinity which is
unphysical and not observed. Removal of the singularity required consideration of the dislocation as an entity of finite “core-width”
where non-continuum atomistic forces operate across its slip plane (alternatively thought of as the plane of “disregistry”) (Pacheco and
Mura, 1969). Similar models were also successfully developed to model interactions of “cross-slip” in Face-Centered Cubic (FCC)
materials, capturing effects such as core-recombination of separated Shockley partials and core-redistribution on cross-slipped planes
(Bonneville and Escaig, 1979; Piischl, 2002; Piischl and Schoeck, 1993; Ramirez et al., 2012; Schoeck, 2001, 2009). And yet, the
efficacy of these approaches is limited to a specific type of D-TB interaction, with a special character of the incoming dislocation (screw
character) transmitting through the TB, and further limited by assumptions of isotropic constitutive relation for the material. On the
contrary, D-TB reactions exist in several classes with rich variety, requiring an improved framework to model them while necessitating
a more realistic representation of the underlying material’s elastic constitution.

The advent of computational simulation techniques such as Molecular Dynamics (MD) (Chassagne et al., 2011; Chowdhury et al.,
2014; Ezazetal., 2011; Sangid et al., 2012; Wang et al., 2012; Wang et al., 2017; Yamakov et al., 2003) and Dislocation-Dynamics (DD)
(Fan et al., 2021; Imrich et al., 2014; Wei et al., 2019; Zhang et al., 2021) bolstered the development of a distinct class of approaches
capable of handling a variety of D-TB reactions. Several studies focused on the simulation of reactions within such computational
frameworks, more commonly from atomic-scale MD, seeking to quantify the magnitude of CRSS-elevation achievable. These ap-
proaches are currently the state-of-the-art to model D-TB reactions and are still challenged by two major caveats:

e These frameworks involve some form of empiricism, either for the interatomic force-fields (in the case of MD) or dislocation
mobilities (in the case of DD). Consequently, predictions of these models are strongly limited by the physical fidelity of these
empirical parameters, dictating whether a D-TB reaction can even be successfully simulated and if the dislocation-core atomistic
forces or elastic anisotropy are reliably captured.

e These methods approach the problem as a case-by-case analysis of each individual type of reaction, requiring carefully constructed,
often expensive simulations. Consequently, predictions on one simulated reaction cannot be reliably extended to other reactions
without them being simulated explicitly. Also, such simulations cannot reliably reveal dependencies of the observed elevation on
underlying microstructural and material properties such as load orientation, fault energies, and elastic anisotropy.

Furthermore, even from successful simulations, the predicted CRSS-elevations are often unphysically high, typically in the ranges
of few GPa in MD simulations (Xu et al., 2016; Yamakov et al., 2003). In fact, one of the lowest predictions, to the best of the authors’
knowledge, was a threshold for slip-transmission proposed to be ~400 MPa for all D-TB interactions (Chassagne et al., 2011; Gu et al.,
2014a; Zhu et al., 2007). While convenient and effective, such a fixed threshold for all D-TB interactions irrespective of material
properties can be prohibitively conservative in either prediction of material behavior or in materials design. In summary, current
approaches to model D-TB reactions would significantly benefit from a unifying framework capable of modeling a large variety of
reactions, with predictability unmarred by any empiricism and capable of capturing material properties such as anisotropy at the
continuum scale and atomistic potential energies at dislocation cores. Atomistic potential energies such as the Generalized Stacking
Fault Energy (GSFE) and Generalized Planar Fault Energy (GPFE) must be considered to capture changes in the dislocation core during
the reaction. The current study develops such a predictive framework, named as the “Evolving Dislocation Core” (EDC) model, for
D-TB reactions and shows its efficacy by application to multiple reactions and materials. The only material parameters involved are
elastic constants and fault-energetics which can be reliably obtained from ab initio DFT methods (Gengor et al., 2021; Zimmerman
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Fig. 1. (a) Critical role of slip-twin interactions in mechanical response of materials, particularly at the front of a short crack in fatigue and fracture;
D-TB interactions at twins within equiaxed grains are schematically shown (b) Overview of the EDC model as applied to the slip-incorporation D-TB
reaction, highlighting the two-stage methodology; the first stage captures the approach of the leading partial and the second stage captures the
formation of the stair-rod dislocation and the incorporated twinning dislocation; the distributed cores of these dislocations are indicated and the
variation of the CRSS across both stages are indicated with and without twin interaction (c) Overview of the Molecular Dynamics (MD) approach - A
Control-Volume (CV) + Peierls-Nabarro (PN) approach is proposed, tracking the variation of fault energies at a small control volume surrounding
the core of the dislocations participating in the slip-incorporation reaction; the Peierls-Nabarro model predicts the CRSS through a gradient of the
varying energies at the dislocation cores

et al., 2000).

Further, there is a knowledge gap in the scientific understanding of D-TB reactions that the authors would like to address. One of the
reasons for reaction complexity is the formation of several sessile dislocations with unconventional Burgers vectors. For instance, in the
best-studied FCC system, dislocation interactions form several locks (e.g., a/2(110) Lomer-Cottrell lock) and stair-rod dislocations
(typically in slip-incorporation reactions, e.g. a/3(010)) (Ezaz et al., 2011; Hirth and Lothe, 1983; Lee et al., 2013). To the best of the
author’s knowledge, there is no understanding of the core structure of these dislocations. In the authors’ opinion, this knowledge-gap
on the core structure of sessile dislocations is the primary impediment to the development of a predictive analytical approach. The best
example which shows the value and impact of such understanding is the evolution of the field of Non-Schmid behavior in
Body-Centered Cubic (BCC) metals (Alkan et al., 2017; Vitek, 1992). The non-planar spreading of disregistry distributions constituted
the fundamental scientific cause for a perplexing macro-scale slip behavior (Alkan et al., 2018a; Duesbery and Vitek, 1998). The
proposed model hypothesizes a core-structure for such sessile dislocations motivated by the non-planar distributed cores observed in
BCC materials. The success of this modeling hypothesis is demonstrated by the good agreement of model-predicted critical stresses
with atomic-scale simulations and also experiments.

The EDC model is elaborated by application to the “slip incorporation” reaction which is one of the most common D-TB interactions
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Fig. 2. Stages in the Evolving Dislocation Cores (EDC) model proposed in this study: (a) Crystallography of the twin (T) and matrix (M) is indicated;
the a/6(112) Leading Partial (LP) ahead of the stacking fault (bold red line) in the a/2(011) extended dislocation approaches the TB;6 represents the
angle between the slip plane and the TB, s; represents the position of the incoming partial and h is the normal distance of the partial away from the
TB (b) Formation of stair-rod dislocation and the incorporated Twinning Partial (TP) gliding on the TB

in FCC materials. In these materials, lattice dislocations with Burgers vectors a/2(011) (where a is the FCC lattice constant) dissociate
into an extended dislocation consisting of two Shockley partials with Burgers vectors a/6(112) separated by a stacking fault (Hirth and
Lothe, 1983). As the extended dislocation approaches the twin, the leading Shockley partial reacts with the TB and forms an incor-
porated twinning dislocation that subsequently glides along the TB (alternatively viewed as getting “incorporated” on the TB) while
also forming a sessile dislocation on the TB called the stair-rod dislocation (refer Fig. 1). There are several distinct reactions within this
family and even within the same material. For instance, there are 12 linearly independent Burgers vectors possible for the incoming
leading partial and for each leading partial there are 6 distinct incorporated twinning partials possible on the TB, yielding a total of 72
possible slip-incorporation reactions. The sessile stair-rod dislocations forming in these reactions also vary, forming with different
Burgers vector magnitudes and core structures. For each reaction, the CRSS-elevation realized can significantly vary depending on the
orientation of applied external load and twin crystallography (Ezaz et al., 2011). With such combinatorial complexity, it becomes
prohibitively challenging to conduct simulations within frameworks such as MD/DD for each reaction under varying loading condi-
tions to model the CRSS-elevation, necessitating a predictive ground-up approach as proposed in this study. Thus in these regards, the
incorporation reaction poses all the challenges associated with reaction variety and complex microstructural dependence offered by
D-TB interactions in general and is thus an apt study target for the EDC model. The methodology of the model is first elaborated for 3
slip-incorporation reactions and subsequently applied to 6 more reactions, illustrating its efficacy to capture all aforementioned
complexities.

In the following sections, the methodology of the EDC model is elaborated. The predictions of the model are validated against
atomistic simulations in Molecular Dynamics (MD). A modified approach involving a tracked Control-Volume (CV) around dislocation
cores and the Peierls-Nabarro (PN) model is proposed, for the first time in literature, focusing on the atomic-scale energetics at the core
of the simulated dislocations (refer Fig. 1). The methodology is presented with FCC Nickel (Ni) as the study target. This choice is
informed by the reliability of the interatomic potentials developed for pure FCC materials over several years, ultimately serving as a
reliable benchmark to validate the EDC model. Also, Ni is chosen to study Ni-based alloys such as Ni-Co and Ni-Ti, revealing the
influence of enhanced twinnability in these alloys on the CRSS-elevations in slip-twin interactions. The model is also applied to several
pure FCC materials and the high-entropy alloy FeNiCoCrMn establishing its wide applicability independent of the availability of
empirical potentials for these materials. Multiple slip-incorporation reactions are modeled, and the variance of CRSS-elevation
depending on the load orientation, stair-rod Burgers vector magnitude, and fault energy landscapes are established, significantly
advancing state-of-the-art understanding in the field.

2. Modeling Methodology

The EDC model is elaborated in this section. Without loss of generalization, a pair of {111} planes are chosen, one of them chosen to
be the TB and the other the interacting slip system in the FCC crystal structure. The TB is chosen to be on a (111),, plane and the slip
plane is chosen to be a (111),, plane where the subscript M indicates that the indices are referenced to the matrix/parent phase. The
crystallography is described in Fig. 2 (a). The global coordinate frame is given by the unit vector triad €; — €2 — €3, with the vectors
aligned with the following crystallographic directions in the matrix and twin: € || [121]y, || [121], €2 || [111]y || [111]; and e3 ||
[101], || [101]; (Fig. 2). The target slip-incorporation reaction is first partitioned into two stages:

a Stage 1: Approach of the leading partial towards the TB. The leading partial will alternatively be referred to as the incident/
incoming dislocation in this paper. During this stage, the leading partial faces resistance from the image interaction force associated
with the D-TB interaction.

b Stage 2: Formation of the product dislocations i.e. the sessile stair-rod on the TB and the incorporated twinning dislocation gliding
away from the stair-rod.
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Table 1
Target slip-incorporation D-TB reactions modeled in this study under specified loading directions; the composition of the unconventional stair-rod

Burgers vector (FSR) as a linear combination of conventional a/6(112) slip (FSR,SP)/twin (FSR,TP) Burgers vector of the FCC system is given.
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In the current study, we analyze 3 distinct incorporation reactions under different loading orientations, as summarized in Table 1.

The incident Leading Partial (LP) has a Burgers vector of E)Lp = a/6[211],, on its slip plane (111),;, with the matrix-twin crystallog-
raphy chosen as shown in Fig. 2. The position of the incoming partial is given by s;, taken along the direction of approach of the partial
towards the TB. The core of the incoming partial is characterized by its “core-width” &;, defined formally in Section 2.1.1. The core-
width, &;, is predominantly dictated by the unstable stacking fault energy (r,,) on the GSFE curve corresponding to the incoming slip

system. The position of the incorporated twinning partial, ?Tp, is given by sy, taken along the TB moving away from the stair-rod. Its
core is characterized by the core-width &,, which depends on the unstable twinning fault energy barrier (y,;) on the GPFE curve
corresponding to the active twinning system. The stair-rod dislocation has a non-conventional Burgers vector (of the type a/3(010),
a/6(310) and a/3(101)) in that it does not correspond to either a slip or twin Burgers vector of the FCC matrix (which is of a/6(112)
type). Further, its core-structure has not been revealed or even hypothesized to date. In this study, we propose the stair-rod core
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Fig. 3. Defining the dislocation core structure and core-width (a) Schematic of a dislocation in the continuum bulk; the slip plane, with normal T,
partitions the space into two half-spaces; the disregistry between the two half-spaces is tracked along the slip plane by taking the difference of
displacement components u* at the slip plane in the respective half-spaces; the region within r, = 5b is conventionally known as the “core” of the
dislocation (b) Plot of the disregistry distribution for the Volterra dislocation model and the Peierls dislocation model; the “core” region demarcated
by the cut-off r. = 5b is also indicated (c) Plot of the dislocation-density distribution of the Peierls dislocation, indicating the finite core-width, & (for
the definition of core-width see the main text)

structure as a linear combination of fractional dislocations distributed on slip and twin planes of the parent crystal structure (FCC in
this case). The unconventional Burgers vector is then interpreted as an additive composite of conventional a/6(112) Burgers vectors in
the FCC system (refer Table 1). The candidate a/6(112) Burgers vectors that can form the stair-rod are among that of the incoming
Shockley partial on the incident (111),, slip plane, all twinning partials on the (111),, TB, and all Shockley partials on the (111); slip
plane within the twin. Only these candidate Burgers vectors can have the same dislocation line (i.e. €3]/[101],, refer Fig. 2 (b)) as that
of the stair-rod formed in the incorporation reaction, and can hence compose the stair-rod’s core structure. For each stair-rod, it can be
verified that its linear decomposition into specific Burgers vectors from the aforementioned candidates is unique, for positive linear
pre-factors 134 > 0. For instance, in reaction I, the stair-rod a/3[010],, can only be constructed by a linear combination of the two
Burgers vectors a/6[121],, and a/6[121];. No other candidate Burgers vectors can combine to give this stair-rod Burgers vector. The
linear pre-factors A3 and 14 attached to the constituting Burgers vectors can be solved for by equating each of the three crystallographic
indices of the linear combination and the stair-rod dislocation. The linear decomposition of other stair-rod dislocations from reactions
II and III are also listed in Table 1. The stair-rod core is consequently characterized by multiple core-widths (¢; and &4) and both the
unstable stacking fault energy barrier (y,,) and the unstable twinning fault energy barrier (y,,) as shown in Fig. 2. The positions and
core-widths characterize all intermediate states in the reaction. The number of parameters is governed by the number of participating
dislocations in the reaction, 4 in all considered cases of this study (refer Table 1). These parameters will be defined more formally with
reference to the core structures of the dislocations in the following sections.

2.1. Evolving Dislocation Core Model Methodology

2.1.1. Core of a dislocation

We first specify what is meant by the “core” of a dislocation as referred to in this study. A brief description is presented here
sufficient for the purposes of the study and the reader is referred to (Hirth and Lothe, 1983; Peierls, 1940) for comprehensive coverage
on this concept. At the continuum or “macro”-scale, it is convenient to understand dislocations as line defects across which there is a

displacement jump in the crystal structure. This displacement is along the Burgers vector, F, of the dislocation with the jump occurring
across the slip plane. To understand this jump further, we part the infinite crystal into two semi-infinite halves, a (+) half and a (-) half,
split by the slip plane of the dislocation (Fig. 3). The normal to the slip plane i, is shown.

Define the displacement jump or disregistry as the difference in displacements between the two halves of the crystal taken at the
slip plane, given by (ut — u™). The displacements, u®, are resolved scalar components along the direction of the Burgers vector. Other
components of the displacement can be ignored since they experience no jump across the dislocation. If this disregistry is tracked as we
move across the dislocation (i.e. along x direction in Fig. 3 (a)) and plotted, then we get the disregistry profile plotted as a dashed-line
in Fig. 3 (b). It is a step function that starts at zero prior to encountering the defect and subsequently jumps to the magnitude of the
Burgers vector on the right. This model for a dislocation is also called the “Volterra” dislocation after one of the earliest definitions of
dislocations in the continuum scale (Volterra, 1907).

The Volterra model reliably captures continuum displacement fields away from the center of the dislocation. At the center, the
abrupt jump causes a singularity in the solutions for the displacement field, which is unphysical in nature. Because of the singularity,
physical displacements around the center of the dislocation are not captured by the Volterra model. This region around the center is

called the “core” of the dislocation and ascribed a radius of r, = 5‘?‘ = 5b from the center point (Hirth and Lothe, 1983). Thus, at

distances larger than r. = 5b from the center, the Volterra model is a reliable model for the dislocation.
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Although the Volterra model proves effective for elastic interactions at higher scales, consideration of the disregistry distribution at
the core, equivalently referred to as the “core structure”, is necessary to understand the core-evolution transforming reacting dislo-
cations to product dislocations in dislocation reactions. The analytical solution for the disregistry distribution, f(x), was derived by
Peierls in (Peierls, 1940) (also elaborated in (Schoeck, 1994)) by solving an integro-differential force-equilibrium equation considering
both elastic and atomistic forces at the core. This distribution is given by:

flx) = b(%%tan’l ()—;)) 2.1

where b is the magnitude of the Burgers vector of the dislocation, and ¢ is known as the “core-width” of the dislocation. This model is
referred to as the “Peierls dislocation” model and the disregistry function in Eq. (2.1) is plotted in Fig. 3 (b). The core disregistry can
otherwise be thought of as “misfit” in the dislocation core. The core width can be better understood from the plot of the “dislocation
density” distribution, which is a derivative of the disregistry function, given by:

_df)_b ¢

p(x) e m (2.2)

The dislocation-density distribution is plotted in Fig. 3 (c). The core-width, ¢, is indicated in the figure, representing the width of the
dislocation density. This model of the dislocation is commonly referred to as the Peierls model of the dislocation, and will be used to
model all dislocations in the D-TB interactions. It is worth noting that the direction of increasing x is aligned with the direction of
increasing disregistry (i.e. direction of increasing f). Also, the center of the disregistry distribution and the dislocation density are atx =
0, which denotes the position of the dislocation. If x is chosen in the opposite sense to increasing disregistry and if the dislocation is at a
position x = s with respect to the origin, the equations for disregistry distribution and dislocation densities are modified as:

flx) = b(% - %tanq (x ; S) ) ip(x) = *m (2.3)

The above form of the disregistry and dislocation density will be used in Section 2.1.2 for Stage 2 of the EDC model. Note that away
from the center of the core the dislocation density approaches zero i.e. p(x) — 0 as x - *oo. It is worth realizing that for the Volterra
model of the dislocation we have zero core-width and hence, in the limit of £ — 0, the disregistry function in (2.1) approaches the step-
function in Fig. 3 (b).

2.1.2. Stage 1: Approach of incident dislocation and image interaction

In the first stage of the reaction, the incident leading partial moves towards the TB under the applied load, as schematically
illustrated in Fig. 2. Thus its position, defined by s;, starts at a large value (asymptotically at co) and reduces as it approaches the TB. In
the regime oo > s; > r, the D-TB interaction is elastic in nature, known as “image interaction” (Chou, 1966; Gemperlova, 1968;
Pacheco and Mura, 1969). There is no atomistic interaction between the core of the dislocation and the TB. This regime is modeled by
Stage 1 of the EDC model. The image interaction arises from the difference in elastic constitution between the parent phase where the
dislocation resides and the elastically-distinct phase (twin) that the dislocation is approaching under applied load. Such a difference in
elastic constitution can either arise from a difference in crystal orientation across the boundary (as in this case with a TB, also with
grain boundaries), or due to difference in material elastic constants themselves (as in case of free surfaces or phase boundaries) (Bacon
et al., 1980; Gemperlova, 1968). Consequently, the image interaction force on the dislocation is fundamentally dictated by the dif-
ference in continuum strain-energy of the dislocation when it is in the bulk matrix far away from the TB (s; — o) as compared to when
it is on the TB (s; = 0).

Thus, the calculation of image interaction force for Stage 1 of the EDC model only involves the continuum strain-energy of the
dislocation. For this purpose, it is sufficient to model the dislocation as a Volterra dislocation (refer Section 2.1.1). The strain-energy of
a Volterra dislocation (per unit length of the dislocation line) is given by the well-known analytical expression (Hirth and Lothe, 1983):

BV — g R (2.4

strain
re

where E is a pre-logarithmic energy factor and R is the outer radial limit of integration in calculating the strain-energy. The image
interaction can be calculated as a force per unit length of the dislocation line, p’, acting on the LP. It is given by:

where h(s;) = s1sinf is the normal distance from the interface, for the known acute angle § between the slip plane and twin plane (refer
Fig. 2 (a)). E®and E° are pre-logarithmic energy factors when the dislocation is in the bulk matrix (s; — oo, far away from the TB) and
when it is at the TB (s; = 0), respectively. For all cases considered in this study, we have E® < E° implying that the TB repels the
incoming LP. Calculations of E*and E° are elaborated in detail in Appendix A. The resolved stress on the slip plane, from the image
interaction, repelling the LP away from the TB is given by:
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Fig. 4. Core-evolution in the D-TB reaction captured in Stage 2 of the EDC model (a) The disregistry function of the leading partial (LP) is plotted,
approaching the TB as s; reduces, towards intersection point O; note the ; (i = 1,2,3,4) pre-factors indicating that the core of the leading partial is
complete/full (ail‘“t' = 1) and yet to evolve into other dislocation cores of the reaction (aizr?i;‘;‘ = 0) (b) Core-evolution during the D-TB reaction
leading to the formation of stair-rod (SR) and twinning partial (TP) dislocation cores (a2 34 > 0) while the incident partial core recedes (@; < 1) (c)
Completion of the D-TB reaction indicated by the formation of the complete stair-rod (SR) dislocation core (composed of stair-rod Shockley partial
(SR-SP), and the stair-rod twinning partial (SR-TP), and the incorporated twinning partial (TP); the pre-factors of all dislocations are now at their
final values at completion, indicating the formation of the full twinning partial (TP) ag‘“al = 1, the stair-rod cores (agf;al = J34) at the expense of the

incident partial’s core (af" = 0); (d-f) show the corresponding evolution of the dislocation density distributions corresponding to (a-c) respectively

p(si1)
brp

Tivg (51) = sinf (o< 81 K 7e) (2.6)

where p(s;) is the magnitude of the image interaction force and byp is the Burgers vector magnitude of the incoming leading partial.
Along with this resolved stress 71y, the incoming partial also has to overcome the lattice friction stress, also known as the Peierls stress,
arising from the atomistic energy barriers in the parent/matrix crystal structure. Consequently, the total CRSS required to move the
dislocation towards the boundary is expressed as,

Terss (51) = Tép + T (s1) 2.7)

where rIL,P is the Peierls stress for the Shockley partial. The Peierls stress is calculated by considering the Peierls model of the dislocation
core as described in Section 2.1.1, considering it to be in the bulk matrix sufficiently far away from the TB. A brief outline of the
calculation is presented here and a detailed description is deferred to Appendix B. First, the equilibrium core-width of the Peierls
dislocation is determined to be the one which minimizes the sum total of the continuum strain-energy of the dislocation and atomistic
energy of planar disregistry within the dislocation core. Then the Peierls-Nabarro model is applied to calculate the misfit energy profile
of the dislocation as it traverses the parent crystal structure by unit Burgers vector. The maximum gradient on this energy profile
determines the Peierls stress corresponding to lattice friction.

Thus, in Stage 1, the CRSS 7ipqs(51), given in Eq. (2.7), gradually elevates as the incoming partial approaches the TB. However, note
that 7hpes(s1) encounters a singularity as s; — 0. This is unphysical in nature and is caused by the fact that the image-interaction
formulation does not account for the finite dislocation core of the dislocation and the atomistic core-interactions with the TB when
the incident partial is very close to it (i.e. when s; < r.). These interactions are captured in stage 2 of the EDC model. In stage 2, as the
incoming partial approaches close to the TB, the unknown core-widths ¢ are determined for all participating dislocations in the re-
action, capturing the evolution of the incoming partial’s core into cores of the product dislocations in the reaction. This is elaborated
further below.
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2.1.3. Stage 2: Interaction with TB and core-evolution into product dislocations

The second stage of the EDC model captures the crucial part of the D-TB interaction where the dislocation core of the incident
partial interacts with the TB eventually reacting to form product dislocations i.e. the stair-rod and the incorporated twinning partial in
the slip-incorporation reaction. Thus, in this regime, the incident dislocation is at positions given by 0 < s; < r.. For this stage of the
model, the evolution of the incident dislocation core into the cores of product dislocations must be captured. Hence, all dislocations
involved are modeled as Peierls dislocations (Section 2.1.1). A general overview of this stage of the model is as follows. The position of
the incoming dislocation, given by sy, is taken as input. At each position, the CRSS 7ipgs(s1) is determined based on minimization of a
Gibbs’ free energy of the system involving continuum strain-energies and atomistic misfit energies of all dislocation cores. This
formulation is motivated from the Generalized Peierls-Nabarro model developed in (Alkan et al., 2018a; Alkan and Sehitoglu, 2019;
Foreman et al., 1951; Kroupa and Lejcek, 1972; Lejcek and Kroupa, 1976) for non-planar cores of slip dislocations in BCC materials,
and adapted for the first time to the D-TB interaction.

2.1.3.1. Core descriptors (disregistry, dislocation density, and core-width) for dislocations in the D-TB reaction. From Table 1, it can be
noted that there are 4 dislocation cores involved in each of the D-TB reactions, henceforth represented by the following serial numbers:

(1) the core of incoming Shockley partial FLP, (2) the core of the incorporated twinning partial ?Tp, and two dislocation cores

— —
constituting the sessile stair-rod dislocation — (3) stair-rod Shockley partial b gsg_sp and (4) stair-rod twinning partial b sg_7p. The
disregistry distribution and dislocation densities for each participating dislocation are given by the equations:

. LT (x—s\\. _ a:big;
fl-(x)—al-bi(if;tan ( z )),pi(x)— 7ﬂ((x—s,~)2+§?) (2.8)

where i = 1,2, 3, 4 represents each participating dislocation in the D-TB reaction, x; represents the coordinate axis corresponding to
each dislocation, s; represents the position of the dislocations on their respective axes, b; represent the Burgers vector magnitude, and ¢;
represent the core-width of the dislocations. The axes, positions and disregistry distributions are schematically represented in Fig.s 4
(a). Note that this form of the disregistry distribution is consistent with Eq. (2.3) and is chosen since the evolving disregistries and
dislocation densities are directed towards the D-TB intersection, point O, as shown in Fig.s 4 (b, e). The pre-factors @; capture the
evolving state of each dislocation core between its initial state before the reaction, @; = a}““‘, to its final state after the reaction o; =
afinal(refer Fig. 4 (c, ). The pre-factors are solved for in the model throughout the progression of core-evolution in the reaction, as
elaborated later in this section. Note that {ai"*, afi"@!} varies for each dislocation in the reaction, varying from ol = 1 — af! = 0 for

—_— .. . g .. .
the incoming leading partial b p, ai" = 0 — ai"! = 1 for the incorporated twinning partial b rp, and i = 0 — a5 = 34 for the

stair-rod constituents (i.e. stair-rod Shockley partial, ?SR—SP; and stair-rod twinning partial, ?SR,TP), as partitioned in Table 1 and
illustrated in Fig.s 4 (c, f).

Note that the disregistry within each core involves displacements only along the direction of the respective Burgers vectors of the
participating dislocations. At the location of slip-twin intersection O, where all the evolving cores meet, it is unphysical to have all
displacements accommodated unless the displacements are all zero. Thus, at O, the following condition needs to be satisfied:

pi(x=0)=0 (2.9

However, this condition is too strong to implement numerically and a finite tolerance must be allowed. The reason being that for
pi(x; = 0) = 0 to be satisfied exactly at O, we must have s; — oo due to the asymptotic nature of the dislocation density distribution
(refer Fig. 4 (e) and Eq. (2.8)). Consequently, it leads to issues for numerical convergence in the model. Hence, a small non-zero
tolerance is introduced instead, given by:

pi(xi =0) = —¢&b; (2.10)

where ¢ = 0.05 is chosen as the tolerance for all i = 1,2, 3, 4. Note that the negative signs are from the choice of convention of the
disregistry function (Eq. (2.8)). Having chosen this tolerance, the pre-factors ; can be determined as a function of the position, s;, and
core-width of the dislocation, ¢;, from Eq.s (2.8) and (2.10) as:
E; (S ,'2 + 2
ai(‘vi>§i) :w (1:172~374) (211)

Thus, any state of the dislocation cores during the reaction can be characterized given the parameters: {s;,&;}, i = 1,2,3,4. The
position of the incoming leading partial s; is taken as input, and incrementally reduced starting from s; = r. = 5b;p to simulate the
approach of the incoming leading partial. At each value of s;, the remaining parameters {s;, §;} (wherej=2,3,4andi =1,2,3,4) are
solved for, progressively revealing the evolution of the product dislocation cores. In solving for these parameters, a constraint must be
enforced. This constraint is the conservation of the total Burgers vector, given by

s

4 — 4 ~ —
dobi=) / bip;(x;)dx; | = b, (2.12)

i=1 1 0
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Table 2

Elastic constants (in GPa) of the materials
Material Cn Ci2 Cyq Ref.
Ni 261 151 132 (Gene and Herbert, 1971)
Cu 161.2 123.8 75.6 (Neighbours and Smith, 1954)
Pb 55.6 45.4 19.4 (Gene and Herbert, 1971)
Ag 131.5 97.3 51.1 (Gene and Herbert, 1971)
FeNiCoCrMn 221 152 165 (Alkan et al., 2018b)

Table 3

Anisotropic Parameters Kj; for Reaction I (x10% GPa)
Material Kn K22 K33 Kaq K12 Ka3 K3 K4 Ko K34
Ni — 0.9466 - 0.8934 —1.1458 - 1.3582 —0.7651 1.1445 ~1.2092 — 1.4359 - 1.1951 1.1912
Cu —0.4738 - 0.4434 - 0.6309 - 0.7525 - 0.3483 0.6314 - 0.67 - 0.7973 - 0.66 0.6616
Pb - 0.1278 - 0.1202 - 0.1772 —0.2078 —0.0913 0.1771 - 0.1891 - 022 - 0.1862 0.186
Ag - 0.3639 - 0.3429 - 0.4781 - 0.5621 - 0.2746 0.4778 - 0.5035 - 0.5929 - 0.4973 0.4964
FeNiCoCrMn - 0.931 - 0.8674 —1.1458 -14 —0.7246 1.1424 —1.2548 - 1.5052 - 1.2313 1.2212

> _ (B
where b; = | 41 | (fori =1,2,3,4) is the unit vector along the Burgers vector of each participating dislocation in the reaction. In other

words, throughout the D-TB reaction, the net Burgers vector equals that of the incoming leading partial i.e. ?1 . As the cores evolve, the
integrals in (2.12) are evaluated numerically, with the upper limit chosen as a large value s"* = 500b;p > r.. The conserved Burgers
vector magnitude b, of the leading partial is calculated as an integral of its dislocation density when the incoming partial is sufficiently
far away from the TB, i.e. at s; = 20b.p > 1, given by:

gmax
1

by :/Pl(xl);,:zob,f,dxl (2.13)

0

It must be mentioned that the calculation in (2.13) results in b; ~ b;p, i.e. a practical approximation of the Burgers vector
magnitude of the leading partial. Only if the integral were calculated with the theoretical limits of s; = o0 and S = o0, can we have
the exact equality given by

0

b] = /pl(xl)ﬂ:oodxl :bLP (214)

0

However, the integral in (2.14) is impractical to implement and leads to issues in numerical convergence during the progressive
evolution of the dislocation cores at finite positions of the incoming leading partial, s;. Thus, the calculation (2.13) is preferred and is
correct for the model. Given the remaining state parameters {s;, &} (j = 2,3,4 and i =1,2,3,4) and the constraint (2.12) specifying a
set of admissible values for them, the solution procedure for the exact values during core-evolution is described below.

2.1.3.2. Solution Procedure. At each s;, the total potential energy functional is computed for the system as a function of the state
parameters Etora. = EroraL(s, &, 04). This functional is a sum of the elastic strain energy of the individual dislocations and their
mutual interaction, Egpastic(sj,£;), image interaction of all dislocations with the TB, Emace (S;,¢;), the atomistic energies of misfit within

each of the dislocation cores, Evsrir(Sj, &;), and finally the work potential of the applied load on all dislocations, — W(s;,&;,0q). The
functional is given by the equation:

EroraL = EgLastic + Evace + Emiseir — W (2.15)
The calculation of each of the summands in Eq. (2.15) is described below. The elastic energy is calculated as,

~ K SO
Epiastic = E E 27;//pi(z)pj(x)ln || x5: — 15, || dxdt (2.16)
tJx

=1 j=i

where Kj; is an anisotropic elastic parameter that captures the elastic interaction energy between the iand the j dislocation involved
in the reaction, and s; is the unit vector along the direction of increasing s; (refer Fig. 4). Calculation of Kj is detailed in Appendix C and
depends on the anisotropic elastic constants (listed in Table 2), twin crystallography, and Burgers vector direction of participating
dislocations. Hence, Kj; is dependent on the specific D-TB reaction and are listed in Tables 3, 4, 5 for the modeled slip-incorporation

10
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Table 4

Anisotropic Parameters Kj; for Reaction II (x10% GPa).
Material K11 K K33 Ky K12 K3 Ki3 K4 Ka4 K34
Ni — 0.9466 — 1.1458 — 1.1458 — 0.9466 — 1.2092 1.2009 1.1509 — 0.9466 1.2539 — 1.1407
Cu —0.4738 — 0.6309 — 0.6309 —0.4738 - 0.67 0.6449 0.6112 —0.4738 0.6827 — 0.5987
Pb —0.1278 - 0.1772 —0.1772 - 0.1279 —0.1891 0.1813 0.1704 —0.1278 0.1922 —0.1673
Ag — 0.3639 — 0.4781 —0.4781 — 0.3639 — 0.5035 0.4865 0.4643 — 0.3639 0.5089 — 0.459
FeNiCoCrMn —0.931 — 1.1458 — 1.1458 —0.931 — 1.2548 1.1797 1.0989 —0.931 1.2663 — 1.0726

Table 5

Anisotropic Parameters Kj for Reaction III (x102 GPa)
Material Kn Koo K33 Kaq K1z Kas3 Ki3 K4 Kaq K3q
Ni — 0.9466 — 0.9257 — 1.1458 — 1.3582 — 0.8883 1.1805 1.1509 — 1.4763 1.1643 —1.169
Cu —0.4738 — 0.4434 — 0.6309 — 0.7525 — 0.4068 0.6314 0.6112 — 0.7973 0.6213 — 0.6197
Pb —0.1278 —0.1202 —0.1772 — 0.2078 —0.109 0.1771 0.1704 —0.22 0.1733 —0.1735
Ag — 0.3639 — 0.3429 —0.4781 — 0.5621 — 0.3164 0.4778 0.4643 — 0.5929 0.4706 — 0.4715
FeNiCoCrMn —0.931 — 0.8674 — 1.1458 - 14 — 0.8135 1.1424 1.0833 — 1.5052 1.1067 —1.1168

Table 6

Prelogarithmic energy factors (in GPa) for reactions listed in Table 1
Material E EP E9 EY
Ni 7.8167 7.7237 10.9254 10.5535
Cu 3.7288 3.6709 5.9389 5.7074
Pb 1.0057 0.9931 1.6482 1.5978
Ag 2.8696 2.8357 4.4214 4.2857
FeNiCoCrMn 7.2599 7.1077 11.0277 10.4186

reactions I, II, and III respectively.

Determination of the correct Kj is critical to determine the elastic energy Egpastic accurately, particularly when the elastic
constitution of the material is anisotropic as in all considered cases of this study. A common approximation from isotropic elasticity is
to use the elastic shear modulus y = Cy4 for all the interaction parameters K (Hirth and Lothe, 1983). Such an approximation however
cannot account for the mixed nature of the participating dislocations, the full elastic anisotropy of the material, or the varying
strengths of elastic interaction between different dislocations (i.e. K could strongly vary for different i and j). For instance, in reaction I
in Ni, notice the significant variation in the magnitude of the anisotropic interaction parameters K;; for different i and j (refer first row
of Table 3), calculated by the proposed approach in this study (Appendix C). These magnitudes differ from the shear modulus C44 by
over 50% of the modulus (refer Table 2), implying a proportionate difference in the elastic energy Egiastic. In that regard, the isotropic
approximation would lead to erroneous results and the anisotropic calculation proposed in this study is necessitated for correct
calculation of the elastic energy.

The image interaction energy can also be evaluated in a similar manner as the elastic energy above. Only two dislocations, the
incoming leading partial and the stair-rod Shockley partial, have an explicit energy of image interaction with the TB (the other dis-
locations are directly on the TB and have no image interaction energy). The image interaction energy is given by the expression:

max
SI

Eniace = Y (E)—EY) / (%) In(xsing;)dx (2.17)

ic{1,4} o

where 6; is specified in Fig. 4 (a) and E? and E° are pre-logarithmic energy factors (as defined in Section 2.1.1) corresponding to

dislocations with unit Burgers vectors Bi = ?1— /bi. As discussed in Section 2.1.1 and further in Appendix A, the pre-logarithmic factors
E? and EP capture the elastic strain energy of the i" dislocation when it is on the TB (s; — 0) and when it is far away from the TB
(si — oo) respectively. Consequently, the difference of these energy factors, as seen in Eq. (2.17), effectively captures the magnitude of
elastic interaction energy with the TB. The calculation of the pre-logarithmic energy factors is deferred to Appendix A. They depend on
the anisotropic elastic constants, the twin crystallography and the direction of the Burgers vector. It is sufficient to evaluate the pre-
logarithmic factors for the unit Burgers vectors: 31||[21T]M = [211]; and 34\\[ﬁ]T. These two Burgers vectors correspond to the
incoming Shockley partial and the stair-rod Shockley partial for all reactions I, II and III (refer Table 1). The computed pre-logarithmic
factors, E? and E{°, are listed in Table 6. To the best of our knowledge, such an explicit determination of these factors for image

11
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interaction energies, in the presence of elastic anisotropy, has not been made in prior studies.
Next, the applied work is evaluated as:

st max

4
w=>" / of; | by | fi(x)dx (2.18)

i=1

where g, is the applied stress tensor, 7; is the slip plane of the corresponding dislocation (making @ﬁi.gi the Schmid factor), and s{"**,
b;, fi(x) have been defined earlier. The applied stress tensor is determined from the loading direction v (Table 1), using the dyadic
product i.e. 6, = 6,(V® V).

Finally, the misfit energies of the dislocations, Eyisrir , represent the atomistic energies of misfit/disregistry within their cores. To
evaluate Eyjspr, the generalized fault energies corresponding to the participating dislocations are required. In the D-TB reactions

considered in this study, the Generalized Stacking Fault Energy (GSFE) curve for the Shockley partials - ?Lp (i=1)and FSR,SP (i=4),

and the Generalized Planar Fault Energy (GPFE) curve for the twinning partials - ?Tp (i=2) and FSR,TP (i= 3) are required. The
respective fault energy curves can be well approximated by trigonometric functions (Chowdhury et al., 2014; Wang and Sehitoglu,
2013) given by the equations:

. 2 b
Yisr+<%)(lfcos(£)) forOSuS%
s 2mu b
S (1-e(G)) or s

u -2 S 2
7, (u) :M (1 —cos(ﬂ))for 0<u<bgp
2 brp

Yu 72ysf 27u
y3(u) = % (1 _ Cos(b

)) for 0 < u < bsg-1p
SR—TP

Vus 27u bsg—sp

= (1-cos for 0 <u<——

2 < <bSR—SP)) 2

= Viep 2 b
Vist T (—7/“S y'“) (1 - cos( il >) for RSP <u<bg_sp

) 2 bsr—_sp T2

Thus from Eq. (2.19), the critical fault energies involved in the D-TB reaction are the unstable stacking fault energy y,,, stable
intrinsic stacking fault energy y,, the unstable twinning energy barrier y,,, and the twin boundary energy y,. These energies are listed
in Table 6 for all materials in this study. The fault energies for Ni-based alloys were determined from additional Molecular Dynamics
(MD) and Molecular Statics (MS) simulations in this study, discussed in Appendix D. Given the fault energy landscapes and the critical
fault energies, the total misfit energy of the system is given by the equation:

(2.19)

va(u) =

™

Eyiseir = Z Z?ﬂ td;))d; = Z Z}’, (2.20)

n=1 =0 n=1 =0

where t is an integer varying from 0 to T, T™* = [S™® /b] is the smallest integer larger than S, and a; represents periodicity in the
lattice. The concept of a discrete periodicity is a key to determine the misfit energy. It has thus far been assumed to be the periodicity in
atomic positions of the underlying crystal structure, normal to the dislocation line along the disregistry distribution (i.e. along di-
rections of increasing x; in Fig. 4). We assert that this is only true for the special case where the dislocation is of edge character and
generalize for the case of mixed dislocations as are involved in the D-TB reactions. This is a significant and necessary modification. We
state that the periodicity @ more generically corresponds to the periodicity in the energy landscape along the Burgers vector of the
dislocation. This periodicity is the same as the magnitude of the Burgers vector of the dislocation itself. Hence, we have a; = b; for all
the dislocations in this reaction.

Finally, the misfit energy of the intrinsic stacking fault trailing behind the leading partial must be excluded. This is because the
a/2(011) extended dislocation is presumed to approach the TB without any change in the stacking fault length between its two
a/6(112) partials, and only the leading partial interacts with the TB in the slip-incorporation D-TB reaction. Thus, Eq. (2.20) is
modified as:

Tmax

Ennseir = Eyusrr — 7ist (ST — 1) Z Z 1i(fi(thi)bi = 1 (ST = 1) (2.21)

Now that all the summands in Eq. (2.15) have been determined, Erorar. can now be computed. The constraint of conservation of
Burgers vector (Eq. (2.12)) is included through a vector of Lagrange multipliers % = (u;,4,,45), given by:

12
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Fig. 5. Validation of EDC model through atomistic simulations: (a) Constructed crystal structure within the simulation supercell including a (111),,
twin and an extended a/2[110],, dislocation dissociated into a leading partial a/6[211],, and trailing partial a/6[121],,; atomistic simulation of D-TB
reaction III is shown here (b) Under applied load, the leading partial approaches the TB and undergoes a slip-incorporation reaction leading to
formation of a stair-rod dislocation on the TB and an incorporated twinning partial;(c) the fault energy signature y traced in a small control volume
(represented in the inset) around the cores of the incident and incorporated partials vary depending on the specific D-TB reaction; note that y = y,; at
point A corresponding to the incoming Shockley partial, and y = y,; at point B corresponding to the incorporated twinning partial, and the peak
€Nnergy 7, obtained from the simulations is used to calculate the critical stress Thnss for each reaction (fault energies sampled at 13 positions are
shown by the data points in Fig. 5 (c), and a curve fit is shown)

gmax
i

4
Ey = EroraL + #.- ?1 - Z / bip; (x;)dx; (2.22)
0

i=1

where Ej; is the objective function to be minimized and Erorar, Ei, ?1, pi(x), ", have been defined earlier. For a given position of the
leading partial s1, Ey is minimized with respect to each of the parameters {s;, &, 4;} (wherej = 2,3,4 andi =1,2,3,4) ata given applied
load o,. This yields the following equations that can be solved for the aforementioned parameters.

%Eu_ . %En_ . 9En _ (2.23)
0s; 0%; OH;

This problem is solved using the minimization routine implemented in the function fmincon in MATLAB®. An energy-minimized
state {s]@’, &M, at a given s; and applied load 62, corresponds to a state of equilibrium for the dislocation cores at that position under
the load 62. The purpose of the model is to determine the critical applied load 6<" required to drive core-evolution in the D-TB reaction
at the given position of the incoming leading partial, s;. In other words, we want to determine the critical load 65", at a given s;, when
the system departs from equilibrium or is unable to find an energy-minimizing equilibrium state. To determine this load, we start from
0, = 0 and increment the load in discrete steps. At each step, the energy-minimized state {s;, £;} is determined. At the critical load, o, =
oS, the system reaches an instability where either the minimum does not exist (i.e. no solution to (2.23) and solver runs into an infinite
loop), or the minimizing state parameters are unphysical. The state of the evolved dislocation cores {s]?",:ffr'}, at this critical load is
taken from the energy-minimized state from the previous load step. The occurrence of such an instability as a marker of critical applied
load, has been previously suggested in early works on non-planar cores in BCC materials (Alkan and Sehitoglu, 2019; Kroupa and
Lejcek, 1972; Kroupa and Vitek, 1967) and is adapted for the EDC model as described above. The critical load is interpreted as a CRSS

on the incident slip system, given by 7¢ges = | 06" M1 b, for stage 2 of the EDC model. Thus, by determining Tepss(51) and {si", &} at

different s; values, the EDC model determines the critical stress for the D-TB reaction to occur and reveals the evolving cores during the
reaction.

2.2. Atomistic Simulation of Dislocation Reactions
The results of the EDC model are validated against atomistic simulations of each D-TB reaction considered. Simulations are per-
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formed in LAMMPS (Plimpton, 1995) with Ni as the study target, employing the interatomic potential developed in (Ren and Sehi-
toglu, 2016). The simulation supercell is constructed with the axes aligned with crystallographic directions of the matrix as follows:
x || [101]y;, y || [010]y and z || [101],. The box dimensions are chosen as 30Lj01] X 90L{10] X 10L g4

periodic distance along [uyw],, in the lattice. A 15-layer twinned region is introduced into the crystal structure, with the TBon a (111),,
plane, as shown in Fig. 5. Periodic boundary conditions are enforced across the boundaries normal to the z-axis (i.e. xy bounding
planes) while shrink-wrapped boundary conditions are enforced across the xz and yz bounding planes. At the shrink-wrapped
boundaries, a thin layer of atoms with a thickness higher than the interatomic potentials’s cutoff distance is specified. In this layer
all atoms are constrained from moving in any direction, serving as the pristine twinned crystal structure bounding a mobile core region
of the simulation box where the D-TB reaction is to be simulated. The a/6(112) Shockley partials are introduced by first inserting a
a/2(110) full dislocation on a {111} slip plane and then equilibrating the atomic structure to foster splitting of the full dislocation into
two partials separated by a stacking fault. Thus, an extended a/2[110] dislocation is inserted within the matrix on the (111),, by
enforcing the anisotropic elastic displacement field on the atomic structure. The constructed atomic structure is first relaxed using the
conjugate gradient energy minimization. Subsequently, a low-temperature of 10 K is ascribed to the system by first initializing atomic
velocities corresponding to this temperature and then executing a Molecular Dynamics (MD) run at this temperature for 1 pico-second
(1000 simulation time steps of 1 femto-second each).

After both these equilibrating simulations, the extended dislocation splits to form two a/6(112) Shockley partials, the leading

where Ly, represents one

partial of which is ?Lp = a/6[211],,. Strain-controlled loading along [010],,, [123],;, and [111],, crystal orientations are applied for the
reactions I, II, and III respectively and velocity verlet time-integrator has been used to advance the dynamic time steps during
deformation. OVITO (Stukowski, 2009) is utilized to visualize the results and the in-built dislocation analysis tool is used to confirm
that the observed D-TB reactions match with the targeted reactions. As anticipated, under specified loading, the incident leading
partial moves towards the TB and upon impact triggers the corresponding incorporation reactions.

2.2.1. Control Volume Approach (CV + PN)

Next, we determine the CRSS required for each D-TB reaction within a Molecular Dynamics (MD) framework. This study proposes a
modified approach that tracks a local Control-Volume (CV) surrounding the dislocation cores in the simulation, combining with the
Peierls-Nabarro (PN) model to determine the CRSS. Thereby this approach focuses on dislocation core-evolution in the simulations and
overcomes the unduly high-stresses in MD due to strain-rate effect. The approach employed is motivated from (Chowdhury et al., 2013;
Ezaz et al., 2011; Sangid et al., 2012) where the average potential energy of a small CV of atoms is tracked. This control volume is
chosen to be a cuboid with a rectangular projection on the (101),, plane, with dimensions L; x L, where L; = 2d{111; spans along the
slip plane of the dislocation core, and Ly = d(;11) spans normal to the slip plane (refer inset in Fig. 5 (c)), where dy111, is one interplanar
spacing of the {111} slip plane. The size of the CV is chosen to be this small because only then does the energy obtained from the CV
directly correspond to the unstable fault energy of the dislocation core without involving its strain-energy. It has been previously
shown that only at such small sizes does the fault energy obtained from the CV approach exactly match the unstable fault energies
obtained from the GSFE (Chowdhury et al., 2013). The third dimension along [TOl]M, parallel to the direction of the dislocation line,
spans the length of the simulation box in that direction. This control volume is tracked throughout the D-TB reaction, subsequently
following the incorporated twinning partial after completion of the reaction. The average energy of this tracked volume corresponds to
the unstable stacking fault energy y,, when the leading partial is away from the TB. As it approaches the TB and the D-TB reaction is
triggered, an elevated fault energy y,,.. is observed until the value saturates to the unstable twinning energy y,, of the incorporated
twinning partial. A positional coordinate syp is specified to characterize the state of the reaction (refer Fig. 5). During approach of the
incident partial, the coordinate characterizes the position of the partial away from the TB taken along the direction of approach, and
after completion of the reaction, the coordinate characterizes the position of the incorporated twinning partial (TP) away from the
stair-rod taken along the TB. Snapshots of the simulated incorporated reactions are shown in Fig. 5 (b), showing the behavior of the
tracked fault energy in the control volume and the corresponding positional coordinate.

The CRSS for the D-TB reactions are determined from the elevated fault energy y,,, as follows. The leading partial is considered to
be a Peierls dislocation with the disregistry distribution given by equation:

Fx) = by G + %tan’] 5i> (2.24)

where &, is the critical core-width of the partial predicted by the EDC model when 7l is maximum (i.e. core-width at peak stress of
the D-TB reaction predicted by EDC model). The elevated fault energy y,,,, is taken as the unstable fault energy of the incident leading
partial. The fault energy curve for the dislocation is then given by:

ax — Vist 2 b
yisf""(M)(l—COS(ﬁ)) forOSMS%

p(u) = (2.25)

2 b
o (1-eo () o us

To determine the Peierls stress, the misfit energy of the partial is calculated, given by the equation:
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Fig. 6. CRSS predictions for each D-TB reaction listed in Table 1, are determined from the EDC model developed in this study; the CRSS on the
incident slip system required to progress the D-TB reaction is predicted at varying positions of the incident leading partial, s;; the peak CRSS on the
incident slip system required for the reactions are respectively given by (z1,711,7m ), observed at a critical position s; = s, ; the solid circles represent
the predicted CRSS values from the EDC model, and the dashed trend-line is presented for convenience

Minax

m=—Mmax

Emiserr—mp (4) = ( ™MD (f(ma’ - u))a’ - Yisf(Mmaxa, + M)) (2.26)

where @ = byp. A large value of My, = 1000 is chosen. Briefly, the misfit energy determined in this approach represents the barrier to
be overcome by the incident partial to complete the D-TB reaction. The critical stress required to complete the D-TB reaction is then
given by:

d
TE/IIESS = max{— E (EMISFIT—MD(M))} (2.27)

Thus, in summary, the critical stress th is determined from the maximum gradient of the misfit energyEwsrr—mp (1), with the
misfit energy determined from the elevated unstable stacking fault energy y,,., within the CV during the reaction. The computed
critical stress from MD, 7o, is compared against predictions of the EDC model. The results of the model and the atomistic validation
are presented below. It is worth mentioning that the control volume approach is a robust framework within the state-of-the-art atomic-
scale MD framework to analyze D-TB reactions. Yet it still requires careful analysis of a large set of evolving energies and atom po-
sitions for effective extraction of the CRSS, and is still reliant on the efficacy of the underlying interatomic potential. The EDC model

has significant advantages to overcome these challenges as discussed below. The implications of the results are also discussed.
3. Results and Discussion

The results of the EDC model for the slip-incorporation reactions considered in Table 1, for the FCC material - Ni, are presented in
Fig. 6. The critical applied stress is determined as the D-TB reaction progresses, with the progression characterized by the reducing
magnitude of the incident partial’s position s; with respect to the TB. The applied stress is resolved on the slip system of the incident
partial to yield the CRSS for the incident dislocation. Note that the CRSS for all three reactions begin at the same value for large s; i.e.
when the incident partial is away from the TB. This CRSS corresponds to the Peierls stress of the incident partial in the matrix, given by
rIL,P , and is independent of the loading orientation. The CRSS starts elevating as the incident partial approaches due to a repulsive image
stress from the TB. This is captured by stage 1 of the EDC model. Note that the CRSS-elevation in stage 1 is modest and nearly similar for
all three D-TB reactions. When s; < 5byp, stage 2 of the EDC model is employed. In this stage, there is a distinct peak CRSS observed at a
critical position s; = s.r, where the core-evolution from the incident partial to product dislocations is still ongoing. Further, the s, is
not unique and can differ according to the reaction. The resulting CRSS-elevation is much higher than that observed in stage 1 and is
significantly different across the three incorporation reactions.

Recall that the applied loading orientation 6, = 64(V ® V), where ¥ is the direction of loading listed in Table 1, is distinct for each

reaction. The critical applied stress ¢§" is interpreted as a resolved CRSS for the following reason: It is well-known that irrespective of
the loading orientation v, the CRSS of a slip system in the matrix away from the TB, is a unique value (for FCC materials) primarily
dependent on the underlying lattice friction (for given ambient conditions of temperature and pressure). The results of this study show
that this uniqueness is broken under prevalence of D-TB reactions, as each D-TB reaction exhibits a distinct elevated CRSS. In other
words, there is a more complex dependence of the critical stresses on the loading orientation that cannot be captured by a simple
resolution of the applied load on a slip/twin system. And it is imperative to capture this dependence since the elevated CRSS values
(t1, 7, 7 ) for the D-TB reactions considered are at least 10-fold higher than 7%P, critically affecting mechanical behavior in monotonic
strain-hardening, cyclic fatigue etc. This dependence is captured by the EDC model. The predictions of the EDC model are validated
against atomistic simulations that are currently one of, if not the best, state-of-the-art techniques to understand D-TB reactions. Results
are presented in Table 8, showing excellent agreement.

The EDC model further clarifies the complete trajectory of the D-TB reaction in terms of how the core of the incident leading partial
evolves into product dislocation cores. Taking reaction I as an example (refer Table 1), evolving core distributions of the reaction, for
Ni, are presented in Fig. 7. Fig. 7 (a), 7 (b) and 7 (c) represent different states of progression of the reaction. The dislocation density
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Fig. 7. Evolving core structures in D-TB reaction I in Ni: (a) Dislocation density distribution of the leading partial (LP) upon approach to the TB, the

core-width of which is given by &; (b) Constriction of the incident core (5’1 < &) and redistribution to form product dislocations (c) Completion of
the D-TB reaction marked by the formation of the complete twinning partial (TP) core and the stair-rod core structure (in the figure, slipy refers to
the slip plane of the incident partial in the matrix and slipy refers to the slip plane within the twin)
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Fig. 8. Evolving core structures in D-TB reaction II in Ni: (a) Dislocation density distribution of the incident partial upon approach to the TB, the
core-width of which is given by &; (b) Constriction of the incident core (5’1 < &) and redistribution to form product dislocations (c) Completion of
the D-TB reaction marked by the formation of the complete twinning partial core and the stair-rod core structure (in the figure, slipy refers to the
slip plane of the incident partial in the matrix and slipr refers to the slip plane within the twin)
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Table 7
Fault Energies (in mJ/m? for FCC materials considered in this study: Stable intrinsic stacking fault energy y;, unstable stacking fault energy v,
unstable twinning energy 7, twin boundary energy

Material Tus Yist Tut Vst Ref.
Ni 292 134 359 67 This study
Cu 180 41 200 20 (Kibey et al., 2007)
Pb 87 49 92 22 (Kibey et al., 2007)
Ag 133 18 143 9 (Kibey et al., 2007)
FeNiCoCrMn 439 8 538 7 (Alkan et al., 2018b)
Ni-10%Ti 220 126 266 64 This study
Ni-20%Ti 140 112 189 66 This study
Ni-3%Co 303 129 368 69.5 This study
Ni-10%Co 285 112 345 56 This study
Ni-20%Co 270 92 325 45 This study

Table 8

Comparison of twin interaction stresses (in MPa) obtained from both approaches and determined core-width of the incident leading partial at the
critical configuration (&)

Loading Orientation Evolving Dislocation Core (EDC) Model (MPa) Atomistic Simulations (CV + PN), z¥ixs (MPa) &.(A) (EDC)

Reaction I, 71 [010] 79 74 1.13
Reaction II, 75 [123] 121 116 1.02
Reaction III, 7y [117] 68 62 1.15

distribution for the incident leading partial is plotted in Fig. 7(a). The core of the leading partial constricts &, < & (Fig. 7 (b)) before
redistributing to form the cores of the product dislocations. This constriction of the core explains the elevation of CRSS in stage 2 of the
model as a narrower core leads corresponds to higher friction stress (Hirth and Lothe, 1983; Schoeck, 2002). It is worth emphasizing
that such a constriction is characteristic of stage 2 and completely absent in the image-interaction regime of stage 1. In stage 1, the
image-interaction of the incident partial with the TB is purely elastic and does not affect the core-width. In stage 2 however, the
core-width changes are far more significant. And these changes are driven by a coupled influence of misfit energies in the evolving
cores and elastic energies of interaction between the cores at close proximity to each other. This also explains the higher elevations in
CRSS realized in stage 2 as compared to stage 1 because the CRSS is most sensitive to the core-width of the dislocation (Hirth and
Lothe, 1983). The trajectory of evolving cores for reaction 2 is also shown in Fig. 8. Note that although the stair-rod dislocations in both
reactions are composed of a Shockley partial core and a twinning partial’s core, their relative orientations and the Burgers vectors are
both different. Both these factors are involved in dictating the resulting CRSS elevation and is sufficiently captured by the EDC model.
And although out of scope for the present study, it would be a worthwhile pursuit to further compare the predicted core-evolutions
with predictions from atomic-scale simulations following the works of (Wang et al., 2012).

The capacity of the EDC model to predict critical stresses throughout reaction-progression arises from the model of the core-
structure of sessile dislocations in the reaction, namely the stair-rod dislocations. As mentioned before in Section 1, there is
currently no understanding of the core-structure of such sessile dislocations, to the best of the authors’ knowledge, and it is the authors’
opinion that this void is fundamentally responsible for the absence of analytical models for D-TB reactions. The EDC model forwards a
rigorous derivation of the core-structure, for the first time in literature. This proposition is based on the fact that the underlying crystal
structure (in this case, FCC) has certain preferred crystallographic slip/twin systems where dislocation disregistries prefer to distribute,
exhibiting low atomistic misfit energy. Thus, any dislocation within the system will try to minimize its atomistic misfit energy by
havings its core of disregistry distribute on these specific systems within the material. For instance, in FCC, this system is given by the
{111} family of planes, preferably admitting disregistries along the (112) direction. The most preferred slip and twin system for FCC is
the {111}(112) system, with the Burgers vector of slip and twinning both of type a/6(112). Now for a non-conventional Burgers vector,
such as the a/3(010) stair-rod in reaction I, it is plausible that the disregistry will prefer redistributing along {111}(112) systems, with
two or more such systems together forming the net core structure. This is precisely the basis behind the core decomposition in Table 1,
eventually captured by the model as shown in Fig.s 7 and 8. For the stair-rods modeled, the decomposition specified in Table 1 is
unique, and no other decomposition combines to give the final Burgers vector of the stair-rod dislocations. Ultimately, the success of
this key modeling hypothesis can be evidenced from the agreement between CRSS predictions for the reactions and those obtained
from atomistic simulations. It will be shown later that the EDC predictions agree with experiments on a distinct material system,
further corroborating the success of this hypothesis and consequently of the model itself.

The efficacy of the model is illustrated by applying it to other FCC materials, also exhibiting its utility for exploration of next-
generation alloys and ab initio materials design in general. We first focused on the effect of alloying elements Titanium (Ti) and
Cobalt (Co) on the critical CRSS for D-TB reactions in Ni. Fault energetics of the considered alloy compositions are unavailable in the
literature and were computed by the authors using molecular statics (MS), as described in Appendix D, and listed in Table 7. The elastic
constants are assumed to be the same as that of Ni, primarily to study the impact of changed fault energetics brought about by alloying.
The CRSS predictions from the EDC model, for the D-TB reactions I, Il and III are plotted against the fault energy signatures as shown in
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Fig. 9. EDC model applied to Ni-Ti and Ni-Co alloys; results are plotted against standard fault energy signatures in FCC materials, revealing a
strongly positive correlation between the predicted CRSS for the D-TB reactions with the unstable stacking fault energy (y,,) and unstable twinning
energy (y,.); poor correlation is observed against the intrinsic stable stacking fault energy (y;s)

Fig. 9. These results reveal the critical dependence of the CRSS on the unstable fault energies (unstable stacking fault energy, y,,, and
unstable twinning energy, y,,.) for the first time in literature. Furthermore, it is shown that the commonly quoted intrinsic stacking fault
energy i, although a good indicator of twinnability (Tadmor and Bernstein, 2004; Venables, 1961, 1964), is poorly correlated with
the critical stresses of D-TB interaction. The implications of these dependencies are exemplified in the predictions for the Ni-Ti system,
where the unstable fault energy signatures y,, and y,, reduce far more sensitively with Ti concentration as compared to y;y, ultimately
reflecting in a significant reduction of the CRSS for all 3 D-TB reactions considered. However, it must also be emphasized that an
enhanced twinnability (due to lower y;4) impacts the mechanical behavior by extrinsically introducing additional twin barriers to
dislocation slip, although intrinsically it has a modest effect on the D-TB critical stress itself.

We further extend the application of the EDC model to other FCC materials beyond Ni-based alloys, for the same reactions
considered thus far. The same correlation between the underlying fault energetics and the predicted CRSS values are reiterated, as
shown in Fig. 10. Note that the developed analytical framework is capable of modeling complex alloys such as the multi-component
High Entropy Alloy (HEA) FeNiCoCrMn, for which reliable interatomic potentials are yet unavailable. While this would pose a
challenge to study D-TB reactions within atomistic simulation frameworks, the EDC model is not limited by it as it relies on no
empiricism at all. The success of the framework is rooted in the capacity to model atomic interactions of both elastic (recoverable
stretching of atomic bonds) and inelastic (irrecoverable bond rearrangements) nature within the evolving dislocation cores. Thus, the
model only relies on fundamental properties corresponding to each interaction, respectively the elastic constants and the fault en-
ergetics, ultimately dictating the predicted CRSS. The introduction of such a model is particularly important for the modern field of
HEAs because the prevalence of high strain-hardening arising from slip-twin and twin-twin reactions has long been known but yet to be
analyzed from an ab initio standpoint.

We further explore the versatility of the model by applying to several other incorporation reactions (listed in Table 9) in the
FeNiCoCrMn system. The material elastic constants and fault energies material are listed in Tables 2 and 7 respectively, with the
additional E and K constants calculated and listed in Tables 6 and 10 respectively. These reactions consider various stair-rod dislo-
cations (with varying non-conventional Burgers vectors) that exhibit distinct core decompositions. For instance, in reaction V, the
stair-rod dislocation a/6[323] can only be described as a combination of the incident leading partial’s core and a twinning partial on the
TB. Note that this stair-rod decomposition implies the incident partial is halted at the TB, and thereby stops the trailing partial behind
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Fig. 10. EDC model applied to FCC materials: Pb, Ag, Cu, Ni and High Entropy Alloy (HEA) FeNiCoCrMn; results are plotted against standard fault
energy signatures in FCC materials, revealing a strongly positive correlation between the predicted CRSS for the D-TB reactions with the unstable
stacking fault energy (y,,) and unstable twinning energy (y,.); poor correlation is observed against the intrinsic stable stacking fault energy (y;s)

Table 9
Additional D-TB reactions considered in this study.
Loading Direction Reaction # Reaction
[212)y, v g2, - gi21)y + /10T, [
_ Shockley Twinning  Stair — rod
a a a
2 ! g[ZH]M - E[HZ]M +6[32§]M partial partial
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213y vi o120k = g2y +gl231)y partil
_ Shogkley T1(41l'u1ning %tair —rod
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312y 427, - 2nzT,, + Loso
12T = g2l +g0d0ly
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it. Such an incorporation reaction implies a slip-blockage as both partials are blocked by the TB. Thus, this study proposes a clarifying
reason for blockage in context of the stair-rod core structures that form during the incorporation D-TB reaction. Furthermore, the core-
structures associated with the reaction are shown in Fig. 11, for FeNiCoCrMn, revealing a highly constricted core and consequently a
much elevated CRSS. The high CRSS value is further indicative of the tendency for slip-blockage associated with the reaction.

We further validate the physical fidelity of predictions from the EDC model by comparison with recent experimental data on the
HEA FeNiCoCrMn. In refs. (Bonisch et al., 2018; Sidharth et al., 2020a), the strain-hardening behavior of the HEA was experimentally
characterized (at low strain-rates and low-to-ambient temperature), noting the point of onset of slip-twin interactions based on Digital
Image Correlation (DIC) and more precisely from the location of an inflection point on the strain-hardening region (of the stress-strain
curve) where there is a distinct increase in slope. The corresponding D-TB reactions were also established. The experimental CRSS was
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Table 10

International Journal of Plasticity 148 (2022) 103141

Anisotropic Parameters (K) for FeNiCoCrMn Reactions (in x 102GPa) for D-TB reactions in Table 9 (note that depending on the stair-rod decom-
position in the reactions, there can be only 3 dislocation cores involved i.e. i = 1,2, 3 instead of 4, reducing the number of K factors required in the
model, as is the case for all reactions except reaction VIII below)

Reaction # K1 K2 K33 Kys K12 Ka3 K13 K4 K24 K34
v — 1.3691 — 0.8674 — 0.8674 — 1.7706 1.0762 1.7304 - - -
A% —0.931 — 0.8674 — 0.8674 0.7792 0.8466 — 0.8135 - - -
VI —1.3691 — 0.8674 — 0.8674 2.2503 1.3588 — 2.3076 - - -
VII —1.3691 — 1.1458 — 1.1458 — 1.2037 1.2072 1.2403 - - -
VIII —0.931 — 0.8674 — 1.1458 — 1.4008 — 1.3616 0.9089 — 1.8809 — 1.2844 — 2.2663 1.382
X — 1.3691 — 0.8674 — 0.8674 1.7304 1.0762 — 1.7706 - - -
$;=354 || (b)
[112]
X3
TB 5
(C) p/b
Stair-rod 0.75

Fig. 11. Evolving core structures in D-TB reaction V in FeNiCoCrMn: (a) Dislocation density distribution of the incident partial upon approach to the

TB, the core-width of which is given by &; (b) Constriction of the incident core (5’1 < &) and redistribution to form product dislocations (c)
Completion of the D-TB reaction marked by the formation of the complete twinning partial core and the stair-rod core structure (note the composing
cores of the stair-rod are from the incident Shockley partial and a twinning partial on the TB)
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Fig. 12. CRSS for nine D-TB reactions studied on two different TBs are plotted against the magnitude of the sessile stair-rod dislocation in FeNi-
CoCrMn (*Experimental data from ref. (Bonisch et al., 2018); ** Experimental data from Ref. (Sidharth et al., 2020a))
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obtained by applying the Schmid factor to the measured axial stress at the location of slip/twin interaction. The EDC model was applied
to the corresponding D-TB reactions, on the respective TB observed, and the predicted CRSS values were compared against experiment
(marked by * and **), showing good agreement, as shown in Fig. 12. At conditions of high strain-rates and/or high-temperature, the
CRSS predictions of the EDC model would still offer a reliable baseline that can be further modified through an Arrhenius expression.
The reader is referred to (Argon, 2007; Kocks et al., 1975) for a more detailed exposition on this topic. The predicted CRSS values are
plotted against the residual Burgers vector magnitude, which in this case is the magnitude of the stair-rod dislocation’s Burgers vector,
validating the strongly positive non-linear correlation between the CRSS and |bs_gr| formerly proposed in earlier studies (Abuzaid et al.,
2012; Bonisch et al., 2018; Lee et al., 1989; Wu et al., 2018). The agreement with experimental results and with the atomistic sim-
ulations as shown before both validate the efficacy of the EDC model proposed in this study.

In summary, this study forwards an analytical framework capable of reliably predicting the critical stresses for D-TB reactions
without any empiricism. While the current study focused on slip-incorporation reactions, we assert that the framework can be
extended to study reactions of any type such as slip-transmission, multiplication, or even those involving an incident full-dislocation
instead of an incident partial (Ezaz et al., 2011). For instance, to study a different type of D-TB reaction for the same material system
and twin crystallography, the major changes required would be determination of the Burgers vectors involved, calculation of aniso-
tropic interaction parameters, the number of disregistry cores and, the respective fault energy curves (v, Yue 7ist)> all of which are
modifiable inputs into the same developed analytical framework. A change in the material system and twin crystallography can also be
accommodated by appropriate changes in the material properties (fault energies and elastic constants) and the global coordinate
system e; — e — €3 in which the framework is developed (Fig. 2). Thus, the proposed framework can be adapted for other material
systems such as HCP metals and alloys where D-TB reactions are widely prevalent and significantly influence mechanical response
(Bacon and Vitek, 2002; Chen et al., 2019; Dang et al., 2021; Gong et al., 2018; Li et al., 2018; Serra and Bacon, 1996; Serra et al., 2002;
Serra et al., 1991; Wang et al., 2014). Further, the framework also offers a foundation to analyze Dislocation-Grain Boundary (GB)
interactions, capable of modeling the evolution of dislocation cores of the participating slip systems, provided the atomistic energy of
the GB during the reaction is adequately determined and incorporated into the formalism (Kacher et al., 2014).

Ultimately, a prediction of the critical stresses for the D-TB reactions offers the capacity to quantify mechanical behaviors such as
strain-hardening and fatigue initiation thresholds, both of which are strongly affected by D-TB interactions (Alkan and Sehitoglu,
2017). Even the scenarios of dislocation-absorption as recently revealed in HCP materials (Chen et al., 2019) can be approached using
the proposed framework. EDC predictions can also serve as a useful metric to quantify Hall-Petch and inverse Hall-Petch effects in
nanotwinned materials, by modeling the CRSS change due to repulsive or attractive interactions with TBs (Beyerlein and Tomé, 2008;
Carlton and Ferreira, 2007; Gu et al., 2014b; Proust et al., 2009). The dependence of these behaviors on the orientation of the applied
load and the underlying microstructure (i.e. the matrix-twin crystallography, the specific TB plane involved) can also be predictively
explored preceding experimentation. Finally, the developed EDC model can be applied to several materials and alloys, including
hypothetical materials compositions in materials design, useful for the exploration of next-generation materials with unprecedented
mechanical properties.

4, Conclusions

In conclusion, this study forwards a new analytical framework, named the Evolving Dislocation Cores (EDC) model, to study
Dislocation — Twin Boundary (D-TB) reactions and predict critical stresses for these reactions without empiricism. This is the first
model of its kind to the best of the authors’ knowledge. The following novel contributions are also forwarded:

a The model is versatile and can be adapted to distinct D-TB reactions. Critical stresses for 9 distinct slip-incorporation reactions have
been predicted and good agreement of model-predicted stresses with atomistic simulations and experiments have been shown. The
adaptation of the model for a different type of D-TB reaction (other than slip-incorporation) has been discussed, asserting the
model’s applicability with few straightforward modifications. The EDC model agrees with results from CV+PN approach based on
MD and is further not limited by strain-rate effects or the fidelity of the MD potential which is a huge advantage.

b The EDC model successfully avoids the singularity of the elastic image interaction forces by duly considering the finite cores of the

dislocations and the corresponding atomistic misfit energies within them. While the necessity of such considerations has been

emphasized before and modeled for cross-slip of screw dislocations across TBs, this is the first time to the best of the authors’
knowledge that such a model has been developed for a D-TB reaction involving multiple participating dislocations including an
incident partial of mixed character and with sessile dislocations such as stair-rods.

The developed model is devoid of any empiricism and relies on fundamental material properties, namely the elastic constants and

fault energetics. Both properties can be reliably determined from ab initio predictive methods, such as Density Functional Theory

(DFT), or experimental measurements. With this capability, the model can easily be applied to several materials as demonstrated in

this study, and even for hypothetical material compositions considered during materials design. Thus, the proposed framework

removes dependencies on empirical interatomic potentials or other empirical parameters necessitated by atomistic or Dislocation-

Dynamics simulations. Further, the framework affords the opportunity for controlled study of the dependence of predicted critical

stresses on underlying fault energies and elastic constants.

d A rigorous determination of the core-structure (core-widths) of complex sessile dislocations such as stair-rod dislocations are
proposed for the first time in literature. A plausible decomposition of the non-conventional Burgers vectors of these sessile dis-
locations into a linear combination of preferred Burgers vectors on preferred slip systems of the underlying crystal structure is

0
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proposed. The plausibility and efficacy of the proposed decomposition is validated by the agreement of critical stress predictions
with atomistic simulations and experiments.
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Appendix A. Determining pre-logarithmic factors of image interaction energy: E*and E°

The pre-logarithmic energy factors for anisotropic continuum media are determined using the Eshelby-Stroh formalism (Eshelby
et al., 1953; Stroh, 1958). In this formalism, the displacement fields of dislocations, either in homogeneous anisotropic medium or on
an interface between two anisotropic media are described by a set of complex constants. We first define the coordinate system given by
the triad of vectors 1 — 7 — t, where 7 is normal to the plane of disregistry of the dislocation, i lies on the plane of disregistry pointing
away from disregistered side of the dislocation and t = m x A (refer Fig. A1 (a)). The elastic constants for the matrix and the twin, in
this coordinate system, are represented by Cl.lﬂm and Cizﬂm respectively. The reader is referred to (Bacon et al., 1980; Barnett and Lothe,
1974) for a more detailed exposition of the Eshelby-Stroh formalism and derivation of analytical expressions for the pre-logarithmic
factors. In brief, sufficient for the purposes of the study, the Eshelby-Stroh constants (pl, Al ), #=1,2,3..6 and k =1,2,3 are
determined by solving the equations:

Ciljkm (mi +p:ln’) (mm +pl]ln"')Alla =0 (A']')

I (i s ph) (1 4 plna) 1= 0 (A.2)

where the Einstein summation convention is followed in the indicial notations above and henceforth. The components of the vectors

Anisotropic medium 2 (Twin)

2 2 2
ﬁ (Cijlml pmAka)
-
- n —
1 m b
T — g
m Interface (Twin Boundary)
1 1 1 1 1 1
(Cijlm'pa'Akrl) (C[jlmlparAk(r)
Anisotropic medium 1 (Matrix) Anisotropic medium 1 (Matrix)
(a) (b)

N
Fig. Al. Coordinate triad for Eshelby-Stroh formalism used to calculate the pre-logarithmic energy factors for image interaction energy; b is the
Burgers vector of the dislocation, the thick line represents the plane of disregistry of the dislocation, 7 represents the normal to this plane and m lies
on the plane of disregistry pointing away from the disregistered side; (a) 7 is normal to the slip plane, Cilﬂm represents the elastic constants tensor for

anisotropic medium 1, and (p;,A;a) are the Eshelby-Stroh constants for the medium (the matrix) (b) Cizﬂm represents the elastic constants tensor for

anisotropic medium 2 (the twin), and (p2, A2 ) are the Eshelby-Stroh constants for the medium
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and matrices are arranged following the convention

Pat3 = ﬁrx
a A.3
Aars = Ara ( )

for @ =1,2,3, where the bar on the RHS represents the complex conjugate. The normal vector 7 is the normal to the slip plane (111),,
and m is chosen parallel to [121],, (direction of increasing x; in Fig. 4).
As derived in ref. (Stroh, 1958), the pre-logarithmic factorE® is given by:

andmdn
E*=-""" (A.4)
ar

where d; is obtained as

dy = (B),,bn (A.5)
given the Burgers vector b of the dislocation. And B is determined as,

B ——ii@l M A Ml) (A.6)

mn 2[ - ma’""an ma”"" an .

where M! is the inverse of L, given by

L, = —niCly, (Mo + piin )AL, (A7)

for a,j € {1,2,3}.
To determineE?, the Eshelby-Stroh constants for medium 2 (the twin), (p2,AZ, ), must also be determined by solving the equations

a’

Chin (mi +-p3i) (i + P )AL, = 0 (A.8)

I (€2 i p2) (1 4 p2a) 1= 0 4.9

where 7 is normal to the TB, parallel to [111];, and f is parallel to [121] along the TB, and C,

anisotropic medium 2 (the twin) in the t = i x i — m — 7 coordinate system. Subsequently, we can calculate

are the elastic constants of the

2 _ a2 2 2
Lja =—n Cijkm (m"’ + p(l"’”)Ak(l

o (A.10)
1‘4/20 = (Lz)ja
for a,j € {1,2,3}. And following the derivation in ref. (Bacon et al., 1980) the prelogarithmic factor E' 2 is given by
—1
0 = — . :
E’ =5—Gjbjb, (A11)
where G is the inverse of the matrix F, given by
Fsi = Z (Asl'aMtii +A32'aM121i) (A].Z)

a=1

Thus, the pre-logarithmic factors E° and E* for all D-TB reactions are calculated form equations (A.11) and (A.4), listed in Table 6
for reactions I-III.

Appendix B. Determining Peierls stress of incident leading partial

The Peierls stress of the incident leading partial, TIEP , corresponds to the lattice-friction stress which the incident leading partial
must overcome as it approaches the TB. The coordinate system 71t — 7 — t is defined for the partial, where 7 is normal to the slip plane
(#||[111],,), f is parallel to [121],,, and ||[101],, is parallel to the dislocation line. The leading partial is modeled as a Peierls dislo-
cation, with its disregistry distribution and dislocation density distribution given by the equations (the reader is referred to Section
2.1.1 for a brief introduction on Peierls dislocations):

£(3) = bp G+%tan’l ( : ) ) ) = ﬁ ®.1)

where x is the spatial coordinate along m. First, the equilibrium core-width, &, of the leading partial needs to be determined as it
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critically influences the Peierls stress. The core-width that minimizes the total energy of the dislocation is the equilibrium core-width,
given by Eq. (B.2). The total energy is a sum total of the atomistic misft energy in the dislocation core and the continuum strain energy
of the disregistry, given by Eq. (B.3).

& = afg?linETOTAL (&) (B.2)

ETOTAL (é) = EELASTIC (5) + EMISF[T (5) (B'B)
The misfit energy Eyyserr (¢) depends on the Generalized Stacking Fault Energy (GSFE) landscape, y, (1), for 0 < u < b;p, given by the

equation
c— Vit 2 b
Yier + (7/08—2}/'*) (1 —cos(ﬁ)) for Ogug%

7 (u) = (B.4)
s 27u b
% (l — cos (—bw)) for —;P <u<Lbp

where y; is the stable intrinsic stacking fault energy and y,, is the unstable stacking fault energy on the GPFE curve. The incident
leading partial, modeled by the Eq. (B.1), is positioned at s = 0 on the slip plane, and leads a stacking fault in its wake (in the region —
oo < x < 0), schematically represented in Fig. A2(a). The misfit energy of the dislocation’s core is computed excluding the energy of
the fault in its wake. Consequently, for a given core width of the incident leading partial, its misfit energy is calculated as,

Munax

Ewisrir (§) = < 71 (f(ma))a — yisme'an/) (B.5)

m==Mmax

where d represents the periodicity in energy barriers and is equal to the magnitude of the Burgers vector itselfi.e. @ = byp. Note that
the calculated misfit energy Eynspir(€) is taken per unit length of the dislocation line. It can be computationally verified that Eyyspir ()
converges as M, is increased. A large value of My,,x = 1000 is chosen.

Next, the elastic energy of the dislocation is determined as a function of its core-width, i.e. Egastic(€). The elastic energy is
determined by solving for the strain-fields numerically around the core of the dislocation and then spatially integrating the strain-
energy density. To determine the strain-fields corresponding to the dislocation core, we discretize the dislocation density as an
aggregate of fractional dislocations with Burgers vectors Ab; = p(x;) Ax, where Ax = 0.02byp is the chosen discretization step size (refer
Fig. A2). The strain-fields corresponding to each fractional will be determined and superposed at each location.

To determine the strain-fields of the fractional dislocations, the anisotropic Eshelby-Stroh (E-S) formalism is employed. Since this is
a formalism within linear elasticity, the displacement-field components, uy, and strain-field components, ¢y, scale linearly with the
magnitude of the Burgers vector of the dislocation. Thus, it is sufficient to determine the E-S constants once for a full dislocation with

(a) f(x)

r
Mmaxa

!
max@

dE = y(f(ma’))a’

(b)

Fig. A2. (a) Calculation of misfit energy from the disregistry distribution f(x) at discrete positions ma , where integer m varies between —M,,x and
M and d is the periodicity in energy barriers as discussed in the main text (b) Calculation of strain energy from the dislocation density distri-
bution p(x), where the strain field e(x;,x2, &) from fractional dislocations Ab = p(t)At are superposed to yield the net strain at spatial location
p(x1,x2) and consequently the strain-energy density € (x;,x2,£), then integrated over space to yield the total strain-energy for the Peierls dislocation
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unit Burgers vector BLp, along the direction of the leading partial’s Burgers vector FLP. Then, for each fractional dislocation Ab; =
p(x;)Ax, the displacement-fields and consequently strain-fields are scaled as u; — (Ab;)y; and e — (Ab;)ey respectively. Thus,

applying the E-S formalism for a unit Burgers vector byp, the displacement-field at a position X, is given by the equation:

up = 27[1 ZnaAulLsab ln(xl +pax2) (B6)

a=1

where x; = Mm.X, x = 1.%, 5, =1 for a € {1,2,3} and 5, = —1 for a € {4,5,6}, and {p4,Aia, Lsx} are the E-S constants. The E-S
constants are solved for from the equations:

I (Coon 1+ Pt + i) |I= 0 (B.7)
Ciljkm (m[ +pani)(mm +panm)Aka =0 (BS)
Lja = 7”icxjkm(mm +panm)Aka (Bg)

where Cjy is the stiffness tensor associated with the matrix in the T — fii — 7 coordinate system. The strain-field at any point, X = (x1,
X2,X3), is given by

1 (Ou; Oy
Ej = E (aix,+(37xl) (B.10)

Substituting equation (B.6) in (B.10), we have the strain-field given by

6
' LsaDs
81; X1,%2) 4m Z (1 + pat) Ajg (51j +Pa52j) +Ajo (61 +Pa521)) (B.11)

Recall that the strain-field given by (B.11) is for a dislocation with unit Burgers byp. To determine the strain-field of the full Peierls
dislocation, the contribution from each fractional dislocation Ab; must be numerically integrated. This is represented by the equation,

—0o0 Tmax
ea(X1,%2,8) = / €ap (X1 — 1,%2)p(t, §)dt = / €an(X1 —1,x2)p(t, §)dt (B.12)
- —Tmax

Given the strain-field of the Peierls dislocation, the strain-energy density can be determined as

1
_Cibcdeah (xl » X2, g)ecd ()C] ) X2, 5) (B13)

S (X],Xg,f) = 2

Both the strain-field and the strain-energy density are independent of x; = £.X’, which is the coordinate parallel to the dislocation
line. Consequently, the strain-energy is calculated per unit length of the dislocation line, given by

Xmax  Xmax Xmax  Xmax  Tmax

EgLastic(€) = / / € (x1,%,&)dxdx, = / / / Eap (X1 — 1, X2)p(t, E)dt dx, dx, (B.14)

~Xmax  —Xmax ~Xmax  —Xmax  —Tmax

The integrations in equation is done using standard numerical routines in MATLAB® (integ function) that employ adaptive
quadrature. The integration limits are chosen to be sufficiently large given by T, = 100b;p and X,,,, = 100b;p.

Having calculated the continuum-elastic strain energy Egpastic(¢) (equation (B.14)) and atomistic misfit energy Eyvispir (£) (equation
(B.5)) of the Peierls dislocation, the total energy EroraL(£) can now be determined as a function of its core-width & (equation (B.3)).
Then, the total energy is minimized with respect to the dislocation core-width & to obtain the equilibrium value &,

0EroraL (&)
0¢

The minimization is performed using standard routines in MATLAB® (fminsearch function). Now, that the equilibrium core-width is
known, the lattice friction stress rIL,P is determined by considering the displacement of the Peierls dislocation by one Burgers vector in

=0 (B.15)
o

the lattice. Thus the disregistry distribution is changing position given by 0 < u < b;p. At each position, u, the misfit energy Enspir (1) is
computed, given by the equation,

Mina

EM]SF[T(M) = ( 71 (f(ma - M)) 71sf(Mmaxa/ + M)> (B16)

m=—Mmax

where d = byp, and the calculated equilibrium core-width &, is used for the disregistry distribution f. As before, it can be verified that
Ennsrir(€) converges as My, is increased. A large value of My, = 1000 is chosen. Finally, the Peierls stress T}L,P is calculated by the
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maximum slope on this misfit energy landscape, given by

o = max{bi dELF”(“)} (B.17)

LP du

This Peierls stress is used in stage 1 of the EDC model, in Section 2.1.2.

Appendix C. Calculation of anisotropic elastic parameter K

In stage 2 of the EDC model (Section 2.1.3), the elastic energy of the system Egpastic must be determined, specifically the manner in
which it varies, as a function of the state variables (s;, &;) fori = 1,2,3,4. As any of the state variables vary, the elastic energy changes
only because of the change in the relative position of fractional dislocations from each other. In other words, consider the fractional
dislocation db; = p;(x)dx, residing within the dislocation core of the i" dislocation participating in the reaction. As the core-structures
evolve during the D-TB reaction (reflected by a change in (s;, &;) state variables), its strain-energy of interaction with the fractional
dislocation db; = p;(t)dt, residing in the core of the jth dislocation (j = 1,2,3,4), varies because of a change in their relative positions,

ﬁ(x, t) = x5; — t5; (where 5; is the unit vector along the direction of increasing s; as shown in Fig. 4). In stage 2 of the model, all cores
are close to the TB (i.e at distances smaller than the classical core width, i.e. s; <r. = 5byp). Consequently, from a continuum
standpoint, it is sufficient to consider them to be directly on the TB between two anisotropic media. In other words, as far as the strain-

energy is concerned, we only need to consider the relative distance |§)(x, t)| = R(x,t) between the fractionals, modeling both to be
directly on the TB. The strain-energy of interaction is then given by the expression

K|~ ~ ~
dEELASTIC = 77; b,‘.bj b,’.bj pl-(x)pj(t)lnR(x, t)dxdt (Cl)

K.
dbInR = —¢
db,db; >

where b; and EJ- represent unit vectors along the Burgers vectors ?i and ?j respectively. The above expression has been priorly
employed in anisotropic modeling of dislocation cores in BCC materials (Alkan and Sehitoglu, 2019; Kroupa and Lejcek, 1972; Lejcek
and Kroupa, 1981). The challenge however is in the determination of the right value of K;; capturing the anisotropy in the interaction.
Several approaches have been proposed in this regard (Foreman, 1955), but none are faithful from a strain-energy standpoint and thus
not appropriate for the model. In this study, we back-calculate K; from an analytically derived strain-energy calculation from the
anisotropic Eshelby-Stroh formalism. This is discussed below. Having determined the right values of Kj;, the cumulative interaction of
all such fractional pairs within all cores of participating dislocations yields the Egastic energy of the system at the given state (s;,&;).
This is given by:

max  gmax
Sl

4
EELASTIC =

4 j
K;
:.27; / / Pi(x)p;()InR (x, £)dxds (C.2)

0 0

=1 j=i

Now, we consider the calculation of the anisotropic parameter K; that captures the anisotropy in the strain-interaction energy

— —
between Burgers vectors b; and b; in the reaction. To determine Kj it is sufficient to consider unit vectors along the Burgers vector

Anisotropic medium 2 (Twin)

(Ciz'lmr pc%rAia)

(Cliims P2 ALe) el
ijlm: Par Agq
Anisotropic medium 1 (Matrix) D /2 (—)

Fig. A3. Computing elastic strain-energy of a two-dislocation system positioned on an interface separating two anisotropic media; the Burgers
— —

vectors of the two dislocations are given by b; and b ; respectively positioned at O; (R/2,0) and Oz(—R/2,0) respectively; the anisotropic media are

characterized by their respective elastic constants Cl;2, and anisotropic Eshelby-Stroh constants pL2, AL?; the strain-fields of both dislocations are

superposed to determine the total strain-field ¢}, in domain 1 and €% in domain 2, consequently integrating the strain-energy density over the
rectangular domain, only excluding the cores of both dislocations demarcated by a circular region of radius R,
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directions given by b; and Ej, as the magnitude of the Burgers vector does not affect its value. The unit dislocations are presumed to be
separated by distance R along the TB (Fig. A3). We analytically derive the strain-fields using the anisotropic Eshelby-Stroh (E-S)
formalism as applied to anisotropic interfaces, where in this case the interface is the TB. Having solved for the strain-field surrounding
the two-dislocation system, the strain-energy density distribution is determined and numerically integrated to yield the total strain-
energy of the system. Subsequently, the value of Kj is back-calculated as one that captures the change in strain-energy as a func-
tion of varying R. This procedure is elaborated further below.

First, the anisotropic E-S constants corresponding to Burgers vectors Fi and ?j are solved for. The coordinate system m —n —t is

defined (consistent with Fig. 2), where 7 is normal to the TB (7||[111],,), 7 is parallel to [121],,, and ||[101],, is parallel to the
dislocation lines. In this orientation, the dislocations are positioned as follows: ?i at (R/2,0,0) and ?j at (— R/2,0,0). Let the
anisotropic elastic constants of medium 1 (the matrix) and medium 2 (the twin), in the above orientation be given by Cl., and Cap.p
respectively.

The anisotropic E-S constants to be determined for the strain-field of dislocation ?i are given by (p}, A} ,EM) in medium 1 and (p?,

A2, E?) in medium 2, where the upper-case alphabetical indices vary as K = 1,2,3, the lower-case index varies asi= 1,2, 3,4 and, the

Greek index varies as @ = 1,2,3,4,5,6. Similarly for dislocation ?j, the constants are (p}, AL ,EY) in medium 1 and (p?,A2, E7) in
medium 2. The equations from the formalism are listed below. The reader is referred to (Barnett and Lothe, 1974; Ting, 1996) for a
more detailed exposition. The constants p! and p? are solved for from the equations:

| C,IJKL (m, +p}ln1) (mL er(lan) |I=0 (C.3)

I CIZJKL (m, +pin1) (mL +pinL) [=0 (&)

The complex constants are ordered such that for @ = 1,2, 3, the imaginary part of p!,p?, is positive, and p.,, =p., p2,; = P>, where
the bar represents the complex-conjugate. The constants Ax> are solved for from the equations:

C,'J,(L (mI +p(in,) (mL +p(llnL)A}(a =0 (C.5)
(o7 (m, +p(2ln,) (mL +p§nL)Aia =0 (c.6)

From (pl,A,), (p2,AZ,), the constants L} , L2, are derived as:

Ly, = —1,Cppp (mL ""P;”L)A;m (C.7)

L12a = _nfCIZJKL (mL +p§an)A?<a (C.8)

Finally, the constants E' and E?2 are solved for from the equations,

> (ALEZ —ALEY) =0 (C.9)
a=1

6 . . —
> (nALES +nALEY) =2 ( b ,-> (C.10)
a=1 1

6
> (LEX —L,EY) =0 €11
a=1

6 . .
> (L3 + L EY) =0 (€.12)

a=1

where 7, =1 for a € {1,2,3} and 7, = —1 for @ € {4,5,6} and (?i), represents the I'" component of the dislocation ?i. While the

- . .
constants (p,AL,), (p2,A2,), remain same for the dislocation b, the constants Ey and E2 are solved for from the equations:

S (ALEY — ALEY) =0 ©13)
a=1

6 . . —_—
S (1AL EY + AL EY) = z( b,) €14
a=1 1
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6

> (LEY - L,EY) =0 (C.15)
a=1
> (L3 EY +n,L1,EY) =0 (C.16)

a=1

. d .
Given the anisotropic E-S constants, the vector displacement-fields u}’ ah component, from dislocation b, in medium 1), u? ah
— ; — :
component, from dislocation b ;, in medium 2), ull] ah component, from dislocation b;, in medium 1) and u,zj (Ith component, from

.
dislocation b j, in medium 2) can be computed from the equations:

uy' (x1, x2) = F ZA}an;m —R/2+phxy) (C.17)
;' (x1, X2) = J_ ZAfaEi'ln —R/2+pxy) (C.18)
w (x1, %) = BN (x1 +R/2+ pixa) (C.19)
u? (x1,%,) = \/_ ZAIZaEifln x1 +R/2+plxs) (C.20)

where x; = 7. X and x, = 7. x . The displacement and strain-fields are independent of x3 = ., since 7 is along the dislocation line.

From the displacement-fields, the strain-field e} Lt component of the strain-tensor in medium 1, caused by dislocation b i) can be
computed by taking the symmetric displacement gradient as follows:

1i 1i
el (x1,2) = (a“' +aﬂ) c.21)

dxj ﬁx,

The remaining strain-fields ¢, en, and e2), can also be computed following equation (C.21). The net striain-field in medium 1,
caused by both dislocations is then given by:

el (x1,22) = el (x1,x2) + £1)(x1, x2) (C.22)

The strain-field in medium 2 can be determined similarly. The total strain-energy of the two-dislocation system can then be
computed as

E;(R) = // Chiki€€xdrida + // Cliki 1€k dx1dx (C.23)
0.4
Foe
[ ...
E(R) o5 |
Elastic
Energy | ‘.
(nJ/m) L e
02 +
0.1 A
03 0.35 0.4‘A 045 0.5 0.55
5|
—1InR
2

Fig. A4. Determining anisotropic interaction parameter K;; from the variation of strain-energy E(R)with distance between dislocations ?i and ?j,
given by R; in this ploti = 1 and j = 2, and from Table 1, b= a/6[211],, and b, = a/6[211),,
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where the domain D is a rectangular region of dimensions 150b;, x 150b;» centered at O, and excluding the circular cores around
individual dislocations, respectively centered at O;(R/2,0) and O(—R/2,0) with radius R. = 5b;p (refer Fig. A3). And the domains
D/2(+) and D/2( — ), in equation (C.23) represent two halves of the domain D in medium 2 and medium 1 respectively (refer Fig. A3).
The integrals in equation (C.23) are computed numerically on a discretized grid over the domain.

The anisotropic parameter K;; is determined by considering the variation of Ej;;(R) as a function of R. As can be seen from Fig. 11,
Ej(R) varies linearly with InR, and its behavior is well-modeled by the equation:

K

E;j(R) = Co + 27’; InR (C.24)

— —
b.b;

Consequently, Kj; is determined as the slope of the linear fit. It is worth emphasizing that E;(R) was derived analytically from a fully-
anisotropic elastic approach and its behavior with varying R (Fig. A4) is used to back-calculate the anisotropic interaction parameter
Kj. This parameter, determined for all dislocations in the reaction, ultimately affords a convenient and accurate evaluation of Egiastic
as employed in equations (C.2) and (2.16). Calculated interaction parameters for Nickel (Ni) in slip-incorporation reaction I, II and III
are listed in Tables 3, 4 and 5 respectively. The respective parameters for high-entropy alloy FeNiCoCrMn for slip-incorporation re-
action V are listed in Table 10.

Appendix D. Generalized Stacking Fault Energies of Ni-based alloys from Molecular Statics (MS)

The calculation of the Generalized Stacking Fault Energy (GSFE) curves for the Ni-Ti and Ni-Co alloys considered in this study are
detailed here. These curves are determined within a Molecular Statics (MS) simulation framework carried out in LAMMPS (Plimpton,
1995), and resulting atomic structures are visualized in OVITO (Stukowski, 2009). The procedure is elaborated using the Ni-Ti sol-
id-solution as the example and the same procedure is applied for the Ni-Co system. The interatomic potential developed in (Ren and
Sehitoglu, 2016) is employed for the Ni-Ti system and for the Ni-Co system, the potential developed in (Béland et al., 2016) is
employed. First, the equilibrium atomic structures of the solid solution must be constructed within the simulation framework.

The simulation cell was created such that x-y-z directions are along [121] — [111] — [110] crystallographic directions. The cell is
populated with a Face-Centered-Cubic crystal structure with Ni atoms and randomly-substituted solute atoms, Ti in this case. The
number of substituted atoms is controlled based on the required final composition (i.e. 10%Ti or 20%Ti etc.). Periodic boundary
conditions are enforced across all boundaries of the simulation box. Since the alloying was done randomly, there can be unphysical
effects such as local clusters of solutes or other unphysical distributions introduced by the artificial construction of the alloy structure.
To homogenize the alloying, a Monte-Carlo simulation is performed where solute atoms (Ti) exchange/swap positions with matrix
atoms (Ni) (atom swap function in LAMMPS) over several steps until the energy of the atomic structure converges to an energy-
minimized state (Sadigh et al., 2012). This minimization and associated structure transitions are highlighted in Fig. A5. At the
energy-minimized state, the alloy structure is said to be homogenized with an even distribution of the solute atoms in the matrix, and
thus of higher physical fidelity than the starting structure. The GSFE for the alloy state is calculated for this structure.

Calculation of GSFEs for Face-Centered-Cubic (FCC) materials for the {111}(112) slip system has been discussed in detail by several
authors and the reader is directed to (Vitek, 1968) for a detailed exposition on the topic. Briefly, the GSFE is calculated by starting from
an equilibrium atomic structure of the alloy and then introducing a rigid disregistry on the {111} slip-plane in the direction of the

Burgers vector i.e. b = a/6(112). This disregistry is introduced by rigidly displacing one half of the equilibrium structure with respect

to the other half, by displacement u along the direction of the Burgers vector b on the slip plane. The boundary conditions of the
simulation along the lateral directions on the slip plane are specified to be periodic to simulate the bulk material. And the boundary
conditions normal to the slip plane (top and bottom boundaries) are specified to be shrink-wrapped. A frozen-layer of atoms with layer
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Fig. A5. Equilibration of Ni-20%Ti alloy atomic structure during Monte-Carlo simulation; the inset shows snapshots of the atomic structure at

different simulation steps, indicating the homogenization of the solute distribution in the matrix with progress of the simulation, converging to an
energy-minimized state

29



O.K. Celebi et al. International Journal of Plasticity 148 (2022) 103141

(a) (b)
® Ni 300
® Ti
yu_s yus
&\20'0 +
% Vist,
=100 +
— Ni
—— Nig,Ti
(110) — NigTi
— 0 + 4 +
u=0 u>0 0 0.5 1 15 2
u/b

Fig. A6. (a) The procedure to calculate the GSFE is schematically indicated, determined from the fault energies y(u) at varying positions of dis-
registry u introduced on the {111}(112) slip system of the FCC structure (a) Generalized Stacking Fault Energy (GSFE) curves for the Ni-Ti system
determined using Molecular Statics (MS) simulations from the interatomic potential developed in (Ren and Sehitoglu, 2016)

thickness higher than the potential’s cutoff distance is specified at the top and bottom boundaries, where all atomic motions are
arrested. This frozen layer represents the bulk material away from the plane of disregistry that is unaffected by the introduced dis-
registry. The atoms within the simulation box not in the frozen layer will henceforth be referred to as the “mobile” region. With this
setup, at each position of disregistry u, a MS equilibration is carried out where the energy of the structure is minimized allowing the

atomic positions in the mobile region to relax in all directions except in the direction of displacement (i.e. along ?). The minimized
energy at each u yields the stacking fault energy y(u) at that position of disregistry. In this manner, the entire GSFE curve can be
constructed. For FCC materials, there are only two critical points, i.e. two critical values of u, where the stacking fault energy y(u) needs
to be determined. The GSFE can be well-interpolated using trigonometric functions between these points. These two points are the
unstable stacking fault energy y,,, obtained at u = b/2 and the stable intrinsic stacking fault energy y; at u = b. These two energies are
obtained for all the Ni-based alloys considered in this study (listed in Table 6), and indicated on the respective GSFE curves in Fig. A6.
As can be seen, there is a considerable decrease in the fault energies with increasing Ti content. Additionally, the difference between
and y;, is lowered with the addition of Ti which has an effect of increasing the twinnability of the material. Combining these fault
energies with the EDC model ultimately affords the power to model D-TB reactions in materials for which empirical interatomic
potentials do not exist.
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