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Liquid crystal elastomers contract along their director on heating and recover on cooling, offering great potential as
actuators and artificial muscles. If a flat sheet is programmed with a spatially varying director pattern, it will actuate into a
curved surface, allowing the material to act as a strong machine such as a grabber or lifter. Here we study the actuation of

programmed annular sheets which, owing to their central hole, can sidestep constraints on area and orientation. We
systematically catalogue the set of developable surfaces encodable via axisymmetric director patterns, and uncover several
qualitatively new modes of actuation, including cylinders, irises, and everted surfaces in which the inner boundary becomes
the outer boundary after actuation. We confirm our designs with a combination of experiments and numerics. Many of our

actuators can re-attain their initial inner or outer radius upon completing actuation, making them particularly promising, as
they can avoid potentially problematic stresses in their activated state even when fixed onto a frame or pipe.
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I. INTRODUCTION

In classical engineering, a mechanism is a device for
transforming motion/force from one form to another [1];
for example, a screw translates rotation to linear mo-
tion, and a lever trades displacement for force. Tables of
ingenious mechanisms were drawn up in the nineteenth
century (see http://507movements.com/) and a skilled
mechanical engineer can combine these building blocks
into a useful machine. In soft matter a similar challenge
has emerged. We have a growing class of active shape-
changing materials — swelling hydrogels [2], contracting
nematic elastomers [3], dilating dielectric elastomers [4],
inflating pneumatics [5] — and are challenged with trans-
forming these elementary shape changes into alternative
modes of actuation with desirable mechanical properties.
How do you transform contraction into a push, or swell-
ing into a squeeze?

The key to such transformations is assembling com-
plementary shape changes into an actuating mechanism.
This approach is exemplified by Harrison’s bimetallic
strip, which turns differential expansion into bend [6] and
thereby trades force for displacement, just like a lever. In
soft materials, complementary shape changes can often
be programmed into different regions of a single sample.
For example, spatially patterning the cross-link density
in hydrogels gives patterned magnitudes of dilation on
swelling/deswelling [7–9], while spatially patterning the
alignment direction in liquid crystal elastomers (LCEs)
gives patterned directions of contraction on heating [10–
12]. These programmed materials can then achieve soph-
isticated modes of actuation: the material is the mech-
anism, if not quite yet the machine [13].

Here we focus on LCEs: rubbery networks of rod-like

repeat units which spontaneously align along some dir-
ection n̂ forming a nematic LC phase within the ma-
terial [3]. Following the protocol in [14], we fabricate
LCE sheets by UV-crosslinking a nematic oligomer sand-
wiched between two sheets of glass. The inner faces of the
glass sheet are photo-patterned with a preferred planar
nematic alignment n̂(x), which is passed to the nematic
fluid and crosslinked in as it forms the elastomer. After
the elastomer sheet is released, this alignment can be
reversibly disrupted with heat (reflecting the nematic-
isotropic LC phase transition) causing the elastomer to
contract by a factor of λ ∼ 0.65 along n̂. Contraction
is accompanied by a transverse dilation λ−ν , with the
opto-thermal Poisson ratio being strictly ν = 1/2 in the
volume-preserving response characteristic of LCEs, al-
though it can rise as high as ν = 2 in nematic photo-
glasses [15], and can take a range of other values in pneu-
matic or swelling sheets[16, 17].

Several elementary entries in a table of LCE mechan-
isms are now well established. First are monodomains:
sheets with uniform planar alignment which simply con-
tract on heating, and can pull a load as they do so [18],
failing however, because of Euler instability, to push as
they elongate during recovery. Second are benders, which
arise whenever a thin strip or film suffers differential
shape change through its thickness. In LCE sheets, thick-
ness variation can be achieved by programming different
director alignments on each side of the cross-linking cell
[19–21], or by the asymmetric actuation of a monodo-
main through its thickness [22]. All these benders pro-
duce high-displacement, low-force motion that looks im-
pressive but, like the original bimetallic thermostats, is
better suited to sensing than mechanical work. Third are
pushers and lifters, created by programming a flat sheet
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with an alignment that varies in-plane and morphs the
sheet into a curved-surface on activation. For example, a
disk programmed with concentric circles of contraction (a
topological defect with director winding number m = 1)
will rise into a cone on activation [10, 12, 23]. These sur-
faces have fundamentally different metrics to the original
flat sheets [7, 23], allowing them to have Gauss (intrinsic)
curvature that can only be flattened by energetically ex-
pensive stretch. Lifters mostly arise when the Gauss
curvature is positive (cones, caps, spindles etc.) causing a
protrusion on activation (though an evolving hyperbolic
cone also protrudes, despite its negative GC away from
the origin), and metric mechanics [24] makes such push-
ers mechanically strong: LCE cones can lift thousands
of times their own weight as they rise [25]. A final cat-
egory could be radial m = 1 defect patterns, which buckle
into ruff-like “anticones” with negative Gauss curvature,
although it is unclear what mechanical utility such actu-
ation offers.

Several recent works have focused on the programming
of complex surfaces and inverse design [26–28], demon-
strating, for example, how to choose a pattern of con-
traction that morphs a sheet into a face [29]. Though
analytically virtuosic, mechanically these are variations
on the theme of cones and caps. Here we take a dif-
ferent approach, and investigate the elementary modes
of actuation of annular sheets. The introduction of a
hole fundamentally changes the sheet’s topology, allow-
ing simple but qualitatively different modes of actuation,
and inviting use cases such as apertures, sphincters, fil-
ters and pipes. Here we focus on axisymmetric director
patterns encoding Gauss-flat shapes. Any simply con-
nected Gauss-flat surface can be flattened into the plane
isometrically (i.e. without stretch). However, introdu-
cing a hole opens a rich design space of actuated shapes,
including flat irises, truncated cones/anticones, cylinders
and everted annuli. Although ν is limited to 1/2 in our
LCE experiments, our treatment shows that the same
family of shapes arises for shape-changing materials with
any ν. Importantly, despite producing Gauss-flat sur-
faces, such annular actuations are strong, and cannot be
blocked without energetically expensive stretch.

II. SHAPE PROGRAMMING OF ANNULAR
LCE ACTUATORS

In this work, we consider an initially flat annular LCE
sheet, Ri < R < Ro, patterned with a planar nematic
director field n̂, as seen in Fig. 1a. Upon heating, the
sheet contracts by λ in the direction parallel to n̂, and
extends by λ−ν in the orthogonal direction. An infinites-
imal length element in the undeformed sheet, dl, thus has
an activated length given by

dl2A = dl · (λ2 n̂⊗ n̂+ λ−2νn̂∗ ⊗ n̂∗) · dl ≡ dl · ā · dl (1)

where n̂∗ is orthogonal to n̂. The sheet deforms to ad-
opt this programmed metric, ā, in general becoming a

Figure 1. (a) An annular LCE sheet in the reference domain,
with an axisymmetric spiral director pattern characterized by
the angle α(R). (b) A truncated cone with semi-angle φ. The
dashed circle has curvature 1/r, and geodesic curvature kg of
magnitude sin(φ)/r.

curved surface such as Fig. 1b. The sheet’s small thick-
ness t also increases by λ−ν upon activation. Curvature,
κ, is penalised by a bending energy ∝ t3κ2, leading to
residual bending stresses ∝ tκ. In the t → 0 limit, this
bend cost is negligible compared to the cost of deviating
from ā, which incurs stretch energy ∝ t. Thus bend only
enters as a ‘tie-breaker’ between (thickness-independent)
isometries of ā.

Our shape programming task is to choose the director
pattern n̂ that will morph the annulus into our desired
surface. We restrict our attention to axisymmetric dir-
ector patterns, partly for simplicity, and partly because
many use cases may actually be best suited by axisym-
metric actuation. We define such patterns using the angle
α(R) between n̂ and the radial basis vector R̂:

n̂ = cos (α) R̂+ sin (α) θ̂, n̂∗ = − sin (α) R̂+ cos (α) θ̂.

The integral curves of this pattern are spirals, as shown
in Fig. 1a. Such spirals encode nematic bend and splay
vector fields given by,

b ≡ (∇× n̂) n̂∗ = (sin(α)/R+ α′ cos (α)) n̂∗,

s ≡ (∇ · n̂) n̂ = (cos(α)/R− α′ sin (α)) n̂, (2)

and implicitly contain an m = 1 topological defect at the
origin, since the director winds by 2π on traversing any
loop containing the hole.

The essential starting point for such metric design
problems is Gauss’s Theorema Egregium [30, 31], which
states that the Gauss curvature of the activated sur-
face (computed as the product of the surface’s principal
curvatures, KA = κ1κ2) is an intrinsic geometric prop-
erty and hence determined entirely by the metric. Thus
the metric must encode the Gauss curvature of the target
surface. A direct calculation using the LCE metric in a
defect-free region yields [32–35], in terms of gradients of
bend and splay of the director field,

KA = 1
2

(
λ2ν − λ−2

)
∇ · (b+ s) , (3)
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where all quantities on the right-hand side are evaluated
in the reference state. Working with bend and splay,
which together offer a characterisation of a 2D director
field, will turn out to offer particular insights into the
genesis of the Gauss curvature.

We now set KA = 0, partly for simplicity again, but
also with the intention of designing an ‘iris’ actuator, for
which the activated state is a flat annulus. Given axisym-
metry, the divergence only acts on the radial component
(b+ s) · R̂ = cos(2α)/R−α′ sin(2α) to give the equation

1

R

d

dR
(R(cos(2α)/R− α′ sin(2α))) = 0,

a result also obtained [33, 36] from the general expression
for KA in terms of α(r) and its gradients for spirals. It
may immediately be integrated once with respect to R
to get

cos(2α)/R− α′ sin(2α) = c1/R.

Finally, we solve for α yielding

cos (2α(R)) = c1 + c2/R
2, (4)

where c1 and c2 are constants of integration. Previous
authors [33, 36] obtaining this result have then immedi-
ately set c2 = 0 to avoid divergence as R→ 0. However,
in an annular geometry c2 is allowed, provided the pat-
tern obeys −1 ≤ cos(2α) ≤ 1, yielding the limiting radii

R2
± =

±c2
1∓ c1

, (5)

with radial and azimuthal alignment respectively for ±.
However, setting KA = 0 within the LCE annulus does

not guarantee a flat iris upon activation: we might have
a cylinder or a truncated cone, neither of which can be
flattened isometrically into the plane. Interestingly, this
situation is fundamentally different to simply connected
actuators, where, in accordance with Minding’s theorem,
setting KA = 0 everywhere guarantees an actuated sur-
face that can be flattened isometrically into the plane.
In the annular case, we thus require an additional in-
trinsic geometric property to select between these differ-
ent Gauss-flat surfaces.

Clarity is provided by geodesic curvature and the
Gauss-Bonnet theorem. In general, the geodesic
curvature, kg, of a curve on a surface is computed by pro-
jecting its (3D) vector curvature into the tangent plane of
the surface. For example, the dashed circle in Fig. 1b has
curvature 1/r, but geodesic curvature kg of magnitude
sin(φ)/r. Like Gauss curvature, geodesic curvature is in-
trinsic. Furthermore, geodesic curvature is connected to
Gauss curvature by the Gauss-Bonnet theorem which, for
any topologically-disk-like patch of surface, states that

Ω ≡
∫
K dA = 2π −

∮
kg dl, (6)

where the right-hand integral is around the boundary of
the patch. Gauss-Bonnet thus allows us to compute the

integrated curvature within a region of surface from the
geodesic curvature on its boundary. If we have a surface
containing a hole (e.g. a truncated cone as in Fig. 1b) we
may imagine covering the hole with a smoothly connected
patch. Gauss-Bonnet then reveals that this patch must
contain integrated Gauss curvature

Ω◦ ≡ 2π −
∮

hole

kg dl, (7)

which is computed solely from the geodesic curvature of
the hole’s boundary, and is thus independent of nature of
the patch. Furthermore, since kg is an intrinsic quantity,
so is Ω◦, which may be interpreted as the flux of Gauss
curvature threading the hole. For example, the truncated
cone in Fig. 1b has Ω◦ = 2π(1−sinφ) threading the hole,
which is familiar as the integrated Gauss curvature of a
cone-tip. The quantity Ω◦ thus serves as a convenient
additional intrinsic property in the shape programming of
surfaces with holes, which is able to distinguish cylinders
(Ω◦ = 2π), truncated cones (Ω◦ = 2π(1− sinφ)) and flat
annuli (Ω◦ = 0).

Returning to LCE shape-programming, the activated
geodesic curvature kgA along any loop in the reference
state may be computed from the LCE metric [35], to
reveal that

2π −
∮
kgA dl =

1

2

(
λ1+ν − λ−1−ν) ∮ (b + s) · ν̂ dl

+mπ
(
1− λ1+ν

) (
1− λ−1−ν) , (8)

where the boundary integral on the right is conducted
in the reference state, ν̂ is the reference state outward
normal, and m is the winding number of the director
around the loop which, for a simply connected domain,
would be the topological defect charge within. We note
that our patterns have (b + s) · R̂ = c1/R and m = 1.
Thus, applying eq. 8 to the inner boundary of our annular
reference domains, we compute that

Ω◦ = π
(
2− (1 + c1)λ−1−ν − (1− c1)λ1+ν

)
, (9)

revealing that the dimensionless constant c1 alone con-
trols Ω◦, and selects between flat annuli, cylinders and
truncated cones. This insight is immediately accessible
from the form of (b + s) · R̂ that determines the non-
topological component of Ω◦, highlighting the utility of
working with bend and splay. In contrast, the constant
c2, which has dimensions of length2, simply determines
the extent of the pattern in the reference domain, and
hence the overall size of the actuated surface. In the fol-
lowing sections, we will explore the different modes of ac-
tuation achieved by programming c1 and hence Ω◦. We
start with an extended discussion (and demonstration)
of patterns for flat irises, cones and cylinders, and then
map out the entire phase diagram produced by this set
of patterns.
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Figure 2. We design a spiral director pattern (top-left) that
produces a flat anchored iris (top-middle) on actuation to
λ = 0.705. Top right shows a crossed-polars image of an LCE
sample bearing this spiral pattern, with the dark and bright
patterns associated with the director profile. Iris actuation
is observed on heating the LCE from from 25 ◦C to 200 ◦C
(middle), with the design λ attained near 100 ◦C. Numerical
calculations (bottom) also confirm iris actuation, and show,
surprisingly, that the iris remains flat at even more extreme
actuation strains (λ = 0.6, 200 ◦C) due to its non-zero bend-
ing stiffness.

III. IRIS ACTUATOR: Ω◦ = 0

We start our exploration of annular actuators by
demonstrating an iris: an annular LCE that activates
to a flat annular state, but with a different inner radius.
Such an iris could be used as an optical aperture, or to
regulate flow down a pipe.

Previous work has demonstrated an LCE iris construc-
ted from “petals” that bend away from the light-path to
increase the aperture [37]. The beauty of this design
was that the LCE was photo-active, and the bending
was driven by the incident light, making the iris self-
regulating. However, the resultant actuation is non-
planar, leads to a non-circular aperture, and is mech-
anically weak as it depends on bend rather than stretch.
A second approach has been to pattern an LCE annu-
lus with a simple radial alignment [38], generating radial
contraction on heating that mimics the pattern of mus-
cular in a biological iris. However, radial patterns should
actually buckle into anticones on actuation [23], rather
than remaining flat. This was avoided in [38] by using
an extremely thick sample, so that bending stiffness pre-
vented out-of-plane deformation. Here, instead, we set
Ω◦ = 0, to target a truly flat annulus as the final state,
which should remain flat even in the limit of a thin sheet,

or at very high actuation strains. To achieve Ω◦ = 0, we
must choose:

c1 = −(1− λ1+ν)/(1 + λ1+ν). (10)

This expression generates a unique c1 for any actuation
parameters (λ, ν). Furthermore, since any parameters
generate −1 ≤ c1 ≤ 1, the resultant pattern is actu-
ally defined out to infinite radius, where it converges to
a simple log-spiral (constant α). However, if c2 is in-
cluded in the pattern, the pattern terminates at a finite
inner radius, which is R+ (radial director) for c2 > 0 and
R− (azimuthal director) for c2 < 0. To design an iris
with maximum dilation on actuation, we require radial
alignment on the inner boundary, so we take c2 > 0 and
Ri = R+.

Given the pattern extends out to infinity, we must also
choose an outer boundary. To guide our choice, we note
that, although elastomers are incompressible (ν = 1/2),
LCE sheets reduce in area on actuation by a factor of√
λ = λ1−ν , with overall volume conserved by associ-

ated thickening. In an LCE iris, although the hole radius
dilates on actuation, circles at large radius must contract.
There is thus a circle at an intermediate radius that is
fixed on actuation, which can be found from area consid-
erations:

R2
fix − λ−2νR2

i = λ1−ν(R2
fix −R2

i ). (11)

By choosing Rfix as the outer radius of the sample we
attain an anchored iris actuator, which could be fastened
along its outer circumference in a frame or pipe, without
suffering stretches in its final state (at the design λ) that
could otherwise lead to buckling, damage etc.

To demonstrate this anchored iris actuation, we fab-
ricate an annular LCE sheet with reference state radii
Ri = 5 mm and Ro = 9.5 mm. Given incompressibility,
imposing Ro = Rfix yields λ = 0.705, and hence (via
eq. 10) c1 = −0.257. Finally, setting Ri = R+, fixes the
value of c2 and completes the specification of the pattern.

Having specified the pattern, it is imprinted into the
LCE using photo-patterning. To reduce the number
of alignments, the continuous theoretical patterns were
‘binned’ into 20 discrete angles before fabrication. The
resulting iris was actuated by heating in a bath of silicon
oil, and displayed very satisfactory dilation and anchor-
ing, as shown in Fig. 2.

We further verified this pattern by conducting numer-
ics using our bespoke code MorphoShell [35] that, un-
like our theory, accounts for both bend and stretch in
a sheet with non-zero thickness. As seen in supplement-
ary movie M1 [39], our numerics highlight that if its outer
circumference is artificially pinned (cannot move) the iris
remains planar and moves smoothly throughout its actu-
ation without sudden instabilities, despite the stresses
present before the design λ is reached. If instead the
boundary is completely free (supplementary movie M2),
the iris passes through weakly conical shapes as it ac-
tuates, before regaining flatness at the design value of
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λ = 0.705, consistent with attaining Ω◦ = 0 only at the
design λ. Similarly, as λ falls below the design value, one
would again expect non-flat shapes. However, as seen in
Fig. 2, both simulation and experiment indicate that, for
realistic sheet thicknesses, energetic bend cost can sup-
press this transition, at least until λ = 0.6. Additional
simulations using ‘binned’ director patterns (supplement-
ary movie M3) confirm that the binning has little effect.

Our iris dilates upon heating (decreasing λ) and con-
tracts upon cooling (increasing λ). One can instead cre-
ate irises that contract on heating by setting c2 < 0 so
that the inner boundary has azimuthal director Ri = R−.
However, since the LCE must lose area during actuation,
there is no fixed outer radius for anchoring in such sys-
tems. Similarly, it would also be impossible to create
an anchored iris via isotropic swelling, unless swelling
and shrinking co-occur in the same sample. However in
nematic photo-glasses ν can range as high as 2, lead-
ing to areal growth on heating and enabling contract-
ile anchored iris actuation, albeit with limited actuation
strain. Within LCEs, oblate order parameters (where
λ > 1 on heating) could offer another approach to such
irises.

IV. CONES AND CYLINDERS: 0 < Ω◦ ≤ 2π

Figure 3. Director spiral (top-right) to morph an annulus
into a cylinder (top-middle) at a design λ = 0.652. Experi-
ments (middle) and numerics (bottom) confirm the cylinder
is attained, and also highlight the intermediate cone states en
route.

Any choice of c1 other than that in eq. 10 will give
Ω◦ 6= 0, producing shapes which are Gauss-flat but with
integrated curvature threading the hole: truncated gen-
eralized cones. As discussed previously, a truncated cone
has Ω◦ = 2π(1− sinφ), with φ being the semi-angle, and
0 < Ω◦ < 2π parameterizing the range of cones between a
flat annulus and a cylinder. Comparing this Ω◦ to that of
our patterns, we see that our patterns produce truncated

cones with semi-angles given by

sinφ = 1
2λ
−1−ν (1 + c1 + (1− c1)λ2+2ν

)
, (12)

which is familiar [23] from log-spiral patterns with
cos(2α) = c1. The underlying deformations, (R, θ) →
(r(R), θ + ∆θ(R), z(R)), are non-linear functions of ra-
dius. Indeed, by comparing the resultant metric a with
the target metric ā, we may construct an exact isometry
of ā:

r(R)2 = R2
(
λ−2ν cos2 α(R) + λ2 sin2 α(R)

)
,

z(R) = ± cot(φ)r(R),

d∆θ

dR
=

R

2r(R)2

(
λ2 − λ−2ν

)
sin (2α(R)) ,

which highlights the presence of twist between the inner
and outer circumferences.

By varying c1, we may attain a wide range of cone-
angles. For simple log-spiral patterns, one is limited to
−1 ≤ c1 ≤ 1, and the steepest cone is given by c1 = −1 (a
concentric circle pattern giving sin φ = λ1+ν). However,
in annular domains, the addition of c2 removes this lim-
itation on c1, so we can explore the full range of φ. This
enables sharper cones; indeed we can even get cylinders
(Ω◦ = 2π, sinφ = 0) by setting in eq. 12

c1 = −(1 + λ2+2ν)/(1− λ2+2ν). (13)

Such a cylinder pattern requires c1 < −1, so we must take
c2 > 0 yielding a pattern confined to the annular region,
R+ < R < R−, in which the director varies from radial
to azimuthal, dilating the inner radius and contracting
the outer one on heating.

To demonstrate this cylindrical actuation, we once
again use the experimentally convenient domain
Ri = 5 mm and Ro = 9.5 mm. Solving Ri = R+ and
Ro = R− fixes c1 = −1.766 and c2, and then eq. 13
reveals that a cylinder will be attained at λ = 0.652, just
within our experimentally accessible range. The resulting
cylinder actuator is shown in Fig. 3, alongside matching
numerics (supplementary movies M4, M5). Actuation
proceeds via sharpening cones as Ω◦ rises from 0 to 2π.
Here we use the full mathematical region of the cylinder
pattern, R+ < R < R−, however any annular sub-region
could be selected to give a shorter cylinder. In particu-
lar, one can again find an invariant radius, Rfix = λR−,
that could be used to anchor the inner or outer bound-
ary. This can be quickly found from the condition that,
to produce a cylinder, every reference-state circle must
attain the same activated-state radius, which then must
equal Rfix.

V. EVERSION, ANTICONES, AND THE
COMPLETE PHASE DIAGRAM

Finally we classify the full set of actuators available
via eq. 4. Any value of Ω◦ can be achieved with a suit-
able choice of c1. However, for c1 > 1 we must take
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Figure 4. Phase diagram for annular LCE actuators in c1 − λ space (for ν = 1/2). The top row (λ = 1) shows the un-actuated
director patterns given by different values of c1. For −1 < c1 < 1 the pattern converges to a simple log spiral at large radius,
but terminates at a finite inner radius with an azimuthal or radial director depending on the sign of c2. Both possibilities are
shown in this region. For c1 > 1 one must take c2 < 0, and the pattern is defined in a finite annulus with azimuthal director
at the inner boundary, while for c1 < −1 one must take c2 > 0, and the pattern is defined on a finite annulus with radial
director at the inner boundary. The remainder of the diagram shows simulations of the actuated shapes achieved when λ 6= 1,
taking the full extent of the pattern in the finite cases. Dotted and bold lines differentiate the initially-inner and initially-outer
boundaries, while ‘fade-out’ regions indicate surfaces extending to infinity. The diagram reveals regions of truncated cones,
truncated anticones, everted truncated cones and everted truncated anticones, which are classified by intervals of Ω◦, and are
separated by by lines of irises (Ω◦ = 0), cylinders (Ω◦ = 2π), and everted annuli (Ω◦ = 4π). The iris, cylinder, and everted
annulus lines are given by theory, and meet at λ = 0.

c2 < 0, giving an annular region R− < R < R+ with azi-
muthal (radial) director at the inner (outer) boundary.
Conversely, for c1 < −1 we must take c2 > 0, giving an
annular region R+ < R < R− with radial (azimuthal)
director at the inner (outer) boundary. Between these
limits, −1 ≤ c1 ≤ 1, the patterns converge to a log-spiral
with constant angle α(∞) = 1

2 cos−1(c1) as R → ∞.
However, the c2 term will still diverge towards the origin
until the director is purely radial (+ve c2) or azimuthal
(-ve c2), requiring R± < R < ∞ respectively. In every
case, the magnitude of c2 (with units of area) simply sets
the overall scale of the pattern without affecting its pro-
portions, or the shape of the resultant surface. Without
loss of generality we can thus display the full family of
patterns in eq. 4 parameterized only by c1 and the sign
of c2, as shown along the top of Fig. 4, where λ = 1 (the
reference state).

Upon heating, λ will diminish below unity, and each
annulus will morph into an increasingly extreme surface,
generating a c1 − λ phase diagram that captures the full
set of actuated shapes. As seen in Fig. 4, the various
regions of the phase diagram can be straightforwardly
identified as intervals of Ω◦. We already have a cone
region 0 < Ω◦ < 2π. For Ω◦ < 0 we have surfaces
with an angular surplus rather than an angular deficit,
which buckle into ruff-like (truncated) anticones. Mov-
ing in the other direction, the cone region terminates at
Ω◦ = 2π with a line of cylinders. However, there is noth-

ing preventing c1 being chosen to make Ω◦ still larger.
For 2π < Ω◦ < 4π we will have a region of everted trun-
cated cones (−1 < sinφ < 0) in which the original outer
boundary becomes the actuated inner boundary. Ever-
ted cones terminate at Ω◦ = 4π (i.e. sinφ = −1) with a
line of everted flat annuli,

c1 = −(1 + λ1+ν)/(1− λ1+ν). (14)

Finally, for Ω◦ > 4π we have the most extreme mode of
actuation: everted anticones.

During heating, an LCE annulus will descend a ver-
tical (constant c1) line of diminishing λ on the phase
diagram. We again use MorphoShell to calculate a spec-
trum of such actuation pathways (supplementary movies
M6-M10), and graphically populate the phase diagram
for ν = 1/2. Interestingly, a given annulus may move
through several regions during actuation, and thus show
several qualitatively different shapes en route to the tar-
get. For −1 < c1 < 0 one has flat → cone → iris →
anticone (e.g. M8), while c1 < −1 gives flat → cone
→ cylinder → everted cone → everted annulus → ever-
ted anticone (e.g. M6). Such behaviour hints at complex
nematic mechanisms with multiple useful shapes realized
at different temperatures. For example, both paths start
flat, rise out of the plane, then regain flatness, yielding
a non-monotonic height change that could serve as a fre-
quency doubler for a cyclic stimulus.

The phase diagram can be extended to λ > 1, and/or
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replotted for different values of the opto-thermal Poisson
ratio ν, including ν < 0 as can be realised by materials
that swell or shrink anisotropically. However, no qualit-
atively new activated shapes emerge, which can be under-
stood from eq. 1 as follows: First (†), observe that rotat-
ing n̂ and n̂∗ by π/2 whilst simultaneously interchanging
λ↔ λ−ν leaves ā unchanged. Second (‡), observe that ā
can be written in the form

ā = Λ2(λ̃2 n̂⊗ n̂+ λ̃−1 n̂∗ ⊗ n̂∗), (15)

corresponding to an anisotropic deformation of
λ̃ = λ2(1+ν)/3 along n̂ with an opto-thermal Pois-
son ratio of 1/2, followed by an isotropic lineal scaling
Λ = λ(1−2ν)/3. By applying either (†), or (†) followed
by (‡), a pattern with any λ, ν can be be seen to result
in the same activated shape (up to an overall scale
factor) as a pattern with λ < 1, ν = 1/2, the parameter
regime explored in Fig.4.

If ν > −1, then for λ > 1 the cylinder and everted
annulus lines have c1 > 1, and asymptote to λ = 1 as
c1 →∞ and c1 = 1 as λ→∞, while the iris line contin-
ues smoothly on from its λ < 1 portion, also asymptoting
to c1 = 1 as λ→∞.

Returning to the question of anchoring, if ν < 0 then
either both λ and λ−ν are > 1, or both are < 1. Clearly
then no choice of director can match the azimuthal distor-
tion to that of an inert support, i.e. one cannot achieve
zero azimuthal distortion, and stress-free anchoring is im-
possible. However, if ν > 0 and

sgn(c2)

(
c1 −

λ2 + λ−2ν − 2

λ2 − λ−2ν

)
< 0, (16)

one can again find an Rfix at which there is zero azi-
muthal distortion. As long as ν > 0, the condition (16)
is satisfied for any |c1| > 1, and for exactly one of the
two possible signs of c2 at each |c1| < 1. When actuation
is axisymmetric (0 ≤ Ω◦ ≤ 4π), Rfix could be used to
anchor the actuator as discussed previously.

For our non-axisymmetric actuators the situation is
more subtle; such anchoring can only be stress-free if
a suitably smooth embedding of ā exists in which the
‘anchored’ curve is a circle. However, no such embed-
ding exists, as some toying with a paper truncated an-
ticone will quickly demonstrate. To prove this, consider
any closed reference-state curve that encloses the origin
(e.g. a circle at Rfix), and suppose that upon activation
this curve forms a circle. Observe that if the activated-
state circle has radius ΓA, then its curvature vector has
magnitude 1/ΓA.

Given that the geodesic curvature kgA is found by pro-
jecting the curvature vector into the tangent plane, it has
magnitude |kgA| ≤ 1/ΓA. Then, applying Gauss-Bonnet
(in the manner of eq. 7) to the material within any
such circle, we find |2π − Ω◦| = |

∮
kgAdlA| ≤ 2π. Thus,

for |2π − Ω◦| > 2π the activated surfaces indeed cannot
accommodate such circles without stretching (deviating
from ā).

VI. DISCUSSION AND CONCLUSIONS

We have explored a new category of nematic actuators
with an annular geometry and found that this change
in topology introduces qualitatively different and more
extreme modes of actuation. For example, although
we have focused on patterns that do not encode Gauss
curvature in the LCE region, many of the resultant sur-
faces are necessarily curved owing to a concentration
of Gauss curvature within the hole. Furthermore, this
‘ghost’ Gauss curvature is unconstrained by material con-
siderations and can take any value, allowing a full spec-
trum of (truncated) cones, irises, cylinders, anticones,
and even their everted counterparts. In all cases the ac-
tuation is underpinned by large-strain metric mechanics,
guaranteeing mechanically strong actuation.

Although our design approach is metric-based, our nu-
merics account for both stretch and bend, essentially
providing bend-minimising isometries of the metric ā, as
would be adopted by a thin sheet. Reassuringly, both
here and in ref.[36], the axisymmetric theoretical isomet-
ries (e.g. irises, truncated cones, cylinders) appear to be
the bend minimisers, apparently validating a design ap-
proach in which the metric ā is matched to a target sur-
face. However, in general there are many isometries of a
given ā, and in cases with less symmetry there is little
reason to think that the bend-minimiser will be close to
the target surface. Furthermore, the presence of many
isometries means that even Gauss-curved surfaces can
deform via energetically cheap pure-bending modes, and
care must be taken to avoid such modes undermining
strong actuation.

Looking ahead, it is natural to wonder about geomet-
ries with multiple holes, and patterns that lack axisym-
metry or encode distributed Gauss curvature. Can one
solve inverse problems in domains with holes? However,
these lines of thought seem more likely to produce in-
creasing complexity rather than qualitatively new modes
of actuation. More promising perhaps is to consider the
programming of initially curved surfaces, including closed
spherical surfaces and even non-orientable Möbius strips.
Such programmed shells would again have a genuinely
different topology, inviting new modes of actuation, and
could be fabricated by newly developed 3D-printing tech-
niques.

VII. MATERIALS AND METHODS

LCE films were prepared between glass plates sep-
arated with a 50µm spacer where the interior surfaces
of the plates are coated with a photoalignable dye.
First, the glass plates were cleaned by sequential
sonication in Alconox-water solution, acetone, isop-
ropanol, and deionized water. The glass slides were
then exposed to oxygen plasma reactive ion etching
for 1 min at 100 mTorr pressure and 50 mW power.
The photoalignable dye solution, 1 wt.% brilliant yellow
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in dimethylformamide, was spin-coated onto the glass
plates at 750 rpm with an acceleration of 1500 rpm/s
for 10 s and then at 1500 rpm with an acceleration of
1500 rpm/s for 30 s. Two glass plates are then adhered
using a cyanoacrylate adhesive. The dye was then
locally oriented on both plates by exposure to linearly
polarized broadband visible light using a modified pro-
jector (Vivitek D912HD) such that the resolution of the
exposure is 30µm. To create patterned alignment, the
dye on regions of the plates were sequentially exposed
using different polarization angles. A monomer solution
was prepared using a liquid crystal monomer, 1,4-bis-[4-
(6-acryloyloxyhexyloxy)-benzoyloxy]-2-methylbenzene
(RM82, Wilshire Chemicals), a chain extender, n-
butylamine (Sigma Aldrich), and a photoinitiator,
Irgacure I-369 (BASF) by heating to 90 ◦C and then
vortex mixing the fluid. The molar ratio of RM82 to
n-butylamine was 1.1:1. The photoinitiator was added
at 1.5 wt.% of the monomer mixture. The solution was
then filled by capillary action between the glass plates
at 75 ◦C. The sample was then stored at 65 ◦C for 12 hr
for chain extension to occcur. The sample was then
exposed to UV light at room temperature (OmniCure®

LX400+, 250 mW/cm2, 365 nm) to crosslink the LCE.
The total time of UV exposure was 5 min and the sample
was flipped at 2.5 min of exposure. After crosslinking,

one glass plate was removed, and the sample was cut
from the surrounding regions using a CO2 laser cutter
(Universal Laser Systems ILS9.150D). The alignment
was confirmed using optical imaging of transmitted light
with the sample between crossed polarizers. To measure
shape change, samples were immersed in silicone oil
heated to the appropriate temperature and then imaged
with a DSLR Canon camera.

Data Availablity
The data that support the findings of this study are

available from the corresponding author upon reasonable
request.
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