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Understanding Nesterov’s Acceleration via Proximal Point Method

Kwangjun Ahn* Suvrit Sraf

Abstract

The proximal point method (PPM) is a fundamental method in optimization that is often used as a building
block for designing optimization algorithms. In this work, we use the PPM method to provide conceptually
simple derivations along with convergence analyses of different versions of Nesterov’s accelerated gradient
method (AGM). The key observation is that AGM is a simple approximation of PPM, which results in an
elementary derivation of the update equations and stepsizes of AGM. This view also leads to a transparent and
conceptually simple analysis of AGM’s convergence by using the analysis of PPM. The derivations also naturally
extend to the strongly convex case. Ultimately, the results presented in this paper are of both didactic and
conceptual value; they unify and explain existing variants of AGM while motivating other accelerated methods
for practically relevant settings.

1 Introduction

In 1983, Nesterov introduced the accelerated gradient method (AGM) for minimizing a convex function f : R% —
R [Nes83]. The remarkable property of AGM is that AGM achieves a strictly faster convergence rate than the
standard gradient descent (GD). Assuming that f has Lipschitz continuous gradients, T iterations of AGM are
guaranteed to output a point z7 with the suboptimality gap f(x7) — min, f(z) < O(1/T?), whereas GD only
ensures a suboptimality gap of O(1/T). On top of being a landmark result of convex optimization, AGM is easy
to implement and has found value in a myriad of applications such as sparse linear regression [BT09], compressed
sensing [BBC11], the maximum flow problem [LRS13], and deep neural networks [SMDH13].

AGM'’s importance to both theory and practice has led to a flurry of works that seek to understand its scope
and the principles that underlie it [SBC16, KBB15, WWJ16, LRP16, WRJ16, AZO17, DO19]; see §7 for details.
However, one curious aspect of AGM that is not yet well-understood is the fact that it appears in various different
forms. Below, we list the four most representative ones:

Y = a§2):1ct +(1- a§2))zt,

Zg+1 = Yt — Bng)VfQ/t) s
Topr = 20— 1OV () -

2o =~ 0V (g
Yer1 = Ze41 + B (2041 — 21) -

Form I [Nes83, BT09].
[ ] Form II [Nes18, AZO17].

Yy = ai%t +(1- agg))zt , Y = a§4)mt +(1- a§4))zt ,

Ti41 = Tt — §3)Vf(3/t) ) Ti+1 = 5154)501& +(1- 57:(4))% - ’Vt(4)vf(yt) )
e = wegn + (1= 1))z e =1 — 0,V ().

Form III [AT06, Tse08, GN18]. Form IV [Nesl18|.

The parameters a,({), §'>,7§'>,5§') are stepsizes that are carefully chosen to ensure an accelerated rate. An

immediate question that one may ask is: can we understand these variants of AGM in a unified manner?
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This paper answers this question by developing a transparent and unified analysis that captures all these
variants of AGM by connecting them to the proximal point method (PPM). PPM is a well-known optimization
algorithm that is often used as a conceptual building block for designing other optimization algorithms (see §2
for more background). The key insight (presented in §4) is that one can obtain AGM simply by viewing it as an
approximation of PPM. This insight is inspired by the approach of Defazio [Def19], but now with more general
acceleration settings and importantly, without any recourse to duality.

Contributions. In summary, we make the following contributions:

e We present an intuitive derivation of AGM by viewing it as an approximation of the proximal point method
(PPM), a foundational, classical method in optimization.

e We present a unified method for deriving different versions of AGM, which may be of wider pedagogical
interest. In particular, our approach readily extends to the strongly convex case and offers a short derivation
of the most general version of AGM introduced by Nesterov in his textbook [Nesl8, (2.2.7)].

We believe that the simple derivations presented in this paper are not only of pedagogical value but are also
helpful for research because they clarify, unify, and deepen our understanding of the phenomenon of acceleration.
The PPM view offers a transparent analysis of AGM based on the convergence analysis of PPM [Giil91]. Moreover,
as we present in §5, the PPM view also motivates the key idea of the method of similar triangles, a version of
AGM shown to have important extensions to practically relevant settings [Tse08, GN18]. Our approach also
readily extends to the strongly convex case (§6). Finally, since PPM has been studied in settings much wider
than convex optimization (see e.g., [Bacl4]), we believe the connections exposed herein will help in advancing the
development of accelerated methods in those settings.

Before presenting our derivations, let us first recall a brief background on the proximal point method.

2 Brief background on the proximal point method

The proximal point method (PPM) [Mor65, Mar70, Roc76] is a fundamental method in optimization which solves
the minimization of the cost function f :R? — R by iteratively solving the subproblem

(2.1) Tet1 <—argmin{f(;c)+21 ||;z:—xt||2}
z€R? Ne+1
for a stepsize 1311 > 0, where the norm is chosen as the ¢ norm. Despite its simplicity, solving (2.1) is in general
as difficult as solving the original optimization problem, and PPM is largely regarded as a “conceptual”’ guiding
principle for accelerating optimization algorithms [Drul?7].
The baseline of our discussion is the following convergence rate of PPM for convex costs proved in a seminal
paper by Giiler [Giil91] (here x, denotes a global optimum point, i.e., z, € argmin, f(z)):

(2.2) flzr) — f(zs) <O ((Zthl 77,5)71) for any T > 1.

In words, one can achieve an arbitrarily fast convergence rate by choosing stepsizes n,’s large. Below, we review
a short Lyapunov function proof of (2.2), which will serve as a backbone to other analyses.

Proof. [Proof of (2.2)] It turns out that the following Lyapunov function is suitable:

(2.3) B = (Timim) - (flee) = f(@0) + 3 |z — x|,

where ®¢ := 1 ||z, — o||” and here and below, ||-|| is the £ norm unless stated otherwise. Now, it suffices to show
that @, is decreasing, i.e., ®;11 < @y for all ¢ > 0. Indeed, if ®; is decreasing, we have & < ®q for any T > 1,
which precisely recovers (2.2). To that end, we use a standard result:

PROPOSITION 2.1. (PROXIMAL INEQUALITY (SEE E.G. [BC11, PROPOSITION 12.26])) For a convexr function
¢ : RT — R, let w441 be the wunique minimizer of the following prowimal step: Ti1

argming cpa {(;S(x) + 12— :rtH2}. Then, for any u € RY,

1 1 1
¢(ziy1) — P(u) + 5 =z ||* + 3 2ot — ze]|” — 3 lu — 2> < 0.
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Now Proposition 2.1 completes the proof as follows: First, we apply Proposition 2.1 with ¢ = n41 f and u = z,
and drop the term 3 [|lz;41 — ]| to obtain:

(Inea,) Wt [F(@en) = F@)] + 3 e =zl = 3 o — 2l <0,

Next, from the optimality of z;11, it readily follows that

(Ineqy) f(zepr) = fze) <0.

Now, computing (Ineq;) + (3_r_, 7:) ¥ (Ineq,) yields &4, < ®;, which finishes the proof. O

2.1 Our conceptual question Although the convergence rate (2.2) seems powerful, it does not have any
practical values as PPM is in general not implementable. Nevertheless, one can ask the following conceptual
question:

“Can we efficiently approximate PPM for a large stepsize 1, ?”

Perhaps, the most straightforward approximation would be to replace the cost function f in (2.1) with its lower-
order approximations. We implement this idea in the next section.

3 Two simple approximations of the proximal point method

To analyze approximation errors, let us assume that the cost function f is L-smooth.

DEFINITION 3.1. (SMOOTHNESS) For L > 0, we say a differentiable function f : RY — R is L-smooth if
F@) < f@) + (V@) x =) + § llz —yl* for any 2,y € R%.

From the convexity and the L-smoothness of f, we have the following lower and upper bounds: for any z,y € R?,

1)+ (V)2 —0) < () < J) + (VI )a— )+ % e~y
=: LOWER(z;y) —: UPPER(z; y)

In this section, we use these bounds to approximate PPM.

3.1 First approach: using first-order approximation Let us first replace f in the objective (2.1) with its
lower approximation:

1
(3.4) Tpy1 ¢ argmin {LOWER(JZ; xe) + lx — act||2} .
:v 2041

Writing the optimality condition, one quickly notices that (3.4) actually leads to gradient descent:
(3.5) Tip1 =Tt — Qe V().
Let us see how well (3.4) approximates PPM:
Proof. [Analysis of the first approach] We first establish counterparts of (Ineq;) and (Ineq,). First, we apply
Proposition 2.1 with ¢(x) = 711 LOWER(z; 2;) and u = z,:
1 2 1 2 1 2

P(z141) — d(w) + 3 @4 — e [|” + 3 [e41 — " — 3 |z — 2" < 0.

Now using convexity and L-smoothness, we have

L

$(z) < 1 f(@) < 6(2) + =5 llo — z|”
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~|= B = Approach 1
h Approach 2

(a) ne =1/3.

Figure 1: Tterates comparison between PPM (2.1), the first approach (3.4), the second approach (3.6), and the
combined approach (4.8). For the setting, we choose f(z,y) = 0.12? + y? and zo = (10, 10).

and hence the above inequality implies the following analogue of (Ineq;):
GD 1 2 1 2 GD
(Ineqr™) et [f(@er) = fl@)] + 5 llze = 2|l = 5 llze — 2™ < (677),

where (EFP) = (EZt2 — Ly|lz — 24>, Next, we use the L-smoothness of f and the fact Vf(z;) =
i (xe1 — x¢) (due to (3.5)), to obtain the following analogue of (Ineqs):

L
(IneqS®) f(@ep1) = fze) < (Vf(2e), 21 — o) + 3 21 — z]|* = (ESP),
where (£§P) := (£ — nt1+1) [E——E

Now paralleling the proof of (2.2), to show that ®; (2.3) is a valid Lyapunov function, we need to find
the stepsizes 7;’s that satisfy the following relation: (£FP) + (3°1_; m:) x (€$P) < 0. On the other hand, note
that both (£°P) and (E$P) become positive numbers when 7,41 > 2/L. Hence, the admissible choices for 7
at each iteration are upper bounded by 2/L, which together with the PPM convergence rate (2.2) implies that
O(Y/T_, n) = O(1/1) is the best convergence rate one can prove. Indeed, choosing 17, = 1/L, then we have

(E8P) = 0 and (£$P) < 0, obtaining the well-known bound of f(z7) — f(z.) < ]:”%27_;”2 = O(Yr). 0

To summarize, the first approach only leads to a disappointing result: the approximation is valid only for the
small stepsize regime of 7, = O (1/L). We empirically verify this fact for a quadratic cost in Figure 1. As one
can see from Figure 1, the lower approximation approach (3.4) overshoots for large stepsizes like n; = O(¢) and
quickly steers away from the PPM iterates.

3.2 Second approach: using smoothness After seeing the disappointing outcome of the first approach, our
second approach is to replace f with its upper approximation due to the L-smoothness:

1 2
="
1

Writing the optimality condition, (3.6) actually leads to a conservative update of gradient descent:

(3.6) Zyq1 < argmin {UPPER(CE; x) + 5

1
(37) Ti41 = Tt — 7_Vf(.73t) .
L+ Tlt+11

Note that regardless of how large 711 we choose, the actual update stepsize in (3.7) is always upper bounded
by 1/r. Although this conservative update prevents the overshooting phenomenon of the first approach, as we
increase 7, this conservative update becomes too tardy to be a good approximation of PPM; see Figure 1.
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4 Nesterov’s acceleration via alternating two approaches

In the previous section, we have seen that the two simple approximations of PPM both have limitations.
Nonetheless, observe that their limitations are opposite to each other: while the first approach is too “reckless,”
the second approach is too “conservative.” This observation motivates us to consider a combination of the two
approaches which could mitigate each other’s limitation.

REMARK 4.1. A similar interpretation of Nesterov’s acceleration as a combination of a reckless step and a
conservative step also appeared in [AZO17, BG19]

Let us implement this idea by alternating between the two approximations (3.4) and (3.6) of PPM. The key
modification is that for both approximations, we introduce an additional sequence of points {y;} for cost function
approximation; i.e., we use the following approximations for the ¢-th iteration:

Pl + (£, — ) < F(@) < ) + (V)@ — ) + 5 ol

Indeed, this modification is crucial. If we just use approximations at x;, the resulting alternation merely
concatenates (3.4) and (3.6) during each iteration, and the two limitations we discussed in §3 will remain in
the combined approach. In particular, every other step that corresponds to the lower approximation would be
still suffer from overshooting for large stepsizes.

Having introduced a separate sequence {y;} for cost approximations, we consider the following alternation
where during each iteration, we update x; with (3.4) and y; with (3.6):

Approximate PPM with alternating two approaches. Given zy € R?, let yy = xo and run:

(4.8a) Tpqq ¢ argming {LOWER(IE; yt) + 2773“ l|lz — It||2},
(4.8b) Yi+1 < argmin, {UPPER(m; yr) + ﬁ ||z — mt+1||2}.

In Figure 1, we empirically verify that (4.8) indeed gets the best of both worlds: this combined approach
successfully approximates PPM even for the regime 7, = ©(t). More remarkably, (4.8) is exactly equal to
one version of AGM (“Form II” in the introduction). Turning (4.8) into the equational form by writing the
optimality conditions, and introducing an auxiliary iterate z;11 := y; — /LV f(y:) (only for simplicity), we obtain
the following (xg = yo = 20):

Equivalent representation of (4.8): e Li41
1/ n A ‘\ —Mt41 VI (ye) //)
— L Nt t \ o
(4.9a) Yt = i Tt T g At X Yp s > Zi41
(4.9b) Tep1 =zt — e V() YL . ‘Y
< -
(4.9¢) zr =y — 1 V).
Figure 2: Tllustration of (4.9).

Hence, we arrive at AGM without relying on any non-trivial derivations in the literature such as estimate
sequence [Nes18] or linear coupling [AZO17]. To summarize, we have demonstrated:

Nesterov’s AGM is an approximate instantiation of the proximal point method!

4.1 Understanding mysterious parameters of AGM It is often the case in the literature that the
interpolation step (4.9a) is written as an abstract form y; = 1ia¢ + (1 — 7¢)2¢ with a weight parameter 7 > 0 to
be chosen [AZO17, LRP16, WRJ16, BG19]. That said, in the previous works, 7; is carefully chosen according to
the analysis without conveying much intuition. One important aspect of our PPM view is that it reveals a close
relation between the weight parameter 7, and the stepsize 1;,. More specifically, 7y is chosen so that the ratio of
the distances |ly: — z¢|| : ||ys — 2¢|| is equal to n; : 1/L (see Figure 2).
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4.2 Analysis based on PPM perspective In order to determine 7;’s in (4.9), we revisit the analysis of PPM
from §3. In turns out that following §3.1, one can derive the following analogues of (Ineq;) and (Ineq,) using
Proposition 2.1 (we defer the derivations to §A.1):

1 1
(Ineqy®™) Ner1 (f(zer1) — f24)) + 5 [ 3 2 — z¢]|” < (EFM),
(IneqM) Flze1) = flz0) < (EXM),
where (S?GM) = (m% - %) IIVf(yt)HZ + L1 (Vf(ye), 2e — ye) and (5§GM) = —ﬁ ||Vf(yt)||2 -

(Vf(yt), 2zt — ys). Given the above inequalities, consider the following modified Lyapunov function (2.3) which
replaces the first x; with z;:

(4.10) By = (Liey ) - (f(2) = f(@) + 3l — @l

We note that (4.10) is not new; it also appears in prior works [WRJ16, DO19, BG19], although with different
motivations.

Then as before, to prove the validity of the chosen Lyapunov function, it suffices to verify (E£M) 4 (S20_, mi)-
(E/CM) < 0, which is equivalent to

(4.11) o (Lndey = S0 ) IV ) I+ (Lo = Sy ) (95 (), 2= ) <0

From (4.11), it suffices to choose {n:} so that L1 = 22:1 n;. Indeed, with such a choice, the coefficient
of the inner product term in (4.11) becomes zero and the coefficient of the squared norm term becomes
Vor(Ln?y — Lnggames2) < 0 (if {n;} is increasing). Indeed, one can quickly notice that choosing 7, = t/2L

satisfies the desired relation. Therefore, we obtain the well known accelerated convergence rate of f(z7) — f(z4) <
2L w0 —w.[|

(T+1) O(l/TQ)'

5 Similar triangle approximations and other variants

In §4, we have demonstrated that AGM is nothing but an approximation of PPM. This view point has not only
provided simple derivations of versions of AGM, but also offered clear explanations of the stepsizes. In this section,
we demonstrate that these interpretations offered by PPM actually lead to a great simplification of Nesterov’s
AGM in the form of the method of similar triangles [Nes18, GN18].

Our starting point is the observations made in the previous section: (i) from §4.1, we have seen |ly; — x| :
llys — z¢l| = mr : Y (ii) from §4.2, we have seen that we need to choose n; = ©(t), in which case n:11 =~ 1 > 1.
From these observations, one can readily see that the triangle Azix:412: is approximately similar to Ay 21 2:.
Therefore, one can simplify AGM by further exploiting this fact: we modify the updates so that the two triangles
are indeed similar. There are two different ways one can keep the two triangles similar:

1. We modify the update of ;41 so that the two triangles are similar.
2. We modify the update of z;11 so that the two triangles are similar.

We discuss the above two ways in turn.

5.1 First similar triangles approximation: momentum form of AGM We first adopt the first way to
keep the two triangles similar. We have the following update.
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First similar triangle approximation: Ty Trt+1

\ Yit+1 -
1 m =
(5.12a) Yt = 1/L¢?7f Ty + 1/L+m ’ tX yt\\ﬂ_%vf(yt) et
(5.12b) zZii1 =y — TV (), Y z(‘. /’Szt‘H
(512C) Ti41 = Zt+1 + Lnt(zt+1 — Zt) . £

Figure 3: The updates of (5.12).

In fact, (5.12) can be equivalently expressed without {z:}, as illustrated with dots in Figure 3. More
specifically, during the ¢-th iteration, once we compute (5.12b), one can directly update yiy; via Y =
Ziv1 + ﬁ(z&_}_l — 2¢). In other words,

zi1 =y — £V (W)
L
Y41 = Ze+1 + anﬂ(ztﬂ — ).

(5.12) < {

Hence, (5.12) is equivalent to the well-known momentum form of AGM (“Form I” in the introduction).
Recovering popular stepsize choices. Notably, our PPM-based analysis suggests the choice of {n:} as
per the recursive relation (L1 + %)2 = (Ln: +1)2 + %, which after substitution Ln; + 1 < a; exactly recovers
the popular recursive relation a;y; = %(1 + /1 +4a?) in [Nes83, BT09]. The analysis is similar to the one given
in §4.2. Below we provide the details.
Following §4.2, we again derive the following counterparts of (Ineq;) and (Ineq,) with straightforward
arguments (see §A.2 for details):

- 1 1
(Ineq3™) Ner1[f(ze41) — (@) + 5 ||$* vl — 5 ||$* — x| < (™),
(Ineq3™) f(zem) = f(z >,<5S'M>
where using the notation 7, = + L. the right hand side of the above inequalites are defined as
g Nt+1 Nt T g q

(EEM) == L (=(Lne + 1) + Lites) - lzea1 — well” + Test - (VF W), 241 — 2es1) and (E5™) i= L [z —wel® +
(Vf(e), 241 — 21)-
Having established counterparts of (Ineq;) and (Ineq,), following §4.2, we choose

(5.13) Oy = (N0 1) (f(ze) = F(@) + & lloe — 2

To prove the validity of the chosen Lyapunov function, it suffices to verify
(5.14) (E™) + (Ximy ) - (E8™) <
which is equivalent to showing (because zi41 — 41 = —Ln(ze41 — 2¢)):

(5.15) : (—(Lm +1)2 4+ 300 Lm) Nzt — vl + (Lﬂtﬁtﬂ -3 77@) (Vf(ye), ze41 —2) <0.

From (5.15), it suffices to choose {n;} so that L1 = 2221 7;. Indeed, with such a choice, the coefficient of
the inner product term in (5.15) becomes zero and the coefficient of the squared norm term becomes

1 ~ ~
3 (—(Lm +1)%+ ZtH ) =5 (—=(Lne + 1)* + Lijeg1 + Lijpgr - L)
=3 (—(Lne +1)% + Lijpga (L +1)) =0
since L1 = Lny + 1. Indeed, one can actually simplify the relation L1 = Z:Zl i

Lnpyr - (Ipeg1 + 1) = Ly - Lijeya = Zfii Li; = Lijq1 + Ly - Lijyr = (L + 1)2.

After rearranging, we obtain the recursive relation: (L1 4+ 2)? = (L, +1)% 4+ %, which after the substitution
2
Lny + 1 = a, exactly recovers the popular recursive relation a;y1 = w in [Nes83, BT09).
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5.2 Second similar triangles approximation: acceleration for composite costs We now adopt the
second way to keep the two triangles similar. We have the following update.

Second similar triangle approximation: L ?H‘l
1/ n A \r. —Wt+1vf(yt) /\’ -

_ L ,'7 't \ _ -
(5163) Yt = 1/L4n: Ty + 1/LJtr77t 2t < yt\\'\'~;-' ....... Kr/»/f,'t/_}_l
(5.16b) i1 = T — YA V. (Ye) s YL 5 NP

- -
1
(5.16¢) Zt41 = I/L/%mxtﬂ + ﬂij_mzt-
Figure 4: Tlustration of (5.16).

This is “Form III” in the introduction. Below, we provide a PPM-based analysis for a more general setting.

One advantage of (5.16) is that it admits a simple extension to the practical setting of constrained optimization
on composite costs (see e.g. [Nesl8, §6.1.3] for applications). More specifically, for a closed convex set Q C R?
and a closed! convex function ¥ : Q — R, consider

mingeq fY(z) == f(z) + ¥(x),

where f : @ — R is a differentiable convex function which is L-smooth with respect to a norm ||-|| that is not
necessarily the ¢» norm (i.e., we regard the norm in Definition 3.1 to be our chosen norm). For the general norm
case, we use the Bregman divergence.

DEFINITION 5.1. Given a 1-strongly convex (w.r.t the chosen norm |-||) function h : @ — R U {oco} that is
differentiable on the interior of Q, Dy, (u,v) := h(u) — h(v) — (Vh(v),u —v) for all u,v € Q.

Under the above setting and assumption, (5.16) admits a simple generalization:

Generalization of (5.16) to composite costs:

(5.17a) Yt = 1/2/+Lm Ty + 1/Lnfrm 2t

(5.17b) Typ1 4 argming e {LOWER(x;yt) + mlﬂDh (z, ) + \Il(x)} ,
(5.17¢) Zt41 = 1/i/im Tig1 + 1/27_:_% Zt -

Now we provide a simple PPM-based analysis of (5.17):

Proof. [PPM-based analysis of (5.17)] To obtain counterparts of (Ineq;) and (Ineq,), we now use a
generalization of Proposition 2.1 to the Bregman divergence ([Teb18, Lemma 3.1]). With such a generalization,
we obtain the following inequality for ¢¥ (z) := 1 [f(y:) + (Vf(ye), © — i) + ¥ ()]:

(5.18) oY (e41) — ¢ (22) + Dp (s, ©e41) + D (2451, 24) — Dp (w4, ) <0,

where z. € argmin, cq, f ¥ (x). Now using (5.18), one can derive from first principles the following inequalities (we
defer the derivations to §A.3):

(Inegs™") D1 (FY (ze01) = FY (@) + Dy (w4, 2011) — Dy (e, 220) < (E™),
(Ineq3™) F¥ (i) = 7 () < (E™).
where (EPM) = —Lllzer —el® + nealE lzerr — wel® + (VFWe)s 2641 — eg1) + U(z41) — U(ae1)] and

(ESM) .= Lz - ull? + (VF (), 241 — 20) + W (z41) — ¥(z). Similar to §4.2, yet replacing the norm squared

term with the Bregman divergence, we choose
®; = (i m) - (fY(z0) = F¥(2.)) + D (@, 1) -

TThis means that the epigraph of the function is closed. See [Nes18, Definition 3.1.2].
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Then, it suffices to show (™) + (Zle n;) - (™) < 0. Using the facts (1) ze41 — q1 = Lne(z — 2041) and (ii)
lxte1 — ¢]| = (Lny + 1) ||ze41 — y¢|| (both are immediate consequences of the similar triangles) and rearranging,
one can easily check that (£;™") + (22;:1 ni) - (Es™) is equal to

(5.19) 3 (—(Lm + 12+ L + LY, Th') 241 — well?
(5.20) + (me+1 - m) (Vf(ye), 2t — ze41)
(5.21) 1 [P (zan) = W]+ (Sio ) - [(zen) = Uz,

Now choosing 7; = t/21. analogously to §4.2, one can easily verify (5.19) + (5.20) + (5.21) < 0. Indeed, for (5.19),
since L1 = Zle 7, the coefficient becomes 1/2(Ln; + 1)(Lniy1 — Lny — 1) which is a negative number since
Lniy1 — Ly — 1 = —1/2; for (5.20), the coefficient becomes zero due to the relation Ly = 22:1 n;; lastly, for
(5.21), we have

(5:22) (5.:21) = mug1 [(1 + Lne) ¥ (z41) — (@41) — LW (2)] < 0,

where the equality is due to the relation L1 = Z§=1 7;, and the inequality is due to the update (5.17c)

(which can be equivalently written as (1 4+ Ln;)zi41 = @41 + Liiz) and the convexity of . Hence, we obtain
the accelerated rate of f¥(27) — f¥(z.) < % = O(Y/12). 0

6 Extension to strongly convex costs

In this section, we extend our PPM framework to the case of strongly convex costs. As we shall see, our
framework gives rise to a simple derivation of the most general version of AGM called “General Scheme for
Optimal Method” [Nesl8, (2.2.7)]. We first make the approximate PPM (4.8) more flexible by considering two
separate stepsizes.

Approximate PPM with two separate stepsizes {1;} and {7;}. Given ¢ = yo € R,
(6.23a) Zpp1 ¢ argming, {LOWER(x; yt) + ﬁ [l — xt||2},

(6.23b) Yi41 < argmin {UPPER(;U; Y) + ﬁ |z — xt+1||2}.

Now let us apply our PPM view to the strongly convex cost case.

DEFINITION 6.1. (STRONG CONVEXITY) For u > 0, we say a differentiable function f : R? — R is u-strongly
convez if f(x) > f(y) + (VF(y).x —y) + 5 o —yl|” for any 2,y € R™.

Since f is additionally assumed to be strongly convex, one can now strengthen the lower approximation
LOWER(z;y¢) in (6.23a) to LOWER(z; ) + & |l — ]|>. In other words, we obtain

Approximate PPM for strongly-convex costs. Given zg = o € R,

1
(6.24a) Ty < argmin {LOWER(m; y)+  Ele—wl? + [EE= }
2ERd 2 241

additional term due to
strong convexity

(6.24b) Ye+1  argming {UPPER(m;yt) + ﬁ lx — xt+1||2}.

Writing the optimality condition of (6.24), it is straightforward to check that the approximate PPM (6.23) is
equivalent to the following updates (xg = yo = 20):
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Equivalent representation of (6.24): Ty mepa i Del
N v T de VW) L >
1 I~ Mt+1 \| ............ e
(625&) Yt = 1/L/"fﬁt T + I/Lnj_ﬁt Zt s ﬁt X W \; ....... - .
_ _Yu Net1 1 s ¢ -
(6.25D) LS Vom0 Y o " n I B
’ 1/,,. ) X i -
— N £ (y,) Ve L
(625(3) Zt+1 = Yt — %Vf(yt) .
Figure 5: Illustration of (6.25).

Note that (6.25) is the most general version of AGM due to Nesterov called “General Scheme for Optimal
Method” [Nesl8, (2.2.7)] (“Form IV” in the introduction). Again, our derivation provides new insights into the
choices of the AGM stepsizes by expressing them in terms of the PPM stepsizes 1;’s and 7;’s.

6.1 Relation to well known momentum version Perhaps, the most well known version of AGM for strongly
convex costs is the momentum version due to Nesterov (see, e.g., [Nesl8, (2.2.22)])

zep1 =Y — TV (),
(6.26)

-1
Yir1 = Ze41 + %(Zt-i-l —2t).

One might wonder whether one can better understand the stepsizes in (6.26) from (6.25).
Let us first recall the well known convergence rate of PPM for strongly convex costs due to Rockafellar [Roc76,
(1.14)]:

(6.27) flxzr) — f(zs) <O (Hle(l + ,unt)_l) for any T > 1.

From (6.27), one can see that in order to achieve the accelerated convergence rate O(exp(—7/yx)) where & is the
condition number L/u, the stepsizes 1, must be chosen so that n; ~ u~!(y/k)~!. In fact, the well known version
(6.26) corresponds to choosing the following stepsizes for (6.25):

(6.28) m=n=p(VE=1)"" and p=7:=p" (VR

To see this, note that with such choice of 7 and 7, (6.25) becomes:

Ty Tt41
(6.25) with stepsize chosen as (6.28): " ! —4?_Jff}{t)_..--x;"
o " =X we g = .
(6.292) U= R T TR Ve VE=1\ —Evien g
(6.29b) Ti4+1 = %xt + ﬁyt - %Vf(yt) 5 x¥ Y ‘;_;,:‘ """ :/\”/
1 [
(629(3) Zt+1 = Yt — %Vf(yt) . ~ Z L
Figure 6: Illustration of (6.29).

As shown in Figure 6, Aw;xs412¢ is similar to Ayizey12¢, so one can write the updates (6.29) without {z;} and
{w;}, which precisely recovers (6.26):

Zt4+1 = Yt — %Vf(yt) )

6.29) <= (6.26) = e
(6:29) (6:26) { Yer1 = Ze41 T %(Ztﬂ —zt).

7 Related work

Our approach is inspired by that of Defazio [Def19] that establishes an inspiring connection between AGM and
PPM. The main observation in that paper is that for strongly convex costs, one can derive a version of AGM from
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the primal-dual form of PPM with a tweak of geometry. Compared with [Def19], our approach strengthens the
connection between AGM and PPM by considering more versions of AGM and their analyses. Another advantage
of our approach is that it does not require duality.

We now summarize previous works on developing alternative approaches to Nesterov’s acceleration. Most
works have studied the continuous limit dynamics of Nesterov’s AGM [SBC16, KBB15, WWJ16]. These
continuous dynamics approaches have brought about new intuitions about Nesterov’s acceleration, and follow-up
works have developed analytical techniques for such dynamics [WRJ16, DO19]. Another notable contribution
is made based on the linear coupling framework [AZO17]. The main observation is that the two most popular
first-order methods, namely gradient descent and mirror descent, have complementary performances, and hence,
one can come up with a faster method by linearly coupling the two methods. Lastly, Nesterov’s acceleration has
been explained from the perspective of computing the equilibrium in a primal-dual game [WA18, CST21].

PPM has been used to design or interpret other optimization methods [Drul7]. To list few instances,
PPM has given rise to fast methods for weakly convex problems [DG19], the prox-linear methods for composite
optimizations [BF95, Nes07, LW16], accelerated methods for stochastic optimizations [LMH15], and methods for
saddle-point problems [MOP19].

8 Conclusion

This work provides a way to understand Nesterov’s acceleration based on the proximal point method. The
framework presented in this paper motivates a simplification of AGM using similar triangles and readily extends
to the strongly convex case and recovers the most general accelerated method due to Nesterov.

We believe that the simple derivations presented in this paper clarify and deepen our understanding of
Nesterov’s acceleration. Our framework is therefore not only of pedagogical value but also helpful for research.
For future directions, it would be interesting to connect our PPM view to accelerated stochastic methods
[LMH15, LZ18] and other accelerated methods, including geometric descent [BLS15]. Furthermore, we hope
the connections presented in this work will help advance the development of accelerated methods in settings much
wider than convex optimization (see e.g., [Bac14]).
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A Deferred derivations

A.1 Deferred derivations from §4.2 Let us first derive (Ineq?GM). Applying Proposition 2.1 with ¢(x) =

Ne1[f (ye) + (Vf (), 2 — ye)] to (4.8a), we obtain:
1 2 1 2 1 2
(A1) Baisr) = D) + 5 e =zl + 5 lewss — w2 = 3z — ael* < 0.

Now from the convexity of f, it holds that ¢(z.) < my1f(2s). This together with the L-smoothness of f, it
follows that

A(wig1) = N1 [f(e) + (VW) 201 — ye) (VI (e), Tepr — 2e41)]

L
> Net1 |:f(zt+1) ) llze41 — yt||2 + (V) xe41 — Zt+1>] .

Plugging these inequalities back to (A.1) and rearranging, we obtain the following inequality:

1 1
Ner1[f(zep1) — f(2e)] + 5 [E g 3 s — ]|

1 L
(A.2) <-3 lzer1 — ze]|* + neg {2 lzes1 — yell> + (VF (), 2041 — $t+1>} :

Now decomposing the inner product term in (A.2) into

Tht+1 <Vf(yt)7 Zt4+1 — yt> + Ne+1 <Vf(yf,),yt - It) + M1 <Vf(yt)793t - $t+1>7

and using zy41 — ¢ = =41 Vf(ye) and ze41 —ye = —Y/LV f(y,) (which are (4.9b) and (4.9¢), respectively), (A.2)

2
becomes (n‘2“ - %) IV F > 4 nesr (V£ (), ye — 2,). Now, using the relation 3, — 2, = Ly (2 — ;) (which
is (4.9a)), we obtain (EACM). Thus, (Ineqy™) follows.

Next, (Ineqh®) readily follows from the L-smoothness and the convexity of f:

fQzte1) = f(ze) = fze1) — fye) + fye) — f(z)

L
<AV W), zee1 — ye) + 9 2641 — yt||2 +(Vf(Ye),ye — 2t)
a 1
<~ o7 IV F@OIP + (V) = 21) = (E5M),
where (a) is due to zi41 — ¥ = =YLV f(yz).

A.2 Deferred derivations from §5.1 We first derive (Ineq;™). By the updates (5.12), we have x4, =
xe — (e + %)Vf(yt) Letting 711 :=n + %, this relation can be equivalently written as:

(A.3) T4y < argmin, {f(yt) H (VW) w = ye) + 5 llo = JUt||2}

The rest is similar to §A.1: we apply Proposition 2.1 with ¢(z) = 1 [f (v) + (Vf (ye), 7 — y)):
1 2 1 2 1 2

(A4) P(z141) — d(zi) + 3 [ — e [|” + 3 [e41 — ef|” — 3 |z — 2" < 0.

Now from the convexity, we have ¢(x,) < 741 f(z), and from the L-smoothness, we have

A(wep1) = Do [f (ye) + (VW) zee1 — o) + (VF(We), o1 — 2641)]

- L
> Ney1 | f(ze11) — 3 Ize41 = ell” + (VF @), Ter1 — 2e41)
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Plugging these inequalities back to (A.4) and rearranging, we obtain the following inequality:

- 1 1
Ner1[f (ze41) — f(@)] + 3 2w — zpg|)* = 3 [

1 - L
<3 2ot — zell + T 3 lze41 — yell> + (V£ (), 2041 — Tesr)

(—(Lne + 1) + Lites1) - lzea1 = vell + T - (VI (W), 2041 — eg1) = (ETM),

N |

where the last line follows since ||xi41 — x| = (Lne + 1) - |2e41 — 2¢|| (see Figure 3).
Next we derive (Ineq;™). From the L-smoothness and the convexity of f:

f(zev1) = f(2e) = f(ze41) = f(ye) + f(ye) — f(20)

L
<(Vf(Yr), 2t+1 — ye) + 3 lzer1r — yell” + (V£ () e — 2)
L
= 9 lz¢41 — yt||2 + <Vf(yt)’2t+1 —z) = ( 2SIM)-

A.3 Deferred derviations from §5.2 Let us first derive (Ineq?'M/). From convexity, we have ¢¥(z,) <

Ner1fY(74), and from the L-smoothness, we have the following lower bound:
O (we1) = Mo [ (W) + (VF(Ye)s 2041 = o) + (VI (o) o1 — 2e1) + W(@et1)]

L
> g1 [ (2e41) — 5 Izes1 — yell> + (VF () g1 — zes1) + Ul@err) — U(zep1)

Plugging these back to (5.18), and using the bound —Dj, (2441, 2¢) < —3 ||z441 — z||?, (Ineq?'M/) follows.

Next, to derive (Inqulm/)7 we use L-smoothness and the convexity of f to obtain the following:

SV (ze1) = £ (z) < F(zeg1) = Fye) + Flye) = f(z) + Ulzeg) — U(z)

L
< 3 |ze41 — yt||2 +{(V (), ze41 — 21y + U(ze41) — U(2z),

which is precisely equal to (E5™").
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