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We study stochastic projection-free methods for constrained optimization of smooth functions on

Riemannian manifolds, i.e., with additional constraints beyond the parameter domain being a manifold.

Specifically, we introduce stochastic Riemannian Frank–Wolfe (Fw) methods for nonconvex and

geodesically convex problems. We present algorithms for both purely stochastic optimization and finite-

sum problems. For the latter, we develop variance-reduced methods, including a Riemannian adaptation of

the recently proposed Spider technique. For all settings, we recover convergence rates that are comparable

to the best-known rates for their Euclidean counterparts. Finally, we discuss applications to two classic

tasks: the computation of the Karcher mean of positive definite matrices and Wasserstein barycenters for

multivariate normal distributions. For both tasks, stochastic Fw methods yield state-of-the-art empirical

performance.

Keywords: Riemannian optimization; Frank–Wolfe methods; nonconvex optimization; positive definite

matrices; Karcher mean; Wasserstein barycenters.

1. Introduction

We study the following constrained (and possibly nonconvex) stochastic and finite-sum problems:

min
x∈X ⊂M

Φ(x) := Eξ [φ(x, ξ)] =
∫

φ(x, ξ) dP(ξ), (1.1)

min
x∈X ⊂M

Φ(x) := 1
m

∑m

i=1
φi(x), (1.2)

where X is compact and geodesically convex and M is a Riemannian manifold. Moreover, the

component functions {φi}mi=1 as well as Φ are (geodesically) Lipschitz smooth, but may be nonconvex.

These problems greatly generalize their Euclidean counterparts (where M ≡ R
d), which themselves

are of central importance in optimization and machine learning. In particular, finite-sum problems (Eq.

1.2) arise frequently in machine learning subroutines, such as empirical risk minimization, maximum

likelihood estimation or the computation of M-estimators.

There has been an increasing interest in solving Riemannian problems of the above form, albeit

without constraints (Bonnabel, 2013; Zhang & Sra, 2016; Zhang et al., 2016; Tripuraneni et al., 2018;

Zhang et al., 2018a; Kasai et al., 2018b, 2019). This interest is driven by two key motivations: first,
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2 M. WEBER AND S. SRA

that the exploitation of Riemannian geometry can deliver algorithms that are computationally superior

to standard nonlinear programming approaches (Udriste, 1994; Absil et al., 2008; Boumal et al., 2014;

Zhang et al., 2016). Secondly, in many applications we encounter non-Euclidean data, such as graphs,

strings, matrices and tensors, where using a forced Euclidean representation can be quite inefficient

(Edelman et al., 1998; Billera et al., 2001; Zhang et al., 2016; Nickel & Kiela, 2017; Sala et al.,

2018; Weber, 2020). These motivations have driven the recent surge of interest in the adaption and

generalization of machine learning models and algorithms to Riemannian manifolds.

We solve problem (1.1) by introducing Riemannian stochastic Frank–Wolfe (Fw) algorithms. These

methods are projection free (Frank & Wolfe, 1956), a property that has driven much of the recent interest

in them (Jaggi, 2013). In contrast to projection-based methods, the Fw update requires solving a ‘linear’

optimization problem that ensures feasibility while often being much faster than projection. Fw has been

intensively studied in Euclidean spaces for both convex (Jaggi, 2013; Lacoste-Julien & Jaggi, 2015)

and nonconvex (Lacoste-Julien, 2016) objectives. Furthermore, stochastic variants have been proposed

(Reddi et al., 2016) that enable strong performance gains. As our experiments will show, our stochastic

Riemannian Fw also delivers similarly strong performance gains on sample applications, outperforming

the state-of-the-art.

1.1 Summary of main contributions

• We introduce three algorithms: (i) Stochastic Riemannian Frank–Wolfe (Srfw), a fully stochastic

method that solves (1.1); (ii) Semi-stochastic variance-reduced Riemannian Frank–Wolfe (Svr-

Rfw), a semi-stochastic variance-reduced version for (1.2); and (iii) Spider Riemannian Frank–

Wolfe (Spider-Rfw), an improved variance-reduced variant that uses the recently proposed

Spider technique for estimating the gradient. All three algorithms generalize various stochastic

gradient tools to the Riemannian setting. For all methods, we establish convergence rates to first-

order stationary points that match the rates of their Euclidean counterparts. Under the stronger

assumption of geodesically convex objectives, we recover global sublinear convergence rates.

• In contrast to the study by Weber & Sra (2017), which considers Riemannian Fw, Stochastic

Rfw does not require the computation of full gradients. Overcoming the need to compute the full

gradient in each iteration greatly reduces the computational cost of each iteration as it removes a

major bottleneck in Rfw. Moreover, Stochastic Rfw applies to problem 1.1, a crucial subroutine

in many machine learning applications.

• We present an application to the computation of Riemannian centroids (Karcher mean) for

positive definite matrices. This task is a well-known benchmark for Riemannian optimization

and it arises, for instance, in statistical analysis, signal processing and computer vision. Notably,

a simpler version of it also arises in the computation of hyperbolic embeddings.

• Furthermore, we present an application to the computation of Wasserstein barycenters for

multivariate and matrix-variate Gaussians. For the latter, we prove the somewhat surprising

property that the Wasserstein distance between two matrix-variate Gaussians is Euclidean convex.

This result may be of independent interest.

The proposed Stochastic Rfw methods deliver valuable improvements, both in theory and experiment.

Table 1 summarizes the complexity results for all variants in comparison with Rfw (Algorithm 1). For

an analysis of Rfw ’s complexity, see Weber & Sra (2017, Theorem 3). Our algorithms outperform state-

of-the-art batch methods such as Riemannian LBFGS (Yuan et al., 2016) and Zhang’s majorization–

minimization algorithm (Zhang, 2017). Moreover, we also observe performance gains over the
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 3

Table 1 Oracle complexities of our Stochastic Riemannian Frank–Wolfe methods versus Rfw (Weber

& Sra, 2017) for nonconvex objectives. Note that we recover the best known rates of the Euclidean

counterparts for each method. We consider three different oracle models, which we will define below in

Section 2.4: SFO/ IFO: stochastic first-order oracle (for stochastic objectives) and incremental first-

order oracle (for objectives with finite-sum form). LO: Riemannian linear optimization oracle

Algorithm Rfw Srfw Svr-Rfw Spider-Rfw

SFO/ IFO O
(

m
ǫ2

)

O
(

1
ǫ4

)

O
(

m+ m2/3

ǫ2

)

O
(

1
ǫ3

)

RLO O
(

1
ǫ2

)

O
(

1
ǫ2

)

O
(

1
ǫ2

)

O
(

1
ǫ2

)

deterministic Rfw, which itself is known to be competitive against a wide range of Riemannian

optimization tools (Weber & Sra, 2017). Importantly, our methods further outperform state-of-the-art

stochastic Riemannian methods RSG (Kasai et al., 2018b) and RSVRG (Zhang et al., 2016; Sato et al.,

2017).

1.2 Related work

Riemannian optimization has recently witnessed a surge of interest (Bonnabel, 2013; Zhang & Sra,

2016; Huang et al., 2018; Liu & Boumal, 2019). A comprehensive introduction to Riemannian

optimization can be found in Absil et al. (2008). The Manopt toolbox (Boumal et al., 2014) implements

many successful Riemannian optimization methods, serving as a benchmark.

The study of stochastic methods for Riemannian optimization has largely focused on projected-

gradient methods. Bonnabel (2013) introduced the first Riemannian SGD. Zhang & Sra (2016) present

a systematic study of first-order methods for geodesically convex problems, followed by a variance-

reduced Riemannian SVRG (Zhang et al., 2016; Sato et al., 2017) that also applies to geodesically

nonconvex functions. Kasai et al. (2018b) study gradient descent variants, as well as a Riemannian

ADAM (Kasai et al., 2019). A caveat of these methods is that a potentially costly projection is needed to

ensure convergence. Otherwise, the strong (and often unrealistic) assumption that their iterates remain in

a compact set is required In contrast, Rfw (Algorithm 1) generates feasible iterates directly and therefore

avoids the need to compute projections. This leads to a cleaner analysis and a more practical method in

cases where the ‘linear’ oracle is efficiently implementable (Weber & Sra, 2017). We provide additional

details on the comparison of projection-free and projection-based methods in Section 2.3. Riemannian

optimization has also been applied in the ML literature, including for the computation of hyperbolic

embeddings (Sala et al., 2018), low-rank matrix and tensor factorization (Vandereycken, 2013) and

eigenvector based methods (Journée et al., 2010; Zhang et al., 2016; Tripuraneni et al., 2018).

2. Background and notation

We start by recalling some basic background on Riemannian geometry and introduce necessary notation.

For a comprehensive overview on Riemannian geometry, see, e.g., Jost (2011).

2.1 Riemannian manifolds

A manifold M is a locally Euclidean space equipped with a differential structure. Its corresponding

tangent spaces TxM consist of tangent vectors at points x ∈ M . We define an exponential map
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4 M. WEBER AND S. SRA

Algorithm 1: Riemannian Frank-Wolfe (Rfw)

1: Initialize x0 ∈X ⊆M ; assume access to the geodesic map γ : [0, 1] →M

2: for k = 0, 1, . . . do

3: zk ← argminz∈X 〈grad φ(xk), Exp−1
xk

(z)〉

4: Let ηk ← 2
k+2

5: xk+1 ← γ (ηk), where γ (0) = xk and γ (1) = zk

6: end for

Exp : TxM → M as follows: let gx ∈ TxM ; then y = Expx(gx) ∈ M with respect to a geodesic

γ : [0, 1] �→ M with γ (0) = x, γ (1) = y and γ̇ (0) = gx. We will also use the inverse exponential

map Exp−1 : M → TxM that defines a diffeomorphism from the neighborhood of x ∈ M onto the

neighborhood of 0 ∈ TxM with Exp−1
x (x) = 0.

Riemannian manifolds are smooth manifolds with an inner product gx(u, v) = 〈u, v〉x defined on

TxM for each x ∈ M . The inner product gives rise to a norm ‖v‖x :=
√

gx(v, v) for v ∈ TxM . We will

further denote the geodesic distance of x, y ∈ M as d(x, y). For comparing vectors of different tangent

spaces, we use the following notion of parallel transport: let x, y ∈ M , x 
= y. Then, the operator Γ
y

x gx

maps gx ∈ TxM to the tangent space TyM along a geodesic γ with γ (0) = x and γ (1) = y. Note that

the inner product on the tangent spaces is preserved under this mapping.

2.2 Gradients, smoothness and convexity

The Riemannian gradient grad φ(x) of a differentiable function φ : M → R is defined as the unique

vector in TxM with directional derivative Dφ(x)[v] = 〈grad φ(x), v〉x for all v ∈ TxM . For our

algorithms we further need a notion of smoothness: let φ : M → R be differentiable. We say that

φ is L-smooth, if

‖grad φ(y)− Γ y
x grad φ(x)‖ ≤ Ld(x, y), ∀ x, y ∈M, (2.1)

or equivalently, if for all x, y ∈M , φ satisfies

φ(y) � φ(x)+ 〈grad φ(x), Exp−1
x (y)〉x + L

2
d2(x, y). (2.2)

Another important property is geodesic convexity (short: g-convexity), which is defined as

φ(y) � φ(x)+ 〈grad φ(x), Exp−1
x (y)〉x ∀x, y ∈M. (2.3)

2.3 Projection-free vs. projection-based methods

Classic Riemannian optimization has focused mostly on projection-based methods, such as Riemannian

Gradient Descent (RGD) or Riemannian Steepest Descent (RSD) (Absil et al., 2008). A convergence

analysis of such methods typically assumes the gradient to be Lipschitz. However, the objectives

typically considered in most optimization and machine learning tasks are not Lipschitz on the whole

manifold. Hence, a compactness condition is required. Crucially, in projection-based methods, the
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 5

retraction back onto the manifold is typically not guaranteed to land in this compact set. Therefore,

additional work (e.g., a projection step) is needed to ensure that the update remains in the compact

region where the gradient is Lipschitz. On the other hand, Fw methods bypass this issue, because their

update is guaranteed to stay within the compact feasible region. Further, for descent based methods it

can suffice to ensure boundedness of the initial level set, but crucially, stochastic methods are not descent

methods, and this argument does not apply. Finally, in some problems, the Riemannian ‘linear’ oracle

can be much less expensive than computing a projection back onto the compact set. This is particularly

significant for the applications highlighted in this paper, where the ‘linear’ oracle can even be solved in

closed form.

2.4 Oracle models

We briefly review three oracle models, which are commonly used to understand the complexity of

stochastic optimization algorithms.

1. Stochastic first-order oracle (short: SFO): Consider a stochastic function Φ(x) := E [φ(x, ξ)] with

ξ ∼ P . For an input x ∈ M , the SFO returns (φ(x, ξ ′),∇φ(x, ξ ′)) for a sample ξ ′ that is drawn

i.i.d. from the distribution P . For details, see Nemirovskiı̆ & Yudin (1983).

2. Incremental first-order oracle (short: IFO): Consider a finite sum Φ(x) := 1
m

∑

i φi(x). For an

input (i, x), where i ∈ [n] is a function index and x ∈ M , the IFO returns (φi(x),∇φi(x)). For

details, see Agarwal & Bottou (2015).

3. Riemannian linear optimization oracle (short: RLO): For a set of constraints X , a point

x ∈X ⊆M and a direction g ∈ TxM , the RLO returns argminz∈X 〈g, Exp−1
x (z)〉.

Throughout the paper, we measure complexity as the number of SFO/ IFO and RLO calls made by the

algorithm to obtain an ǫ-accurate solution.

3. Algorithms

In this section, we introduce three stochastic variants of Rfw and analyze their convergence. Here and

in the following xk, xk+1 and y are as specified in Algorithm 2, 3 and 4, respectively. We further make

the following assumptions: (1) Φ is L-smooth; and (2) in the stochastic case, the norm of the stochastic

gradient is bounded as

max
x∈X

ξ∈supp(P)

‖grad φ(x, ξ)‖ � C

for some constant C ≥ 0.

3.1 Stochastic Riemannian Fw

Our first method, Srfw (Algorithm 2), is a direct analog of stochastic Euclidean Fw. It has two key

computational components: A stochastic gradient and a ‘linear’ oracle. Specifically, it requires access

to the stochastic ‘linear’ oracle

yk ← argmin
y∈X

〈G(ξ , xk), Exp−1
xk

(y)〉, (3.1)
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6 M. WEBER AND S. SRA

Algorithm 2 Stochastic Riemannian Frank-Wolfe (Srfw)

1: Initialize x0 ∈X , assume access to the geodesic map γ : [0, 1] →M .

2: Set number of iterations K and minibatch sizes {bk}K−1
k=0 .

3: for k = 0, 1, . . . K − 1 do

4: Sample i.i.d. {ξ1, ..., ξbk
} uniformly at random according to P .

5: yk ← argminy∈X 〈 1
bk

∑bk

i=1 grad φ(xk, ξi), Exp−1
xk

(y)〉
6: Compute step size ηk and set xk+1 ← γ (ηk), where γ (0) = xk and γ (1) = yk.

7: xk ← xk

8: end for

9: Output x̂ chosen uniformly at random from {xk}K−1
k=0 .

where G(·, ·) is an unbiased estimator of the Riemannian gradient (Eξ G(ξ , x) = grad Φ(x)). In

contrast to Euclidean Fw, the oracle (3.1) involves solving a nonlinear, nonconvex optimization problem.

Whenever this problem is efficiently solvable, we can benefit from the FW strategy. In Weber & Sra

(2017), we analyze two instances where Eq. 3.1 can be solved in closed form, for positive definite

matrices and for the special orthogonal group, respectively. Our experiments below will provide two

concrete examples for the case of positive definite matrices.

We consider a minibatch variant of the oracle (3.1), namely

yk ← argmin
y∈X

〈 1

bk

∑bk

i=1
grad φ(xk, ξi), Exp−1

xk
(y)
〉

,

where ξi ∼ P are drawn i.i.d., and thus the minibatch gradient is also unbiased. We first evaluate the

goodness of this minibatch gradient approximation with the following (standard) lemma:

Lemma 3.1 (Goodness of stochastic gradient estimate). Let Φ(x) = Eξ

[

φ(x, ξi)
]

with random

variables {ξi}bi=1 = ξ ∼ P . Furthermore, let g(x) := 1
b

∑b
i=1 grad φ(x, ξi) denote the gradient

estimate from a batch ξ . Assume that the norm of the gradient estimate is upper-bounded as

maxx∈X ,ξ∈supp(P) ‖grad φ(x, ξ)‖ � C. Then, Eξ

[

‖g(x)− grad Φ(x)‖
]

� C√
b
.

In the following, we drop the subscript ξ from the expectation for ease of notation, whenever its

meaning is clear from context.

For the proof, recall the following fact, which we will use throughout the paper:

Remark 3.1 For a set of n independent random variables {νi}1≤i≤n with mean zero, we have

E
[

‖ν1 + · · · + νn‖2
]

= E
[

‖ν1‖2 + · · · + ‖νn‖2
]

. (3.2)
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 7

Proof. We have

E

⎡

⎢
⎣‖g(x)− grad Φ(x)

︸ ︷︷ ︸

=E[g(x)]

‖2

⎤

⎥
⎦ = E

[

‖g(x)‖2
]

− ‖E [g(x)]‖2

︸ ︷︷ ︸

�0

� E
[

‖g(x)‖2
]

= E

⎡

⎣

∥
∥
∥
∥
∥

1

b

b
∑

i=1

grad φ(x, ξi)

∥
∥
∥
∥
∥

2
⎤

⎦
(1)

�
1

b2
E

⎡

⎢
⎣

b
∑

i=1

‖grad φ(x, ξi)‖2

︸ ︷︷ ︸

�C2

⎤

⎥
⎦

(2)

�
C2

b
,

where (1) follows from Remark 3.1 and the fact that E
[

g(x)− grad Φ(x)
]

= 0, since g(x) is assumed

to be an unbiased gradient estimate; and (2) follows from the assumption that the norm of the gradient

is upper-bounded by C. Furthermore, with Jensen’s inequality:

E
[

‖g(x)− grad Φ(x)‖2
]

�
[

E (‖g(x)− grad Φ(x)‖)
]2

.

Putting both together and taking the square root on both sides gives the desired claim:

E
[

‖g(x)− grad Φ(x)‖
]

�
C√

b
.

�

With this characterization of the approximation error, we can perform a convergence analysis for

both nonconvex and g-convex objectives. To evaluate convergence rates, consider the following criterion

(Fw gap):

G (x) = max
y∈X

〈Exp−1
x (y), −grad Φ(x)〉. (3.3)

A similar criterion is used in theoretical analysis of Euclidean Fw methods (see, e.g., Reddi et al.

(2016)). We define the Stochastic Fw gap as

Ĝ (x) = max
y∈X

〈Exp−1
x (y), −g(x)〉.

Assuming that the Robbins–Monroe approximation g(x) gives an unbiased estimate of the gradient

grad Φ(x) (*), we have (by Jensen’s inequality and the convexity of the max-function):

E
[

Ĝ (x)
]

≥ max
y∈X

〈Exp−1
x (y), −E [g(x)]〉 (∗)= max

y∈X
〈Exp−1

x (y), −grad Φ(x)〉 = G (x).

With this, we can show that Srfw converges at a sublinear rate to first-order stationary points:
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8 M. WEBER AND S. SRA

Theorem 3.1 (Convergence Srfw). With constant steps size ηk = 1√
K

and constant batch sizes bk = K,

Algorithm 2 converges in expectation with a sublinear rate, i.e.,

Eξ

[

G (x̂)
]

= O(1/
√

K).

To prove the theorem, we need a few additional auxiliary results. First, recall the definition of the

curvature constant MΦ , introduced in Weber & Sra (2017):

Definition 3.2 (Curvature constant). Let x, y, z ∈ X and γ : [0, 1] → M a geodesic map with

γ (0) = x, γ (1) = z and y = γ (η) for η ∈ [0, 1]. Define

MΦ := sup
x,y,z∈X
y=γ (η)

2
η2

[

Φ(y)−Φ(x)− 〈grad Φ(x), Exp−1
x (y)〉

]

. (3.4)

We further recall two technical lemmas on MΦ ; the proofs can be found in Weber & Sra (2017):

Lemma 3.3 (Weber & Sra (2017)). Let Φ : M → R be L-smooth on X ; let diam(X ) :=
supx,y∈X d(x, y). Then, the curvature constant Mφ satisfies the bound MΦ ≤ L diam(X )2.

Lemma 3.4 (Weber & Sra (2017)). Let X be a constrained set. There exists a constant MΦ � 0 such

that for xk, xk+1, yk ∈X as specified in Algorithm 2, and for ηk ∈ (0, 1)

Φ(xk+1) � Φ(xk)+ ηk〈grad Φ(xk), Exp−1
xk

(yk)〉 + 1
2
MΦη2

k .

With this, we can now prove Theorem 3.1:

Proof. (Theorem 3.1) Let again

gk(xk) := 1

bk

bk∑

i=1

grad φ(xk, ξi) (3.5)

denote the gradient estimate from the kth batch. Then

Φ(xk+1)
(1)

� Φ(xk)+ ηk〈grad Φ(xk), Exp−1
xk

(yk)〉 +
1

2
MΦη2

k . (3.6)

(2)

� Φ(xk)+ ηk〈gk(xk), Exp−1
xk

(yk)〉 + ηk〈grad Φ(xk)− gk(xk), Exp−1
xk

(yk)〉 +
1

2
MΦη2

k (3.7)

Here, (1) follows from Lemma 3.4 and (2) follows from ‘adding a zero’ with respect to gk. We then

apply the Cauchy–Schwartz inequality to the inner product and make use of the fact that the geodesic

distance between points in X is bounded by its diameter:

〈

grad Φ(xk)− gk(xk), Exp−1
xk

(yk)
〉

� ‖grad Φ(xk)− gk(xk)‖ ·
∥
∥
∥Exp−1

xk
(yk)

∥
∥
∥

︸ ︷︷ ︸

�diam(X )

. (3.8)
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 9

This gives (with D := diam(X ))

Φ(xk+1) � Φ(xk)+ ηk〈gk(xk), Exp−1
xk

(yk)〉 + ηkD‖grad Φ(xk)− gk(xk)‖ +
1

2
MΦη2

k .

Taking expectations and applying Lemma 3.1 to the third term on the right-hand side, we get

E
[

Φ(xk+1)

]

� E
[

Φ(xk)
]

− ηkE
[

Ĝ (xk)
]

+ ηkD
C
√

bk

+ 1

2
MΦη2

k ,

where we have rewritten the second term in terms of the stochastic Fw gap

E
[

Ĝ (xk)
]

= −E
[

〈gk(xk), Exp−1
xk

(yk)〉
]

.

Summing over all k batches, telescoping and reordering terms gives

∑

k

ηkE
[

Ĝ (xk)
]

� E
[

Φ(x0)
]

− E
[

Φ(xK)
]

+
∑

k

ηkD
C
√

bk

+
∑

k

1

2
MΦη2

k (3.9)

�
(

Φ(x0)−Φ(xK)
)

+
∑

k

ηkD
C
√

bk

+
∑

k

1

2
MΦη2

k . (3.10)

From Algorithm 2 we see that the output x̂ is chosen uniformly at random from {x1, ..., xK}, i.e.,

E
[

E
[

Ĝ (xk)
]]

= E
[

G (x̂)
]

, where we have used that, by construction, E
[

Ĝ (x)
]

= G (x). Now, with

constant step sizes ηk = η and batch sizes bk = b, we have

KηE
[

G (x̂)
]

�
(

Φ(x0)−Φ(xK)
)

+ KηD
C√

b
+ K

1

2
MΦη2.

Now, let Cx0
> 0 be an initialization-dependent constant, such that Cx0

> Φ(x0)−E
[

Φ(x⋆)
]

, where x⋆

is a first-order stationary point. From η = 1√
K

and b = K we see that

E
[

G (x̂)
]

�
1√
K

(

Cx0
+ DC + 1

2
MΦ

)

,

which shows the desired sublinear convergence rate. �

Corollary 3.1 Srfw obtains an ǫ-accurate solution with SFO complexity of O
(

1
ǫ4

)

and RLO

complexity of O
(

1
ǫ2

)

.
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10 M. WEBER AND S. SRA

Proof. It follows directly from Theorem 3.1 that Srfw achieves an ǫ-accurate solution after O
(

1
ǫ2

)

iteration, i.e., its RLO complexity is O
(

1
ǫ2

)

. For the SFO complexity, note that

K−1
∑

k=0

bk = Kb = K2 � O

(
1

ǫ4

)

.

�

For g-convex objectives, we can obtain a global convergence result in terms of the optimality gap

Δk := Φ(xk)−Φ(x∗). Here, Srfw converges at a sublinear rate to the global optimum Φ(x∗).

Corollary 3.2 If Φ is g-convex, then under the assumptions of Theorem 3.1 the optimality gap

converges as Eξ

[

Δk

]

= O(1/
√

K).

Proof. In the proof of Theorem 3.1, Eq. 3.6, note that

Φ(xk+1) � Φ(xk)+ ηk〈gk(xk), Exp−1
xk

(yk)〉 + ηk〈grad Φ(xk)− gk(xk), Exp−1
xk

(yk)〉 +
1

2
MΦη2

k

(1)

� Φ(xk)+ ηk〈gk(xk), Exp−1
xk

(x∗)〉 + ηk〈grad Φ(xk)− gk(xk), Exp−1
xk

(yk)〉 +
1

2
MΦη2

k ,

where (1) follows from yk being the argmin as defined in Algorithm 2. Note that in the third term, the

Cauchy–Schwartz inequality gives

〈grad Φ(xk)− gk(xk), Exp−1
xk

(yk)〉 � ‖grad Φ(xk)− gk(xk)‖ ‖Exp−1
xk

(yk)‖
︸ ︷︷ ︸

≤diam(X )=:D

.

Inserting this above and taking expectations, we have

E
[

Φ(xk+1)
]

� E
[

Φ(xk)
]

+ ηkE

[

〈gk(xk), Exp−1
xk

(x∗)〉
]

+ ηkDE
[

‖grad Φ(xk)− gk(xk)‖
]

︸ ︷︷ ︸

≤ C√
bk

+1

2
MΦη2

k

(2)

� E
[

Φ(xk)
]

+ ηkE

[

〈gk(xk), Exp−1
xk

(x∗)〉
]

+ ηkD
C
√

bk

+ 1

2
MΦη2

k ,

where (2) follows from Lemma 3.1. For the second term, we have

E

[

〈gk(xk), Exp−1
xk

(x∗)〉
]

=
〈

E
[

gk(xk)
]

, Exp−1
xk

(x∗)
〉

(3)= 〈grad Φ(xk), Exp−1
xk

(x∗)〉
(4)

� −
(

Φ(xk)−Φ(x∗)
)

,

since (3) gk(xk) is an unbiased estimate of grad Φ(xk) and (4) the Fw gap upper-bounds the optimality

gap, which is a direct consequence of the g-convexity of Φ (see Eq. 2.3). Let Δk := Φ(xk) − Φ(x∗)
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 11

denote the optimality gap. Then, putting everything together and rewording terms, we get

ηkE
[

Δk

]

� E
[

Φ(xk)−Φ(xk+1)
]

+ ηkD
C
√

bk

+ 1

2
MΦη2

k .

Summing, telescoping and inserting the definition of the output (x̂ with optimality gap Δ
k̂
= Φ(x̂) −

Φ(x∗)), we have

E
[

Δ
k̂

]

(

∑

k

ηk

)

�
(

Φ(x0)−Φ(xK)
)

+ DC
∑

k

ηk
√

bk

+ 1

2

∑

k

η2
k .

With the parameter choice ηk = η = 1√
K

and bk = b = K, the claim follows as

E
[

Δ
k̂

]

�
1√
K

(

Δx0
+ DC + 1

2
MΦ

)

,

where Δx0
denotes the initial optimality gap, which is a constant whose value depends on the

initialization only. �

A shortcoming of Srfw is its large batch sizes. We expect that choosing a non-constant, decreasing

step size will reduce the required batch size.

3.2 Stochastic variance-reduced Fw

In addition to the purely stochastic Srfw method, we can obtain a stochastic Fw algorithm via a

(semi-stochastic) variance-reduced approach for problems with a finite-sum structure (1.2). Recall,

that in problem (1.2), we assume that the cost function Φ can be represented as a finite sum

Φ(x) = 1
m

∑m
i=1 φi(x), where the φi are L-smooth (but may be nonconvex). We will see that by

exploiting the finite-sum structure, we can obtain provably faster FW algorithms.

We first propose Svr-Rfw (Algorithm 3), which combines Rfw with a classic variance-reduced

estimate of the gradient. This resulting algorithm computes the full gradient at the beginning of each

epoch and uses batch estimates within epochs. The variance-reduced gradient estimate guarantees the

following bound on the approximation error:

Lemma 3.5 (Goodness of variance-reduced gradient estimate). Consider the kth iteration in the

sth epoch and the stochastic variance-reduced gradient estimate with respect to a minibatch

Ik =
(

i1, . . . , ibk

)

gk

(

xs+1
k

)

= 1

bk

∑

j=i1,...,ibk

grad φj

(

xs+1
k

)

− Γ
xs+1

k

x̃s

(

grad φj(x̃
s)− grad Φ(x̃s)

)

,

with the {φi} assumed to be L-Lipschitz. Then the expected deviation of the estimate gk from the true

gradient grad Φ is bounded as

EIk

[
∥
∥
∥grad Φ

(

xs+1
k

)

− gk

(

xs+1
k

)
∥
∥
∥

]

�
L
√

bk

d
(

xs+1
k , x̃s

)

.
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12 M. WEBER AND S. SRA

Algorithm 3 Semi-stochastic variance-reduced Riemannian Frank-Wolfe (Svr-Rfw)

1: Initialize x̃0 ∈X ; assume access to the geodesic map γ : [0, 1] →M .

2: Choose number of iterations S and size of epochs K and set minibatch sizes {bk}K−1
k=0 .

3: for s = 0, . . . S− 1 do

4: Compute gradient at x̃s: grad Φ(x̃s) = 1
N

∑m
i=1 grad φi(x̃

s).

5: for k = 1, . . . K do

6: Sample i.i.d. Ik :=
(

i1, ..., ibk

)

⊆ [m] (minibatches).

7: zs+1
k+1← argminz∈X 〈 1

bk

∑

j=i1,...,ibk
grad φj(x

s+1
k )−Γ

xs+1
k

x̃s

(

grad φj(x̃
s)−grad Φ(x̃s)

)

, Exp−1
x̃s (z)〉

8: Compute step size ηk and set xs+1
k+1 ← γ (ηk), where γ (0) = xs+1

k and γ (1) = zs+1
k+1.

9: end for

10: x̃s+1 = xs
K .

11: end for

12: Output x̂ = x̃S
K .

We again drop the subscript Ik, whenever it is clear from context.

Proof. Following Algorithm 3, let Ik =
(

i1, . . . , ibk

)

denote the sample in the kth iteration of the sth

epoch. We introduce the shorthands

ζ s+1
k = 1

bk

bk∑

l=1

grad φil

(

xs+1
k

)

− Γ
xs+1

k

x̃s grad φil
(x̃s)

ζ s+1
k,il

= grad φil

(

xs+1
k

)

− Γ
xs+1

k

x̃s grad φil
(x̃s),

i.e., ζ s+1
k = 1

bk

∑bk

l=1 ζ s+1
k,il

. Then we have

E

[∥
∥
∥grad Φ

(

xs+1
k

)

− gk

(

xs+1
k

)
∥
∥
∥

2
]

= E

[∥
∥
∥
∥
ζ s+1

k − grad Φ
(

xs+1
k

)

+ Γ
xs+1

k

x̃s grad Φ(x̃s)

∥
∥
∥
∥

2
]

(1)= E

[∥
∥
∥ζ

s+1
k − E

(

ζ s+1
k

)
∥
∥
∥

2
]

.
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 13

Here, (1) follows from the following argument:

grad Φ
(

xs+1
k

)

− Γ
xs+1

k

x̃s grad Φ(x̃s)
(2)= E

[

1

bk

∑

l

grad φil

(

xs+1
k

)

− Γ
xs+1

k

x̃s grad φil
(x̃s)

]

= E

[

1

bk

∑

l

ζ s+1
k,il

]

= E
(

ζ s+1
k

)

,

where in (2) we used the assumption that the variance-reduced gradient is an unbiased estimate of the

full Riemannian gradient. We further have

E
[
∥
∥
∥ζ

s+1
k − E

[

ζ s+1
k

]
∥
∥
∥

2 ]
= E

[

‖ζ s+1
k ‖2

]

−
∥
∥
∥E
[

ζ s+1
k

]
∥
∥
∥

2

︸ ︷︷ ︸

�0

� E

[

‖ζ s+1
k ‖2

]

= E

[
∥
∥
∥

1

bk

∑

l

ζ s+1
k,il

∥
∥
∥

2
]

(3)

�
1

b2
k

E

[

∑

l

∥
∥
∥ζ

s+1
k,il

∥
∥
∥

2
]

= 1

b2
k

E

⎡

⎢
⎢
⎢
⎢
⎣

∑

l

∥
∥
∥
∥

grad φil

(

xs+1
k

)

− Γ
xs+1

k

x̃s
grad φil

(x̃s)

∥
∥
∥
∥

2

︸ ︷︷ ︸

�Ld(xs+1
k ,x̃s)

⎤

⎥
⎥
⎥
⎥
⎦

(4)

�
bkL2d2

(

xs+1
k , x̃s

)

b2
k

,

where (3) follows from Remark 3.1 and (4) from the assumption that the φi are L-Lipschitz smooth.

This shows

E
[
∥
∥
∥grad Φ

(

xs+1
k

)

− gk

(

xs+1
k

)
∥
∥
∥

2 ]
≤ L2

bk

d2
(

xs+1
k , x̃s

)

.

Jensen’s inequality gives

E
[
∥
∥
∥grad Φ

(

xs+1
k

)

− gk

(

xs+1
k

)
∥
∥
∥

2 ]
≥ E

[
∥
∥
∥grad Φ

(

xs+1
k

)

− gk

(

xs+1
k

)
∥
∥
∥

]2
,

and, putting everything together and taking the square root on both sides, the claim follows as

E
[
∥
∥
∥grad Φ

(

xs+1
k

)

− gk

(

xs+1
k

)
∥
∥
∥

]

≤ L
√

bk

d
(

xs+1
k , x̃s

)

.

�
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14 M. WEBER AND S. SRA

Using Lemma 3.5 we can recover the following sublinear convergence rate:

Theorem 3.6 With steps size ηk = 1√
KS

and constant batch sizes bk = K2, Algorithm 3 converges in

expectation with EIk

[

G (x̂)
]

= O
(

1√
KS

)

. Here, G (x) again denotes the Fw gap as defined in Eq. 3.3.

Proof. (Theorem 3.6) Let again

gk(x
s+1
k ) = 1

bk

∑

j

grad φj(x
s+1
k )− Γ

xs+1
k

x̃s

(

grad φj(x̃
s)− grad Φ(x̃s)

)

(3.11)

denote the variance-reduced gradient estimate in the kth iteration of the sth epoch. Then

Φ(xs+1
k+1)

(1)

� Φ(xs+1
k )+ ηk〈grad Φ(xs+1

k ), Exp−1

xs+1
k

(yk)〉 +
1

2
MΦη2

k (3.12)

(2)

� Φ(xs+1
k )+ ηk〈gk(x

s+1
k ), Exp−1

xs+1
k

(yk)〉 (3.13)

+ ηk〈grad Φ(xs+1
k )− gk(x

s+1
k ), Exp−1

xs+1
k

(yk)〉 +
1

2
MΦη2

k . (3.14)

Here, (1) follows from Lemma 3.4 and (2) follows from ‘adding a zero’ with respect to gk. We then apply

Cauchy–Schwartz to the inner product and make use of the fact that the geodesic distance between points

in X is bounded by its diameter:

〈grad Φ(xs+1
k )− gk(x

s+1
k ), Exp−1

xs+1
k

(yk)〉 � ‖grad Φ(xs+1
k )− gk(x

s+1
k )‖ · ‖Exp−1

xs+1
k

(yk)‖
︸ ︷︷ ︸

�diam(X )

. (3.15)

This gives (with D := diam(X ))

Φ(xs+1
k+1) � Φ(xs+1

k )+ ηk〈gk(x
s+1
k ), Exp−1

xs+1
k

(yk)〉 + ηkD‖grad Φ(xs+1
k )− gk(x

s+1
k )‖ + 1

2
MΦη2

k .

Taking expectations, we have

E
[

Φ(xs+1
k+1)

]

≤ E
[

Φ
(

xs+1
k

)]

+ ηkE

[
〈

gk

(

xs+1
k

)

, Exp−1

xs+1
k

(yk)
〉
]

+ ηkDE

[

‖grad Φ(xs+1
k )− gk(x

s+1
k )‖

]

+ 1

2
MΦη2

k (3.16)

(3)
≤ E

[

Φ(xs+1
k )

]

− ηkE
[

Ĝ (xs+1
k )

]

+ ηkD
L
√

bk

E
[

d(xs+1
k , x̃s)

]

+ 1

2
MΦη2

k , (3.17)

where (3) follows from applying the definition of the stochastic Fw gap to the second term and Lemma

3.5 to the third term.
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 15

For the following analysis, define for k = 1, . . . , K and a fixed epoch s ∈ [S]

Rk := E
[

Φ(xs+1
k )+ ckd(xs+1

k , x̃s)
]

(3.18)

ck = ck+1 + ηkD
L
√

bk

(cK = 0). (3.19)

With that and inequality 3.16, we have

Rk+1 = E
[

Φ
(

xs+1
k+1

)]

+ ck+1E
[

d
(

xs+1
k+1, x̃s

)]

� E
[

Φ
(

xs+1
k

)]

−ηkE
[

Ĝ
(

xs+1
k

)]

+ηkD
L
√

bk

E
[

d
(

xs+1
k , x̃s

)]

+ 1

2
MΦη2

k+ck+1 E
[

d
(

xs+1
k+1, x̃s

)]

︸ ︷︷ ︸

(4)

�E

[

d(xs+1
k+1,xs+1

k )+d(xs+1
k ,x̃s)

]

�

⎛

⎜
⎜
⎜
⎜
⎝

E
[

Φ
(

xs+1
k

)]

+
(

ck+1 + ηkD
L
√

bk

)

︸ ︷︷ ︸

=ck

E
[

d
(

xs+1
k , x̃s

)]

⎞

⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸

=Rk

−ηkE
[

Ĝ (xs+1
k )

]

+ ck+1E
[

d(xs+1
k+1, xs+1

k )
]

+ 1

2
MΦη2

k

(5)

� Rk − ηkE
[

Ĝ (xs+1
k )

]

+ ck+1ηkD+ 1

2
MΦη2

k ,

where (4) follows by adding a zero and applying the triangle inequality and (5) follows from the

definition of Rk and the definition of the update step via the geodesic map γ (see Algorithm 3)

E
[

d(xs+1
k+1, xs+1

k )
]

≤ ηkE
[

‖Exp−1
xk

(zk)‖
]

≤ ηkD. (3.20)

Telescoping within the epoch s+ 1 we get (with ηk = η and bk = b for k = 0, . . . , K − 1)

RK ≤ R0 −
∑

k

ηkE
[

Ĝ (xs+1
k )

]

+ 1

2
MΦ

∑

k

η2
k + D

∑

k

ηkck+1

= R0 − η
∑

k

E
[

Ĝ (xs+1
k )

]

+ 1

2
MΦη2K + Dη

∑

k

ck+1

= R0 − η
∑

k

E
[

Ĝ (xs+1
k )

]

+ 1

2
MΦη2K + η2D2L√

b

K(K − 1)

2
.
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16 M. WEBER AND S. SRA

This gives

E
[

Φ(xs+1
K )

]

� E
[

Φ(xs
K)
]

− η
∑

k

E
[

Ĝ (xs+1
k )

]

+ 1

2
MΦη2K + η2D2L√

b

K(K − 1)

2
.

Finally, telescoping over all epochs s = 0, . . . , S− 1, we get

E
[

Φ(xS
K)
]

� E
[

Φ(x0)
]

− η
∑

s

∑

k

E
[

Ĝ (xs+1
k )

]

+ 1

2
MΦη2KS+ η2DLS√

b

K(K − 1)

2
.

Reordering terms and using the definition of the output in Algorithm 3
(

and the fact that E
[

E
[

Ĝ (xS
K)
]]

= E
[

G (x̂)
])

, this gives

KSηE
[

G (x̂)
]

� Φ(x0)− E
[

Φ(xS
K)
]

+ 1

2
MΦη2KS+ η2DLS√

b

K(K − 1)

2
,

from which the claim follows with η = 1√
KS

and b = K2 as

E
[

G (x̂)
]

�
1√
KS

(

Cx0
+ 1

2
(MΦ + D2L)

)

,

where Cx0
> 0 is an initialization-dependent constant, such that Cx0

> Φ(x0)− E
[

Φ(x⋆)
]

> Φ(x0)−
E
[

Φ(xS
K)
]

, where x⋆ is a first-order stationary point. �

Choosing a suitable minibatch size is critical to achieving a good performance with variance-reduced

approaches, such as Svr-Rfw. In Algorithm 3 this translates into a careful choice of K with respect to

m: If K is too small, the complexity of the algorithm may be dominated by the cost of recomputing the

full gradient frequently. If K is too large, than computing the gradient estimates will be expensive too.

We propose to set K = ⌈m1/3⌉, following a convention in the Euclidean Fw literature. With that, we get

the following complexity guarantees:

Corollary 3.3 Svr-Rfw with K = ⌈m1/3⌉ obtains an ǫ-accurate solution with IFO complexity of

O
(

m+ m2/3

ǫ2

)

and RLO complexity of O
(

1
ǫ2

)

.

Proof. It follows directly from Theorem 3.2 that Svr-Rfw has an LO complexity of O
(

1
ǫ2

)

. For the

IFO complexity, note that

S−1
∑

s=0

(

m+
K−1
∑

k=1

bk

)

=
S−1
∑

s=0

(m+ Kb) � O

(

m+ K2

ǫ2

)

= O

(

m+ m2/3

ǫ2

)

,

where the last equality follows from setting K = ⌈m1/3⌉. �

Analogously to Srfw, Svr-Rfw converges sublinearly to the global optimum, if the objective is

g-convex. As before, we use Δk = Φ(xk)−Φ(x∗).
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 17

Corollary 3.4 If Φ is g-convex, then in the setting of Theorem 3.2 the optimality gap converges as

EIk

[

Δk

]

= O(1/
√

KS).

The proofs are very similar to that of Corollary 3.2.

A significant shortcoming of the semi-stochastic approach is the need for repeated computation of

the full gradient which limits its scalability. In the following section, we introduce an improved version

that circumvents these costly computations.

3.3 Improved gradient estimation with Spider

Algorithm 4 Spider-Rfw

1: Initialize x0 ∈X , number of iterations K, size of epochs n. Assume access to γ : [0, 1] →M .

2: for k = 0, 1, . . . K − 1 do

3: if mod(k, n) = 0 then

4: Sample i.i.d. S1 = {ξ1, ..., ξ|S1|} (for Srfw) or S1 =
(

i1, . . . , i|S1|
)

(for Svr-Rfw) with

predefined |S1|.
5: Compute gradient gk ← grad ΦS1

(xk).

6: else

7: |S2| ←
⌈

min

{

m,
2nL2‖Exp−1

xk−1
(xk)‖

ǫ2

}⌉

8: Sample i.i.d. S2 = {ξ1, ..., ξ|S2|} (for Srfw) or S2 =
(

i1, . . . , i|S2|
)

(for Svr-Rfw).

9: Compute gradient gk ← grad ΦS2
(xk)− Γ

xk
xk−1

(

grad ΦS2
(xk−1)− gk−1

)

.

10: end if

11: zk+1 ← argminz∈X 〈gk, Exp−1
xk

(z)〉.
12: xk+1 ← γ (ηk), where γ (0) = xk and γ (1) = zk+1.

13: end for

14: Output x̂ chosen uniformly at random from {xk}K−1
k=0 .

Recently, Nguyen et al. (2017) and Fang et al. (2018) introduced Spider (also known as Sarah) as

an efficient way of estimating the (Euclidean) gradient in stochastic optimization tasks. Based on the

idea of variance reduction, the algorithm iterates between gradient estimates with different sample size.

In particular, it recomputes the gradient at the beginning of each epoch with a larger (constant) batch

size; the smaller batch sizes within epochs decrease as we move closer to the optimum. This technique

was studied for Riemannian gradient descent in Zhang et al. (2018a) and Zhou et al. (2018b). In the

following, we will introduce an improved variance-reduced Stochastic Rfw using Spider. Let

grad ΦS(x) =
{

1
|S|
∑|S|

i=1 grad φ(x, ξi), stochastic
1
|S|
∑|S|

i=1 grad φi(x), finite-sum
(3.21)
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18 M. WEBER AND S. SRA

denote the gradient estimate with respect to a sample S = {ξ1, . . . , ξ|S|} (for stochastic objectives) or

S =
(

i1, . . . , i|S|
)

(for objectives with finite sum form). Furthermore, we make the following parameter

choice (K denoting the number of iterations):

η = 1√
K

(step size) (3.22)

n =
√

K = 1

ǫ
(# epochs) (3.23)

|S1| =
{

2C2

ǫ2 , stochastic

2L2D2

ǫ2 , finite-sum.
(3.24)

Here, ǫ characterizes the goodness of the gradient estimate. |S2| is recomputed in each iteration as given

in Algorithm 4. Note that here m is determined by the number of terms in the finite-sum approximation

or we set m = ∞ in the stochastic case.

We start by analyzing the goodness of the Spider gradient estimate gk, which is central to our

convergence analysis. For mod(k, n) = 0 an upper bound is given by Lemmas 3.1 and 3.5. The critical

part is to analyze the case mod(k, n) 
= 0. Let Fk be the sigma-field generated by the xk. First, we show

that the differences
(

gk − grad Φ(xk)
)

k
form a martingale with respect to (Fk)k (Lemma 3.7). Then,

using a classical property of L2-martingales (Remark 3.2), we can prove the following bound on the

approximation error:

Lemma 3.6 (Goodness of Spider-approximation). The expected deviation of the estimate gk

from the true gradient grad Φ as defined in Algorithm 4 (mod(k, n) 
= 0) is bounded as

E
[

‖gk − grad Φ(xk)‖|Fk

]

� ǫ.

We first show that the differences form a martingale:

Lemma 3.7 The differences of the gradient estimates gk from the true gradients grad Φ, i.e.,
(

gk − grad Φ(xk)
)

k
, form a martingale with respect to the filtration

(

Fk

)

k
.

Proof.

E
[

gk − grad Φ(xk)|Fk

]

= E

[

grad ΦS2
(xk)− Γ xk

xk−1

(

grad ΦS2
(xk−1)− gk−1

)

− grad Φ(xk)|Fk

]

= E
[

grad ΦS2
(xk)− grad Φ(xk)|Fk

]

︸ ︷︷ ︸

=0

+E
[

Γ xk
xk−1

gk−1 − grad ΦS2
(xk−1)|Fk

]

∗= Γ xk
xk−1

gk−1 − grad Φ(xk−1),

where (*) follows from E
[

grad ΦS2
(xk)|Fk

]

= grad Φ(xk), since grad ΦS2
(xk) is assumed to be an

unbiased estimate. �

Remark 3.2 Let M = (Mk)k denote an L2-martingale. The orthogonality of increments, i.e.,

〈Mt −Ms, Mv −Mu〉 = 0 (v � u � t � s),
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 19

implies that

E
[

M2
k

]

= E
[

M2
k−1

]

+ E

[
(

Mk −Mk−1

)2
]

.

Therefore, we have recursively

E
[

M2
k

]

= E
[

M2
0

]

+
k
∑

i=1

E

[
(

Mi −Mi−1

)2
]

.

We can now prove Lemma 3.6:

Proof. (Lemma 3.6) We consider two cases:

1. mod(m, k) = 0 For stochastic objectives, we have

E
[

‖gk − grad Φ(xk)‖2|Fk

]

= E
[

‖grad ΦS1
(xk)− grad Φ(xk)‖2|Fk

] (1)

�
C2

|S1|
= C2ǫ2

2C2
= ǫ2

2
,

(3.25)

where (1) follows from Lemma 3.1. For objectives with finite-sum form, we have

E
[

‖grad ΦS1
(xk)− grad Φ(xk)‖2|Fk

] (2)
≤ L2D2

|S1|
= L2D2ǫ2

2L2D2
= ǫ2

2
, (3.26)

where (2) follows from Lemma 3.5.

2. mod(m, k) 
= 0 We have

E
[

‖gk − grad Φ(xk)‖2|Fk

]

(3)= E

[∥
∥
∥Γ

xk
xk−1

(

gk−1−grad Φ(xk−1)
)
∥
∥
∥

2
|Fk

]

+E

[∥
∥
∥gk−grad Φ(xk)−Γ xk

xk−1

(

gk−1−grad Φ(xk−1)
)
∥
∥
∥

2
|Fk

]

(4)= E

[∥
∥
∥Γ

xk
xk−1

(

gk−1 − grad Φ(xk−1)
)
∥
∥
∥

2
|Fk

]

+ E

[∥
∥
∥grad ΦS2

(xk)−Γ xk
xk−1

(

grad ΦS2
(xk−1)−gk−1

)

−grad Φ(xk)−Γ xk
xk−1

(

gk−1−grad Φ(xk−1)
)
∥
∥
∥

2
|Fk

]

= E

[∥
∥
∥Γ

xk
xk−1

(

gk−1 − grad Φ(xk−1)
)
∥
∥
∥

2
|Fk

]

+ E

[∥
∥
∥grad ΦS2

(xk)− grad Φ(xk)− Γ xk
xk−1

(

grad ΦS2
(xk−1)− grad Φ(xk−1)

)
∥
∥
∥

2
|Fk

]

.

In the chain of inequalities, (3) follows from Remark 3.2 and (4) from substituting gk according to

Algorithm 4.
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20 M. WEBER AND S. SRA

In the following, we assume that Φ is a stochastic function. Analogous arguments hold, if Φ has a

finite-sum structure. We introduce the shorthand

ζi = grad φ(xk, ξi)− grad Φ(xk)− Γ xk
xk−1

(

grad φ(xk−1, ξi)− grad Φ(xk−1)
)

.

Then, we get for the second term

E

[∥
∥
∥grad ΦS2

(xk)− grad Φ(xk)− Γ xk
xk−1

(

grad ΦS2
(xk−1)− grad Φ(xk−1)

)
∥
∥
∥

2
|Fk

]

= E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥

1

|S2|

|S2|∑

i=1

ζi

∥
∥
∥
∥
∥
∥

2

|Fk

⎤

⎥
⎦ =

1

|S2|2
E

⎡

⎢
⎣

∥
∥
∥
∥
∥
∥

|S2|∑

i=1

ζi

∥
∥
∥
∥
∥
∥

2

|Fk

⎤

⎥
⎦

(5)

�
1

|S2|2
E

⎡

⎢
⎣

⎛

⎝

|S2|∑

i=1

‖ζi‖

⎞

⎠

2

|Fk

⎤

⎥
⎦

(6)= 1

|S2|2
E

⎡

⎣

|S2|∑

i=1

‖ζi‖2|Fk

⎤

⎦

= 1

|S2|2
|S2|∑

i=1

E

[

‖ζi‖2|Fk

]
(7)= 1

|S2|
E

[

‖ζi‖2|Fk

]

= 1

|S2|
E

[∥
∥
∥grad φ(xk, ξ)− grad Φ(xk)− Γ xk

xk−1

(

grad φ(xk−1, ξ
)

− grad Φ(xk−1)

∥
∥
∥

2
|Fk

]

,

where (5) follows from the triangle-inequality, (6) from E
[

ζi

]

= 0, see Equation 3.1; and (7) from

the ζi being i.i.d. Note that

E
[

grad φ(xk, ξ)|Fk

]

= grad Φ(xk)

E

[

Γ xk
xk−1

grad φ(xk−1, ξ)|Fk

]

= Γ xk
xk−1

grad Φ(xk−1) .

With this, we have

E

[∥
∥
∥grad φ(xk, ξ)− grad Φ(xk)− Γ xk

xk−1

(

grad φ(xk−1, ξ
)

− grad Φ(xk−1)

∥
∥
∥

2
|Fk

]

= E

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

grad φ(xk, ξ)− Γ xk
xk−1

grad φ(xk−1, ξ)−
(

grad Φ(xk)− Γ xk
xk−1

grad Φ(xk−1)
)

︸ ︷︷ ︸

=E
[

grad φ(xk ,ξ)−Γ
xk

xk−1
grad φ(xk ,ξ)|Fk

]

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

|Fk

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= E

[

‖grad φ(xk, ξ)− Γ xk
xk−1

grad φ(xk−1, ξ)‖2
]

−
∥
∥
∥E

[

grad φ(xk, ξ)− Γ xk
xk−1

grad φ(xk, ξ)|Fk

]∥
∥
∥

2

︸ ︷︷ ︸

≥0

� E

[

‖grad φ(xk, ξ)− Γ xk
xk−1

grad φ(xk−1, ξ)‖2|Fk

]

.
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PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 21

In summary, we have for the second term

E

[∥
∥
∥grad ΦS2

(xk)− grad Φ(xk)− Γ xk
xk−1

(

grad ΦS2
(xk−1)− grad Φ(xk−1)

)
∥
∥
∥

2
|Fk

]

(3.27)

� E

[

‖grad φ(xk, ξ)− Γ xk
xk−1

grad φ(xk−1, ξ)‖2|Fk

]

. (3.28)

Putting everything together, we get

E

[

‖gk − grad Φ(xk)‖2|Fk

]

� E

[∥
∥
∥Γ

xk
xk−1

(

gk−1−grad Φ(xk−1)]
)
∥
∥
∥

2
|Fk

]

+ 1

|S2|
E

[∥
∥
∥grad φ(xk, ξ)−Γ xk

xk−1

(

grad φ(xk−1, ξ
)
∥
∥
∥

2
|Fk

]

(8)

� E

[∥
∥
∥Γ

xk
xk−1

(

gk−1 − grad Φ(xk−1)
)
∥
∥
∥

2
|Fk

]

+ 1

|S2|
L2‖Exp−1

xk−1
(xk)‖|Fk

(9)= E

[∥
∥
∥Γ

xk
xk−1

(

gk−1 − grad Φ(xk−1)
)
∥
∥
∥

2
|Fk

]

+ ǫ2

2mL2‖Exp−1
xk−1

(xk)‖
L2‖Exp−1

xk−1
(xk)‖

= E

[∥
∥
∥Γ

xk
xk−1

(

gk−1 − grad Φ(xk−1)
)
∥
∥
∥

2
|Fk

]

+ ǫ2

2m
,

where (8) follows from φ being L-Lipschitz and (9) follows from the choice of |S2| in Algorithm 4.

Recursively going back to the beginning of the epoch (see Remark 3.2), we get (with k0 = ⌊ k
m
⌋m):

E
[

‖gk − grad Φ(xk)‖2|Fk

]

� E
[

‖gk0
− grad Φ(xk0

)‖2|Fk0

]

︸ ︷︷ ︸

≤ ǫ2

2 Eq.(3.25)

+m
ǫ2

2m
� ǫ2.

With Jensen’s inequality, we have

(

E
[

‖gk − grad Φ(xk)‖|Fk

])2
� E

[

‖gk − grad Φ(xk)‖2|Fk

]

� ǫ2 ,

which gives

E
[

‖gk − grad Φ(xk)‖|Fk

]

� ǫ .

Analogously, if Φ has a finite-sum structure with component functions φi that are L-Lipschitz,

we get

E
[

‖gk − grad Φ(xk)‖2|Fk

]

� E
[

‖gk0
− grad Φ(xk0

)‖2|Fk0

]

︸ ︷︷ ︸

� ǫ2

2 Eq.(3.26)

+m
ǫ2

2m
� ǫ2 ,
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22 M. WEBER AND S. SRA

from which, again, with Jensen’s inequality the claim follows as

E
[

‖gk − grad Φ(xk)‖|Fk

]

� ǫ.

�

With this preparatory work, we arrive at the main result for this section: We show that Spider-Rfw

attains a global sublinear convergence rate for nonconvex objectives.

Theorem 3.3 (Convergence Spider-Rfw). With the parameter choices (3.22), Algorithm 4 converges

in expectation with rate E
[

G (x̂)
]

= O
(

1√
K

)

.

Proof. We again have

Φ(xk+1)
(1)

� Φ(xk)+ ηk〈grad Φ(xk), Exp−1
xk

(yk)〉 +
1

2
MΦη2

k

(2)

� Φ(xk)+ ηk〈gk(xk), Exp−1
xk

(yk)〉 + ηk〈grad Φ(xk)− gk(xk), Exp−1
xk

(yk)〉 +
1

2
MΦη2

k ,

where, (1) follows from Lemma 3.4 and (2) follows from ‘adding a zero’ with respect to gk. We again

apply the Cauchy–Schwartz inequality to the inner product and make use of the fact that the geodesic

distance between points in X is bounded by its diameter:

〈grad Φ(xk)− gk(xk), Exp−1
xk

(yk)〉 � ‖grad Φ(xk)− gk(xk)‖ · ‖Exp−1
xk

(yk)‖
︸ ︷︷ ︸

�diam(X )

. (3.29)

This gives (with D := diam(X ))

Φ(xk+1) � Φ(xk)+ ηk〈gk(xk), Exp−1
xk

(yk)〉 + ηkD‖grad Φ(xk)− gk(xk)‖ +
1

2
MΦη2

k .

Taking expectations, we get

E
[

Φ(xk+1)
]

� E
[

Φ(xk)
]

+ ηk E

[

〈gk(xk), Exp−1
xk

(yk)〉
]

︸ ︷︷ ︸

=−E
[

Ĝ (xk)
]

+ηkDE
[

‖grad Φ(xk)− gk(xk)‖
]

︸ ︷︷ ︸

≤ǫ

+1

2
MΦη2

k .

With Lemma 3.6 and the definition of the stochastic Fw gap, this can be rewritten as

E
[

Φ(xk+1)
]

� E
[

Φ(xk)
]

− ηkE
[

Ĝ (xk)
]

+ ηkDǫ + 1

2
MΦη2

k .
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Summing and telescoping gives

E
[

G (x̂)
]∑

k

ηk � E
[

Φ(x0)
]

− E
[

Φ(xK)
]

+ Dǫ
∑

k

ηk +
1

2
MΦ

∑

k

η2
k

�
(

Φ(x0)− E
[

Φ(xK)
])

+ Dǫ
∑

k

ηk +
1

2
MΦ

∑

k

η2
k ,

where we have again used the definition of the output in Algorithm 4; in particular, that E
[

E
[

Ĝ (xK)
]]

=
E
[

G (x̂)
]

. With ηk = η = 1√
K

, this becomes

Kη
︸︷︷︸

=
√

K

E
[

G (x̂)
]

≤
(

Φ(x0)− E
[

Φ(xK)
])

+ Dǫ Kη
︸︷︷︸

=
√

K

+1

2
MΦ Kη2

︸︷︷︸

=1

.

Note, that ǫ = 1
n
= 1√

K
. Dividing by

√
K then gives the claim

E
[

G (x̂)
]

�
1√
K

⎛

⎝Cx0
+ D ǫ

√
K

︸︷︷︸

=1

+1

2
MΦ

⎞

⎠ , (3.30)

where Cx0
> Φ(x0) − Φ(x⋆) depends on the initialization only and x⋆ is a first-order stationary point.

�

Corollary 3.5 Spider-Rfw obtains an ǫ-accurate solution with SFO/ IFO complexity of O
(

1
ǫ3

)

and

RLO complexity of O
(

1
ǫ2

)

.

Proof. It follows directly from Theorem 3.3 that Spider-Rfw has an RLO complexity of O
(

1
ǫ2

)

. For

the SFO complexity, consider a stochastic objective Φ. Then

SFO =
n
∑

s=1

(

|S1| + E

[
n
∑

k=2

|S2|
])

.

We have

E

[
n
∑

k=2

|S2|
]

= E

[
n
∑

k=2

2nL‖Exp−1
xk−1

(xk)‖
ǫ2

]

(1)

�
2n2L2(D2η2)

2ǫ2

(2)= O

(
1

ǫ2

)

,

where (1) follows from ‖Exp−1
xk−1

(xk)‖ ≤ ηD (see Eq. 6) and (2) from η = 1
n

by construction. This gives

SFO = O

(

n

(
1

ǫ2
+ 1

ǫ2

))

= O

(
1

ǫ3

)

.
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24 M. WEBER AND S. SRA

An analogous argument gives the IFO complexity, if Φ has a finite-sum structure. �

We again consider the special case of g-convex objectives for completeness. Here, we obtain a result

on function suboptimality:

Corollary 3.6 If Φ is g-convex, one can show under the assumptions of Theorem 3.3 a similar

convergence rate for the optimality gap, i.e., E
[

Δk

]

= O(1/
√

K).

The proof is analogous to the proof of Corollary 3.2 (for stochastic objectives) and of Corollary 3.4

(for objectives with finite-sum structure).

4. Experiments

(Stochastic) Riemannian optimization is frequently considered in the machine learning literature,

including for the computation of hyperbolic embeddings (Sala et al., 2018), low-rank matrix and tensor

factorization (Vandereycken, 2013) and eigenvector based methods (Journée et al., 2010; Zhang et al.,

2016; Tripuraneni et al., 2018).

In this section we validate the proposed stochastic algorithms by comparison with the deterministic

Rfw (Weber & Sra, 2017) and state-of-the-art stochastic Riemannian optimization methods. All

experiments were performed in Matlab.

Our numerical experiments use synthetic data, consisting of sets of symmetric, positive definite

matrices. We generate matrices by sampling real matrices of dimension d uniformly at random

Mi ∼ U (Rd×d) and then multiplying each with its transpose Mi ← MiM
T
i . To generate ill-conditioned

matrices, we sample matrices with a rank deficit Ui ∼ U (Rd×d) (with rank(U) < d) and set

Bi ← δI + UiU
T
i (for a small δ > 0).

Throughout the experiments, the hyperparameter choices (b, K) are guided by the specifications in

Algorithm 2 (for Srfw) and Algorithm 3 (for Svr-Rfw) and their theoretical analysis. All Rfw methods

are implemented with decreasing step sizes.

4.1 Riemannian centroid

The computation of the Riemannian centroid (also known as the geometric matrix mean or the

Karcher mean) is a canonical benchmark task for testing Riemannian optimization methods (Zhang

et al., 2016; Kasai et al., 2018a,b). Besides its importance as a benchmark, the Karcher mean is

a fundamental subroutine in many machine learning methods, for instance, in the computation of

hyperbolic embeddings (Sala et al., 2018). Although the Karcher mean problem is nonconvex in

Euclidean space, it is g-convex in the Riemannian setting. This allows for the application of Rfw, in

addition to the stochastic methods discussed above. Rfw requires the computation of the full gradient

in each iteration step, whereas the stochastic variants implement gradient estimates at a significantly

reduced computational cost. This results in observable performance gains as shown in our experiments

(Fig. 1).

Formally, the Riemannian centroid is defined as the mean of a set M = {Mi} of d×d positive definite

matrices (we write |M| = m) with respect to the Riemannian metric. This task requires solving

min
H�X�A

m
∑

i=1

wiδ
2
R(X, Mi) =

m
∑

i=1

wi

∥
∥
∥log

(

X−1/2MiX
−1/2

)∥
∥
∥

2

F
,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
jn

a
/a

d
v
a
n
c
e
-a

rtic
le

/d
o
i/1

0
.1

0
9
3
/im

a
n
u
m

/d
ra

b
0
6
6
/6

3
7
4
8
9
4
 b

y
 M

IT
 L

ib
ra

rie
s
 u

s
e
r o

n
 1

4
 A

p
ril 2

0
2
2



PROJECTION-FREE NONCONVEX STOCHASTIC OPTIMIZATION ON RIEMANNIAN MANIFOLDS 25

Fig. 1. Riemannian centroid. Rfw and its stochastic variants in comparison with state-of-the-art Riemannian optimization

methods (parameters:d, size of matrices; m, number of matrices; MaxIt, number of iterations). All experiments are initialized with

the harmonic mean. Hereby, we compare against deterministic algorithms (LBFGS and Zhang, left) as well as recent state-of-the-

art stochastic Riemannian algorithms R-SRG and RSVRG (middle and right). The results in the top row are for well-conditioned

matrices, the results in the bottom row are for ill-conditioned matrices.

where ‖·‖F denotes the Frobenius norm and wi ∈ [0, 1] are weights, where
∑m

i=1 wi = 1. The well-

known matrix means inequality bounds the Riemannian mean from above and below with respect to

the Löwner order: The harmonic mean H :=
(
∑

i wiM
−1
i

)−1
gives a lower bound on the geometric

matrix mean, while the arithmetic mean A :=
∑

i wiMi provides an upper bound (Bhatia, 2007). This

allows for phrasing the computation of the Riemannian centroid as a constrained optimization task

with interval constraints given by the harmonic and arithmetic means (though it could be solved as

unconstrained task too). Writing φi(X) = wiδ
2
R(X, Mi), we note that the gradient of the objective is given

by ∇φi(X) = wiX
−1 log(XM−1

i ) (see, e.g., Bhatia, 2007, Ch.6), whereby the corresponding Riemannian

‘linear’ oracle reduces to solving

Zk ← argmin
H�Z�A

〈

X
1/2
k ∇φi(Xk)X

1/2
k , log

(

X
−1/2
k ZX

−1/2
k

)〉

. (4.1)

Remarkably, (4.1) can be solved in closed form (Weber & Sra, 2017, Theorem 4.1), which we exploit

to achieve an efficient implementation of Rfw and Stochastic Rfw. For completeness, we recall the

theorem below:

Theorem 4.1 (Theorem 4.1 (Weber & Sra, 2017)). Let L, U ∈ Pd such that L ≺ U. Let S ∈ Hd and

X ∈ Pd be arbitrary. Then, the solution to the optimization problem

min
L�Z�U

tr(S log(XZX)) (4.2)
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26 M. WEBER AND S. SRA

Fig. 2. Riemannian centroids. Accuracy of Rfw and stochastic variants in comparison with RSrg and Rsvrg for inputs of

different size (d, size of matrices; m, number of matrices). All experiments are initialized with the arithmetic mean.

Fig. 3. Wasserstein barycenters. Performance of Rfw and stochastic variants for well-conditioned inputs of fixed size (d, size of

matrices; m, number of matrices; K, number of iterations) with different initializations: X0 ∼ C (left), X0 = 1
2 (αI + A) (middle)

and X0 = A (right). Here, A denotes the arithmetic mean of C and α the smallest eigenvalue over C .

is given by Z = X−1Q
(

P∗[−sgn(D)]+P + L̂
)

Q∗X−1, where S = QDQ∗ is a diagonalization of S,

Û − L̂ = P∗P with L̂ = Q∗XLXQ and Û = Q∗XUXQ.

Setting L = H, U = A and S = X
1/2
k ∇φi(Xk)X

1/2
k , this result gives a closed form solution to Eq. 4.1.

To evaluate the efficiency of our methods, we compare against state-of-the-art algorithms. First,

Riemannian LBFGS, a quasi-Newton method (Yuan et al., 2016), for which we use an improved limited-

memory version of the method available in Manopt (Boumal et al., 2014). Secondly Zhang’s method

(Zhang, 2017), a recently published majorization–minimization method for computing the geometric

matrix mean. Against both (deterministic) algorithms we observe significant performance gains (Fig. 1).

In Weber & Sra (2017), Rfw is compared with a wide range of Riemannian optimization methods and

varying choices of hyperparameters. In those experiments, LBFGS and Zhang’s method were reported

to be especially competitive, which motivates our choice. We further present two instances of comparing

Stochastic Rfw against stochastic gradient-based methods (RSrg and Rsvrg; Kasai et al., 2018a),

both of which are outperformed by our Rfw approach. In all experiments, we assume uniform weights,

i.e., wi = 1
m
∀ i ∈ [m].

In a second experiment, we compare the accuracy
(

i.e.,
|φ(xfinal)−φ(x∗)|

|φ(x∗)|

)

of Rfw and its stochastic

variants with that of RSrg and Rsvrg. Figure 2 shows that Stochastic Rfw reach a medium accuracy

fast; however, ultimately Rfw, as well as R-Srg and Rsvrg reach a higher accuracy. Stochastic Rfw

is therefore particularly suitable for data science and machine learning applications, where we encounter

high-dimensional, large-scale data sets and very high accuracy is not required.
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We note that the comparison experiments are not quite fair to our methods, as neither R-Srg nor

Rsvrg implement the noted projection operation (see discussion in Section 2.3) required to align their

implementation with their theory.

4.2 Wasserstein barycenters

The computation of means of empirical probability measures with respect to the optimal transport metric

(or Wasserstein distance) is a basic task in statistics. Here, we consider the problem of computing

such Wasserstein barycenters of multivariate (centered) Gaussians. This corresponds to the following

minimization task on the Gaussian density manifold (also known as Bures manifold):1

min
αI�X�A

M
∑

i=1

d2
W(X, C ) =

∑

i

wi

[

tr(Ci + X)− 2tr
(

C
1/2
i XC

1/2
i

)1/2]
, (4.3)

where C = {Ci} ⊆ P(n), |C | = m are the covariance matrices of the Gaussians, wi ∈ [0, 1] weights

(
∑

i wi = 1) and α denotes their minimal eigenvalue over C . Note that the Gaussian density manifold is

isomorphic to the manifold of symmetric positive definite matrices considered in the previous section.

This allows for a direct application of Rfw to Eq. 4.3, albeit with a different set of constraints.

A closely related problem is the task of computing Wasserstein barycenters of matrix-variate

Gaussians, i.e., multivariate Gaussians whose covariance matrices are expressed as suitable Kronecker

products. Such models are of interest in several inference problems, see for instance Stegle et al. (2011).

By plugging in Kronecker structured covariances into (4.3), the corresponding barycenter problem takes

the form

min
X≻0

n
∑

i=1

tr(Ai ⊗ Ai)+ tr(X ⊗ X)− 2tr
[

(Ai ⊗ Ai)
1/2(X ⊗ X)(Ai ⊗ Ai)

1/2
]1/2

. (4.4)

Remarkably, despite the product terms, problem (4.4) turns out to be (Euclidean) convex (Lemma 4.1).

This allows one to apply (g-) convex optimization tools, and use convexity to conclude global optimality.

This result should be of independent interest.

Lemma 4.1 The barycenter problem for matrix-variate Gaussians (Eq. 4.4) is convex.

For the proof, recall the following well-known properties of Kronecker products:

Lemma 4.2 (Properties of Kronecker products). Let A, B, C, D ∈ P
d.

1. (A⊗ A)1/2 = A1/2 ⊗ A1/2;

2. AC ⊗ BD = (A⊗ B)(C ⊗ D).

Furthermore, recall the Ando–Lieb theorem (Ando, 1979):

Theorem 4.2 (Ando–Lieb). Let A, B ∈ P
d. Then the map (A, B) �→ Aγ ⊗ B1−γ is jointly concave for

0 < γ < 1.

1 Interestingly, this problem turns out to be Euclidean convex (more precisely, a nonlinear semidefinite program). However, a

Riemannian approach exploits the problem structure more explicitly.
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28 M. WEBER AND S. SRA

Equipped with those two arguments, we can prove the lemma.

Proof. (Lemma 4.1) First, note that

tr(Ai ⊗ Ai) = (trAi)(trAi) = (trAi)
2 ∀ i = 1, . . . n

tr(X ⊗ X) = (trX)(trX) = (trX)2.

Next, consider the third term. We have

tr

[
(

(Ai ⊗ Ai)
1/2(X ⊗ X)(Ai ⊗ Ai)

1/2
)1/2

]

(1)= tr

[
(

(A
1/2
i X ⊗ A

1/2
i X)(Ai ⊗ Ai)

1/2
)1/2

]

(1)= tr

[
(

(A
1/2
i XA

1/2
i )⊗ (A

1/2
i XA

1/2
i )

)1/2
]

(2)= tr

[
(

A
1/2
i XA

1/2
i

)1/2
⊗
(

A
1/2
i XA

1/2
i

)1/2
]

,

where (1) follows from Lemma 4.2(ii) and (2) follows from Lemma 4.2(i). Note that X �→ A1/2XA1/2 is

a linear map. Therefore, we can now apply the Ando–Lieb theorem with γ = 1
2

, which establishes the

concavity of the trace term. Its negative is convex and, consequently, the objective is a sum of convex

functions. The claim follows from the convexity of sums of convex functions. �

One can show that the Wasserstein mean is upper bounded by the arithmetic mean A and lower

bounded by αI, where α denotes the smallest eigenvalue over C (Bhatia et al., 2018a,b). This allows

for computing the Wasserstein mean via constrained optimization (though, again, one could use

unconstrained tools too). For computing the gradient, note that the Riemannian gradient grad φ(X) can

be written as grad φ(X) = X∇φ(X) − ∇φ(X)X, where ∇φ is the Euclidean gradient (where φ denotes

the objective in (4.3)). It is easy to show, that

∇φ(X) =
∑

i

wi

(

I −
(

CiX
)−1/2

Ci

)

,

which directly gives the gradient of the objective.

We evaluate the performance of our stochastic Rfw methods against the deterministic Rfw method

for different initializations (Fig. 3). We again assume that wi = 1
m
∀ i ∈ [m]. Our results indicate that

all three initializations are suitable. This suggests, that (stochastic) Rfw is not sensitive to initialization

and performs well even if not initialized close to the optimum. In a second experiment, we compute

Wasserstein barycenters of MVNs for different input sizes (Fig. 4). Both experiments indicates that

especially the purely stochastic Srfw improves on Rfw with comparable accuracy and stability. We

did not compare against projection-based methods in the case of Wasserstein barycenters, since to our

knowledge there are no implementations with the appropriate projections available.

5. Discussion

We introduced three stochastic Riemannian Fw methods, which go well beyond the deterministic Rfw

algorithm proposed in Weber & Sra (2017). In particular, we (i) allow for an application to nonconvex,
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Fig. 4. Wasserstein barycenters for MVNs. Performance of Rfw and stochastic variants for well-conditioned inputs of different

sizes (d, size of matrices; m, number of matrices; K, number of iterations); initialized at X0 = A. Again, A denotes the arithmetic

mean of C and α the smallest eigenvalue over C .

stochastic problems and (ii) improve the oracle complexities by replacing the computation of full

gradients with stochastic gradient estimates. For the latter task, we analyze both fully stochastic and

semi-stochastic variance-reduced estimators. Moreover, we implement the recently proposed Spider

technique that significantly improves the classical Robbins–Monroe and variance-reduced gradient

estimates by circumventing the need to recompute full gradients periodically.

We discuss applications of our methods to the computation of the Riemannian centroid and

Wasserstein barycenters, both fundamental subroutines of potential value in several applications,

including in machine learning. In validation experiments, we observe performance gains compared to

the deterministic Rfw as well as state-of-the-art deterministic and stochastic Riemannian methods.

This paper focused on developing a non-asymptotic convergence analysis and on establishing

theoretical guarantees for our methods. Future work includes implementation of our algorithms for

other manifolds and other classical Riemannian optimization tasks (see, e.g., Absil & Hosseini, 2017).

This includes tasks with constraints on determinants or condition numbers. An important example for

the latter is the task of learning a DPP kernel (see, e.g., Mariet & Sra, 2015), which can be formulated

as a stochastic, geodesically convex problem. We hope to explore practical applications of our approach

to large-scale constrained problems in machine learning and statistics.

Furthermore, instead of using exponential maps, one can reformulate our proposed methods using

retractions. For projected-gradient methods, the practicality of retraction-based approaches has been

established (Absil et al., 2008), rendering this a promising extension for future research.
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