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A B S T R A C T   

Growing evidence suggests physical activity and cardiorespiratory fitness are associated with better cognition 
across the lifespan. However, the neurobiological underpinnings relating fitness and cognition remain unclear, 
particularly in healthy younger adults. Using a well-established and popular multi-compartment diffusion 
modeling approach, called Neurite Orientation and Dispersion and Density Imaging (NODDI), we investigated 
the relationship between physical fitness (measured via a 2-min walk test), cognition (fluid and crystallized), and 
gray and white matter microstructure, in a large sample (n = 816) of healthy younger adults (ages 22–35 years) 
from the human connectome project (HCP). Concurrent with previous literature, we found that fitness was 
positively associated with both fluid and crystallized cognition. Furthermore, we found that physical fitness was 
negatively associated with white matter orientation dispersion index (ODIWM) around the cerebellar peduncle 
and was negatively associated with widespread cortical and subcortical gray matter neurite density index 
(NDIGM). Lower ODIWM of the cerebral peduncle was associated with better fluid cognitive performance, while 
lower NDIGM was associated with better crystallized cognition. Finally, we found that while ODIWM partially 
mediated the relationship between fitness and fluid cognition, NDIGM partially mediated the relationship be
tween fitness and crystallized cognition. This study is the first to explore the relationship between physical fitness 
and white and gray matter microstructure measures using NODDI. Our findings suggest that in addition to 
improved cognitive performance, higher physical fitness may be associated with lower white matter tract 
dispersion and lower neurite density in the cortical and subcortical gray matter of healthy younger adults.   

1. Introduction 

Mounting evidence suggests a strong link between physical activity, 
cardiorespiratory fitness, and cognitive function across the lifespan 
(Erickson et al., 2019). Specifically, regular physical activity and higher 
aerobic fitness are associated with enhanced cognitive function across 
multiple domains, such as attention, memory, and executive function 
(Erickson et al., 2019; Stillman et al., 2020). However, evidence for 
associations between fitness and cognition are predominantly focused 
on young adolescents and older adults, leaving noticeable gaps in our 
understanding of the relationship between fitness and brain health in 
young and middle-aged adults (Erickson et al., 2019). Given that 
physical activity is a leading modifiable risk factor for preventing and 
delaying age-related cognitive decline and that early lifestyle in
terventions may bolster cognitive reserve and make the brain more 
resilient across the lifespan, a better understanding of the relationship 

between cardiorespiratory fitness and brain health in younger adults is 
needed (; Kuehn, 2020; Livingston, 2020; Reuter-Lorenz and Park, 2014; 
Stillman et al., 2020. 

In addition to improved cognitive function, higher cardiorespiratory 
fitness is also linked to structural brain health. Exercise training and 
improving cardiorespiratory fitness show promise as a means of 
increasing and preserving both gray and white matter brain tissue vol
ume across the lifespan, particularly in adolescents and older adults 
(Colcombe et al., 2006; Firth et al., 2018; Sexton et al., 2016; Stillman 
et al., 2020). Volumetric analysis accounts for large macrostructural 
changes in cortical and subcortical gray and white matter tissue and is a 
well-established and commonly used measure of brain health. However, 
while changes in gray and white matter volume are sensitive and used 
extensively to track cognitive performance across the lifespan, they are 
highly nonspecific measure of underlying tissue health and micro
architecture (Basser and Jones, 2002; Fukutomi, 2018; Le Bihan, 2003; 

* Corresponding author. Department of Kinesiology, University of Maryland, College Park, MD, USA. 

Contents lists available at ScienceDirect 

Neuropsychologia 

journal homepage: www.elsevier.com/locate/neuropsychologia 

https://doi.org/10.1016/j.neuropsychologia.2022.108207 
Received 10 December 2021; Received in revised form 28 February 2022; Accepted 3 March 2022   

www.sciencedirect.com/science/journal/00283932
https://www.elsevier.com/locate/neuropsychologia
https://doi.org/10.1016/j.neuropsychologia.2022.108207
https://doi.org/10.1016/j.neuropsychologia.2022.108207
https://doi.org/10.1016/j.neuropsychologia.2022.108207
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuropsychologia.2022.108207&domain=pdf


Neuropsychologia 169 (2022) 108207

2

Soares et al., 2013). Furthermore, significant changes in gray and white 
matter volume tend to occur during later stages of life and pathological 
processes. Meanwhile, small changes in underlying neurophysiology 
and tissue microstructure may precede larger volumetric and functional 
changes in brain health and may be better predictors of age, cognition, 
and disease pathology (Aribisala, 2014; Callow et al., 2020; Fellgiebel 
and Yakushev, 2011; Genç, 2018; Hayek et al., 2020; Kantarci, 2005; 
Venkatesh et al., 2020; ). This highlights a critical opportunity to apply 
more specific measures of tissue microstructure that are more sensitive 
to small presymptomatic neurophysiological changes and could provide 
a more detailed mechanistic understanding of the benefits of physical 
fitness for brain health in younger adults. 

Advancements in diffusion-weighted imaging now allow researchers 
to probe questions relating to the composition and microarchitecture of 
underlying brain tissue by measuring the diffusion of water molecules 
(Le Bihan, 2003; Le Bihan, 2014). More specifically, Diffusion Tensor 
Imaging (DTI) is the most widely used method in humans for quantifying 
the microstructural integrity of white matter, with measures such as 
fractional anisotropy (FA) and mean diffusivity (MD) serving as in vivo 
measures of white matter tract integrity that can be related to aging, 
behavioral performance, and lifestyle factors (Bennett et al., 2010; 
Bennett and Madden, 2014; Madden et al., 2009; Oberlin, 2016; Soares 
et al., 2013; Walhovd et al., 2014). Additionally, there has been a recent 
focus on diffusion within gray matter as previous DTI based measures 
may be more sensitive and provide more functionally relevant insight 
into cortical and subcortical gray matter tissue health than standard 
volumetric measures (Aribisala, 2014; Assaf, 2019; Callow et al., 2020; 
Carlesimo et al., 2010; Fellgiebel et al., 2006; Lancaster, 2016. 

However, while DTI can be sensitive to numerous neurophysiolog
ical changes such as myelination, axon diameter, and membrane 
permeability, it is an inherently nonspecific signal representation 
method that provides summary statistics of the observed signal without 
incorporating assumptions based on the underlying tissue (Kamiya et al., 
2020; Sampaio-Baptista and Johansen-Berg, 2017; Zhang et al., 2012). 
Notably, DTI is generally performed using single-shell diffusion imaging, 
which also often employs weaker diffusion weighting strength (b-values 
~1000 s/mm2) and thus, often suffers from poor spatial resolution and 
the inability to resolve complex sub-voxel microstructural details 
(Zhang et al., 2012; Kamiya et al., 2020). This limitation is particularly 
critical in white matter tracts with crossing or fanning fibers near the 
ventricles and in cortical gray matter, where tissue structure and 
composition is less coherent and homogeneous and where cerebral 
spinal fluid (CSF) and partial volume effects can greatly influence the 
quality of tensor measures (Basser and Jones, 2002; Assaf, 2019; Zhang 
et al., 2012; Jeurissen et al., 2014; Radhakrishnan et al., 2020). 

Neurite Orientation Dispersion Density Imaging (NODDI (Zhang 
et al., 2012)) addresses several limitations of the single-shell DTI tech
nique through multi-shell acquisitions and multi-compartment diffusion 
modeling (Kamiya et al., 2020). NODDI is arguably the most popular 
and widely used multi-compartment modeling technique and attempts 
to parameterize the diffusion signal into three microstructural com
partments: intracellular diffusion (restricted diffusion within axons and 
dendrites), extracellular diffusion (hindered diffusion outside of axons 
and dendrites, such as within cell bodies, glial cells, extracellular 
matrices, and vascular structures)), and isotropic diffusion (i.e., free 
water). More specifically, the NODDI model provides three primary 
scalar values: the neurite density index (NDI; the proportion of intra
neurite diffusion relative to extraneurite diffusion), the orientation 
dispersion index (ODI; 0 for perfectly parallel and aligned neurites and 1 
for completely isotropic neurites), and the volume fraction of isotropic 
diffusion (ISO; proportion of free water such as CSF). Importantly, 
NODDI has good test-retest reliability, unlike DTI, accounts for partial 
volume effects and has undergone histological validation in animals and 
humans (Grussu; Kamiya et al., 2020; McCunn, 2019; Sato, 2017; 
Schneider et al., 2017). Furthermore, gray and white matter NODDI 
measures are sensitive to cognition and have recently been used to study 

pathological and normal brain development with great success (Beck, 
2021; Evans et al., 2020; Genç, 2018; Mah et al., 2017; Nazeri, 2015; 
Parker, 2018; Radhakrishnan et al., 2020; Venkatesh et al., 2020; Vogt, 
2020). For instance, in healthy older adults and those with mild cogni
tive impairment or Alzheimer’s disease, lower NDI in gray matter and 
white matter (NDIGM and NDIWM, respectively), lower ODI in gray 
matter (ODIGM), and higher ODI in white matter (ODIWM) are generally 
all indicative of poorer cognitive performance and are thought to 
represent neural or axonal degeneration (Beck, 2021; Kamiya et al., 
2020; Nazeri, 2015; Parker, 2018; Vogt, 2020). However, this rela
tionship may be somewhat different in younger healthy adults with 
some research suggesting that lower NDIGM and ODIWM and higher 
ODIGM is associated with better cognitive performance and that this 
could be related to synaptic or dendritic pruning to enhance network 
efficiency (Genç et al., 2018; Venkatesh et al., 2020). 

Yet, research focusing on the relationship between lifestyle factors 
like physical activity or fitness and structural brain health is limited to 
single-shell DTI methods (Won et al., 2021). Cross-sectional research 
indicates a positive relationship between higher cardiorespiratory 
fitness and physical activity levels with higher white matter FA in 
younger (Hayes et al., 2015; Strömmer et al., 2020; Tarumi, 2021) and 
older adults (Marks, 2007; Oberlin, 2016; Smith et al., 2016). Further
more, Opel and colleagues (Opel et al., 2019) recently reported higher 
white matter FA mediated the relationship between fitness and global 
cognition in a similar subsample of healthy young adults from the HCP 
dataset. Meanwhile, previous aerobic exercise training studies focused 
on white matter integrity have only been conducted in older adults, and 
such studies have been inconsistent with respect to finding a positive 
relationship between exercise training and white matter FA (Won et al., 
2021). 

Additionally, far less work has determined the relationship between 
fitness and cortical and subcortical gray matter diffusion. The few 
studies that have specifically focused on hippocampal diffusion in older 
adults have reported a negative association between hippocampal MD 
and fitness (Tian et al., 2014a, 2014b) and that improvements in fitness 
from a 6-month exercise intervention were related to reductions in 
hippocampal MD (Kleemeyer et al., 2016). In contrast, we recently re
ported that a 12-week exercise intervention in healthy older adults and 
those diagnosed with mild cognitive impairment resulted in increased 
cortical gray matter MD, which was associated with improvements in 
verbal fluency and memory recall (Callow et al., 2021a). Nevertheless, 
no research has employed multi-shell and multi-compartment diffusion 
imaging techniques such as NODDI to determine the relationship be
tween fitness, cognition, and white or gray matter microstructure in 
healthy younger adults. Given the more specific nature of the NODDI 
modeling method and its ability to overcome some of the primary lim
itations of DTI, the multi-compartment model provides an opportunity 
to better understand the relationship between fitness and gray and white 
matter microstructure in healthy younger adults. 

Therefore, the primary purpose of this study was to examine a large 
representative sample of young healthy adults from the HCP to deter
mine the relationship between physical fitness (2-min walk test) with 
whole brain gray and white matter NODDI metrics (ODI and NDI). We 
hypothesized that higher fitness would be: 1) positively associated with 
neurite density (NDIWM) and negatively associated neurite orientation 
dispersion of white matter tracts (ODIWM); and 2) negatively associated 
with neurite density and dispersion of cortical gray matter (NDIGM) and 
subcortical gray matter (ODIGM), based on previous work suggesting 
lower NDIGM and ODIGM are associated with better cognitive perfor
mance in healthy younger adults (Genç et al., 2018; Nazeri, 2015; 
Radhakrishnan et al., 2020; Venkatesh et al., 2020). The secondary 
purpose of this study was to determine whether fitness was related to 
two composite behavioral measures (crystallized and fluid cognition) 
that encompass a range of cognitive domains and whether 
fitness-related differences in white and gray matter NODDI metrics are 
associated with these cognitive measures. Finally, given previous 
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evidence for mediating effects of microstructure on the relationship 
between fitness and cognition (Oberlin et al., 2016; Opel et al., 2019) we 
aimed to determine whether the associaitons between fitness and 
cognition are mediated by NODDI based measures of white and gray 
matter microstructure. 

2. Methods 

2.1. Participants 

We analyzed behavioral and neuroimaging data from the WU-Minn 
HCP Young Adults 1200 Subject Data Release (Van Essen et al., 2013). 
Additional information about the dataset, acquisition protocols, and 
processing steps for the sample can be found here (https://www. 
humanconnectome.org/; Van Essen et al., 2013; Uǧurbil et al., 2013). 
Participants were age 22–35 years old and were predominantly 
recruited from the surrounding Missouri area. Each participant visited 
Washington University twice, undergoing MRI and behavioral assess
ments outside the scanner. In short, exclusion criteria included docu
mentation of a neurodevelopmental, neuropsychiatric, or neurological 
disorders, a diagnosis of diabetes or high blood pressure, or acute 
alcohol or drug intoxication (Van Essen et al., 2013). All subjects pro
vided written informed consent at the beginning of their first visit. We 
focused our analysis on subjects from the S1200 Subject data release 
who had a complete diffusion scan, demographic data, and both fitness 
and cognitive measures from the NIH-Toolbox, leaving us with a final 
sample of 818 participants. Data were analyzed at the University of 
Maryland and use of the HCP data in this study was approved by the 
institutional review board. 

2.2. Fitness measure 

Physical Fitness: Cardiovascular fitness was measured with a walking 
endurance test in which participants walked for 2-min (2 MWT) as a part 
of the Motor Domain of the NIH-Toolbox. Subjects were asked to walk as 
fast as they could for 2-min on a 50-foot (out and back) course. Raw 
score was measured as the total distance traveled in 2-min in feet and 
inches. Raw scores were normalized to a scale score with a mean = 100 
and SD = 15. The 2 MWT underwent extensive reliability and validity 
testing before its implementation into the NIH-toolbox (Reuben et al., 
2013), showing good test-retest reliability (ICC>0.8) and excellent 
external validity with the 6-min walk test (r > 0.96). 

Gait Speed: Participants walked 4 m at their usual pace and per
formed one practice and then two timed trials. Gait speed scores were 
determined as the time in seconds it took to walk 4 m in each of the 
timed trials. The better trial was used for scoring and computed scores 
were then converted to meters per second. Gait speed was positively 
associated with 2 MWT performance (r = 0.24, p < .001) and was used 
as a covariate in later analysis to account for variance in cardiovascular 
fitness that could be attributed to differences in gait speed (Dalgas et al., 
2012). 

2.3. Cognitive performance 

Participants completed extensive behavioral assessment outside of 
the scanner. The primary set of behavioral measures on the first day was 
the NIH Toolbox (Gershon et al., 2013), which took approximately 2 h to 
complete. The NIH Toolbox consisted of an extensive cognitive battery 
(Flanker, Dimensional Change Card Sort, Picture Sequence Memory, List 
Sorting and Pattern Comparison, Picture Vocabulary and Reading Rec
ognitions) that is reflective of general cognitive performance. Two 
composite scores were then produced to capture cognitive function 
within broader cognitive domains. A Fluid Cognition Composite Score was 
composed of average performance on the Dimensional Change Card Sort 
Test, Flanker, Picture Sequence Memory, List Sorting, and Pattern 
Comparison test and a Crystallized Cognition Composite Score, consisted of 

performance on a Picture Vocabulary and Reading Recognition test. 
Fluid cognitive abilities are based on the capacity to process and inte
grate information, act quickly, and solve novel problems and are 
thought to be less dependent on learning, experience, and education 
(Stawski et al., 2010). Meanwhile, crystallized cognitive abilities 
represent the accumulation of learned procedures and knowledge and is 
thought to be more dependent on cultural experiences and education 
(Heaton et al., 2014). Importantly, crystallized and fluid composite 
scores from the NIH toolbox have been shown to have excellent 
test-retest reliability and high discriminant and convergent validity with 
similar gold-standard composites in healthy younger adults (Heaton 
et al., 2014). 

2.4. Diffusion acquisition 

Diffusion data for the HCP was acquired on a customized Siemens 3 T 
Connectome Scanner using a standard 32-channel Siemens receiver 
head coil and a “body” transmission coil designed by Siemens. The 
customized hardware includes gradient coils and gradient power am
plifiers that increase the maximum gradient strength from 40 mT/m to 
100 mT/m, which specifically provides benefits for the quality of the 
diffusion imaging (Uǧurbil et al., 2013). The diffusion sequence con
sisted of a Spin-echo EPI (TR 5520 ms, TE 89,5 ms, flip angle 78 deg, 
refocusing flip angle 160 deg, FOV 210 × 180 (RO × PE), matrix 168 ×
144 (RO × PE), slice thickness 1.255 mm, 111 slices, 1.25 mm isotropic 
voxels, multiband factor 3, echo spacing 0.78 ms, BW 1488 Hz/Px, phase 
partial fourier 6/8), with the full diffusion session including 6 runs 
(approximately 9 min and 50 s each) of three different gradient tables 
acquired in both right-left and left-right phase encoding directions. Each 
diffusion gradient table included 90 diffusion weighted directions with 6 
interspersed b = 0 acquisitions. The three diffusion gradients consisted 
of b = 1000, 2000, and 3000 s/mm2 shells with approximately equal 
acquisitions for each run (Van Essen et al., 2013; Uǧurbil et al., 2013). 

2.5. Preprocessing pipeline 

Diffusion data was preprocessed through HCP’s diffusion pre
processing pipeline (Glasser et al., 2013) and downloaded from the 
S1200 Young Adult Data Release. In short, the diffusion preprocessing 
pipeline included Intensity normalization, removal of EPI distortions 
with FSL’s ‘TOPUP’ algorithm, eddy-current-induced and motion 
correction, correction for gradient-nonlinearities, and subject motion. 
The tensor model was also fit to the corrected diffusion data to produce 
FA maps for each participant for use in later analysis steps (Pierpaoli 
et al., 1996). Next, we fit the NODDI model (Zhang et al., 2012) to the 
diffusion data using the Accelerated Microstructure Imaging via Convex 
Optimization toolbox (Daducci et al., 2015). This provided us with a 
neurite density index (NDI), orientation dispersion index (ODI), and 
percent isotropic cerebrospinal fluid diffusion (ISO) maps for each 
participant, which were then used in the following voxel-wise analyses. 

2.6. Voxelwise white matter tract processing 

FSL’s (Version 6.01) well established Tract-based spatial statistics 
(TBSS (Smith et al., 2006);) analysis pipeline was performed to analyze 
the effects of fitness on white matter microstructure. First, participant 
FA images were normalized to the FMRIB58 FA template using an affine 
and non-linear transformation. Normalized images were then averaged 
to create a mean FA image and then an average skeleton was produced, 
representing major tracts common across participants, which was 
thresholded at an FA value of 0.2. Each normalized FA image was then 
projected onto the mean FA skeleton. Finally, TBSS’s tbss_non_FA al
gorithm was used on native space ODI and NDI images to project these 
values onto the mean FA skeleton using the previously established 
transformation. 
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2.7. Voxelwise cortical and subcortical gray matter processing 

Each participants native space ODI and NDI images were trans
formed into standard MNI space in a two-step process using Advanced 
Normalization Tools (ANTS (Avants et al., 2008)). For each registration, 
a linear and then diffeomorphic transformation was performed using 
ANTS Symmetric Normalization (SyN) algorithm. The first step con
sisted of registering each participant’s b0 image to its respective T1 
anatomical image and then registering the T1 image to the 1 × 1x1 mm 
MNI152 standard space template. These two estimated registrations 
were then combined and applied to both the native space ODI, NDI, and 
ISO scan to align them with MNI space. All transformed NODDI images 
were visually inspected for proper processing and registration to stan
dard space, leading to the removal of two subjects from further analysis 
due to poor registration. Transformed ODI, NDI, and ISO images were 
then concatenated into a single 4D image and spatial smoothing with a 
8-mm FWHM Gaussian kernel was applied. To restrict the analysis to 
gray matter voxels and reduce likelihood of partial volume effects a 
global gray matter mask was created, as has been previously detailed 
(Callow et al., 2021a). Using the fslmath tool, we first created a brain 
mask including voxels in which at least 90% of the transformed 
concatenated images were present. Large white matter tracts were 
excluded from this mask by overlaying the mean FA image and removing 
voxels with an average FA greater or equal to 0.2. Finally, to control for 
CSF contamination, a free water mask was created by isolating voxels in 
which more than 10% of participants had valid ISO values and then 
including voxels in which average ISO values were at or above 50%. 
Voxels that overlapped with the free water mask were removed from our 
final cortical and subcortical gray matter mask. 

3. Statistical analysis 

Of the 818 participants, two were excluded from analysis due to poor 
registration of the diffusion images into standard space. In the following 
multiple linear regression analysis, age, sex, body mass index (BMI), 
systolic blood pressure (SBP), education, and gait speed were included 
as covariates. We chose to include BMI and SBP because they were found 
to be related to 2 MWT performance independent of age, sex, education, 
and gait speed (BMI, r = −0.292, p < .001; SBP, r = .107, p = .002) and 
because they are commonly used health and fitness measures that could 
be related to brain health and function (Gorelick et al., 2017). First, 
multiple linear regression analyses were used to determine the inde
pendent effect of cardiorespiratory fitness on fluid and crystallized 
cognition. Of the 816 remaining subjects, only 806 subjects had a 
composite fluid cognition score and 809 had a composite crystallized 
cognition score. The number of subjects included in the analysis was 
further reduced to 794 for composite fluid cognition and 797 for crys
tallized cognition after excluding participants without the above co
variate measures. Second, whole brain voxelwise multiple regression 
analysis were performed using FSL’s randomize tool (5000 permuta
tions) to determine whether cardiorespiratory fitness was related to ODI 
and NDI across both the white matter skeleton and cortical and 
subcortical gray matter regions while controlling for age, sex, and gait 
speed (Winkler et al., 2014). Gray matter and white matter skeleton 
clusters were defined based on voxels in which a significant relationship 
between fitness and diffusivity, existed after threshold-free cluster 
enhancement (TFCE) and family-wise error (FWE) correction (p < .05, 
5000 permutations, k > 20 voxel cluster) was applied. Cluster locations 
were defined using fslatlasquery function with the JHU DTI-based 
white-matter atlases for significant white matter clusters and the 
Harvard-Oxford cortical and subcortical structural atlases for gray 
matter clusters. Then significant gray and white matter clusters of the 
same NODDI analysis were combined into a mask, and average NODDI 
metrics were extracted. We then ran an additional regression analysis 
further including age, sex, gait speed, education, BMI, and SBP, to 
determine the magnitude of the independent relationship between these 

averaged NODDI metrics and fitness. Third, fluid and crystallized 
cognition were independently regressed on these significant averaged 
NODDI metrics while including age, sex, gait speed, education, BMI, and 
SBP as covariates. All multiple linear regression models were tested for 
data points with abnormal leverage (hat value > 3 times average), in
fluence (Cook’s D > 0.5), and discrepancy (studentized residuals greater 
>3), and predictors. Furthermore, collinearity between covariates and 
predictors in all models were checked for a high variance inflation factor 
(VIF >2.5). Based on an exclusionary criterion of violating more than 
one of these three heuristics, no additional data had to be removed from 
further analyses. Finally, for cases in which significant associations be
tween fitness, NODDI measures, and cognitive performance existed (n =
794 for fluid cognition; 797 for crystallized cognition) and thus, the 
requirements for mediation analysis were met, we tested whether ODI 
and NDI values mediated the relationship between fitness and cognition. 
In these mediation models, fitness was the independent variable (X), 
gray and white matter NODDI measures were mediators (M), and fluid 
and crystallized cognitive performance were dependent variables (Y), 
while age, sex, gait speed, education, BMI, and SBP were included as 
covariates. For the mediation analysis, a bootstrapping approach (10, 
000 permutations) was implemented using JASP (JASP Team (2020), 
Version 0.13.1, https://jasp.stats.org/). Direct and indirect effects were 
estimated to obtain standardized regression coefficients and significance 
of an indirect effect was assumed if the 95% confidence interval did not 
include zero. All statistical analyses were performed using JASP. 

4. Results 

4.1. Participants 

A total of 816 (453 Females) participants were included in the 
analysis with a mean age of 28.8 (3.6) years, and an average of 14.9 
(1.8) years of education. A complete description of participants de
mographic, fitness, and cognitive scores can be found in Table 1. 

4.2. Relations between physical fitness and cognitive composite scores 

The overall model incorporating our covariates and fitness explained 
a significant amount of variance in fluid (F (7,794) = 16.06, R2 = 0.13, p 
< .001) and crystallized cognition (F (7,797) = 49.99, R2 = 0.30, p <
.001)], see Table 2. Specifically, there was a significant independent 
standardized effect (β) of fitness on crystallized (t (797) = 3.62, p <

.001, β = 0.13) and fluid (t (794) = 5.37, p < .001, β = 0.22) cognition 
scores, with greater fitness associated with better cognitive 

Table 1 
Demographic information from the Human Connectome Project (HCP) Younger 
Adult sample.    

Total sample (n =
816) 

Mean (SD) 

Demographics    
Age (years) 28.85 (3.57)  
Female (n, %) 453 (56%)  
Education (years) 14.95 (1.81)  
Gait Speed (m/s) 1.33 (.20)  
Systolic Blood Pressure (mmHg) 124.04 (13.84)  
Body Mass Index 26.56 (5.22)    

Fitness    
Two Minute Walk (distance) 109.63 (12.1) 

Cognition    
Fluid Cognitive Composite (n = 806) 115.35 (11.5)  
Crystallized Cognitive Composite (n =
809) 

118.02 (9.93) 

Note. Two Minute Walk distance was normalized across all participants in the 
study. Gait Speed calculated as meters per second (m/s). 
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performance. 

4.3. Whole brain voxel-wise relations between fitness and white matter 
microstructure 

The results of the voxelwise regression analyses for fitness as a pre
dictor of for ODIWM and NDIWM produced three and 15 statistically 
significant clusters, respectively (see Table 3). Regressing ODIWM, on 
fitness while controlling for age, sex, and gait speed, we found that 
higher fitness was associated with lower ODIWM in several small clusters 
in the cerebellar peduncle (t (811) = −8.09, p < .001, β = −0.27), see 
Fig. 1 & Table 3. Furthermore, we found that higher fitness was asso
ciated with lower NDIWM in widespread clusters including the cerebellar 
peduncle, corpus callosum, internal capsules, corona radiata, thalamic 
radiation, longitudinal fasciculus, uncinate fasciculus, fronto-occipital 
fasciculus, cingulum, and fornix (t (811) = −3.32, p < .001, β =

−0.12), see Table 3. 
However, when BMI, education, and SBP were included as additional 

covariates 2 MWT performance remained a significant predictor (t 
(804) = −5.10, p < .001, β = −0.18) of ODIWM, but was no longer a 
significant predictor of NDIWM (t (804) = −0.82, p = .416, β = −0.03). 

4.4. Whole brain voxel-wise relations between fitness and gray matter 
microstructure 

We found that higher fitness was associated with lower NDIGM in 
widespread clusters throughout the frontal, temporal, parietal, and oc
cipital cortices and the bilateral hippocampus, cerebellum, amygdala, 
caudate, putamen, and thalamus (t (811) = −6.96, p < .001, β = −0.25), 
see Fig. 2 & Table 3. Additionally, 2 MWT performance remained a 
significant predictor of NDIGM (t (804) = −3.10, p = .002, β = −0.12) 
when additionally controlling for BMI, education, and SBP. 

4.5. White and gray matter microstructure and cognition 

After controlling for age, sex, education, gait speed, BMI, and SBP, 
ODIWM of the cerebellar peduncle was negatively associated with fluid (t 
(789) = −3.17, p = .002, β = −0.13), but not crystallized (t (789) =
−3.23, p = .175, β = −0.05) cognition. Furthermore, NDIGM was 
negatively associated with crystallized (t (789) = −2.73, p = .006, β =
−0.09), but not fluid cognition (t (789) = −0.31, p = .754, β = −0.01), 
see Table 4. 

4.6. NODDI as mediators of associations between fitness and cognition 

Mediation analyses conducted while controlling for sex, age, edu
cation, BMI, SBP, and gait speed suggest that cerebellar ODIWM was a 
significant partial mediator of the relationship between fitness and fluid 
cognition (Indirect effect 95% CI [0.005 0.037]), but not crystallized 
cognition (Indirect effect 95% CI [-0.004 0.022]). Furthermore, NDIGM 
was a significant partial mediator of the relationship between fitness and 
crystallized cognition (Indirect effect 95% CI [0.001 0.021]), but not 
fluid cognition (Indirect effect 95% CI [-0.011 0.008]), see Fig. 3. 

5. Discussion 

Using a large cross-sectional sample from the Young Adult HCP, we 
provide evidence for a relationship between 2 MWT performance, 
NODDI based measures of white and gray matter integrity, and fluid and 
crystallized cognition in healthy younger adults. In addition to a strong 
relationship between cardiorespiratory fitness and crystallized and fluid 
cognitive composite scores, we found relations between fitness and 
ODIWM and NDIGM in healthy younger adults. Specifically, fitness- 

Table 2 
Results from linear regression of fitness on fluid and crystallized cognition, 
controlling for age, sex, education, gait speed, body mass index, and systolic 
blood pressure.  

Dependent 
Variable 

Predictor 
variables 

b (SE) β p- 
value 

Adj. R2 F (df) 

Fluid 
Cognition     

0.13*** 16.06 
(7, 794)  

Predictor       
Fitness 0.21 

(.04) 
.22*** <.001   

Crystallized 
Cognition     

0.30*** 49.99 
(7, 797)  

Predictor       
Fitness 0.11 

(.03) 
.13*** <.001   

Note. Non-Standardized (b) and Standardized beta (β) coefficients, along with 
Standard errors (SE) are reported. *p < .05, **p < .01, ***p < .001. 

Table 3 
Voxelwise NODDI analysis: Major cluster locations and volumes for the relationship between fitness and white and gray matter NODDI metrics controlling for age, sex, 
and education, using the Harvard-Oxford atlases and JHU-DTI-81 white matter atlas.  

Analysis (effect 
direction) 

Primary Cluster Regions (Regions distributed across all clusters) Clusters PFWE Peak Location Volume 
x y z 

ODIWM (negative) JHU ICBM-DTI-81 White-Matter Labels Cerebellar peduncle, cerebral peduncle, medial lemniscus 1 .045 85 101 61 548 
2 .047 87 111 70 113 
3 .049 90 107 64 24 

NDIWM * 
(negative) 

JHU ICBM-DTI-81 White-Matter Labels Cerebellar peduncle, corpus callosum, internal capsules, corona 
radiata, thalamic radiation, longitudinal fasciculus, uncinate fasciculus, fronto-occipital fasciculus, 
cingulum, and fornix 

1 .011 64 77 34 28,486 
2 .048 121 81 83 310 
3 .050 126 86 71 32 

NDIGM (negative) Harvard-Oxford Cortical Structural Atlas Frontal Pole, Fronto Orbital, Insular Cortex, Frontal Gyrus, 
Precentral Gyrus, Temporal Pole, Temporal Gyrus, Postcentral Gyrus, Partietal Lobule, Supramarginal 
Gyrus, Occipital Cortex, Occipital Pole, Cingulate Gyrus, Precuneous, Cuneal cortex, Parahippocampal 
Gyrus, Lingual Gyrus, Fusiform Gyrus Harvard-Oxford Subcortical Structural AtlasHippocampus, 
Amygdala, Caudate, Putamen, Pallidium, Accumbens, Thalamus, 

1 .016 142 56 63 48,001 
2 .010 30 63 59 38,988 
3 .019 44 176 68 6884 
4 .024 91 55 27 4546 
5 .037 41 50 38 1147 
6 .031 131 173 54 718 
7 .046 128 119 79 603 
8 .047 124 103 91 210 
9 .049 67 42 51 132 
10 .049 129 44 112 96 
11 .048 114 146 47 62 
12 .050 83 53 63 45 

Peak location in voxel coordinates. ODIWM; Average white matter orientation dispersion index negatively associated with fitness. NDIWM; Average white matter 
neurite density index negatively associated with fitness. NDIGM; Average gray matter neurite density index negatively associated with fitness. JHU ICBM-DTI-81; 48 
white matter tract labels created by hand segmentation of a standard-space average of diffusion MRI tensor maps from 81 subjects. * Note that the relationship between 
fitness and NDIWM did not survive with the addition of Body Mass Index, education, and systolic blood pressure as covariates. 
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related associations with ODIWM and NDIGM were related to better fluid 
and crystallized cognitive performance, respectively. Finally, we found 
that cerebellar ODIWM partially mediated the relationship between 
fitness and fluid cognitive performance and that cortical and subcortical 
NDIGM partially mediated the relationship between fitness and crystal
lized cognition. Thus, this study provides compelling initial evidence for 
a relationship between cardiorespiratory fitness, fluid and crystallized 
cognition, and NODDI based microstructural properties of both gray and 
white matter tissue in healthy younger adults. 

5.1. Fitness and cognition 

Our finding of a significant relationship between fitness and both 
crystallized and fluid cognition corroborates previous research and 
meta-analytic findings, which indicate that higher cardiorespiratory 
fitness is associated with enhanced cognitive performance across the 
lifespan (Colcombe and Kramer, 2003; Erickson, 2019; Gomez-Pinilla 
and Hillman, 2013; Hillman et al., 2005; Kramer and Colcombe, 2018). 
While most research has been conducted in adolescents and older adults, 
there is still evidence to suggest a positive relationship between fitness 

Fig. 1. Results of Voxel-wise analysis for the 
relationship between residualized fitness (2- 
min walk time) and residualized white mat
ter dispersion (ODWM; Red and Yellow) and 
neurite density (NDIWM; Blue) in healthy 
younger adults after controlling for age, sex, 
and gait speed. A) Regions in which a sig
nificant relationship between fitness and 
dispersion along the white matter skeleton 
was found overlayed on the FMRIB58_FA 
standard image and mean skeleton image 
(green). On the right are the average 
extracted ODIWM values from the significant 
voxels depicted in the voxelwise analysis 
plotted against residualized fitness scores, 
when controlling for age, sex, education, 
BMI, systolic blood pressure, and gait speed. 
(For interpretation of the references to 
colour in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 2. Results of Voxel-wise analysis of the relationship between Fitness (2-min walk time) and gray matter neurite density (NDIGM) in healthy younger adults. On the left is a 
depiction of regions in which there was a significant relationship between fitness and NDIGM in cortical and subcortical gray matter overlayed on the MNI152 standard image. 
On the right are the residualized average extracted NDIGM values plotted against residualized fitness scores, when controlling for age, sex, education, BMI, systolic blood 
pressure, and gait speed. 

Table 4 
Results from linear regression of white matter ODI and gray matter NDI on fluid and crystallized cognition, controlling for age, sex, education, gait speed, body mass index, and 
systolic blood pressure.  

Dependent Variable Independent variables b (SE) β p-value Adj. R2 F (df) 

Fluid Cognition     0.10*** 11.60 (8, 786)  
Predictor       
ODIWM −92.11 (29.08) -.13*** 0.002    
NDIGM −7.97 (25.40) -.01 0.754   

Crystallized Cognition     0.31*** 43.42 (8, 789)  
Predictor       
ODIWM −29.75 (21.92) -.05 0.175    
NDIGM −52.06 (19.07) -.09** 0.006   

Note. Non-Standardized (b) and Standardized beta (β) coefficients, along with Standard errors (SE) are reported. *p < .05, **p < .01, ***p < .001. ODIWM; Average 
white matter orientation dispersion index from voxelwise analysis. NDIGM; Average gray matter neurite density index from voxelwise analysis. 
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and cognition in healthy younger adults. In particular, higher aerobic 
fitness and physical activity levels are associated with better memory 
(Suwabe et al., 2017) and executive function (Salas-Gomez et al., 2020) 
in healthy younger adults. Furthermore, (Opel et al., 2019), recently 
reported a positive association between 2 MWT performance and mul
tiple cognitive domains (executive function, cognitive flexibility, picture 
vocabulary, processing speed, working memory, spatial orientation, and 
verbal episodic memory) in the HCP S1200 younger adult sample, while 
controlling for similar cardiometabolic factors. In the current study, we 
analyzed a slightly different subsample of the HCP S1200 dataset (ñ800) 
and focused our analysis on two specific composite cognitive scores 
(fluid and crystallized cognition). We also chose to control for gait speed 
in our study to account for variance in the 2 MWT due to baseline dif
ferences in stride length or gait speed to better delineate cardiorespi
ratory fitness from 2 MWT performance (Dalgas et al., 2012). 
Unsurprisingly, our results support the findings of Opel et al., 2019) 
(Opel et al., 2019) in showing widespread associations between 2 MWT 
performance and multiple cognitive domains in healthy younger adults. 
Our results further suggest that the relationship between cardiorespi
ratory fitness and fluid and crystallized cognition may develop or be 
present in early adulthood even after accounting for gait speed. How
ever, these results are cross-sectional and not prospective or 
longitudinal. 

Few randomized controlled studies have tested the effects of exercise 
training on cognition in younger adults (Stern et al., 2019). These 
studies primarily have focused on a small subset of cognitive domains 
such as pattern separation (Nauer et al., 2019). Additionally, most of 
these studies have employed relatively small sample sizes (n ~ 30–50), 
have reported smaller effects of exercise training on cognition for 
younger compared to older adults (Stern et al., 2019), or have failed to 

establish significant effects altogether (Verburgh et al., 2014). Never
theless, research conducted on healthy younger adults constitutes a 
substantial gap in our current understanding. Several recent reviews 
indicate insufficient evidence to make strong conclusions about the 
relationship between exercise and cognition in young adults (Erickson 
et al., 2019; Stillman et al., 2020). Therefore, our finding of a positive 
relationship between 2 MWT performance and cognitive performance, 
even after controlling for age, sex, education, BMI, SBP, and gait speed, 
supports the hypothesis that maintaining higher cardiorespiratory 
fitness is associated with better cognition, even in younger adults 
considered to be both cognitively intact and cognitively stable. How
ever, to better understand this gap, future studies will need to incor
porate larger sample sizes, longitudinal approaches and randomized 
clinical trials, more precise measures of cardiorespiratory fitness, and 
explore the relationship by testing multiple cognitive domains. 

5.2. Fitness and white matter microstructure 

Our findings provide several important indicators of GM and WM 
network integrity that in part explain the associations between better 
cardiorespiratory fitness and cognition in healthy younger adults. First, 
we found that cardiorespiratory fitness was negatively associated with 
cerebellar peduncle ODIWM and NDIWM of widespread white matter 
tracts. A few papers have previously reported positive associations be
tween physical activity behavior (Strömmer et al., 2020; Marks et al., 
2007), cardiorespiratory fitness (Hayes et al., 2015; Zhu et al., 2015) 
and 2 MWT performance (Opel et al., 2019) with DTI based white matter 
integrity in younger and middle-aged adults. Fitness was positively 
related to white matter fractional anisotropy (FA) in almost all previous 
studies. This finding has led to the common interpretation that greater 
fitness is associated with greater myelination, axon integrity, and axon 
density (Basser and Jones, 2002; Hayes et al., 2015; Strömmer et al., 
2020). However, FA is a simple summary metric of the underlying di
rection and magnitude of water diffusion and is inherently nonspecific 
to underlying tissue properties (Kamiya et al., 2020). Our findings 
provide novel insight into the relationship between fitness and white 
matter integrity using multi-shell and multi-compartment modeling 
approaches such as NODDI, which are more biophysically specific to 
differences in underlying tissue structure (Kamiya et al., 2020; Grussu 
et al., 2017; Sato et al., 2017). 

Our finding of lower white matter orientation dispersion (ODIWM) of 
the cerebellar peduncle suggests more anisotropic diffusion along the 
white matter tracts and is generally an indication of greater coherence 
and integrity of the underlying white matter. This finding is intriguing 
because Opel et al., 2019 found a positive relationship between FA 
(higher FA is also generally associated with better white matter integ
rity) and fitness. However, these effects were more widespread than just 
the cerebellar peduncle (Opel et al., 2019). Yet, their analysis did not 
include gait speed as a covariate when running their voxel-wise analysis 
or in any follow-up analysis, which may explain differences between 
Opel et al. and the current study in the spatial extent of the effects. To 
test this hypothesis, we analyzed the relationship between fitness with 
FA and ODIWM without including gait speed as a covariate (Supple
mentary Fig. 1 A&C) and found that the relationship between 2 MWT 
and FA was very similar to that found by Opel and colleagues. Inter
estingly, whether we controlled for gait speed or not, the extent of the 
relationship between fitness and ODIWM was less widespread than for FA 
(Supplementary Fig. 1 A-D). This post-hoc analysis suggests that con
trolling for gait speed does account for some of the association observed. 
However, it may also indicate that using a more biologically specific 
measure like ODIWM, may be more selective to differences in fiber 
dispersion because it better accounts for partial volume effects that in
fluence FA. Furthermore, the lack of a significant effect of 2 MWT on 
NDIWM suggests the relationship between 2 MWT and white matter 
integrity is more likely being driven by differences in white matter tract 
dispersion as opposed to the density of these white matter tracts. 

Fig. 3. Standardized regression coefficients for the relationship between fitness 
and fluid cognition (Panel A) and crystallized cognition (Panel B) were partially 
mediated by white matter orientation dispersion (ODIWM) and gray matter 
neurite density (NDIGM) while controlling for age, sex, education, gait speed, 
body mass index, systolic blood pressure, and the additional diffusion metric. 
Panel A shows the relationship between fitness, ODIWM, NDIGM, and fluid 
cognition, in which ODIWM partially mediates the relationship between fitness 
and fluid cognition. Panel B shows the relationship between fitness, ODIWM, 
NDIGM, and crystallized cognition, in which NDIGM partially mediates the 
relationship between fitness and crystallized cognition. a and b = standardized 
regression coefficients. c = total effect. c’ = direct effect. *p < .05. 

D.D. Callow et al.                                                                                                                                                                                                                               



Neuropsychologia 169 (2022) 108207

8

Fitness-related lower ODIWM of the cerebellar peduncle was found to 
partially mediate the relationship between fitness and fluid cognition. 
The cerebellar peduncle affords communication between the cerebellum 
and the rest of the central nervous system. In addition to being critical to 
motor control and performance, growing evidence suggests the cere
bellum plays an essential role in motor and cognitive performance 
through communication with cortical and subcortical networks (Kansal, 
2017; Lin et al., 2020; Ramanoël, 2018; Won et al., 2021a). Exercise 
training-induced changes in cerebellar peduncle white matter have been 
linked to balance and postural control improvements following an 
8-week training program in healthy individuals and those who sustained 
brain injuries (Drijkoningen et al., 2015). It may therefore seem 
reasonable to conclude that the integrity of cerebellar white matter may 
be associated with more efficient movement, which may have led to 
better performance on the 2 MWT. However, given that our analysis 
controlled for gait speed, a more likely alternative interpretation is that 
cerebellar ODIWM is independently related to higher cardiorespiratory 
fitness above and beyond superior motor coordination. Thus, we 
postulate that lower ODIWM may be indicative of better tract coherence 
resulting from enhanced communication between the cerebellum and 
cortical and subcortical structures, which may have partially facilitated 
our finding of better fluid cognition (Kansal, 2017; Lin et al., 2020; 
Ramanoël, 2018; Schmahmann, 2019; Stoodley and Schmahmann, 
2009; Won et al., 2021a. 

5.3. Fitness and gray matter microstructure 

In gray matter, we found a significant negative relationship between 
fitness and NDIGM in clusters across the frontal, temporal, parietal, and 
occipital cortices and the bilateral hippocampus, cerebellum, amygdala, 
caudate, putamen, and thalamus. Furthermore, lower NDIGM partially 
mediated the relationship between fitness and crystallized cognition, 
suggesting that the relationship between fitness and crystallized cogni
tion in healthy younger adults could in part be due to microstructural 
remodeling of cortical and subcortical gray matter tissue. This finding 
may appear counterintuitive at first glance due to a standard working 
hypothesis of “bigger is better” in cognitive neuroscience, as larger 
cortical and subcortical tissue volume is generally associated with better 
cognitive performance and is inversely related to age and neurodegen
erative disease progression (Frangou et al., 2021; Pietschnig et al., 2015; 
Ramanoël, 2018; Rao et al., 2015; Raz, 2005; Reiter, 2017). The primary 
argument for this common assumption is that higher cortical and 
subcortical volume and thickness indicate more neurons and thus, 
greater computational power. However, volumetric measures are highly 
nonspecific and generally explain only a small amount of variance in the 
number of neurons and structure of underlying neural tissue (Asan, 
2021; Freeman, 2008). Furthermore, age-related cortical and volumetric 
loss in healthy older adults is not associated with a loss of neurons in 
underlying tissue (Freeman et al., 2008). The advantage of cortical and 
subcortical gray matter NODDI measures over gross volumetric indices 
is that they provide more distinct and independent information about 
the microarchitecture of underlying dendrites, axons, and glia in 
development, healthy aging, and neurodegenerative diseases (Crombe, 
2018; Fukutomi, 2018; Mah et al., 2017; Nazeri et al., 2020; Vogt, 2020; 
Yi, 2019). 

Within gray matter, intraneurite diffusion is generally associated 
with axonal and dendritic density. In contrast, extra neurite diffusion is 
predominantly a measure of density within neural cell bodies, glial cells, 
vascular structures, and the extracellular matrix (Fukutomi et al., 2018; 
Yi, 2019; Zhang et al., 2012). While lower gray matter neurite density 
has been associated with age and poorer cognitive performance in older 
adults (Genç, 2018; Parker, 2018; Venkatesh et al., 2020;Vogt et al., 
2020) found that lower cortical neurite density was related to higher 
intelligence in healthy younger adults while accounting for age, sex, and 
cortical volume. Furthermore, (Venkatesh et al., 2020), not only showed 
that hippocampal gray matter NDI explained more variance in age and 

cognitive performance than DTI metrics, but they also found that the 
relationship between extracellular diffusion and pattern separation 
performance, a measure of episodic memory skill, was age-dependent. 
Specifically, they found that lower intracellular diffusion (lower 
NDIGM) was significantly associated with better pattern separation 
performance in younger adults while the opposite directional relation
ship (i.e., higher NDIGM was associated with better performance) existed 
in older adults (Venkatesh et al., 2020). This suggests that earlier stages 
of neural development in adulthood, which can extend into the second 
and third decade of life, may experience differential changes in tissue 
microstructure compared to those occurring later in life (Qian et al., 
2020). Neural development is associated with synaptic growth, followed 
by synaptic pruning in early adulthood (Marsman et al., 2013). In 
contrast, failure to perform proper pruning is associated with poor 
cognition and neurodevelopmental diseases like autism and Down’s 
syndrome (Craik and Bialystok, 2006), (Marsman et al., 2013)– (Paoli
celli et al., 2011). An overabundance of synapse and dendritic connec
tions can impede the differentiation of neural signals from noise leading 
to poorer network communication and learning (Neubauer and Fink, 
2009; Sporns et al., 2000). Thus, our finding of lower gray matter neurite 
density in healthy younger adults, which partially mediated the rela
tionship between fitness and crystallized cognition, suggests that 
maintaining higher fitness levels may afford beneficial effects for 
cognition through better differentiation of neural signals, which might 
promote information storage, integration, and retrieval associated with 
the higher crystallized cognition observed. 

5.4. Mechanisms for the relationship between cognition, fitness, and 
microstructure 

Higher fitness is associated with cortical thinning in healthy younger 
adults and some cortical regions in middle-aged adults (Tarumi et al., 
2021; Williams et al., 2017). However, few studies have explored the 
relationship between fitness and exercise training on gray matter 
microstructure, and none have determined this relationship in the 
cortical gray matter of younger adults. Fitness has previously been 
shown to be positively associated with hippocampal MD in very old 
adults (Tian et al., 2014a, 2014b). Improvements in cardiorespiratory 
fitness have also been associated with a reduction in hippocampal MD 
(Kleemeyer et al., 2016), while a single session of aerobic exercise ap
pears to increase hippocampal diffusivity in healthy older adults (Callow 
et al., 2021b). Finally, we recently found that a 12-week exercise 
training program was associated with an increase in insular and cere
bellar MD, which was associated with improvements in verbal fluency 
and memory performance in healthy older adults and those diagnosed 
with mild cognitive impairment (Callow et al., 2021a). This increase in 
MD following the exercise training program was associated with 
improved cognitive performance and was hypothesized to result from 
reduced overactivation of neural activity, synaptic pruning, and 
enhanced network efficiency (Alfini et al., 2019; Callow et al., 2021a; 
Chirles et al., 2017; Smith et al., 2013; Won et al., 2021b, 2021c). 

Interestingly, MD is negatively associated with NDI (Zhang et al., 
2012) and thus, our finding of fitness being associated with lower NDIGM 
in widespread cortical and subcortical gray matter tissue, including the 
cerebellum, is similar to our previous findings of exercise training 
leading to increased MD (Callow et al., 2021a) and improved cerebellar 
connectivity (Won et al., 2021b). Yet, it can also be said that our finding 
of lower NDIGM in the hippocampus appears to be opposite of what we 
might expect based on previous studies showing that higher fitness (Tian 
et al., 2014a) is associated with lower hippocampal MD and that 
increased in fitness was associated with decreased hippocampal MD in 
older adults (Kleemeyer et al., 2016). However, unlike in our previous 
exercise training study (Callow et al., 2021a), most other studies have 
failed to control for partial volume effects when computing gray matter 
MD measures. Controlling for partial volume effects and CSF contami
nation within relatively large voxels is critical when analyzing gray 
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matter diffusivity because differences in MD can often be biased by the 
presence of partial volume effects and the intermixing of surrounding 
CSF and white matter (Henf et al., 2018). This highlights the benefits of 
the high-resolution multi-shell and multi-compartment NODDI 
approach we employed here as the free water and CSF signal is modeled 
separately for each voxel, providing greater confidence in our other 
measures of intra- and extra-neurite diffusion. Our study not only pro
vides new insight into the relationship between fitness and NODDI 
metrics, but also extends the literature by reporting the relationships 
between fitness and gray matter microstructure in healthy younger 
adults. As previously indicated, the relationship between cognition and 
gray matter microstructure appears to somewhat dependent on age, as 
previous studies in older adults suggest higher diffusion is negatively 
associated with cognition (Parker et al., 2018; Venkatesh et al., 2020; 
Vogt, 2020), while in younger adults lower cortical diffusion is associ
ated with better cognition (Genç et al., 2018; Venkatesh et al., 2020). 
Given previous studies exploring the relationship between fitness and 
gray matter microstructure have been conducted in older adults, this 
association between fitness and gray matter microstructure in healthy 
younger adults should be further explored and could be due to different 
underlying neurophysiological mechanisms. 

The mechanisms by which exercise and fitness may afford benefits 
for both white and gray matter microstructure in healthy younger adults 
are likely numerous and remain to be conclusively determined. Since we 
found higher fitness was associated with lower ODIWM and NDIWM, 
higher fitness may be related to higher rates of myelination and axon 
coherence (contributing to lower ODIWM), but could also be coupled 
with higher capillary and oligodendrocyte density (contributing to 
lower NDIWM). In support of this view, (Brockett et al., 2015) found that 
wheel running was associated with enhanced cortical and subcortical 
synaptic and astrocytic markers that were in turn associated with im
provements in cognitive flexibility. Similarly, (Luo et al., 2019) recently 
found that wheel running preserved cortical oligodendrocytes against 
chronic unpredictable stress in young rats. These findings suggest that 
exercise and greater cardiorespiratory fitness may provide cognitive 
benefits for healthy younger adults by promoting enhanced network 
efficiency and maintaining healthy levels of gray matter synaptic, den
dritic, and glial morphology and connectivity (Talukdar et al., 2018). 

5.5. Limitations 

Our study is the first to explore the relationship between fitness, 
cognition, and gray and white matter microstructure using advanced 
high resolution multi-shell and multi-compartment diffusion imaging 
approaches. Furthermore, we analyzed a relatively large and represen
tative sample of the US population. However, the study has several 
limitations, the greatest of which is its cross-sectional design; therefore, 
it is impossible to imply causation with any of our analyses. Conse
quently, it is impossible to determine whether differences in fitness drive 
the observed differences in gray and white matter microstructure or 
whether they might lead some individuals to perform better on a 2 
MWT. Furthermore, the 2 MWT is not an exact measure of cardiore
spiratory fitness. Although the 2 MWT has excellent external validity 
with the 6-min walk test (r > 0.96) and we controlled for numerous 
covariates in all of our analyses, future studies should use more objective 
and sensitive measures of cardiorespiratory fitness such as a VO2max 
test to better delineate the relationship between cardiorespiratory 
fitness and gray and white matter microstructure in healthy younger 
adults. Another consideration is that this sample does include some 
siblings, however, we found that accounting for family ID as a random 
effect in a linear mixed effects model did not change the significant ef
fects, suggesting heritability did not influence the associations. Finally, 
recent work suggests that the parallel diffusivity parameter used by the 
NODDI algorithm to differentiate between intraneurite and extraneurite 
diffusion are less optimal in gray matter compared to white matter (for 
more discussion, see (Guerrero et al., 2019)); although other parameters 

of the NODDI model are optimized for modeling diffusion in gray matter 
(Jespersen et al., 2012; Hansen et al., 2013; Zhang et al., 2012). Given 
that our entire sample was acquired using the same high-resolution 
acquisition protocol, processing steps, and modeling parameters, it is 
unlikely that this significantly impacts the relationships between fitness 
and gray and white matter NODDI metrics we found. 

6. Conclusions 

This study is the first to explore the relationship between fitness and 
both gray and white matter microstructure using multi-shell imaging 
and NODDI modeling techniques. We found that fitness was associated 
with lower white matter neurite dispersion and lower cortical and 
subcortical gray matter neurite density. Furthermore, we found that 
these fitness-related differences in cerebellar white matter dispersion 
and cortical and subcortical gray matter neurite density partially 
mediated the positive relationship between physical fitness and fluid 
and crystallized cognition, respectively. These findings indicate the 
presence of a strong relationship between fitness and cognition and an 
association with healthier and more efficient white and gray matter 
microarchitecture in early adulthood. Future studies should extend this 
work by exploring these relationships in older adults and implementing 
exercise intervention study designs to determine the relationship be
tween exercise and gray and white matter microstructure across the 
lifespan. 
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