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Abstract—Computation intensive applications usually consist
of multiple nested or flattened loops. These loops are the main
building blocks of the applications and embody a specific type
of execution pattern. In order to reduce the running time of
the loops, developers need to analyze the loops in the code and
try to parallelize them on hardware accelerators, such as GPUs,
TPUs, and FPGAs, which are increasingly available in the cloud.
Unfortunately, the lack of understanding of loop characteristics
and the ability of hardware accelerators in handling these types
of loops prevents developers from choosing the right platform
to develop their applications in the cloud. Also, developing and
optimizing code for a specific accelerator is a time-consuming
effort. To address these issues, this paper studies the effectiveness
of different processors in accelerating common patterns of loops.
It identifies five important types of loops that commonly exist in
real-world applications, and presents Loopy, the implementations
of these loops optimized for different architectures. Using Loopy,
the paper also evaluates different hardware in accelerating the
loop patterns. The result reveals the architectural differences
among different accelerators with regard to different loop pat-
terns. It also provides insights for the developers to choose the
right accelerators for their applications. The current version of
Loopy supports both FPGAs and GPUs, which are the most
versatile and available accelerators.

I. INTRODUCTION

Many applications can benefit from computing on hardware

accelerators, ranging from cloud computing to big-data and

edge computing. Examples of these applications include (1)

analysis of large quantity of data on big-data platforms, (2)

training and running artificial intelligence (AI) and machine

learning models in the cloud, (3) processing streams of re-

quests and data from IoT devices, and (4) modeling and

simulating the behaviors of scientific applications. By using

accelerators, applications can achieve higher throughput [1],

lower response time [2], and/or lower energy consumption [3].

Cloud is by nature a heterogeneous computing environment

with different types of accelerators available a a service (e.g.,

Google Cloud GPUs and TPUs [4], [5], Azure GPU VMs and

FPGAs [6], [7], AWS GPU and F1 instances [8], [9]). These

accelerators come with different capabilities and limitations.

For example, FPGAs can be reconfigured to run any applica-

tions but can provide only low clock frequency; GPUs can be

programmed using high-level languages to accelerate highly

parallel applications; and TPUs are specifically designed for

deep learning workloads. Although a general understanding of

different accelerators is available, choosing the right acceler-

ators for applications in a heterogeneous computing system is

still a difficult problem.

Several related works have studied the performance of com-

mon algorithms on accelerators. For example, Rodinia bench-

mark and its follow-up work [10] are designed to benchmark

heterogeneous platforms including CPUs, GPU, and FPGAs.

These benchmarks usually provide insights on a macro level,

for a complete algorithm on a hardware platform. However,

they lack a thorough analysis of micro-level execution patterns

that exist in different applications and the effectiveness of

different hardware architectures in handling these patterns.

To address the above challenges, we study how the accel-

erators with different hardware architectures can accelerate

different types of loops, which are the basic building blocks of

almost every computationally intensive application. These ap-

plications typically consist of one or many nested and flattened

loops. These loops can embody different patterns in terms of

types and degrees of dependency and concurrency, and they

can be found in many applications. For example, dynamic

programming algorithms consist of one or more nested loops,

where every iteration depends on another iteration that points

diagonally in the iteration space. Therefore, abstracting the

common loop patterns from applications and understanding

how they perform on various hardware accelerators are es-

sential steps towards optimally utilizing the accelerators for

executing different applications. Although there is a great

body of existing works on loop optimizations [11]–[24], they

cannot provide cross-accelerator comparisons that can help

developers choose the right platform for their applications in

a heterogeneous computing system.

To support the study of loop accelerations across different

platforms, we developed Loopy, a collection of five fine-

grained loop patterns that commonly exist in real-world appli-

cations such as linear algebra, optimization, and data analytics

algorithms. Loopy parameterizes the key aspects of these loop

patterns, including the type and degree of dependencies, data

bit-precision, operational intensity, and size of the iteration

spaces. It allows them to be flexibly tuned to model diverse

loop characteristics. Loopy provides optimized OpenCL im-

plementations of these loop patterns for both GPU and FPGA,

the two most versatile and available accelerators. We focus

on OpenCL because it is an important framework for the

emerging heterogeneous computing paradigm.

Based on Loopy, we evaluated the performance of important

loop patterns on several typical accelerators, including Intel

A10 FPGAs and Nvidia T4 and RTX2080 GPUs. Our study

made several key findings. First, for three out of five loop
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dependency patterns (intra-dimension dependency, conditional

dependency, and half-parallelism half-dependency), FPGA has

the potential to outperform GPU. For example, for the intra-

dimension dependency pattern, the evaluated FPGA outper-

forms GPU by 17.5x. Second, for various computational inten-

sities, FPGA can maintain an identical performance, whereas

GPU performance is highly variable. For example, having

eight conditional statements can degrade the GPU performance

by up to 45%. Third, increasing the input data size can increase

the performance difference between these two accelerators.

For example, for the diagonal dependency loop pattern, the

performance gap increases by 51%, while the input data size

increases from 4MB to 256MB.

In summary, the contributions of this study include:

• identification and classification of common loop patterns

in computationally intensive applications,

• optimization of these loop patterns on the OpenCL-

enabled FPGAs,

• experimental analysis of the acceleration potentials of

these loop patterns on GPUs and FPGAs, with regard

to key configuration parameters, such as computational

intensity, dependency and concurrency degrees, and input

data size.

II. BACKGROUND

A. Accelerators

Acceleration is becoming a critical de-facto for many

computationally intensive workloads on various computing

systems. While there are different accelerators available, such

as GPUs, FPGAs, TPUs, and DSPs, we focus on GPUs and

FPGAs, since they are more general purpose than the others

and can support a wide variety of applications.

GPUs have been well studied and widely used as accelerators.

While GPUs are highly effective in handling applications

with high level of concurrency and regular memory access

patterns, they come short for applications with a high degree

of dependency, and/or a high number of conditional branches.

Examples of these applications include graph processing [25],

sorting [26], small signal processing problems [27], and sparse

linear algebra [28].

FPGAs are each a farm of logic, computation, and storage

resources that can be configured dynamically. Different from

widely-adopted GPUs, FPGAs can accelerate almost all types

of algorithms (irrespective to their computational pattern), due

to their reconfigurability. Despite their impressive acceleration

power, programming and optimization difficulties have been

serious obstacles to the wider adoption of FPGAs. Recent

advancements in supporting high-level synthesis (HLS) have

made it possible to program FPGAs using high-level lan-

guages, especially OpenCL [29], which has made FPGAs

much easier to use and much more accessible to applications.

Even though an HLS-based program may not perform as well

as a carefully hand-crafted HDL program, the productivity

enabled by HLS is often far more important.

B. OpenCL

OpenCL is a versatile C-based programming model that

can execute across heterogeneous platforms, including CPUs,

GPUs, and DSPs. CPU and GPU vendors, such as Intel, AMD,

and NVIDIA have been supporting OpenCL on their platforms

for over a decade. The recently-extended support of OpenCL

to FPGAs has opened the gate for conveniently integrating FP-

GAs into a heterogeneous computing system. Using OpenCL,

programmers do not need to make any major changes to their

code, when porting it across different platforms. Moreover,

developers can split their applications and deploy the parts on

different accelerators to make optimal use of the accelerators’

different capabilities.

OpenCL’s ease of programming and portability across

platforms unlock a whole new level of productivity, even

though it might lose some performance compared to the

traditional frameworks for accelerator programming. Com-

pared to CUDA-based GPU programming, related works have

shown OpenCL has only a slightly worse performance on

GPUs [30], [31]. Compared to C-based HLS on FPGAs,

OpenCL-based FPGA programming has about the same level

of performance. For example, consider the disparity map

calculation algorithm [32]. For the window size of 7 × 7 the

OpenCL implementation is faster than the C one by 6.14%;

For the window size of 9 × 9, the OpenCL implementation

can be slower by up to 15.3%.

Therefore, in this study, we focus on the OpenCL-based

GPU and FPGA computing and study their effectiveness for

accelerating common algorithmic patterns.

C. Loop Parallelism

Algorithms are composed of one or many loops, either

nested or flattened. The acceleration of algorithms is the

process of accelerating the loops, using parallelization and

pipelining methods. Algorithms can be parallelized either

temporally or spatially.

Spatial Parallelism. In spatial parallelism [33], processing

elements (PEs) execute the same task (SIMD) or multiple

different tasks (MIMD), simultaneously. Both GPU and FPGA

are able to exploit spatial parallelism in algorithms. The

amount of data dependency between the iterations of the loops

in the algorithm can decide the level of achievable spatial

parallelism on the target architecture. In another word, having

less data dependency increases the opportunity of speedup on

parallel architectures, such as GPUs and FPGAs. In general,

GPUs are better at exploiting spatial parallelism, because

FPGAs cannot adopt as many compute cores as GPUs, and

FPGAs also tend to operate at a lower clock frequency, up to

2-5 times slower than GPUs.

Temporal Parallelism. In temporal parallelism [33], process-

ing tasks that have a dependency on each other are mapped

onto different PEs and execute in parallel in a pipeline fashion.

Data processing has multiple stages, and each stage is being

handled by one PE. In this multi-stage pipeline, as data is

processed by the element PEi, it is sent to the next element
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PEi+1 and element PEi moves on to handle new data coming

from the previous stage. In the cases where a single task

cannot fully occupy the available PEs, multiple tasks can be

interleaved and mapped onto the PEs to increase the temporal
parallelism.

Among general purpose accelerators, FPGAs are exclusively

able to exploit coarse-grained temporal parallelism in the

algorithms, due to their reconfigurability. SIMD platforms

like GPU can perform at most one instruction at a time on

each available core, whereas FPGA can execute hundreds of

operations on all available stages in the pipeline. Need to

mention, while GPUs can launch multiple kernel streams in a

pipeline fashion, they cannot achieve the fine-grained pipeline

parallelism. One can mimic pipeline parallelism by launching

consecutive kernels (e.g., CUDA stream kernels). Still, the data

between different stages should be stored and delivered to the

main memory, an expensive operation. On the contrary, FPGAs

utilize connected registers between PEs to transfer the data.

Figure 1 depicts both parallelism dimensions. Each circle

represents an individual iteration in a set of nested loop

blocks. The (i, j) pair in each circle represents the ith iteration

in the first dimension and the jth iteration in the second

dimension. The arrow represents the dependency of one itera-

tion on another, e.g., (1,2) depends on (1,1). Each iteration

usually involves separate calculation for a specific indexed

item or accumulation on a shared value among iterations of

a loop block. The dashed box contains iterations with zero

dependency, which can be easily parallelized spatially. On

the other hand, the dotted box contains iterations with data

dependency, which cannot be parallelizaed spatially but may

have the potential to be parallelized temporally. We use the

above format throughout the paper to represent the dependency

flow.

In summary, GPUs excel at exploiting spatial parallelism but

cannot utilize temporal parallelism, whereas FPGAs can take

good advantage of both types of parallelism. However, despite

this general understanding of GPU’s and FPGA’s different

strengths, it is still difficult to understand which accelerator

works the best for which algorithm. Every single application

consists of different types and degrees of conditional and

data dependencies. Developers usually need to implement the

code for different accelerators and then apply several different

transformations on the algorithm to assess the acceleration

potentials on different devices. Understanding the relationship

between common micro-level patterns such as loop patterns

and their potential acceleration can reduce the effort of choos-

ing the right device. These are the motivations for our study

on loop acceleration using GPUs and FPGAs, which, to the

best of our knowledge, is the first.

D. Automatic Loop Optimization

Automatic loop optimization (generally parallelization)

dates back to an article by Lamport [24] which discusses

parallel execution of do loops. Later, several other researchers

continued the effort and developed the groundbreaking ap-

proach of using linear algebraic methods to analyze, transform,

Fig. 1: Spatial and temporal parallelism in multiple iteration

dimensions.
Loop Pattern Sample Algorithm/Application

Intra-Dimension Dependency Linear Algebraic Routines
Diagonal Dependency Needleman-Wunsch

Conditional Dependency Kmeans, Single-Source Shortest
Path

Anti-Dependency Floyd-Warshall Algorithm
Half-Parallelism Half-Dependency K-Nearest Neighbor

TABLE I: List of loop blocks

and parallelize loops, namely polyhedral compilation [19]–

[23].

Polyhedral compilation is used in a wide range of applica-

tions, including automatic parallelization, SIMDization, code

generation for hardware accelerators, and memory and cache

consumption optimization. It models nested loops and arrays

into an algebraic format while presenting specific constraints,

such as dependencies. Further, it uses particular types of al-

gebraic transformation that guarantee the loop’s semantic and

correctness and generates a new model, typically optimized

toward a specific cost model. Finally, the model is translated

back into an execution code that can run on hardware.

The polyhedral compilation has limitations. First, it does not

provide cross-accelerator comparisons. Such limitation pre-

vents developers from understanding the correlation between

the loop patterns and the speedup capabilities of accelera-

tors. Second, polyhedral compilers, such as Polly [17], [18],

Graphite [16], and a more recent compiler called Tiramisu [14]

can only optimize specific routines in domain-specific ap-

plications, such as dense linear algebra, tensor operations,

and stencil computations. Also, they are able to provide

10% performance improvement [15]. Finally, the polyhedral

compilation is not well-studied on GPUs and FPGAs [11]–

[13], making it less effective for accelerators.

In summary, polyhedral compilation lacks the ability to

demonstrate the effectiveness of different hardware accel-

erators while considering an algorithm or an application.

Loopy aims to unlock insights into accelerating typical loop

patterns that can be generally found in many applications with

important accelerators such as GPUs and FPGAs.

III. LOOP ANALYSIS

A. Methodology

Our approach to understanding how to choose the optimal

accelerator for a given algorithm is by studying the perfor-
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mance characteristics of common loop patterns on GPUs and

FPGAs. Following this approach, we designed Loopy, a set of

abstract and configurable loop blocks, which captures the key

loop patterns extracted from real-world algorithms (Table I),

and allows flexible testing of each type of loops by varying

the following key parameters:

1) Computational intensity, which is the total number of

computational operations that each iteration of the al-

gorithm performs. In our study, it is defined as the

number of multiply-accumulation operations. The com-

putational intensity can affect the size of the pipeline

and the number of instructions on both FPGA and

GPU. Changing this parameter can show how both

platform’s performance is susceptible to the amount of

computation;

2) Dependency and concurrency degrees, which define how

many iterations depend on each other and how many

other iterations can be executed separately.

3) Input data size, which specifies the total number of

floating-point variables that the algorithm processes. The

size of the input data can affect the load of computation

on a target platform, which can decide the suitability of

one device over another.

4) Variable precision, which is the bit-width size of the

variables in the algorithm. FPGAs and most-recent

GPUs have the capability to deliver higher performance

for lower bit-precision operations.

Loopy includes optimized implementations of each loop

type for GPU and FPGA. The rest of this section details

each loop type and its GPU and FPGA implementations,

and presents experiments from running them on real devices.

While optimizing GPU programming has been well studied,

OpenCL-based FPGA optimization is not well explored and
not trivial. In our discussions, we will also detail how we

performed the optimizations for each key loop type.

All GPU-related experiments were conducted on two server

nodes with two type of GPUs. One server is equipped with

an Nvidia Geforce RTX2080 GPU, dual Intel Xeon E5-2637

v4 CPU, and 64GB of DDR4 main memory (2133MHz). The

RTX2080 is a large form-factor GPU, suitable for heavy AI

and deep learning workloads. Another server is equipped with

an Nvidia Tesla T4, Intel Xeon E5-2650 v3 CPU, and 198GB

of main memory. The T4 is a small GPU, suitable for edge

servers. All the FPGA-related experiments were conducted

on an Intel Fog Reference Design unit, equipped with two

Nallatech 385A FPGA Acceleration Cards (Intel Arria 10

GX1150 FPGA), and Intel Xeon E5-1275 v5 CPU, and 32GB

of DDR4 main memory (2133 MHz).

The OpenCL kernels for FPGAs were compiled using

Intel FPGA SDK for OpenCL (version 19.1) with Nallatech

p385a sch ax115 board support packages (BSP). The GPU

OpenCL kernels were compiled just-in-time at runtime using

available OpenCL library in CUDA Toolkit 11.0. For the

FPGAs, we implemented all the kernels in the single-thread

mode and NDRange (multi-threaded) mode. Single-thread

kernels on FPGAs typically have much less overhead and

can achieve much higher clock frequency rate, compared to

multi-threaded kernels. Thus we focus on the results from the

single-thread mode execution on the FPGAs. For the GPUs, we

implemented the kernels in the NDRange mode in OpenCL,

which deploy concurrent threads on the available compute

units.

The insights from our study can be generalized, irrespective

of our FPGA or GPU choices. Our experiments target the

general capability of accelerators in handling common loop

patterns, rather than handling specific computational blocks

(e.g., tensor processing for deep learning applications). Various

generations of FPGAs and GPUs usually differ in their total

available resources, such as programmable blocks on FPGAs

and processing units in GPUs, which do not affect their

general behaviors. When comparing the acceleration achieved

by GPU vs. FPGA, we also focus on the general trend,

i.e., how the performance changes w.r.t. the key parameters

identified above, rather than the absolute performance for

a specific configuration. Therefore, our characterization of

loop acceleration is generally applicable to GPUs and FPGAs

regardless of hardware’s specific choices.

B. Intra-Dimension Dependency

Definition. This type of loops is usually composed of two

or more nested iterative blocks, where each level of iterative

blocks is considered a dimension. In this pattern there exists a

loop-carried data dependency, which is a dependency of one

iteration on the output of the previous iterations (read-after-

write), in one or more dimensions, while at the same time

one or more dimensions have no dependency between their

iterations. In another word, we can observe both dependency

and concurrency in the overall iteration space.

For example, in Algorithm 1, the dependency exists between

iterations with the index of i. In this algorithm, updating every

element of the array A with the index of i on the first dimen-

sion depends on the value of the element with the index of

i−1. Elements in the second dimension with the index of j do

not carry any dependency. In this case, the dependency exists

on the dimension with the index of i and the concurrency exists

on the dimension with the index of j. Figure 2 illustrates the

iteration space and the dependency graph of intra-dimension

dependent loops. Although in this example, the nested loops

have only two dimensions, indexed by i and j, in reality,

the algorithm can have multiple dimensions and dependency

within any one of the dimensions.

Simple linear algebraic algorithms [34], such as matrix-

matrix (see Listing 1) and matrix-vector multiplications are

following this type of loop pattern. For example, in matrix-

matrix multiplication, each cell of the output matrix can be

computed separately (concurrency), while the dot multipli-

cation of one row and one column can only be performed

sequentially in a single thread (dependency).

1 type Row = List[Double]
2 type Matrix = List[Row]
3
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Algorithm 1 Intra-dimension dependency algorithm

i ← 1
j ← 1
for i ≤ n do

for j ≤ m do
// In our case, func is an FMA operation
A[i][j] = func(A[i− 1][j], B[i][j], ...)

end for
end for

Fig. 2: Intra-dimension dependent loop pattern.

4 def dotProd(v1:Row,v2:Row) =
5 v1.zip( v2 ).
6 map{ t:(Double,Double) => t._1 * t._2 }.
7 // Dependent accumulation (Spatial Parallelism)
8 reduceLeft(_ + _)
9

10 def mXm( m1:Matrix, m2:Matrix ) =
11 // Parallel row-by-row multiplication (Temporal

Parallelism)
12 for( m1row <- m1 ) yield
13 for( m2col <- transpose(m2) ) yield
14 dotProd( m1row, m2col )

Listing 1: Matrix-matrix multiplication algorithm

The degree of spatial and temporal parallelism, combined

with the arithmetic intensity, can determine the choice of

deployment on either FPGA or GPU. Algorithms with a high

degree of dependency can usually finish faster on FPGAs,

while algorithms with a high degree of concurrency can utilize

the available farm of SIMD compute units on the GPUs and

accelerate their execution.

Implementation. Our benchmark contains the GPU and

FPGA versions of the intra-dimension dependent loop. For

the GPU version, the loop is unrolled spatially over the non-

dependent dimension. Each independent iteration is deployed

as a work-item (unit of a task in OpenCL), and all the work-

items are grouped into several work-groups (unit of execution

on a single compute unit). Also, we specifically order the

memory access indexes to enable memory access coalescing

among work-items in a work-group for better performance.

For the FPGA version, we first apply statement re-ordering to

place the dependent loop as the inner-most loop, which enables

interleaving of the outer-loop iterations (non-dependent) inside

the inner-loop cycle. It also helps achieve the initiation interval

of one in the inner-most loop. In loop pipelining, the initiation

interval is the number of clock cycles between the start times

of consecutive loop iterations. Having an initiation interval of

one enables the FPGA to push one iteration into the pipeline

at every clock cycle and achieve the highest performance,

which is the ultimate goal for every design. Further, we apply

loop blocking (also known as loop tiling) on the outer for

loop. Doing so enables utilization of the on-chip registers on

the FPGA (with the same size of the block), by copying the

required data for the execution of the block, as a whole, onto

the allocated on-chip registers, thereby reducing the DRAM

access overhead.

Experiment. We deployed FPGA and GPU kernels, resem-

bling Algorithm 1. Input data is an array of floating-point

variables of a specific size (4, 32, 256 MB). Every single

iteration in the algorithm is responsible for a single element

in the array. As a result, the total number of iterations is equal

to the number of input values. As shown in the algorithm,

the dependency and concurrency degrees are configured by

changing the number of iterations, n and m, respectively.

Figure 3 shows the runtime of this intra-dimension dependent

loop on both FPGA and GPU.

We can make several key observations from the results.

First, GPU does excel at accelerating the loop with a high

degree of concurrency. More concurrency can lead to bet-

ter spatial parallelization, which makes the GPU a great

candidate for deployment. In contrast, with the increase in

the dependency degree, the FPGA can take advantage of

the configured long pipeline and parallelize the dependent

iterations. In this case, with a high degree of dependency, the

FPGA can outperform both RTX2080 and T4 by up to 21.5x

and 13.6x. With a high degree of concurrency, both RTX2080

and T4 perform better than the FPGA, by up to 184x and 93x,

respectively.

The second observation is about the effect of computational

intensity (the total number of computational operations in each

iteration) on the final performance. Higher intensity means

more computations, which leads to more pipeline stages.

With more pipeline stages, FPGA can handle more dependent

iterations and achieve higher performance. Need to mention,

the available hardware resources on the FPGA are limited

and may block developers from configuring a large number

of pipeline stages. As a result, developers may need to adopt

a smaller loop block size, which leads to the reduction of

performance. Compared to FPGA, the GPU has to spend more

time executing each loop iteration, with no opportunity for

pipelining the iteration. For example, Figure 3 shows that

going from the intensity of 1 to 5, the performance drops

by up to 2.1x and 3x, on RTX2080 and T4, respectively.

The third observation is the performance reduction of

FPGA for kernels with low dependency, because there are not

enough dependent iterations to fully saturate the configured

pipeline. In this situation, developers may want to switch to

the NDRange mode kernels, which can interleave the parallel

iterations into the pipeline and keep it saturated. In compar-

ison, GPU can utilize the massive farm of cores to exploit

a high degree of parallelism when the dependency is low.

Therefore, as shown in Figure 3, FPGA’s performance is worse

with lower dependency degree whereas GPU’s performance is

not affected.
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Fig. 3: Intra-dimension dependency performance on the GPU and the FPGA

C. Diagonal Dependency

Definition. Diagonal dependent loops are following almost

the same pattern as intra-dimensions dependent loops, except

that the dependency is diagonal instead of horizontal or

vertical in the iteration space. As illustrated in Figure 4,

horizontal (vertical) dependency refers to the dependency of

an iteration on the left (top) neighbor iterations with the same

i (j), respectively. For example, in the aforementioned intra-

dimension dependency, there is horizontal dependency among

the iterations as shown in Figure 2. Diagonal dependency

means that an iteration depends on its relative top-left iteration

which has both different i and j indexes. For example, in

Figure 4, iteration (2, 2) depends on its diagonal neighbor

iteration (1, 1). Algorithm 2 shows an example of this kind

of loops, where the computation requires data from its di-

agonal neighbor in the iteration space. In specific cases, the

dependency can be extended and include either horizontal or

vertical, as well.

Parallelization of these types of loops on SIMD archi-

tectures, such as GPU, is not straightforward. Depending

on the type of diagonal dependency, developers can either

parallelize the diagonals or use the wavefront technique [35]

for parallelization. In the wavefront parallelism mode, kernels

are enqueued back to back to the GPU, each computing one

set of independent iterations. The number of the kernels is

equal to the length of the diagonal.

Dynamic programming algorithms are usually composed

of diagonal dependent iterations. A specific example of such

algorithm is Needleman-Wunsch [36] (see Listing 2), which

performs matching between two input strings while minimiz-

ing the penalty.

Algorithm 2 Diagonal depedency algorithm

i ← 1
j ← 1
for i ≤ n do

for j ≤ m do
A[i][j] = func(A[i− 1][j − 1], B[i][j], ...)

end for
end for

Fig. 4: Diagonal dependency loop pattern

1 val alignMat = new Array[Array[ResultEntry]](length)
2 val contant = ...
3 val gapPenalty = ...
4 def getScore(i: Int, j: Int): Score = {
5 if (alignMat(i)(j) != null) {
6 alignMat(i)(j)
7 } else {
8 // 3-Way Diagonal Dependency
9 val tryMatch = getScore(i - 1, j - 1) +

10 constant
11 val horizontalGap = getScore(i, j - 1) +
12 gapPenalty
13 val verticalGap = getScore(i - 1, j) +
14 gapPenalty
15 if (m == tryMatch) {
16 alignMat(i)(j) = (m)
17 } else if (m == horizontalGap) {
18 alignMat(i)(j) = (m)
19 } else {
20 alignMat(i)(j) = (m)
21 }
22 m
23 }
24 }

Listing 2: Needleman-Wunsch algorithm score calculation

Implementation. For the GPU implementation, the paral-

lelization method depends on the existence of vertical or

horizontal dependency. In the absence of both of these de-

pendencies, each thread can take care of one diagonal, in

parallel. The existence of any of the mentioned dependencies

(in addition to diagonal dependency) would force the GPU to

perform anti-diagonal parallelization. As shown in Figure 4,
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Fig. 5: Diagonal dependency runtime on both FPGA and

GPU. The dependency is only diagonal.
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Fig. 6: Diagonal dependency runtime on both FPGA and

GPU. The dependency also includes horizontal and vertical.

the independent iterations that can be parallelized form a line

that is perpendicular to the diagonal dependent iterations.

For the FPGA implementation, we first perform loop block-

ing on the first dimension, which enables caching of the input

data for each iteration of the second dimension’s iterations.

Later, we copy the required data for the second dimension’s

computation into the allocated on-chip registers of the size

block. Every iteration of the second dimension first reads

the data from the registers, performs the calculation, and

writes back the data to the registers and the DRAM. To

handle all elements in the block, each iteration of the second

dimension contains a nested loop of size block, which is fully

unrolled. In this implementation, the iterations of the second

dimension have a loop-carried data dependency. Unfortunately,

the compiler cannot infer an initiation interval of one for

this loop body, due to the existence of large latency between

consecutive iterations of the loop. To overcome this issue,

we interleave the execution of the block iterations inside the

second dimension loop, which enables full exploitation of the

available pipeline stages. Doing so reduces memory accesses

and leads to higher operating frequency and fewer stalls in the

pipeline.

Experiment. Figure 5 shows the performance of the diagonal

dependent loops on the FPGA and the GPUs, where the

dependency only exists diagonally. We did measurements for

three different computational intensities (1, 3, and 5) and three

different input sizes (4, 64, and 512 MBs). The results show

that the GPU outperforms the FPGA in almost all cases, except

for the experiment with high computational intensity and small

data size. In this type of dependency, GPU can assign one

diagonal set of iterations to one work-item and exploit high

degree of parallelism on all the available cores. In this case,

RTX2080 and T4 outperform the FPGA by up to 6x and 4.3x,

respectively.

Figure 6 shows the performance of the same loop pattern but

with additional horizontal and vertical dependencies between

the iterations. We modified the function f in Algorithm 2

to include both A[i − 1][j] and A[i][j − 1], in addition to

A[i− 1][j− 1], as its parameters to introduce these dependen-

cies between A[i][j] and its horizontal, vertical, and diagonal

neighbor iterations. In this case, the FPGA can utilize the

same pipelining method to accelerate the execution, while

both GPUs need to use wavefront parallelism to parallelize

computation for each anti-diagonal. Unlike the case with

diagonal dependency, the wavefront parallelism model cannot

exploit a large number of parallel threads. In addition, it needs

to repetitively deploy the same kernel to calculate a new set

of anti-diagonal iterations. As a result, the FPGA outperforms

both RTX2080 and T4 by up to 165x and 322x, respectively.

D. Conditional Dependency

Definition. The existence of conditional statements in loop

bodies can alter the extent of parallelization on certain accel-

erators. In loops with a conditional statement, every iteration

diverges in the execution path, depending on the specific

conditions. Algorithm 3 represents an example, where every

iteration performs either the first or the second statement based

on the content of an array in that specific iteration index.

Algorithms such as K-means and single-source shortest path

(SSSP) consist of many conditional decisions. In the K-means

(see Listing 3), the clustering of the observations requires

many comparisons, based on the distance; SSSP relies on the

sparse matrix multiplication, where the number of iterations

for each output calculation is non-deterministic.

Algorithm 3 Conditional dependency algorithm

i ← 1
for i ≤ n do

if B[i] > 0.0f then
A[i] = f(B[i], D[i], ...)

else
A[i] = f(C[i], D[i], ...)

end if
end for

1 def run(xs: List[Point]) = {
2 var centroids = xs take n
3

4 for (i <- 1 to iters) {
5 centroids = clusters(xs, centroids) map

average
6 }
7 clusters(xs, centroids)
8 }
9

10 def clusters(xs: List[Point], centroids: List[Point
]) =

11 (xs groupBy { x => closest(x, centroids) }).
values.toList

12

13 def closest(x: Point, choices: List[Point]) =
14 // Calculating mininum, which requires several

comparisons (if-else)
15 choices minBy { y => dist(x, y) }
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Fig. 7: Conditional dependency runtime on both FPGA and

GPU, for different intensities.

16

17 def dist(x: Point, y: Point) = (x - y).modulus
18 def average(xs: List[Point]) = xs.reduce(_ + _) / xs

.size

Listing 3: Kmeans algorithm

Implementation. The conditional dependency is introduced

by an if-else statement in the kernel. On the GPU, the loop

is simply parallelized on different cores, and each thread

performs the if-else comparisons. But the SIMD architecture in

the GPU cannot efficiently handle the conditional statements

in the work-items, due to thread divergence issue. In the

FPGA implementation, the kernel is developed in a single-

thread mode and the loop is unrolled to the limit of the FPGA

area and available DRAM bandwidth. In contrast to the GPU

implementation, FPGAs can handle numerical conditional

statements, using look-up tables and a simple multiplexer.

More specifically, the FPGA can map all different paths of the

execution in the design and enable different threads running

simultaneously in different conditional blocks.

Experiment. Figure 7 shows the runtime of the conditional

dependent loop on the GPU and FPGA, with various compu-

tational intensities (one, three, and five) number of conditional

branches (two and eight) within each iteration as well as

various total input data sizes (4, 64, and 512 MB). The number

of conditional statements is represented as D2 and D8, for

two and eight conditional decisions, respectively. The results

show that the FPGA can sustain the same performance among

kernels with different conditional branches, whereas the GPU

suffers more performance degradation for kernels with more

conditional branches (up to 45% slowdown). As a result,

the FPGA outperforms the GPU with a higher number of

conditional dependencies; e.g., 40% better for a dependency

level of eight. This observation suggests the suitability of

FPGAs for algorithms with a high degree of decision making

during the execution. These types of applications usually

cannot exploit the massive parallelism in SIMD architectures

and can be better handled by reconfigurable processors.

E. Anti-dependency

Definition. In this loop pattern, every iteration consists of

more than one statement. Unlike the intra-dimension depen-

dent loops, where the dependency is read-after-write, this

pattern carries write-after-read dependency. In this pattern, one

statement of an iteration reads a data item that is going to be

updated by the other statement in the next iteration. It is named

anti-dependency because the statements in different iterations

are following the write-after-read pattern, as opposed to read-

after-write in the typical dependency patterns. Algorithm 4

demonstrates a general example of such loops. The existence

of read-after-write dependency creates an anti-dependent loop

pattern.

Anti-dependent loops have a unique characteristic. It is

possible to face race condition in case of parallelization of

all the iterations. More specifically, the first iteration reads

the old value of an array element (e.g., A[i] depends on

B[i + 1] in Algorithm 4), while the second iteration updates

the same value, and so on and so forth. When these iterations

are executed on different threads to achieve parallelism, the

dependent read and write might be executed out of order,

which damages the correctness.

Algorithm 4 Anti dependency algorithm

i ← 1
for i ≤ n do

A[i] = B[i+ 1] + C[i] ∗D[i]
B[i] = B[i+ 1]− E[i] ∗D[i]

end for

Implementation. These types of loops can be parallelized on

vector processors with a global barrier mechanism among all

SIMD threads. Unfortunately, both the FPGA and the GPU

lack such a global barrier mechanism between all threads.

An approach to parallelizing inter-iteration dependent loops

is loop-splitting. In this approach, the loop can be divided

into multiple separate loops, where none of them carries any

dependency. In this situation, loops should run sequentially

on the target processor (to guarantee the correctness of the

execution), but each loop can fully exploit the available

spatial core units. Figure 8 represents the execution and the

dependency of the original loop, along with the transformed

version of it. The dotted blue box and the solid red box

represent different statements in the loop body. The arrow

shows the anti-dependency between different statements of

consecutive iterations.

To accelerate anti-dependency loops on GPU and FPGA,

we apply statement re-ordering and loop splitting. The trans-

formation creates multiple flattened loops, where each of

them represents a stage of the execution. The lack of global

barriers prevents both platforms from co-locating the execution

of the generated sub-loops after the main loop distribution,

except for using channels in FPGA, which is a mechanism

for passing data between kernels and synchronizing kernels

with high efficiency and low latency. Usually, kernels need to

communicate through DRAM, which increases the application

runtime. By using channels, loops can start pipelining their

partial results to the next loop, which enables co-location of the

computation and communication and reduces the application

runtime. Unlike the FPGA, GPU should execute the flattened

loop sequentially, but each stage can be fully parallelized

spatially.
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Fig. 8: Anti dependency loop

pattern.
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Fig. 9: Anti dependency results for two and four stages. Fig. 10: Half-parallellism

half-dependency loop pattern.

Experiment. Figure 9 shows the runtime of the FPGA and

GPU in accelerating these loops. We varied the degree of anti-

dependency which is the number of statements involved in the

anti-dependency. For example, in Algorithm 4 the dependency

exists between two statements, which yields anti-dependency

degree of two. As a result, the main loop in the benchmark

can be split into several separate and parallelizable loops,

depending on the number of anti-dependent statements in the

loop body. We also varied the intensity level and input data

size.

Comparing the runtimes for the case of four stages of anti-

dependencies, the FPGA can outperform the Tesla K40 GPU

for kernels with low intensity (up to 20% speedup), whereas

it performs close to the GPU for higher intensities (up to

15% speed degradation). Comparing to Titan X, the FPGA

performs 1.6x slower. Kernels with higher intensities lead to

larger area consumption and limit the parallelism level in

each stage, which results in the reduction of the channels

widths. Overall, increasing the number of statements with

anti-dependencies results in more separate loops. As shown

in Figure 9, increasing the degree of anti-dependency reduces

the gap between the FPGA and GPU. We can expect that by

following this trend, the FPGA will eventually outperform the

GPU.

F. Half-Parallelism Half-Dependency

Definition. Half-parallel half-dependent loops usually include

the dependent and the parallel statements, simultaneously, and

consist of only one loop, with no nested loop. Algorithm 5 lists

an example of this type of loops. The existence of loop-carried

dependent statements (read-after-write) prevents the spatial

parallelization of the algorithm, as a whole. Transforming the

loop into multiple flattened loops enables the execution of the

loop in two different stages. Unlike the anti-dependent loops,

the loop-splitting process does not enable spatial paralleliza-

tion opportunity for all the loops, since part of the algorithm

carries read-after-write dependency. After the splitting, the

parallel portion of the loop can be deployed on processors

with a high number of parallel compute units, e.g., GPUs,

while the dependent portion can be handled by processors that

are suitable for sequential execution, e.g., CPUs and FPGAs.

Figure 10 represents the half-parallelism half-dependent

loop pattern. For this pattern, each red box in an iteration

depends on another red box from the previous iteration.

Furthermore, each red box depends on the value of the blue

box in the same iteration.

Half-parallel half-dependent applications such as K-nearest

neighbor (KNN) include of both parallel parts (distance com-

putation) and dependent parts (sorting) (see Listing 4). These

applications can utilize one or more hardware accelerators for

an efficient acceleration.

1 val sortedDistances = data.map{case (a, b)
2 => (b, Util.euclideanDistance(p, a))}
3 .sortBy(_._2, ascending = true)
4 // take the top k results
5 val topk = sortedDistances.zipWithIndex()
6 .filter(_._2 < k)
7 // take the most predominant class within the top k
8 val result = topk.map(_._1)
9 // Parallel section of the KNN

10 .map(entry => (entry._1, 1))
11 .reduceByKey(_+_)
12 // Semi-Dependent section of the KNN
13 .sortBy(_._2, ascending = false).first()

Listing 4: KNN algorithm

Implementation. We apply loop splitting to separate the

parallel section from the dependent section. For the GPU,

we first compute the parallel part on the GPU and then

transfer the data back to the main memory of the host and

execute the dependent part on the CPU. Running the dependent

block of code on the GPU is not efficient and will lead to

poor performance. For the FPGA we have multiple options,

(1) running the parallel and dependent blocks of the loop

serially on the FPGA, (2) running the parallel block on the

FPGA and the dependent block on the CPU, and (3) using

channel to pipeline the intermediate result from the parallel

part to the dependent part and decrease the running time

overhead. Using the channels is the best available option to

co-locate computation and communication and achieve the

highest possible performance.

Experiment. Figure 11 shows the runtime of the FPGA and

GPUs in acceleration these loops. For this experiment, we

provided input data with a size of 1 to 1024 MB. The FPGA

can outperform both Titan X and Tesla K40 GPUs, by up to
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Algorithm 5 Half-parallelim half-dependency algorithm

i ← 1
for i ≤ n do

A[i]+ = C[i] ∗D[i]
sum+ = B[i] +A[i] +D[i]

end for
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Fig. 11: Half-parallelism half-dependency runtime on both

FPGA and GPU, for different intensities.

118x and 110x, respectively. The overhead of the data transfer

from the GPU to CPU reduces both GPUs’ performance

significantly. As a conclusion, co-locating the parallel and

the dependent sections of the code on the FPGA can yield

much higher performance, compared to utilizing GPU+CPU

combination with a much slower communication channel.

IV. RELATED WORK

To the best of our knowledge, we are the first to provide

a comprehensive study of common loop patterns on impor-

tant hardware accelerators, including both GPUs and FPGAs.

There are a number of related works that are complementary

to the focus of our study. Roofline modeling [37] was first

designed to provide insights into the performance of multicore

architectures, utilizing a parameter, operational intensity. It

helps understand the potential bottlenecks and improvement

opportunities for an application on different families of CPUs.

Other efforts [38], [39] extended this model to accelerators,

such as the GPU and TPU. The roofline model does not

provide insights into the loop-level acceleration opportunity

on different hardware accelerators. In comparison, Loopy

provides optimization details in loop-level granularity (not the

whole application) and does not rely on the real implementa-

tion of the algorithm.

Existing benchmarks adopted widely-used algorithms or

computational patterns to draw comparison lines between

different processors. Some of these works [40], [41] focused

only on a particular type of processor, whereas others [42]

were designed to compare different families of processors,

e.g., CPUs vs. GPUs. These benchmarks help understand the

performance differences between accelerators while executing

certain types of applications, but their insights are limited to

specific applications. It is difficult for a developer to use these

benchmarks to decide which accelerator has more potential to

accelerate a new type of application. In comparison, Loopy

offers insights into accelerating common loop patterns, which

are not limited to a particular application and can be applied

to any new algorithm.

Closely related to our approach, the TSVC benchmark [43]

includes a suite of various types of loops, which has inspired

some of the loop patterns considered by our Loopy. TSVC

was mainly designed to evaluate the efficiency of compilers on

detecting and vectorizing such loops on SIMD architectures.

In comparison, the goal of Loopy is to evaluate the correlation

between common loop patterns and the extent of accelerating

such loops on different hardware platforms. In addition, it

provides an in-depth analysis of how loop characteristics

impact the accelerator performance, all of which are not

possible by simply applying or porting TSVC.

There are efforts in predicting the performance of a com-

plete application on a target platform [44], [45]. These so-

lutions require access to the real implementation of the ap-

plication, and the prediction is specific to the application. In

comparison, Loopy is able to give insights into the acceleration

opportunities at the abstraction level of loop patterns.

Finally, polyhedral compilation is a body of works aiming

for transforming loops in the application to achieve a higher

performance [14]–[21]. It represents loops in algebraic form

as polyhedra, and further applies algebraic transformation.

Each transformation optimizes a certain aspect of the code,

such as parallelization. In comparison, Loopy aims to provide

insights into the capability of different accelerators for loop

acceleration, before any transformation.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we designed Loopy for studying common

loop patterns on important GPU and FPGA accelerators. We

identified and analyzed five common loop patterns, along with

the key configuration parameters in these patterns. We then

studied the acceleration opportunities for these loop patterns

and how the loop configurations and accelerator platforms af-

fect the effectiveness of acceleration. Using Loopy, developers

can gain a good understanding of the acceleration potential

of their algorithms on different platforms, without having to

implement them for any specific platform, based on the loop

patterns that these algorithms embody. LoopBench is open

source and publicly available1.

Understanding the performance of applications consisting of

multiple algorithmic patterns and optimizing the partitioning

and placement of an application across heterogeneous proces-

sors/accelerators are the ultimate objectives of our research.

Loopy provides an important first step towards the optimized

use of accelerators for diverse applications in heterogeneous

computing systems.
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