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Abstract—Computation intensive applications usually consist
of multiple nested or flattened loops. These loops are the main
building blocks of the applications and embody a specific type
of execution pattern. In order to reduce the running time of
the loops, developers need to analyze the loops in the code and
try to parallelize them on hardware accelerators, such as GPUs,
TPUs, and FPGAs, which are increasingly available in the cloud.
Unfortunately, the lack of understanding of loop characteristics
and the ability of hardware accelerators in handling these types
of loops prevents developers from choosing the right platform
to develop their applications in the cloud. Also, developing and
optimizing code for a specific accelerator is a time-consuming
effort. To address these issues, this paper studies the effectiveness
of different processors in accelerating common patterns of loops.
It identifies five important types of loops that commonly exist in
real-world applications, and presents Loopy, the implementations
of these loops optimized for different architectures. Using Loopy,
the paper also evaluates different hardware in accelerating the
loop patterns. The result reveals the architectural differences
among different accelerators with regard to different loop pat-
terns. It also provides insights for the developers to choose the
right accelerators for their applications. The current version of
Loopy supports both FPGAs and GPUs, which are the most
versatile and available accelerators.

I. INTRODUCTION

Many applications can benefit from computing on hardware
accelerators, ranging from cloud computing to big-data and
edge computing. Examples of these applications include (1)
analysis of large quantity of data on big-data platforms, (2)
training and running artificial intelligence (AI) and machine
learning models in the cloud, (3) processing streams of re-
quests and data from IoT devices, and (4) modeling and
simulating the behaviors of scientific applications. By using
accelerators, applications can achieve higher throughput [1],
lower response time [2], and/or lower energy consumption [3].

Cloud is by nature a heterogeneous computing environment
with different types of accelerators available a a service (e.g.,
Google Cloud GPUs and TPUs [4], [5], Azure GPU VMs and
FPGAs [6], [7], AWS GPU and F1 instances [8], [9]). These
accelerators come with different capabilities and limitations.
For example, FPGAs can be reconfigured to run any applica-
tions but can provide only low clock frequency; GPUs can be
programmed using high-level languages to accelerate highly
parallel applications; and TPUs are specifically designed for
deep learning workloads. Although a general understanding of
different accelerators is available, choosing the right acceler-
ators for applications in a heterogeneous computing system is
still a difficult problem.
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Several related works have studied the performance of com-
mon algorithms on accelerators. For example, Rodinia bench-
mark and its follow-up work [10] are designed to benchmark
heterogeneous platforms including CPUs, GPU, and FPGAs.
These benchmarks usually provide insights on a macro level,
for a complete algorithm on a hardware platform. However,
they lack a thorough analysis of micro-level execution patterns
that exist in different applications and the effectiveness of
different hardware architectures in handling these patterns.

To address the above challenges, we study how the accel-
erators with different hardware architectures can accelerate
different types of loops, which are the basic building blocks of
almost every computationally intensive application. These ap-
plications typically consist of one or many nested and flattened
loops. These loops can embody different patterns in terms of
types and degrees of dependency and concurrency, and they
can be found in many applications. For example, dynamic
programming algorithms consist of one or more nested loops,
where every iteration depends on another iteration that points
diagonally in the iteration space. Therefore, abstracting the
common loop patterns from applications and understanding
how they perform on various hardware accelerators are es-
sential steps towards optimally utilizing the accelerators for
executing different applications. Although there is a great
body of existing works on loop optimizations [11]-[24], they
cannot provide cross-accelerator comparisons that can help
developers choose the right platform for their applications in
a heterogeneous computing system.

To support the study of loop accelerations across different
platforms, we developed Loopy, a collection of five fine-
grained loop patterns that commonly exist in real-world appli-
cations such as linear algebra, optimization, and data analytics
algorithms. Loopy parameterizes the key aspects of these loop
patterns, including the type and degree of dependencies, data
bit-precision, operational intensity, and size of the iteration
spaces. It allows them to be flexibly tuned to model diverse
loop characteristics. Loopy provides optimized OpenCL im-
plementations of these loop patterns for both GPU and FPGA,
the two most versatile and available accelerators. We focus
on OpenCL because it is an important framework for the
emerging heterogeneous computing paradigm.

Based on Loopy, we evaluated the performance of important
loop patterns on several typical accelerators, including Intel
A10 FPGAs and Nvidia T4 and RTX2080 GPUs. Our study
made several key findings. First, for three out of five loop



dependency patterns (intra-dimension dependency, conditional
dependency, and half-parallelism half-dependency), FPGA has
the potential to outperform GPU. For example, for the intra-
dimension dependency pattern, the evaluated FPGA outper-
forms GPU by 17.5x. Second, for various computational inten-
sities, FPGA can maintain an identical performance, whereas
GPU performance is highly variable. For example, having
eight conditional statements can degrade the GPU performance
by up to 45%. Third, increasing the input data size can increase
the performance difference between these two accelerators.
For example, for the diagonal dependency loop pattern, the
performance gap increases by 51%, while the input data size
increases from 4MB to 256MB.
In summary, the contributions of this study include:

o identification and classification of common loop patterns
in computationally intensive applications,

optimization of these loop patterns on the OpenCL-
enabled FPGAs,

experimental analysis of the acceleration potentials of
these loop patterns on GPUs and FPGAs, with regard
to key configuration parameters, such as computational
intensity, dependency and concurrency degrees, and input
data size.

II. BACKGROUND
A. Accelerators

Acceleration is becoming a critical de-facto for many
computationally intensive workloads on various computing
systems. While there are different accelerators available, such
as GPUs, FPGAs, TPUs, and DSPs, we focus on GPUs and
FPGAs, since they are more general purpose than the others
and can support a wide variety of applications.

GPUs have been well studied and widely used as accelerators.
While GPUs are highly effective in handling applications
with high level of concurrency and regular memory access
patterns, they come short for applications with a high degree
of dependency, and/or a high number of conditional branches.
Examples of these applications include graph processing [25],
sorting [26], small signal processing problems [27], and sparse
linear algebra [28].

FPGAs are each a farm of logic, computation, and storage
resources that can be configured dynamically. Different from
widely-adopted GPUs, FPGAs can accelerate almost all types
of algorithms (irrespective to their computational pattern), due
to their reconfigurability. Despite their impressive acceleration
power, programming and optimization difficulties have been
serious obstacles to the wider adoption of FPGAs. Recent
advancements in supporting high-level synthesis (HLS) have
made it possible to program FPGAs using high-level lan-
guages, especially OpenCL [29], which has made FPGAs
much easier to use and much more accessible to applications.
Even though an HLS-based program may not perform as well
as a carefully hand-crafted HDL program, the productivity
enabled by HLS is often far more important.
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B. OpenCL

OpenCL is a versatile C-based programming model that
can execute across heterogeneous platforms, including CPUs,
GPUs, and DSPs. CPU and GPU vendors, such as Intel, AMD,
and NVIDIA have been supporting OpenCL on their platforms
for over a decade. The recently-extended support of OpenCL
to FPGAs has opened the gate for conveniently integrating FP-
GAs into a heterogeneous computing system. Using OpenCL,
programmers do not need to make any major changes to their
code, when porting it across different platforms. Moreover,
developers can split their applications and deploy the parts on
different accelerators to make optimal use of the accelerators’
different capabilities.

OpenCL’s ease of programming and portability across
platforms unlock a whole new level of productivity, even
though it might lose some performance compared to the
traditional frameworks for accelerator programming. Com-
pared to CUDA-based GPU programming, related works have
shown OpenCL has only a slightly worse performance on
GPUs [30], [31]. Compared to C-based HLS on FPGAs,
OpenCL-based FPGA programming has about the same level
of performance. For example, consider the disparity map
calculation algorithm [32]. For the window size of 7 x 7 the
OpenCL implementation is faster than the C one by 6.14%;
For the window size of 9 x 9, the OpenCL implementation
can be slower by up to 15.3%.

Therefore, in this study, we focus on the OpenCL-based
GPU and FPGA computing and study their effectiveness for
accelerating common algorithmic patterns.

C. Loop Parallelism

Algorithms are composed of one or many loops, either
nested or flattened. The acceleration of algorithms is the
process of accelerating the loops, using parallelization and
pipelining methods. Algorithms can be parallelized either
temporally or spatially.

Spatial Parallelism. In spatial parallelism [33], processing
elements (PEs) execute the same task (SIMD) or multiple
different tasks (MIMD), simultaneously. Both GPU and FPGA
are able to exploit spatial parallelism in algorithms. The
amount of data dependency between the iterations of the loops
in the algorithm can decide the level of achievable spatial
parallelism on the target architecture. In another word, having
less data dependency increases the opportunity of speedup on
parallel architectures, such as GPUs and FPGAs. In general,
GPUs are better at exploiting spatial parallelism, because
FPGAs cannot adopt as many compute cores as GPUs, and
FPGAs also tend to operate at a lower clock frequency, up to
2-5 times slower than GPUs.

Temporal Parallelism. In temporal parallelism [33], process-
ing tasks that have a dependency on each other are mapped
onto different PEs and execute in parallel in a pipeline fashion.
Data processing has multiple stages, and each stage is being
handled by one PE. In this multi-stage pipeline, as data is
processed by the element PFE;, it is sent to the next element



PE,;; and element PFE; moves on to handle new data coming
from the previous stage. In the cases where a single task
cannot fully occupy the available PEs, multiple tasks can be
interleaved and mapped onto the PEs to increase the temporal
parallelism.

Among general purpose accelerators, FPGAs are exclusively
able to exploit coarse-grained temporal parallelism in the
algorithms, due to their reconfigurability. SIMD platforms
like GPU can perform at most one instruction at a time on
each available core, whereas FPGA can execute hundreds of
operations on all available stages in the pipeline. Need to
mention, while GPUs can launch multiple kernel streams in a
pipeline fashion, they cannot achieve the fine-grained pipeline
parallelism. One can mimic pipeline parallelism by launching
consecutive kernels (e.g., CUDA stream kernels). Still, the data
between different stages should be stored and delivered to the
main memory, an expensive operation. On the contrary, FPGAs
utilize connected registers between PEs to transfer the data.

Figure 1 depicts both parallelism dimensions. Each circle
represents an individual iteration in a set of nested loop
blocks. The (i, j) pair in each circle represents the ith iteration
in the first dimension and the jth iteration in the second
dimension. The arrow represents the dependency of one itera-
tion on another, e.g., (1,2) depends on (1,1). Each iteration
usually involves separate calculation for a specific indexed
item or accumulation on a shared value among iterations of
a loop block. The dashed box contains iterations with zero
dependency, which can be easily parallelized spatially. On
the other hand, the dotted box contains iterations with data
dependency, which cannot be parallelizaed spatially but may
have the potential to be parallelized temporally. We use the
above format throughout the paper to represent the dependency
flow.

In summary, GPUs excel at exploiting spatial parallelism but
cannot utilize temporal parallelism, whereas FPGAs can take
good advantage of both types of parallelism. However, despite
this general understanding of GPU’s and FPGA’s different
strengths, it is still difficult to understand which accelerator
works the best for which algorithm. Every single application
consists of different types and degrees of conditional and
data dependencies. Developers usually need to implement the
code for different accelerators and then apply several different
transformations on the algorithm to assess the acceleration
potentials on different devices. Understanding the relationship
between common micro-level patterns such as loop patterns
and their potential acceleration can reduce the effort of choos-
ing the right device. These are the motivations for our study
on loop acceleration using GPUs and FPGAs, which, to the
best of our knowledge, is the first.

D. Automatic Loop Optimization

Automatic loop optimization (generally parallelization)
dates back to an article by Lamport [24] which discusses
parallel execution of do loops. Later, several other researchers
continued the effort and developed the groundbreaking ap-
proach of using linear algebraic methods to analyze, transform,
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Temporal Parallelism |

Fig. 1: Spatial and temporal parallelism in multiple iteration

dimensions _ .
| Sample Algorithm/Application |

[ Loop Pattern

Intra-Dimension Dependency
Diagonal Dependency
Conditional Dependency

Linear Algebraic Routines
Needleman-Wunsch
Kmeans, Single-Source Shortest
Path
Floyd-Warshall Algorithm
K-Nearest Neighbor

TABLE I: List of loop blocks

Anti-Dependency
Half-Parallelism Half-Dependency

and parallelize loops, namely polyhedral compilation [19]—
[23].

Polyhedral compilation is used in a wide range of applica-
tions, including automatic parallelization, SIMDization, code
generation for hardware accelerators, and memory and cache
consumption optimization. It models nested loops and arrays
into an algebraic format while presenting specific constraints,
such as dependencies. Further, it uses particular types of al-
gebraic transformation that guarantee the loop’s semantic and
correctness and generates a new model, typically optimized
toward a specific cost model. Finally, the model is translated
back into an execution code that can run on hardware.

The polyhedral compilation has limitations. First, it does not
provide cross-accelerator comparisons. Such limitation pre-
vents developers from understanding the correlation between
the loop patterns and the speedup capabilities of accelera-
tors. Second, polyhedral compilers, such as Polly [17], [18],
Graphite [16], and a more recent compiler called Tiramisu [14]
can only optimize specific routines in domain-specific ap-
plications, such as dense linear algebra, tensor operations,
and stencil computations. Also, they are able to provide
10% performance improvement [15]. Finally, the polyhedral
compilation is not well-studied on GPUs and FPGAs [11]-
[13], making it less effective for accelerators.

In summary, polyhedral compilation lacks the ability to
demonstrate the effectiveness of different hardware accel-
erators while considering an algorithm or an application.
Loopy aims to unlock insights into accelerating typical loop
patterns that can be generally found in many applications with
important accelerators such as GPUs and FPGAs.

III. LoOP ANALYSIS
A. Methodology

Our approach to understanding how to choose the optimal
accelerator for a given algorithm is by studying the perfor-



mance characteristics of common loop patterns on GPUs and
FPGAs. Following this approach, we designed Loopy, a set of
abstract and configurable loop blocks, which captures the key
loop patterns extracted from real-world algorithms (Table I),
and allows flexible testing of each type of loops by varying
the following key parameters:

1) Computational intensity, which is the total number of
computational operations that each iteration of the al-
gorithm performs. In our study, it is defined as the
number of multiply-accumulation operations. The com-
putational intensity can affect the size of the pipeline
and the number of instructions on both FPGA and
GPU. Changing this parameter can show how both
platform’s performance is susceptible to the amount of
computation;

Dependency and concurrency degrees, which define how
many iterations depend on each other and how many
other iterations can be executed separately.

Input data size, which specifies the total number of
floating-point variables that the algorithm processes. The
size of the input data can affect the load of computation
on a target platform, which can decide the suitability of
one device over another.

Variable precision, which is the bit-width size of the
variables in the algorithm. FPGAs and most-recent
GPUs have the capability to deliver higher performance
for lower bit-precision operations.

2)

3)

4)

Loopy includes optimized implementations of each loop
type for GPU and FPGA. The rest of this section details
each loop type and its GPU and FPGA implementations,
and presents experiments from running them on real devices.
While optimizing GPU programming has been well studied,
OpenCL-based FPGA optimization is not well explored and
not trivial. In our discussions, we will also detail how we
performed the optimizations for each key loop type.

All GPU-related experiments were conducted on two server
nodes with two type of GPUs. One server is equipped with
an Nvidia Geforce RTX2080 GPU, dual Intel Xeon E5-2637
v4 CPU, and 64GB of DDR4 main memory (2133MHz). The
RTX2080 is a large form-factor GPU, suitable for heavy Al
and deep learning workloads. Another server is equipped with
an Nvidia Tesla T4, Intel Xeon E5-2650 v3 CPU, and 198GB
of main memory. The T4 is a small GPU, suitable for edge
servers. All the FPGA-related experiments were conducted
on an Intel Fog Reference Design unit, equipped with two
Nallatech 385A FPGA Acceleration Cards (Intel Arria 10
GX1150 FPGA), and Intel Xeon E5-1275 v5 CPU, and 32GB
of DDR4 main memory (2133 MHz).

The OpenCL kernels for FPGAs were compiled using
Intel FPGA SDK for OpenCL (version 19.1) with Nallatech
p385a_sch_ax115 board support packages (BSP). The GPU
OpenCL kernels were compiled just-in-time at runtime using
available OpenCL library in CUDA Toolkit 11.0. For the
FPGAs, we implemented all the kernels in the single-thread
mode and NDRange (multi-threaded) mode. Single-thread
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kernels on FPGAs typically have much less overhead and
can achieve much higher clock frequency rate, compared to
multi-threaded kernels. Thus we focus on the results from the
single-thread mode execution on the FPGAs. For the GPUs, we
implemented the kernels in the NDRange mode in OpenCL,
which deploy concurrent threads on the available compute
units.

The insights from our study can be generalized, irrespective
of our FPGA or GPU choices. Our experiments target the
general capability of accelerators in handling common loop
patterns, rather than handling specific computational blocks
(e.g., tensor processing for deep learning applications). Various
generations of FPGAs and GPUs usually differ in their total
available resources, such as programmable blocks on FPGAs
and processing units in GPUs, which do not affect their
general behaviors. When comparing the acceleration achieved
by GPU vs. FPGA, we also focus on the general trend,
i.e., how the performance changes w.r.t. the key parameters
identified above, rather than the absolute performance for
a specific configuration. Therefore, our characterization of
loop acceleration is generally applicable to GPUs and FPGAs
regardless of hardware’s specific choices.

B. Intra-Dimension Dependency

Definition. This type of loops is usually composed of two
or more nested iterative blocks, where each level of iterative
blocks is considered a dimension. In this pattern there exists a
loop-carried data dependency, which is a dependency of one
iteration on the output of the previous iterations (read-after-
write), in one or more dimensions, while at the same time
one or more dimensions have no dependency between their
iterations. In another word, we can observe both dependency
and concurrency in the overall iteration space.

For example, in Algorithm 1, the dependency exists between
iterations with the index of 7. In this algorithm, updating every
element of the array A with the index of 4 on the first dimen-
sion depends on the value of the element with the index of
i— 1. Elements in the second dimension with the index of j do
not carry any dependency. In this case, the dependency exists
on the dimension with the index of ¢ and the concurrency exists
on the dimension with the index of j. Figure 2 illustrates the
iteration space and the dependency graph of intra-dimension
dependent loops. Although in this example, the nested loops
have only two dimensions, indexed by 7 and j, in reality,
the algorithm can have multiple dimensions and dependency
within any one of the dimensions.

Simple linear algebraic algorithms [34], such as matrix-
matrix (see Listing 1) and matrix-vector multiplications are
following this type of loop pattern. For example, in matrix-
matrix multiplication, each cell of the output matrix can be
computed separately (concurrency), while the dot multipli-
cation of one row and one column can only be performed
sequentially in a single thread (dependency).

I type Row = List [Double]
List [Row]



Algorithm 1 Intra-dimension dependency algorithm

i1
j+1
for i < n do
for j < m do
/I In our case, func is an FMA operation
Ali[j] = func(Ali - 1131, BE][, )
end for
end for

Dimension #1

Dimension #2

| suone.ey yuapuadagq jo o8 |

Fig. 2: Intra-dimension dependent loop pattern.

4+ def dotProd(vl:Row,v2:Row)
s vli.zip( v2 ).

6 map{ t: (Double,Double)
7 // Dependent accumulation
8 reducelLeft (_ + _)

=> t._1 ~ t._2 }.
(Spatial Parallelism)

def mXm( ml:Matrix, m2:Matrix )
// Parallel row-by-row multiplication
Parallelism)

12 for( mlrow <- ml ) yield

13 for( m2col <- transpose (m2) )
dotProd( mlrow, m2col )

(Temporal
yield

Listing 1: Matrix-matrix multiplication algorithm

The degree of spatial and temporal parallelism, combined
with the arithmetic intensity, can determine the choice of
deployment on either FPGA or GPU. Algorithms with a high
degree of dependency can usually finish faster on FPGAs,
while algorithms with a high degree of concurrency can utilize
the available farm of SIMD compute units on the GPUs and
accelerate their execution.

Implementation. Our benchmark contains the GPU and
FPGA versions of the intra-dimension dependent loop. For
the GPU version, the loop is unrolled spatially over the non-
dependent dimension. Each independent iteration is deployed
as a work-item (unit of a task in OpenCL), and all the work-
items are grouped into several work-groups (unit of execution
on a single compute unit). Also, we specifically order the
memory access indexes to enable memory access coalescing
among work-items in a work-group for better performance.
For the FPGA version, we first apply statement re-ordering to
place the dependent loop as the inner-most loop, which enables
interleaving of the outer-loop iterations (non-dependent) inside
the inner-loop cycle. It also helps achieve the initiation interval
of one in the inner-most loop. In loop pipelining, the initiation
interval is the number of clock cycles between the start times
of consecutive loop iterations. Having an initiation interval of
one enables the FPGA to push one iteration into the pipeline
at every clock cycle and achieve the highest performance,
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which is the ultimate goal for every design. Further, we apply
loop blocking (also known as loop tiling) on the outer for
loop. Doing so enables utilization of the on-chip registers on
the FPGA (with the same size of the block), by copying the
required data for the execution of the block, as a whole, onto
the allocated on-chip registers, thereby reducing the DRAM
access overhead.

Experiment. We deployed FPGA and GPU kernels, resem-
bling Algorithm 1. Input data is an array of floating-point
variables of a specific size (4, 32, 256 MB). Every single
iteration in the algorithm is responsible for a single element
in the array. As a result, the total number of iterations is equal
to the number of input values. As shown in the algorithm,
the dependency and concurrency degrees are configured by
changing the number of iterations, n and m, respectively.
Figure 3 shows the runtime of this intra-dimension dependent
loop on both FPGA and GPU.

We can make several key observations from the results.
First, GPU does excel at accelerating the loop with a high
degree of concurrency. More concurrency can lead to bet-
ter spatial parallelization, which makes the GPU a great
candidate for deployment. In contrast, with the increase in
the dependency degree, the FPGA can take advantage of
the configured long pipeline and parallelize the dependent
iterations. In this case, with a high degree of dependency, the
FPGA can outperform both RTX2080 and T4 by up to 21.5x
and 13.6x. With a high degree of concurrency, both RTX2080
and T4 perform better than the FPGA, by up to 184x and 93x,
respectively.

The second observation is about the effect of computational
intensity (the total number of computational operations in each
iteration) on the final performance. Higher intensity means
more computations, which leads to more pipeline stages.
With more pipeline stages, FPGA can handle more dependent
iterations and achieve higher performance. Need to mention,
the available hardware resources on the FPGA are limited
and may block developers from configuring a large number
of pipeline stages. As a result, developers may need to adopt
a smaller loop block size, which leads to the reduction of
performance. Compared to FPGA, the GPU has to spend more
time executing each loop iteration, with no opportunity for
pipelining the iteration. For example, Figure 3 shows that
going from the intensity of 1 to 5, the performance drops
by up to 2.1x and 3x, on RTX2080 and T4, respectively.

The third observation is the performance reduction of
FPGA for kernels with low dependency, because there are not
enough dependent iterations to fully saturate the configured
pipeline. In this situation, developers may want to switch to
the NDRange mode kernels, which can interleave the parallel
iterations into the pipeline and keep it saturated. In compar-
ison, GPU can utilize the massive farm of cores to exploit
a high degree of parallelism when the dependency is low.
Therefore, as shown in Figure 3, FPGA’s performance is worse
with lower dependency degree whereas GPU’s performance is
not affected.
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Fig. 3: Intra-dimension dependency performance on the GPU and the FPGA

C. Diagonal Dependency

Definition. Diagonal dependent loops are following almost
the same pattern as intra-dimensions dependent loops, except
that the dependency is diagonal instead of horizontal or
vertical in the iteration space. As illustrated in Figure 4,
horizontal (vertical) dependency refers to the dependency of
an iteration on the left (top) neighbor iterations with the same
i (j), respectively. For example, in the aforementioned intra-
dimension dependency, there is horizontal dependency among
the iterations as shown in Figure 2. Diagonal dependency
means that an iteration depends on its relative top-left iteration
which has both different ¢ and j indexes. For example, in
Figure 4, iteration (2,2) depends on its diagonal neighbor
iteration (1,1). Algorithm 2 shows an example of this kind
of loops, where the computation requires data from its di-
agonal neighbor in the iteration space. In specific cases, the
dependency can be extended and include either horizontal or
vertical, as well.

Parallelization of these types of loops on SIMD archi-
tectures, such as GPU, is not straightforward. Depending
on the type of diagonal dependency, developers can either
parallelize the diagonals or use the wavefront technique [35]
for parallelization. In the wavefront parallelism mode, kernels
are enqueued back to back to the GPU, each computing one
set of independent iterations. The number of the kernels is
equal to the length of the diagonal.

Dynamic programming algorithms are usually composed
of diagonal dependent iterations. A specific example of such
algorithm is Needleman-Wunsch [36] (see Listing 2), which
performs matching between two input strings while minimiz-
ing the penalty.

Algorithm 2 Diagonal depedency algorithm

i1
j+«1
for i < n do
for j < m do
Ali][j] = func(Ali = 1][j — 1], B[i][], -..)
end for
end for
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Fig. 4: Diagonal dependency loop pattern

1 val alignMat = new Array[Array[ResultEntry]] (length)
2 val contant = o

3 val gapPenalty = ...

4 def getScore(i: Int, j: Int): Score = {

5 if (alignMat (i) (j) !'= null) {

6 alignMat (i) (3)

7 } else {

8 // 3-Way Diagonal Dependency

9 val tryMatch = getScore(i - 1, j - 1) +
10 constant

11 val horizontalGap = getScore(i, j - 1) +
12 gapPenalty

13 val verticalGap = getScore(i - 1, j) +
14 gapPenalty

15 if (m == tryMatch) {

16 alignMat (i) (j) = (m)

17 } else if (m == horizontalGap) {

18 alignMat (i) (j) = (m)

19 } else {

20 alignMat (i) (j) = (m)

21 }

22 m

Listing 2: Needleman-Wunsch algorithm score calculation

Implementation. For the GPU implementation, the paral-
lelization method depends on the existence of vertical or
horizontal dependency. In the absence of both of these de-
pendencies, each thread can take care of one diagonal, in
parallel. The existence of any of the mentioned dependencies
(in addition to diagonal dependency) would force the GPU to
perform anti-diagonal parallelization. As shown in Figure 4,
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Fig. 6: Diagonal dependency runtime on both FPGA and
GPU. The dependency also includes horizontal and vertical.

the independent iterations that can be parallelized form a line
that is perpendicular to the diagonal dependent iterations.
For the FPGA implementation, we first perform loop block-
ing on the first dimension, which enables caching of the input
data for each iteration of the second dimension’s iterations.
Later, we copy the required data for the second dimension’s
computation into the allocated on-chip registers of the size
block. Every iteration of the second dimension first reads
the data from the registers, performs the calculation, and
writes back the data to the registers and the DRAM. To
handle all elements in the block, each iteration of the second
dimension contains a nested loop of size block, which is fully
unrolled. In this implementation, the iterations of the second
dimension have a loop-carried data dependency. Unfortunately,
the compiler cannot infer an initiation interval of one for
this loop body, due to the existence of large latency between
consecutive iterations of the loop. To overcome this issue,
we interleave the execution of the block iterations inside the
second dimension loop, which enables full exploitation of the
available pipeline stages. Doing so reduces memory accesses
and leads to higher operating frequency and fewer stalls in the
pipeline.
Experiment. Figure 5 shows the performance of the diagonal
dependent loops on the FPGA and the GPUs, where the
dependency only exists diagonally. We did measurements for
three different computational intensities (1, 3, and 5) and three
different input sizes (4, 64, and 512 MBs). The results show
that the GPU outperforms the FPGA in almost all cases, except
for the experiment with high computational intensity and small
data size. In this type of dependency, GPU can assign one
diagonal set of iterations to one work-item and exploit high
degree of parallelism on all the available cores. In this case,
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RTX?2080 and T4 outperform the FPGA by up to 6x and 4.3x,
respectively.

Figure 6 shows the performance of the same loop pattern but
with additional horizontal and vertical dependencies between
the iterations. We modified the function f in Algorithm 2
to include both Afi — 1][j] and A[i][j — 1], in addition to
Ali —1][j — 1], as its parameters to introduce these dependen-
cies between A[i][j] and its horizontal, vertical, and diagonal
neighbor iterations. In this case, the FPGA can utilize the
same pipelining method to accelerate the execution, while
both GPUs need to use wavefront parallelism to parallelize
computation for each anti-diagonal. Unlike the case with
diagonal dependency, the wavefront parallelism model cannot
exploit a large number of parallel threads. In addition, it needs
to repetitively deploy the same kernel to calculate a new set
of anti-diagonal iterations. As a result, the FPGA outperforms
both RTX2080 and T4 by up to 165x and 322x, respectively.

D. Conditional Dependency

Definition. The existence of conditional statements in loop
bodies can alter the extent of parallelization on certain accel-
erators. In loops with a conditional statement, every iteration
diverges in the execution path, depending on the specific
conditions. Algorithm 3 represents an example, where every
iteration performs either the first or the second statement based
on the content of an array in that specific iteration index.

Algorithms such as K-means and single-source shortest path
(SSSP) consist of many conditional decisions. In the K-means
(see Listing 3), the clustering of the observations requires
many comparisons, based on the distance; SSSP relies on the
sparse matrix multiplication, where the number of iterations
for each output calculation is non-deterministic.

Algorithm 3 Conditional dependency algorithm
i1
for i < n do
if B[i] > 0.0f then
Ali] = f(B[i], Dil, -..)
else
Ali] = f(C[il, D[], --.)
end if
end for

= {
xs take n

I def run(xs: List[Point])
var centroids

3

4 for (i <- 1 to iters) {
centroids = clusters(xs, centroids) map
average

6 }

clusters (xs, centroids)

clusters (xs:
1)
1 (xs groupBy { x => closest (x, centroids)
values.toList

List[Point], centroids: List[Point

.

closest (x: Point, choices: List[Point])
// Calculating mininum, which requires several
comparisons (if-else)

choices minBy { y => dist (x,

y) }
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Fig. 7: Conditional dependency runtime on both FPGA and
GPU, for different intensities.

16

17 def dist (x:

18 def average (xs:
.size

Point, y: Point)
List[Point])

(x — y).modulus
xs.reduce (_ + _)

/ xs
Listing 3: Kmeans algorithm

Implementation. The conditional dependency is introduced
by an if-else statement in the kernel. On the GPU, the loop
is simply parallelized on different cores, and each thread
performs the if-else comparisons. But the SIMD architecture in
the GPU cannot efficiently handle the conditional statements
in the work-items, due to thread divergence issue. In the
FPGA implementation, the kernel is developed in a single-
thread mode and the loop is unrolled to the limit of the FPGA
area and available DRAM bandwidth. In contrast to the GPU
implementation, FPGAs can handle numerical conditional
statements, using look-up tables and a simple multiplexer.
More specifically, the FPGA can map all different paths of the
execution in the design and enable different threads running
simultaneously in different conditional blocks.

Experiment. Figure 7 shows the runtime of the conditional
dependent loop on the GPU and FPGA, with various compu-
tational intensities (one, three, and five) number of conditional
branches (two and eight) within each iteration as well as
various total input data sizes (4, 64, and 512 MB). The number
of conditional statements is represented as D2 and DS, for
two and eight conditional decisions, respectively. The results
show that the FPGA can sustain the same performance among
kernels with different conditional branches, whereas the GPU
suffers more performance degradation for kernels with more
conditional branches (up to 45% slowdown). As a result,
the FPGA outperforms the GPU with a higher number of
conditional dependencies; e.g., 40% better for a dependency
level of eight. This observation suggests the suitability of
FPGAs for algorithms with a high degree of decision making
during the execution. These types of applications usually
cannot exploit the massive parallelism in SIMD architectures
and can be better handled by reconfigurable processors.

E. Anti-dependency

Definition. In this loop pattern, every iteration consists of
more than one statement. Unlike the intra-dimension depen-
dent loops, where the dependency is read-after-write, this
pattern carries write-after-read dependency. In this pattern, one
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statement of an iteration reads a data item that is going to be
updated by the other statement in the next iteration. It is named
anti-dependency because the statements in different iterations
are following the write-after-read pattern, as opposed to read-
after-write in the typical dependency patterns. Algorithm 4
demonstrates a general example of such loops. The existence
of read-after-write dependency creates an anti-dependent loop
pattern.

Anti-dependent loops have a unique characteristic. It is
possible to face race condition in case of parallelization of
all the iterations. More specifically, the first iteration reads
the old value of an array element (e.g., A[:] depends on
Bli+ 1] in Algorithm 4), while the second iteration updates
the same value, and so on and so forth. When these iterations
are executed on different threads to achieve parallelism, the
dependent read and write might be executed out of order,
which damages the correctness.

Algorithm 4 Anti dependency algorithm

i1
for : < n do
Ali] = Bli + 1] + C[i] = D[4
Bli] = B[i 4+ 1] — E[i] = D[i]
end for

Implementation. These types of loops can be parallelized on
vector processors with a global barrier mechanism among all
SIMD threads. Unfortunately, both the FPGA and the GPU
lack such a global barrier mechanism between all threads.
An approach to parallelizing inter-iteration dependent loops
is loop-splitting. In this approach, the loop can be divided
into multiple separate loops, where none of them carries any
dependency. In this situation, loops should run sequentially
on the target processor (to guarantee the correctness of the
execution), but each loop can fully exploit the available
spatial core units. Figure 8 represents the execution and the
dependency of the original loop, along with the transformed
version of it. The dotted blue box and the solid red box
represent different statements in the loop body. The arrow
shows the anti-dependency between different statements of
consecutive iterations.

To accelerate anti-dependency loops on GPU and FPGA,
we apply statement re-ordering and loop splitting. The trans-
formation creates multiple flattened loops, where each of
them represents a stage of the execution. The lack of global
barriers prevents both platforms from co-locating the execution
of the generated sub-loops after the main loop distribution,
except for using channels in FPGA, which is a mechanism
for passing data between kernels and synchronizing kernels
with high efficiency and low latency. Usually, kernels need to
communicate through DRAM, which increases the application
runtime. By using channels, loops can start pipelining their
partial results to the next loop, which enables co-location of the
computation and communication and reduces the application
runtime. Unlike the FPGA, GPU should execute the flattened
loop sequentially, but each stage can be fully parallelized
spatially.
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pattern.

Experiment. Figure 9 shows the runtime of the FPGA and
GPU in accelerating these loops. We varied the degree of anti-
dependency which is the number of statements involved in the
anti-dependency. For example, in Algorithm 4 the dependency
exists between two statements, which yields anti-dependency
degree of two. As a result, the main loop in the benchmark
can be split into several separate and parallelizable loops,
depending on the number of anti-dependent statements in the
loop body. We also varied the intensity level and input data
size.

Comparing the runtimes for the case of four stages of anti-
dependencies, the FPGA can outperform the Tesla K40 GPU
for kernels with low intensity (up to 20% speedup), whereas
it performs close to the GPU for higher intensities (up to
15% speed degradation). Comparing to Titan X, the FPGA
performs 1.6x slower. Kernels with higher intensities lead to
larger area consumption and limit the parallelism level in
each stage, which results in the reduction of the channels
widths. Overall, increasing the number of statements with
anti-dependencies results in more separate loops. As shown
in Figure 9, increasing the degree of anti-dependency reduces
the gap between the FPGA and GPU. We can expect that by
following this trend, the FPGA will eventually outperform the
GPU.

F. Half-Parallelism Half-Dependency

Definition. Half-parallel half-dependent loops usually include
the dependent and the parallel statements, simultaneously, and
consist of only one loop, with no nested loop. Algorithm 5 lists
an example of this type of loops. The existence of loop-carried
dependent statements (read-after-write) prevents the spatial
parallelization of the algorithm, as a whole. Transforming the
loop into multiple flattened loops enables the execution of the
loop in two different stages. Unlike the anti-dependent loops,
the loop-splitting process does not enable spatial paralleliza-
tion opportunity for all the loops, since part of the algorithm
carries read-after-write dependency. After the splitting, the
parallel portion of the loop can be deployed on processors
with a high number of parallel compute units, e.g., GPUs,
while the dependent portion can be handled by processors that
are suitable for sequential execution, e.g., CPUs and FPGAs.

Fig. 9: Anti dependency results for two and four stages.
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Fig. 10: Half-parallellism
half-dependency loop pattern.

Figure 10 represents the half-parallelism half-dependent
loop pattern. For this pattern, each red box in an iteration
depends on another red box from the previous iteration.
Furthermore, each red box depends on the value of the blue
box in the same iteration.

Half-parallel half-dependent applications such as K-nearest
neighbor (KNN) include of both parallel parts (distance com-
putation) and dependent parts (sorting) (see Listing 4). These
applications can utilize one or more hardware accelerators for
an efficient acceleration.

data.map{case (a, b)

I val sortedDistances
2 (b, Util.euclideanDistance(p, a))}

=>

3 .sortBy(_._2, ascending = true)

4+ // take the top k results

5 val topk = sortedDistances.zipWithIndex ()

6 .filter(_._2 < k)

7 // take the most predominant class within the top k
s val result = topk.map(_._1)

9 // Parallel section of the KNN

.map (entry => (entry._1, 1))

1 .reduceByKey (_+_)

12 // Semi-Dependent section of the KNN

13 .sortBy(_._2, ascending false) .first ()

Listing 4: KNN algorithm

10

Implementation. We apply loop splitting to separate the
parallel section from the dependent section. For the GPU,
we first compute the parallel part on the GPU and then
transfer the data back to the main memory of the host and
execute the dependent part on the CPU. Running the dependent
block of code on the GPU is not efficient and will lead to
poor performance. For the FPGA we have multiple options,
(1) running the parallel and dependent blocks of the loop
serially on the FPGA, (2) running the parallel block on the
FPGA and the dependent block on the CPU, and (3) using
channel to pipeline the intermediate result from the parallel
part to the dependent part and decrease the running time
overhead. Using the channels is the best available option to
co-locate computation and communication and achieve the
highest possible performance.

Experiment. Figure 11 shows the runtime of the FPGA and
GPUs in acceleration these loops. For this experiment, we
provided input data with a size of 1 to 1024 MB. The FPGA
can outperform both Titan X and Tesla K40 GPUs, by up to



Algorithm 5 Half-parallelim half-dependency algorithm

P41
for : < n do
Alil4+ = C[i] * D[]
sum+ = Bli] + A[i] + Dl[i

end for
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Fig. 11: Half-parallelism half-dependency runtime on both
FPGA and GPU, for different intensities.

118x and 110x, respectively. The overhead of the data transfer
from the GPU to CPU reduces both GPUs’ performance
significantly. As a conclusion, co-locating the parallel and
the dependent sections of the code on the FPGA can yield
much higher performance, compared to utilizing GPU+CPU
combination with a much slower communication channel.

IV. RELATED WORK

To the best of our knowledge, we are the first to provide
a comprehensive study of common loop patterns on impor-
tant hardware accelerators, including both GPUs and FPGAs.
There are a number of related works that are complementary
to the focus of our study. Roofline modeling [37] was first
designed to provide insights into the performance of multicore
architectures, utilizing a parameter, operational intensity. It
helps understand the potential bottlenecks and improvement
opportunities for an application on different families of CPUs.
Other efforts [38], [39] extended this model to accelerators,
such as the GPU and TPU. The roofline model does not
provide insights into the loop-level acceleration opportunity
on different hardware accelerators. In comparison, Loopy
provides optimization details in loop-level granularity (not the
whole application) and does not rely on the real implementa-
tion of the algorithm.

Existing benchmarks adopted widely-used algorithms or
computational patterns to draw comparison lines between
different processors. Some of these works [40], [41] focused
only on a particular type of processor, whereas others [42]
were designed to compare different families of processors,
e.g., CPUs vs. GPUs. These benchmarks help understand the
performance differences between accelerators while executing
certain types of applications, but their insights are limited to
specific applications. It is difficult for a developer to use these
benchmarks to decide which accelerator has more potential to
accelerate a new type of application. In comparison, Loopy
offers insights into accelerating common loop patterns, which
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are not limited to a particular application and can be applied
to any new algorithm.

Closely related to our approach, the TSVC benchmark [43]
includes a suite of various types of loops, which has inspired
some of the loop patterns considered by our Loopy. TSVC
was mainly designed to evaluate the efficiency of compilers on
detecting and vectorizing such loops on SIMD architectures.
In comparison, the goal of Loopy is to evaluate the correlation
between common loop patterns and the extent of accelerating
such loops on different hardware platforms. In addition, it
provides an in-depth analysis of how loop characteristics
impact the accelerator performance, all of which are not
possible by simply applying or porting TSVC.

There are efforts in predicting the performance of a com-
plete application on a target platform [44], [45]. These so-
lutions require access to the real implementation of the ap-
plication, and the prediction is specific to the application. In
comparison, Loopy is able to give insights into the acceleration
opportunities at the abstraction level of loop patterns.

Finally, polyhedral compilation is a body of works aiming
for transforming loops in the application to achieve a higher
performance [14]-[21]. It represents loops in algebraic form
as polyhedra, and further applies algebraic transformation.
Each transformation optimizes a certain aspect of the code,
such as parallelization. In comparison, Loopy aims to provide
insights into the capability of different accelerators for loop
acceleration, before any transformation.

V. CONCLUSIONS AND FUTURE WORKS

In this work, we designed Loopy for studying common
loop patterns on important GPU and FPGA accelerators. We
identified and analyzed five common loop patterns, along with
the key configuration parameters in these patterns. We then
studied the acceleration opportunities for these loop patterns
and how the loop configurations and accelerator platforms af-
fect the effectiveness of acceleration. Using Loopy, developers
can gain a good understanding of the acceleration potential
of their algorithms on different platforms, without having to
implement them for any specific platform, based on the loop
patterns that these algorithms embody. LoopBench is open
source and publicly available'.

Understanding the performance of applications consisting of
multiple algorithmic patterns and optimizing the partitioning
and placement of an application across heterogeneous proces-
sors/accelerators are the ultimate objectives of our research.
Loopy provides an important first step towards the optimized
use of accelerators for diverse applications in heterogeneous
computing systems.
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