SecureFL: Privacy Preserving Federated Learning with SGX and

TrustZone
Eugene Kuznetsov* Yitao Chen" Ming Zhao
Arizona State University Arizona State University Arizona State University
ekuznets@asu.edu ychen404@asu.edu mingzhao@asu.edu

ABSTRACT

Federated learning allows a large group of edge workers to collab-
oratively train a shared model without revealing their local data.
It has become a powerful tool for deep learning in heterogeneous
environments. User privacy is preserved by keeping the training
data local to each device. However, federated learning still requires
workers to share their weights, which can leak private information
during collaboration. This paper introduces SecureFL, a practical
framework that provides end-to-end security of federated learning.
SecureFL integrates widely available Trusted Execution Environ-
ments (TEE) to protect against privacy leaks. SecureFL also uses
carefully designed partitioning and aggregation techniques to en-
sure TEE efficiency on both the cloud and edge workers. SecureFL
is both practical and efficient in securing the end-to-end process of
federated learning, providing reasonable overhead given the pri-
vacy benefits. The paper provides thorough security analysis and
performance evaluation of SecureFL, which show that the overhead
is reasonable considering the substantial privacy benefits that it
provides.

CCS CONCEPTS

« Security and privacy — Distributed systems security; Software
security engineering; - Computing methodologies — Supervised
learning by classification; - Computer systems organization —
Neural networks.

KEYWORDS

Federated Learning, Privacy, Edge Computing, Trusted Execution
Environment

ACM Reference Format:

Eugene Kuznetsov, Yitao Chen, and Ming Zhao. 2021. SecureFL: Privacy Pre-
serving Federated Learning with SGX and TrustZone. In The Sixth ACM/IEEE
Symposium on Edge Computing (SEC "21), December 14-17, 2021, San Jose, CA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3453142.
3491287

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEC 21, December 14—17, 2021, San Jose, CA, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8390-5/21/12...$15.00
https://doi.org/10.1145/3453142.3491287

1 INTRODUCTION

Federated learning allows a large number of edge workers to collab-
oratively train a shared model while keeping their private data local.
Each device trains a local model with data that is kept local to the
device. Periodically, the local models of the edge workers are sent
to a server in the cloud. This server performs aggregation against
all the local models and sends one shared model back to each edge
worker. Examples include GBoard mobile keyboard which takes
advantage of federated learning to train language models for tasks
such as next-word prediction without exporting sensitive user data
to servers [8, 15, 37, 45]; Android Messages can also provide person-
alized suggestions with the help of federated learning [13]. With the
rapid technology advancement of smart edge devices (smartphones,
wearables, and Internet of Things), more and more applications
benefit from federated learning.

Even with keeping all of the training data locally, user privacy
is still at risk [1, 4, 12, 28, 29, 49]. Recent works have demonstrated
that federated learning may not always provide sufficient privacy
guarantees, as communicating model updates throughout the train-
ing process can reveal sensitive information [4, 12, 29] and even
incur deep leakage [49]. In order to further protect user privacy,
federated learning systems use techniques such as secure multi-
party computation (MPC) [24] to make sure that the server only
has access to the aggregated version of the user’s model updates.
Secure MPC uses cryptographic primitives to ensure that individual
user’s data cannot be discovered. However, this approach does not
consider the case where the shared model is hosted on an Honest-
But-Curious (HBC) third-party hardware provider that has full
access to the shared model. An HBC party is someone who is a
legitimate participant that does not tamper with data but attempts
to learn information from viewing the data [36].

Our approach, SecureFL, protects both the edge workers and the
aggregator against common attacks such as membership inference
attacks (MIA) [40] and information disclosure attacks [14, 41, 47,
48] using Trusted Execution Environments (TEEs). The design of
our solution consists of two major components. In the cloud, our
design provides secured aggregation and protects the shared model
from an HBC resource provider using Intel SGX. On the edge, our
method uses ARM TrustZone to provide secure model training and
inference to protect the shared model from an HBC data provider or
model user. On both cloud and edge, SecureFL carefully addresses
the resource constraints of the available TEEs using techniques
including model partitioning and partial aggregation. By combining
SGX in the cloud server and TrustZone on the edge, we develop a
new federated learning system that provides end-to-end protection
of user privacy.

We prototype SecureFL on real TEE hardware/software stack,
including SGX for the cloud aggregator and OP-TEE and Darknet

https://doi.org/10.1145/3453142.3491287
https://doi.org/10.1145/3453142.3491287
https://doi.org/10.1145/3453142.3491287

SEC ’21, December 14-17, 2021, San Jose, CA, USA

for the edge workers. We provide a comprehensive evaluation of
SecureFL with a Raspberry Pi cluster that consists of ten Raspberry
Pi 3B+ to understand the performance and overhead of SecureFL
on commonly used IoT platforms. We also use 100 emulators on a
15-node cluster to evaluate the scalability of SecureFL. The most
significant result of our study is the reasonable overhead to the
federated learning process given the strong security benefits pro-
vided by SecureFL. To measure the overhead, we compare the total
runtime of the SecureFL implementation and compare it to the
baseline, no security implementation. The overhead for a single
model is as small as 0.58%. When scaling up the system, our results
show that the overhead is 14% with ten Raspberry Pi devices. In a
more aggressive scalability test of 100 workers, our implementation
has an overhead of 23.6%.

The contributions of this study are as follows: 1) design and
implementation of a federated learning system for better user pri-
vacy using widely available SGX and TrustZone TEEs based on
a commonly used deep learning framework, Darknet [38]; and 2)
an in-depth examination of our federated learning system with
a thorough security analysis and a comprehensive performance
evaluation.

Federated learning raises unique privacy challenges due to the
need of protecting each user’s sensitive data while learning from
many users. It also brings unique opportunities as models can be
partitioned between secured and unsecured worlds to address the
resource constraints. The approach taken by SecureFL can be gen-
eralized to other distributed learning systems and, more generally,
distributed computing problems that share these characteristics.

The paper is organized as follows: Section 2 introduces the back-
ground and related works; Section 3 describes the threat model
of the system; Section 4 discusses our system design; Section 5
provides a security analysis of our work; Section 6 presents the
experimental results; and Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORKS
2.1 Deep Learning and Neural Networks

Deep learning is the key to various mobile computing tasks, such as
voice recognition, natural language processing, image classification,
and object detection. DNNs have achieved remarkable accuracy
in the above applications compared to other machine learning
techniques. Image classification is one of the major applications of
deep learning algorithms, which is computationally intensive and
involves a large volume of data. Such tasks obtain images as input
and use neural networks to label each image with a class that the
image belongs to.

A neural network consists of multiple connected layers. A layer is
an abstraction to help with the modular design of a network, where
each layer performs a specific mathematical operation. Examples
of common layers include fully-connected layers, which connect
to all neurons from the previous layer and output a weighted sum,
and convolutional layers, which use kernels with various sizes to
extract the features from the overlapped area of the input.

Deep learning tasks include training a model and using the model
to perform inference. Training follows the backward path of a
network and updates the weights of each layer iteratively towards
a target. Inference follows the forward path and uses the trained

Eugene Kuznetsov, Yitao Chen, and Ming Zhao

weights of each layer to make a prediction based on the input. In
the context of image classification, training updates the weights
of a model to reduce the difference between the prediction and
the ground truth label, whereas inference uses images as input to
predict the image class.

2.2 Federated learning

Federated learning is a learning paradigm that allows many edge
workers to collaboratively train a shared model using their local
data [27]. In particular, the learning task is solved by a large number
of edge workers that participate in the learning. Workers tend to
be distributed and trained on local data to preserve user privacy.
After performing local training for a pre-defined number of itera-
tions, each worker begins to contribute to the shared model. Each
worker contributes to the training of the shared model by send-
ing their local model updates to the aggregator. These updates are
the weights of the model that each device has trained locally. The
aggregator server receives the weights from all the workers and
performs averaging on the received weights. The aggregator uses
the federated averaging algorithm [27], which performs averaging
of all the weights from the edge workers. This aggregation creates
the shared model, combining the weights from all the workers. The
weights are the information that each worker learns from its local
dataset. The aggregator server then sends the shared model back to
each of the edge workers. After receiving the aggregated weights
from the aggregator, each worker then updates their local model
with this shared model.

2.3 Privacy Risk of Federated Learning

Although federated learning protects privacy by not sharing the
users’ data, the model trained with the users’ data is still shared.
Recent works have shown that information disclosure attacks and
membership inference attacks can be launched on a trained model to
reveal sensitive information about the training data. These attacks
are not unique to federated learning, but the distributed nature
of a federated learning system makes it especially challenging to
protect data privacy as it involves multiple actors and distributed
attack surfaces in different cloud and edge environments.

2.3.1 Information Disclosure Attack. Information disclosure re-
veals sensitive information within an application. Sensitive infor-
mation can be either data served as input to an application, interme-
diate data representations during the application execution process,
or the final result of a process. Information disclosure attacks can
happen if a vulnerability is exploited within an application or if data
is incorrectly handled within an application. Information disclosure
has been shown to be of concern with DNNs that run on confiden-
tial inputs [14]. Shallow layers of the DNN model correspond to
low-level photographic information [41, 47, 48]. These layers are
considered intermediate representations during the learning pro-
cess, but reveal explicit information. An adversary that has access
to these intermediate representations can view the input data with
small loss of information.

2.3.2 Membership Inference Attack. In a membership inference
attack, the attacker is trying to learn if particular data belongs to

SecureFL: Privacy Preserving Federated Learning with SGX and TrustZone

the training dataset. There are two types of membership inference
attack (MIA): black-box attack and white-box attack.

In a black-box MIA attack, the attacker can only access the model
output. He can then use the model output to train a shadow model to
identify if certain data is included in the training dataset [40]. There
are three methods to generate training data for shadow models. The
first method uses black-box access to the target model to synthesize
this data. The second method uses the statistics about the population
from which the target’s training dataset was drawn. The third
method extracts the training data from a noisy version, assuming
the adversary has access. A typical example of a black-box MIA is to
attack machine learning as service models provided by commercial
providers.

In a white-box MIA attack, the attacker develops an attack model
that uses internal knowledge of the target model (gradients and
activation of layers) in addition to the target model’s outputs to
perform an attack. This is more effective compared to the same
attack in a black-box setting. The attacker first applies a feature
extraction component to each layer output of the target model. The
output of all these feature extraction components is then combined
using the encoder component, which is a fully-connected model
with multiple hidden layers. The combined output is a score that
predicts the membership probability of the input data.

2.4 Security Mechanisms

SGX. SGX is a hardware-based security mechanism to protect
applications running on a remote server. The security feature is
widely available on cloud servers and is a practical choice for our
purpose. SGX provides a TEE to ring 3 (Intel user-space) applica-
tions running on Intel SGX processors [10]. The TEE that contains
the application is known as an enclave. Enclaves, including meta-
data, are kept in physical memory known as the Enclave Page Cache
(EPC). This EPC is a designated region of memory that is protected
and encrypted using the Memory Encryption Engine (MEE) located
inside the CPU [25]. The size of the EPC is currently limited to a
maximum of 128 MB, which includes both enclaves and metadata.
Whenever the application size exceeds this limit, a CPU-expensive
SGX paging mechanism is triggered. An enclave communicates
with the outside world through SGX specific function arguments
and return values.

SGX TEE protects user-space applications from an untrusted
operating system or an adversary that has full physical access to
the machine. The encryption engine, located in the Intel proces-
sor, uses encryption to protect all SGX application data that leaves
the CPU package. This prevents an adversary from executing bus
snooping attacks or reading the contents of the EPC in main mem-
ory. Furthermore, SGX provides assurance to a remote user that the
SGX application is running on the correct hardware, preventing an
adversary from changing the underlying hardware [3]. SGX only
assumes a trusted CPU package; all other system components and
privileged software are considered untrusted.

SGX comes with inherent constraints that limit certain opera-
tions for secured SGX processes. The first mentioned constraint is
the memory size. Another limitation of SGX is the restriction of
privileged instructions. If the SGX application wants to run a system
call, this requires a series of security checks within the hardware.

SEC ’21, December 14-17, 2021, San Jose, CA, USA

The hardware security enforcement ensures that no information
from the SGX enclave is leaked to the privileged OS or to any other
process in the system.

Previous works have used SGX to perform inference and data
processing, considering certain limitations in SGX. Gu et al. [14]
proposed to partition deep neural networks (DNNs) and use SGX
to secure the layers of a model in the EPC for model serving. The
layers of a model contain intermediate representations. This work
proposed the idea of securing intermediate representations to de-
fend against input information disclosure. Yoo et al. [46] proposed
to improve the performance of SGX by offloading computations to
GPUs. The proposed approach places the first few layers of a deep
neural network model into the EPC, while the remaining layers
are exported outside the EPC for GPU processing. The previous
works consider only model inference and do not consider a fed-
erated environment with distributed workers. Federated learning
comes with additional constraints not considered in the previous
works, such as system call overhead and memory constraints for the
scalability of a federated system. However, the techniques applied
in the previous works are orthogonal to our approach and may be
considered for additional improvement.

TrustZone. ARM also provides a hardware security architecture
to defend against a number of threats. ARM TrustZone is a widely
available security feature that is specific to edge workers. Thus, it
is chosen to protect the edge devices in this work. SGX provides
a fixed hardware architecture from Intel, providing fixed memory
partitions for main memory and limited to ring-3 instructions only.
In contrast to SGX, ARM TrustZone allows a System on Chip (SoC)
designer to make security specific decisions. These decisions apply
to a range of components, such as memories, interrupts, periph-
eral interfaces, bus systems, and software [16]. All resources, both
hardware and software, are partitioned to be in one of two worlds—
secure world or normal world. The normal world is considered part
of the untrusted operating system known as the Rich Execution
Environment (REE). The secure world contains all trusted opera-
tions in a hardware-isolated TEE. All components that are security
critical are placed in the secure world and are considered part of
the TEE.

ARM TrustZone hardware guarantees that all resources allocated
to the TEE are not accessible by any component in the normal
world. This gives the freedom for a designer to make architecture
specific decisions that will appropriately accommodate software
requirements. For example, a designer can allocate an appropriate
amount of main memory in the TrustZone TEE required for efficient
training and inference of various models. In TrustZone, the designer
is free to partition the main memory between secure world and
normal world, as desired. Typical hardware designs allocate 3-5 MB
of main memory to secure world [2]. A designated hardware bit
(NS bit) is used to ensure that the the normal world cannot access
the memory regions belonging to the secure world.

TrustZone can be leveraged to protect a variety of software,
ranging from simple applications and libraries to complete operat-
ing systems [16]. Open Portable Trusted Execution Environment
(OP-TEE) [33] is a TEE primarily designed for TrustZone hard-
ware. It provides a secure operating system, known as its secure
privileged layer. This secure operating system runs alongside a

SEC ’21, December 14-17, 2021, San Jose, CA, USA

Local Models

i

Aggregation
Server
e
Data
Providers

]
Global Mode! ™

Eugene Kuznetsov, Yitao Chen, and Ming Zhao

Cloud
Provider

Deploy-ready
Model

Training

Deployment

Figure 1: Actors in federated learning. Federated learning architecture consists of cloud resources and edge devices, and in-
volves several actors in these environments. The data providers contribute private data by each training a local model using
the local data on the local device. The cloud provider provides cloud resources for aggregating the models trained on the edge.
The aggregation server performs the aggregation using algorithms such as FedAvg to produce a global model. The final model
can be then deployed onto many edge devices and the model users use the deployed models to perform inference on the edge

non-secure Linux kernel running in the normal world [33]. OP-TEE
also provides a set of libraries for user-space applications to run
as trusted applications in the TEE. An API is provided to allow
applications running in the normal world to communicate with the
trusted applications using shared memory.

Previous works considered using TrustZone to protect DNN
model training and inference. Mo et al. [30] used TrustZone to
secure DNN models for both training and inference on the Dark-
net [38] framework. Due to the limited TEE size of TrustZone,
model partitioning is used to protect only the last few layers. The
layers that are closest to the raw data are considered the first few
layers. The layers furthest away are considered the last few layers.
Nasr et al. [31] showed that placing the last few layers of a DNN
model significantly lowers the success of an MIA attack. Our pro-
posed work uses this same observation and employs TrustZone
protections to secure the DNN model against MIA attacks on the
edge workers. Our work provides further contributions and insights
to expand this attack model into a distributed federated learning
environment.

3 THREAT MODEL
3.1 Federated Learning Architecture

As illustrated in Fig. 1, the federated learning architecture consists
of cloud resources and edge devices, and involves several actors
in these environments. The goal of federated learning is to train a
model using the data collected on the edge devices while preserving
the privacy of the data.

On the edge, the data providers contribute private data by each
training a local model using the local data on the local device. After
local training is performed for a pre-defined number of iterations
on an edge device, the local model is uploaded to the aggregation
server in the cloud.

In the cloud, the cloud provider provides cloud resources for
aggregating the models trained on the edge. After receiving all
of the local models from the edge devices, the aggregation server
performs the aggregation using algorithms such as FedAvg, FedDF,
FedBE, or FedMA [7, 23, 26, 43] and produces a global model. This

global model is then sent back to each device which uses it to
continue the next round of local training,.

The above process is repeated across edge and cloud for many
rounds until the global model converges. The final model can be
then deployed onto many edge devices where the model users use
the deployed models to perform inference on the edge. Note that a
model user may or may not be a data provider in the training phase.
Therefore, we discuss it as a separate actor.

3.2 Adversaries

The overarching goal of SecureFL is to protect the privacy of data
while performing federated learning on the data efficiently. Even
though a data provider does not share the data with other actors
in the federated learning system, the model trained with the data
is shared. The model contains sensitive information from all data
providers in the federated learning system, as all data providers
contribute their training to this model. As explained in Section 2.3.2,
adversaries can launch information disclosure and MIA attacks
on the shared model and learn sensitive information. Therefore,
SecureFL needs to preserve the privacy of the shared model in
federated learning.

3.2.1 Cloud Adversary. In the cloud, SecureFL protects the privacy
of the shared model when it is being aggregated on cloud resources
and when transferred from the cloud to the devices.

We assume an adversary on the cloud that is honestly running
the SecureFL software, but is attempting to gain information re-
garding the private local data (provided by data providers) of each
edge device. The adversary can be the cloud provider in the afore-
mentioned system architecture (Fig. 1).

We consider that the adversary has access to the system and hard-
ware located on the cloud. They can access and control the entire
system software stack, including all privileged software and user-
space code, operating system, and any other system management
software on the cloud. An adversary with control of such system
components can gain unprivileged access to all the uploaded local
models and the aggregated global model. The adversary may be
able to perform an information disclosure attack on the first few

SecureFL: Privacy Preserving Federated Learning with SGX and TrustZone

SEC ’21, December 14-17, 2021, San Jose, CA, USA

Untrusted Trusted —Data -~ Control

IEncrypted Models]-——-I Aggregated Model l

Cloud
| SGX-enabled Aggregation Server I Server]- ----- —I Aggregator l
| Regular
_______________________________ computing
environment Enclave

" Secured Model
|_ _____________________________ ' Model Coordinator Coordinator
| Edge TrustZone- || TrustZone- || TrustZone- TrustZone- Model Trainer ke----s] ~ Secured Model
| enabled enabled enabled eeccee enabled Trainer
| Worker Worker Worker Worker Unsecured layers Secured layers

Normal Secure
world Input Data world

Figure 2: System diagram of SecureFL. The edge worker is protected by TrustZone and the cloud aggregator is protected by
SGX. The untrusted environment is in orange and the trusted environment is in blue. The solid lines in the figure denote the

data flow and the dotted lines denote the control flow.

layers of the models to reveal sensitive model inputs, as described in
Section 2.3.1. The adversary can also attempt an MIA attack on the
last few layers of the models to reveal information of the training
data, as described in section 2.3.2.

3.2.2 Edge Adversary. On the edge, SecureFL protects the privacy
of the shared model when it is being trained on the devices and
when transferred from the devices to the cloud. It also protects the
privacy of the model when deployed on the model users’ devices.

We assume that the adversary on the edge is honestly running the
SecureFL software, but is attempting to gain sensitive information
regarding the data for training the shared model. The adversary
can be a data provider or a model user. A data provider has access
to its local training data, so there is no need to protect the local
data from the owner of the data; the data provider may try to
learn sensitive information from the data contributed by other
data providers. A model user uses the deployed model to perform
inference on local inputs, so there is no need to protect the local
inputs from the owner of the inputs; but the model user may try to
learn sensitive information from the training data contributed by
the data providers.

We consider a local adversary that has full access to the nor-
mal world of the edge device. The adversary can access the entire
software stack, including the normal world operating system and
applications on the local device. The adversary has access to only
the shared global model which is aggregated from all the data
providers’ local models. The aggregation process makes it difficult
for an information disclosure attack to learn sensitive information
about the local models’ inputs from the aggregated shallow layers
of the global model. But the adversary can still perform an MIA
attack on the last few layers of the global model, revealing sensitive
information of the training data on other edge devices.

4 SYSTEM DESIGN

4.1 Design Overview

We now introduce our framework for secure federated learning,
SecureFL. The objective of SecureFL is to protect the privacy of

data contributed by the data providers. Here we describe the se-
curity framework for each environment considering its respective
adversary. Fig. 2 shows the complete workflow between the edge
and cloud. The solid lines indicate the data flow of the trained
model and the dotted lines represent control signals, indicating
the interactions of various components. We will describe the main
components in detail in the following subsections.

4.2 Attestation

SecureFL protects the privacy of data contributed by the data
providers. Before a data provider contributes any data towards
the federated learning process, attestation needs to be performed
against the cloud provider and each data provider on the edge. Each
data provider first performs attestation against the cloud server to
verify the cloud TEE hardware and software. Once the cloud server
is attested, the cloud server TEE software then performs attestation
against each edge device to verify the device TEE hardware and
software. This method allows each data provider to perform transi-
tive attestation of all other data providers without having to attest
each party directly. Each data provider needs only to perform attes-
tation against the TEE environment of the cloud server which then
continues attestation of all other data providers in the federated
learning environment. Specifically, attestation of each cloud host
or edge device verifies 1) the hardware of the host or device that
implements the TEE, and 2) the SecureFL software that is initialized
within the TEE.

4.2.1 SGX Attestation. To perform attestation against the cloud
server TEE hardware, the TEE is required to contact a trusted
provider (Intel) [3]. Each SGX CPU contains an embedded provi-
sioning secret used for the secure assertion. This secret is burned
into the hardware as part of the manufacturing process [10]. The
trusted provider uses this embedded provisioning secret to establish
a secure assertion that identifies the TEE hardware being used [3].

Verification of the initialized software in TEE begins with the
enclave launch [3]. The SecureFL code is loaded into this enclave
using special hardware instructions. During this process, a secure
hardware log keeps track of how the enclave is built, also known

SEC ’21, December 14-17, 2021, San Jose, CA, USA

as the measurement. This measurement uses a cryptographic hash
to prove the contents [10]. The measurement is compared against
the expected cryptographic hash of the built enclave. If the hashes
match, this proves to the data provider that the correct software
has been built in the TEE.

4.2.2 TrustZone. Once attestation has been performed against the
cloud server TEE, each data provider needs to perform attestation
against all other data providers to verify TEE hardware and soft-
ware. Having data providers attest each other directly would incur
significant overhead with the increase in the number of devices
participating in the federated learning process. The attestation of
each edge device is instead performed by the TEE of cloud server.
This provides transitive attestation of each data provider, allowing
data providers to attest each other indirectly. Each data provider
performs attestation of the cloud server TEE which then continues
to attest all devices.

The verification of the edge device TEE hardware requires the
hardware to be attested with the trusted manufacturer’s attestation
server, such as in Samsung Knox [39]. A trusted provider embeds
unique keys within each device, allowing for a trusted boot pro-
cess to derive device specific keys and the trusted manufacturer’s
endorsement of the hardware. These are used to verify the correct
TEE hardware and are considered to be part of the root of trust.

Once the TEE hardware has been attested with the manufac-
turer, the software environment of the TEE can be verified. The
immutable hardware root of trust allows the processor to boot from
trusted code and provide measurements of the state of the environ-
ment and loaded software, including SecureFL. The cloud server
can utilize these measurements to perform attestation with edge
devices, contacting both the edge device and trusted manufacturer’s
attestation server to verify the TEE software of each edge device.

4.3 Edge Components

4.3.1 Model Trainers. The federated learning process starts with
the distributed set of workers on the edge, bringing us to the first
challenge: how can local training be protected on each edge worker?
As discussed in Section 2.3.2, we need to protect against MIA attacks,
but the limited size of the protected memory in TrustZone also
imposes a constraint on the number of layers that TrustZone can
protect. The TEE size is typically limited to 3-5 MB [2]. Fortunately,
protecting only the last few layers can significantly reduce the
success rate of such attacks. For example, related studies [30] have
shown that placing only the last layer of a model into TrustZone
can degrade adversary’s success rate to random guess. Therefore, to
protect local training, SecureFL splits the DNN model between the
two worlds on the edge worker: the secure world and the normal
world. The first set of layers are placed in normal world. The last
few layers of the DNN model are placed in the secure world of
TrustZone.

Once the DNN model layers are successfully partitioned between
the two worlds, we encounter our next challenge: how can training
be performed on a single model in two separate worlds? Because the
normal world cannot access the resources of the secure world, we
require separate training in the two worlds. To accomplish this, a
separate secure Model Trainer is placed in the secure world. These
two trainers communicate through an OPTEE TEE session which is

Eugene Kuznetsov, Yitao Chen, and Ming Zhao

a logical connection between the trusted and untrusted worlds [35].
Training starts with the normal world trainer. When the normal
world trainer encounters the partition point, it sends the output of
last layer before the partition point to the secure world trainer. The
secure world trainer then continues to finish training the secured
layers. Once the secure trainer finishes training the secure layers,
it sends back the model output to the normal world to continue
further training iterations.

4.3.2 Model Coordinator. In a federated learning environment, we
need to upload and update our local model periodically. How can the
upload and the update be secured on a local model that is partitioned
between two worlds? We design Model Coordinator to facilitate this.
The Model Coordinator has two roles: 1) copy the weights between
the secure world and the normal world; 2) communicate with the
server to send the local model and receive the aggregated model.
Once the Model Trainer finishes several training steps, the Model
Coordinator copies all the weights of the secured layers in the
secure world to the normal world because the network interface is
allocated to the normal world. The Model Coordinator uploads the
local model to the server for aggregation. The Model Coordinator
then waits for the server to send back the aggregated model. After
receiving the aggregated model, the Model Coordinator copies all
the secured weights from the aggregated model to the secure world
and updates both the secured layers and non-secured layers of the
local model and continue the training.

The secured layers must be protected when they are copied from
the secure world to the normal world, and the whole model needs
to be protected when it is sent from the client to the server. To
meet these requirements, the secure world and the normal world
have their own AES engines. Allowing separate AES engines solves
two problems: 1) the secure world AES engine can protect the
secure layers from MIA attacks when sending the weights to the
normal world, and 2) the normal world AES engine can encrypt all
remaining layers, allowing the entire model to be protected from
MIA attacks when being sent to the server. With this protection
in place, the Model Coordinators can send and receive weights to
update the local layers in their respective world.

4.4 Cloud Components

44.1 Server. The Server is the communication interface to all the
distributed workers. It sends and receives all of the data between the
Aggregator and the individual workers. A naive approach would be
to simply place this interface in SGX along with the Aggregator. As
discussed in Section 2.4, SGX imposes a limitation on applications.
Applications placed in the enclave cannot simply execute system
calls. Every system call triggers a series of security checks that
incurs overhead to the application [10]. Placing the communication
interface in SGX would incur a significant amount of overhead due
to the amount of communication required to transfer large models
between the server and each worker. To avoid such overhead, this
interface is placed outside of SGX. Placing the interface outside of
the SGX TEE does not introduce any security implications. The
role of the network interface is to simply transfer data between the
network and memory. In SecureFL, this data is encrypted and does
not leak any information to the unsecured network interface.

SecureFL: Privacy Preserving Federated Learning with SGX and TrustZone

4.4.2 Aggregator. The Aggregator is the component that aggre-
gates the local models uploaded by the edge workers and creates a
shared global model. This component must be carefully designed
to perform aggregation. SGX provides isolation between a regu-
lar computing environment and the SGX enclave. The enclave is
given a dedicated region of main memory, known as the EPC [25].
This region of memory can only be accessed by the enclave pro-
cess and is restricted access by any other parties, including other
user-space processes, privileged software and the OS. However, the
enclave program is allowed access to non-EPC memory regions.
The communication interface is placed outside of the enclave to
avoid the high overhead of system calls. This means that the in-
terface cannot access the EPC memory to store the local models
received from each edge worker. To solve this problem, SecureFL
allocates memory outside of the enclave, in the regular comput-
ing environment, to buffer the local models. The location of this
memory is shared with the enclave using the SGX function call
arguments. The Aggregator running in the enclave can then copy
the local models from the shared memory in the regular computing
environment to a secure memory region located inside the enclave
to perform secured aggregation. The models buffered in the shared
memory are considered secured from malicious parties as they are
received and stored in encrypted format. Once these models are
copied into Secure Memory within the enclave, they are protected
by SGX hardware from unauthorized access.

The next problem to consider is how to copy the local models from
the non-EPC memory region into the EPC. The Aggregator must
consider that the size of the EPC is limited to 128 MB [10]. It needs
to determine if the DNN models from all the edge workers can fit in-
side the Secure Memory in the enclave. As mentioned in Section 2.4,
an application that exceeds the size of the EPC triggers the SGX
paging mechanism. This paging mechanism is expensive and adds
additional overhead to the runtime of a program. Therefore, the
Aggregator first determines how much data to copy to avoid trig-
gering SGX paging. When the model size exceeds the EPC capacity,
the Aggregator cannot even load a single model into the encalve;
instead, it will copy only part of a model into EPC and perform
aggregation part by part to avoid the paging overhead. Once the
weights are copied into secure memory, the Aggregator will send
these weights to its AES engine to be decrypted, and then perform
aggregation on these layers. Once aggregation is completed, the
Aggregator frees the Secure Memory and begins copying the next
subset of the models from the non-EPC shared memory for the next
round of aggregation. After aggregating all the local models, the
Aggregator encrypts the final global model and copy it back to the
shared memory, allowing the communication interface to send this
updated global model back to the edge workers.

The last problem to consider is how to perform aggregation when
only a subset of the worker models are given to the Aggregator.
The Aggregator only performs a summation on the subset of the
DNN models copied into Secure Memory. This summation is per-
formed for each subset that is copied in and stores the intermediate
summation result. This intermediate summation result adds to the
summation result of the next subset of DNN models. Once there
are no more DNN models to be copied into Secure Memory, the
Aggregator divides the summation result by the number of workers
to obtain the average.

SEC ’21, December 14-17, 2021, San Jose, CA, USA

5 SECURITY ANALYSIS

In this section, we provide a security analysis of SecureFL. We
analyze the components on both the cloud and edge workers and
the key functions that need to be secured to protect the privacy of
training data in the context of federated learning.

5.1 Broadcast

The broadcast step consists of the edge workers (clients) download-
ing the shared model from the aggregator (server). A malicious
user on the cloud or the edge can gain unauthorized access to this
information and manipulate data. To protect the broadcast in Se-
cureFL, the shared model is protected on both ends, cloud and edge.
On the cloud, the shared model is first encrypted in a TEE. This
protects the model from being seen or manipulated by a malicious
user or administrator on the server. The encrypted shared model is
then downloaded by the worker. On the edge worker, the shared
model layers are decrypted. For sensitive layers, the decryption
is done inside a TEE on the edge worker. This protects the layers
from unauthorized access to the sensitive shared model layers. The
remaining layers are decrypted outside of the TEE on the edge
worker.

5.2 Client Computation

In federated learning, the training data is kept local on the edge
workers (clients). Each worker performs computation to update the
local model. This computation is typically a training program that
updates the local model. Both the local data and the training pro-
gram on the edge worker are susceptible to attacks by a malicious
user. The storage and computation on the edge worker require
careful planning to avoid exposing sensitive data to a malicious
user.

The attack surface considered in SecureFL is the MIA attack
discussed in Section 2.3.2. In this attack, an HBC adversary obtains
sensitive information regarding the model and its training data by
viewing the last few layers of the model and performing an MIA
attack against these layers. To mitigate such an attack, SecureFL
places the last layers of a model and the training program for these
layers in the TEE to restrict access. The TEE on the edge worker
provides full isolation from the user environment and protects the
execution of the training program and the model weights during
runtime.

Choosing where to partition a model between the secure world
and normal world presents a trade-off between privacy and perfor-
mance. Previous work [30] has shown that in some cases, such as
the AlexNet model with CIFAR-100 dataset, placing only the last
layer of the model can reduce the success rate of an MIA attack
from 85% to 50% (the equivalent of random guess) when measuring
standard precision and recall metrics [30, 31, 40]. Our results show
that placing more layers in the TEE incurs more runtime overhead.
Our results also confirm that the size of TrustZone memory imposes
a practical limit on the number layers that can fit in TrustZone.

5.3 Aggregation

The server collects the model updates from each worker and per-
forms aggregation. Aggregation combines all of the knowledge the
workers learn from its local data. The security considerations of the

SEC ’21, December 14-17, 2021, San Jose, CA, USA

aggregator are critical. It is the central location in which all worker
data is received. A malicious server administrator can view the
worker updates or manipulate the aggregation process that affects
all workers.

In SecureFL, the aggregation process is protected entirely in-
side a TEE. The worker updates are encrypted when received by
the server. The decryption, aggregation, and re-encryption of all
worker weights are done inside the TEE. A malicious or HBC cloud
administrator does not have access to any of the worker model data
or the aggregation process.

5.4 Model Update

The Model Update takes place after aggregation on the server has
completed. Each worker downloads the shared global model from
the aggregator. This global shared model is then used to replace the
local model of each worker. An unsecure model update would allow
a malicious party to view or alter the local model of the worker.
In SecureFL, the Model Update is secured inside of the TEE. After
the secured aggregation process is completed, the aggregated model
on the server is encrypted in the SGX TEE. This encrypted model is
then sent to each worker securely. The workers download this en-
crypted global model and partition the model between normal and
secure world. The secure world model layers are decrypted in the
TrustZone TEE and the unsecured layers are decrypted in normal
world. This process protects the worker’s model update process
and local model from being viewed or accessed by an unauthorized

party.

5.5 Deployment

Once a model has completed the federated learning process, it is
ready to be deployed to the model users’ edge devices. We consider
the model user to be an HBC adversary as described in Section 3.2.2.
The adversary attempts to perform an MIA attack against the de-
ployed model to gain sensitive information regarding the training
data. To protect against such MIA attacks, similarly, we place the
last few layers of the deployed model in the TEE of the edge device.
The security analysis done in Section 5.2 also applies here.

5.6 Other Attacks

There are a number of attacks that can be exploited against the
federated learning environment. SecureFL focuses on protecting
the privacy of federated learning and considers only a subset of
these attacks, such as the information disclosure and MIA attacks.
Mitigation for other various attacks may also be incorporated as
part of SecureFL. For example, side channel attacks [5, 6, 18] are
not considered in SecureFL. In a Sybil attack, an adversary can
control multiple malicious edge workers in order to influence the
shared model and have it leak private information of the honest
workers [11]. Mitigation strategies for such attacks are not con-
sidered as part of SecureFL, since we assume the edge users to be
honest-but-curious. However, solutions [17, 32, 42] to these attacks
are orthogonal to our work and can be implemented along with
SecureFL. We leave these mitigation strategies for future work.

Eugene Kuznetsov, Yitao Chen, and Ming Zhao

6 EVALUATION
6.1 Methodology

We designed our experiments to answer the following questions: 1)
How much runtime overhead is incurred by the security mechanisms?
2) What contributes the most to the runtime overhead? 3) What is the
workload on the workers? 4) What is the workload on the aggregation
server? 5) How scalable is our approach?

6.1.1 Models. We consider network architectures that are suitable
for edge workers, since commonly used DNNSs, such as ResNet-34,
are computationally expensive for TrustZone on the edge workers.
Specfically, we evaluate our framework with three commonly used
models, LeNet [21], VGG-7 and VGG-16. LeNet has five convolu-
tional layers and two fully connected layers. Each convolutional
layer is followed by a max pooling layer. The activation is a rec-
tified linear activation unit (ReLU). VGG-7 has five convolutional
layers and two fully connected layers. Each convolutional layer is
followed by a max pooling layer. The activation is a rectified linear
activation linear unit (ReLU). The last few layers of each model are
placed into TrustZone. To create a baseline, each model is tested
with no layers placed in TrustZone. We test each model with up to
5 layers placed into TrustZone.

6.1.2 Dataset. We choose commonly used datasets, MNIST [22],
CIFAR-10 [19], and Tiny ImageNet [20] for edge workers to eval-
uate our framework. The MNIST dataset consists of 60,000 28x28
grayscale training images and 10,000 validation images. CIFAR-10
consists of 60,000 32x32 RGB images, belonging to ten categories.
There are 50,000 training images and 10,000 validation images.

6.1.3 Test platforms. Table 1 lists the hardware specifications of
our test platforms. In order to evaluate the performance of our
framework and understand the overhead of securing federated
learning, we conducted various experiments on a real testbed. The
testbed consists of two components: aggregator and workers. The
aggregator is SGX-enabled and runs on an Ubuntu 18.04 LTS server
which has a 3.6 GHz quad-cord Intel i7-7700 and 16 GB main mem-
ory. The size of the EPC for SGX enclaves is 128 MB. The workers
run on Raspberry Pi 3B+, a widely used IoT platform. The OS is
OP-TEE, version 3.9. OP-TEE is a TEE for a non-secure Linux kernel
running on ARM processors, relying on ARM TrustZone technol-
ogy as the underlying hardware isolation mechanism. We built a
cluster using ten Raspberry Pi’s for our experiment. For larger scale
experiments with more workers, we used OP-TEE with Quick Em-
ulator (QEMU) version 7. Although the emulators cannot represent
the real performance of the workers, we can run many instances to
evaluate the scalability of the aggregator. We set up a total of 100
QEMU workers on four servers.

The workers are located on a 15-node cluster at site-A. The ag-
gregator server is located at site-B. A VPN is used to establish a
connection between the worker and server networks, with a ping
of 56 ms. The Raspberry Pi workers are co-located on a local net-
work and use a VPN to establish a connection with the aggregator
server. The Pi network and the server have a ping of 32 ms. The
specifications of each device are listed in Table 1.

SecureFL: Privacy Preserving Federated Learning with SGX and TrustZone

Table 1: Test Platform Specifications

Specifications
(ON] Op-tee OS
. CPU 1.4 GHz quad-core Cortex A53

Raspberry Pi 3B+ Memory | 1GB q

Network | SMSC 100-Megabit LAN9514-JZX

0s Op-tee OS

CPU Dual-core vCPU
QEMU Worker Memory | 8 GB

Network | Intel 10-Gigabit X540-AT2

(0N Ubuntu 16.04 LTS

CPU 2.4 GHz 32-core Intel E5-2630 v3
QEMU Server Memory | 64 GB

Network | Intel 10-Gigabit X540-AT2

(ON) Ubuntu 18.04 LTS
Aggregator Server CPU 3.6 GHz quad-core Intel i7-7700

Memory | 16 GB

Network | Intel 1-Gigabit 1219-LM

Note that although edge devices can typically run larger models
for inference, they are generally insufficient to train larger mod-
els [9]. We ran SecureFL with VGG-16 on Tiny ImageNet [20] and
found it too large to run due to memory constraint. VGG-16 has
sixteen convolutional layers and three fully connected layers. Each
convolutional layer is followed by a max pooling layer. The acti-
vation is a rectified linear activation linear unit (ReLU). The Tiny
ImageNet dataset is a subset of the ImageNet dataset used in the
ILSVRC 2012 competition [20]. It consists of 110,000 64x64 RGB im-
ages, belonging to 200 categories. There are 100,000 training images
and 10,000 validation images. To place the last layer in TrustZone,
we kept the depth of the model and reduced the width by reducing
the number of output channels of the convolutional layers. With a
batch size of 50, it takes 15 minutes to train 10 iterations. Therefore,
in the following evaluation, we focus on the two models, LeNet and
VGG-7, which are more suitable for training on edge devices.

6.2 Runtime Overhead

To answer the first question, How much runtime overhead is in-
curred by the security mechanisms?, we measured the runtime per-
formance of edge workers on training neural networks. Specifically,
we changed the number of layers in TrustZone to understand how
the runtime overhead changes. We first evaluated LeNet [21] on the
MNIST dataset and VGG-7 on the CIFAR-10 dataset. We measured
the runtime of one round of federated learning, including ten train-
ing iterations on the edge and one aggregation step on the server.
For comparison, we used a baseline of federated learning without
adding any security mechanisms (without using SGX on the server,
without encrypting the communication, and without TrustZone).
We provide a breakdown of these mechanisms in Figure 5. For both
models, we used a batch size of 50.

Fig. 3a illustrates the training time of LeNet with a varying
number of layers executed in TrustZone, ranging from 1 to 5. Our
baseline is the training time when no layers are executed in Trust-
Zone. Fig. 3b shows the overhead in percentages when varying

SEC ’21, December 14-17, 2021, San Jose, CA, USA

_— X 20
8 ~
& ?
)
g £
s g
o 10 (e}
£ >
£ =
g 3

0 1

2 3 4 5 1 2 3 4 5

(a) LeNet training,. (b) LeNet security overhead.
Figure 3: LeNet training time overhead with a varying num-
ber of layers executed in TrustZone, ranging from 1to 5. The
baseline is the training time when no layers are executed in
TrustZone.

Training time (sec)
Security overhead (%)

0

01 2 3 45 1 2 3 4 5

(a) VGG-7 training. (b) VGG-7 security overhead.
Figure 4: VGG-7 training time overhead when varying the
model partitioning point. The VGG-7 model takes about 7X
longer than LeNet due to its complexity.

the number of layers in TrustZone. The overhead increases from
1.6% (with only one layer in TrustZone) to 12.7% (with five layers
in TrustZone). The security overhead increases with the number
of layers in TrustZone. The majority of the overhead on the edge
worker comes from updating the trusted layers of the local model
with the received shared model. This includes copying to and from
TrustZone, along with encrypting and decrypting the secured model
layers. When only one layer is in TrustZone, the security overhead
is negligible. The overhead from each part of the secured federated
learning architecture is further investigated in the next section.
Fig. 4a shows the training time of VGG-7 when varying the
model partitioning point. The complexity of VGG-7 manifests in
the training time. The VGG-7 model takes, on average, 300 seconds
to complete the ten iterations, which is about 7X longer than LeNet.
We then observe that the larger training time of VGG-7 reduces the
percentage of the security overhead compared to that of LeNet in
Fig. 4b. The overhead is 0.58% when only one layer is in TrustZone
and 2.04% when five layers are in TrustZone. In comparison, the
overhead of putting five layers in TrustZone with LeNet is 12.7%.

6.3 Runtime breakdown

To further understand the security overhead, we broke down both
the LeNet and VGG-7 training time into three major components:
aggregation time (aggr), edge computing time (edge), and commu-
nication time (comm). This will answer our second question: What
contributes the most to the runtime overhead? The aggregation time

SEC ’21, December 14-17, 2021, San Jose, CA, USA

Time (sec)
Time (sec)

0
01 2 3 45 012 3 45

(a) LeNet. (b) VGG-7.

Figure 5: Runtime breakdown. We broke down both the
LeNet and VGG-7 training time into three major compo-
nents: aggregation time (aggr), edge computing time (edge),
and communication time (comm). The aggregation time
measures the time spent calculating the weight averages
from all the edge workers. The edge computing time mea-
sures the time overhead of training a model on the edge.
The communication time measures the time overhead of ex-
changing model weights between edge and cloud.

measures the time spent calculating the weight averages from all
the edge workers. The edge computing time measures the time
overhead of training a model on the edge.

Fig. 5a illustrates the runtime breakdown of unsecured workflow
(0 layers in TrustZone) and secured workflow (1 to 5 layers in
TrustZone) using LeNet model. The major components of the total
runtime overhead are edge computing time and communication
time. The edge computing time accounts for, on average, 54% of the
total runtime. The communication time is negligible as it is less than
0.4%. The aggregation time is almost invisible in the figure because
it accounts for less than 0.8% of the total run time. Although it is
insignificant in the total time overhead, the aggregation time of
secured workflow is about 50% slower than that of the unsecured
workflow. The biggest overhead for the secured aggregator is the
data transfer into the EPC using the shared memory.

Fig. 5b illustrates the runtime breakdown of unsecured workflow
and secured workflow using the VGG-7 model. Similar to the LeNet
breakdown, the main components of the total runtime in VGG-7 are
the edge computing time and the communication time. The edge
computing time accounts for, on average, 96.9% of the total runtime.
This percentage is higher than that of LeNet since VGG-7 is more
complex than LeNet. The edge computing time also contributes the
most to the runtime overhead. The overhead introduced by secured
computations is 0.75% for one layer layer placed in TrustZone and
up to 14% for 5 layers in TrustZone. The complexity of the VGG-7
model also shows in the number of weights in the model and incurs
greater communication time (0.42 seconds) than that of LeNet (0.34
seconds).

6.4 Resource Utilization

To answer the third question, What is the workload on the workers?,
we measure the CPU and memory utilization on the workers. We
calculate the CPU utilization for the edge worker by extracting the
relevant information from the /proc filesystem. Due to the security
isolation between normal world (REE) and secure world (TEE), the

Eugene Kuznetsov, Yitao Chen, and Ming Zhao

60

40

20

CPU utilization (%)
Mem utilization (MB)

0

0123435 0123 45

(a) LeNet CPU utilization. (b) LeNet memory utilization.

Figure 6: LeNet training resource utilization. We calculate
the CPU utilization for the edge worker by extracting the
relevant information from the /proc filesystem. Due to the
security isolation between normal world (REE) and secure
world (TEE), the utilization of the secure world is calculated
with a method proposed by previous work.

§100 Fg
S 5
g s0 g
E E
5
0123 45 0123 45

(a) VGG-7 CPU utilization. (b) VGG-7 memory utilization.

Figure 7: VGG-7 training resource utilization.

utilization of the secure world cannot be directly accessed by the
/proc filesystem. Therefore, we first determine the total time spent
for the training process, and then we determine the time elapsed
for the process. The CPU utilization is the percentage of time that
is spent on the process of interest. total_time = utime + stime, where
utime is the amount of time that this process has been scheduled
in user mode, measured in clock ticks, and stime is the amount of
time that this process has been scheduled in kernel mode, measured
in clock ticks. The time the CPU spends in secure world is part
of stime. Next, we get the total elapsed time in seconds since the
process started, using the following equation: seconds = uptime -
(starttime / HZ). Finally, we calculate the CPU usage in percentage
as follows: cpu_usage = 100 * ((total_time / HZ) / seconds)

Fig. 6a illustrates the CPU utilization of an edge worker when
training the LeNet model. When there is only one layer in Trust-
Zone, the CPU utilization is about 51%. When there are five layers
in TrustZone, the CPU utilization is 61%. The increase in the CPU
utilization is due to each layer being placed in trusted memory.
SecureFL encrypts the layer weights before passing the weights
from normal world to secure world. The more weights in the secure
world, the more encryption the CPU needs to perform, and hence
the higher utilization.

Fig. 6b shows the memory utilization of an edge worker during
training. We measured the memory utilization (resident set size
(RSS)) of the training process in the normal world by extracting data
from the /proc filesystem. The secure world memory utilization

SecureFL: Privacy Preserving Federated Learning with SGX and TrustZone

- 3
o £ 34| @ Unsecure
- g @ Secure
£ c 2
2 @ Unsecure| =)
£ Secure 2
© =
= 3 o
< 2 5 7 10
(a) Training time. (b) Aggregation time.

Figure 8: Security overhead with various number of Rasp-
berry Pi workers. Each Raspberry Pi worker keeps only the
last layer in the TrustZone. The training time of the secured
workflow only incurs marginal overhead with the increase
of the participating edge workers.

cannot be directly measured in the /proc filesystem. The normal
world OS is not allowed to access this information of the secure
world to prevent side-channel attacks [44]. To measure the memory
utilization of the secure world, we make use of the abort dump [34]
and reference the call stack, similar to the method proposed by
previous work [30]. In the call stack dump, we calculate the sizes
of the different memory regions. This estimates the amount of
memory utilized when training differing model sizes.

Fig. 7 shows the CPU and memory utilization of an edge worker
when training a VGG-7 model. The total memory utilization consists
of the memory used in REE and the memory used in TEE. When all
of the layers are calculated in the normal world, there is no memory
used for TEE. When a few layers are moved into TrustZone, the TEE
memory is around 2 MB. The TEE memory remains almost the same
with different numbers of layers in TrustZone. The TEE runtime
allocates a fixed mapping size for secure memory [30]. Placing more
layers in TrustZone has no effect on the secure memory size. The
CPU utilization slightly increases with each additional layer placed
into TrustZone. This is due to the data transfer between worlds
and the encryption/decryption in the secure world. We conclude
that the workload on the edge is consistent in memory usage and
increases in CPU utilization with additional secured layers.

6.5 Scalability

In this section, we answer the question How scalable is our approach?.
We evaluated SecureFL using both real devices and scaled QEMU
workers. Scaling the number of workers also allows us to gain
insights into the question: What is the workload on the aggregation
server?

6.5.1 Raspberry Pi Cluster. We investigate the runtime overhead
when scaling the number of Raspberry Pi workers. This gives a
good understanding of the performance overhead and scalability
using real worker devices.

Fig. 8a shows the total training time of all workers when different
numbers of edge workers participate in federated learning. Each
Raspberry Pi worker keeps only the last layer in the TrustZone.
The training time of the secured workflow only incurs marginal
overhead with the increase of the participating edge workers. When
there are two edge workers participating in federated learning, the

SEC ’21, December 14-17, 2021, San Jose, CA, USA

@ Unsecure
@ Secure

@ Unsecure
Secure

Training time (min)
Aggregation time (sec)

25 50 75 100 25 50 75 100

(a) Training time. (b) Aggregation time.
Figure 9: Security overhead with various number of QEMU
workers. With 25 workers in the federated learning system,
the training time of the secured workflow is 152 seconds.
When there are 50 participating workers, the training time
slightly increases to 165 seconds. With a 2X increase in the
number of the worker, the increase in the training time is
only 8%.

@ Unsecure
@ Secure

@ Unsecure
@ Secure

Mem utilization (MB)

CPU utilization (%)

25 50 75 100 25 50 75 100

(a) CPU utilization. (b) Memory utilization.
Figure 10: Resource utilization of the aggregator server
when handling different numbers of workers. We observed
that both the CPU and the memory are not fully utilized.
When there are 100 workers, the CPU utilization is around
70% and the memory utilization is about 12 MB.

training time is 37.82 seconds. The training time only increases by
6% and 14% when there are five edge workers and ten edge workers,
respectively. Comparing the secure and unsecured workflow for
ten edge workers, the time overhead introduced by the security
mechanism is 5.02 seconds, which is about 13% of the unsecured
training time. The overhead comes from data transfer between the
non-EPC and EPC memory regions, and the encryption. Note that
the results in Fig. 3b involve only one worker; the security overhead
above consists of multiple workers.

The aggregator is centralized in our system. We investigated the
aggregation runtime and the potential bottleneck. Fig. 8b illustrates
the aggregation time with a varying number of edge workers. Since
all of the workers share a single SGX-enabled aggregator server, a
larger number of edge workers can introduce additional overhead
to the server compared to only running with one worker. The ag-
gregation time measures how long it takes to perform averaging
among all of the model weights received from all of the workers.
Since each worker sends all the model weights to the aggregation
server, the size of the weights is proportional to the number of par-
ticipating workers. When there are two participating edge workers,
the secured aggregation time is 0.65 seconds, on average. This is

SEC ’21, December 14-17, 2021, San Jose, CA, USA

around 0.35 seconds slower than the unsecured workflow. If we
increase the number of workers to 5, the secured aggregation time
increases from 0.65 seconds to 1.58 seconds and the unsecured
aggregation time is 0.71 seconds. If we further increase the num-
ber of workers to 10, the secured aggregation time increases to
3.16 seconds and the unsecured aggregation time is 1.425 seconds.
Increasing from two workers to ten workers, the increase in the
secured aggregation time is only 2.52 seconds. With a total training
time of 43.35 seconds using 10 workers, the overhead from using
the security mechanisms accounts for only 5.8%. When there are
more workers, SecureFL needs to copy more data into the enclave
and perform more decryption and encryption inside the enclave.

6.5.2 QEMU Workers. In order to better evaluate the scalability of
our secure federated learning system, we need a test environment
with more than ten workers. Using QEMU, we can increase the
number of participating workers in the following experiment to
a total of 100. Fig. 9 shows the training time with different num-
bers of QEMU workers. With 25 workers in the federated learning
system, the training time of the secured workflow is 152 seconds.
When there are 50 participating workers, the training time slightly
increases to 165 seconds. With a 2X increase in the number of the
worker, the increase in the training time is only 8%. We further in-
crease the number of workers to 75 and 100. Training time of these
two cases increases by 12% and 23.6%, respectively, compared to
the result of 25 workers. With 4X more workers in the training, the
training time overhead increases by 23.6%. This result further illus-
trates that our federated learning system has reasonable scalability
overhead given the security benefits.

We then measure the aggregation time to understand the aggre-
gation overhead when scaling. The secured aggregation time of 25
workers is 8.15 seconds, and that of 100 workers is 36.97 seconds.
The aggregation time increases by 4.5X from 25 workers to 100
workers. The aggregation time measures the execution of the entire
SGX function. This includes non-SGX to SGX CPU mode switches,
copying all data to and from EPC, and performing computations in
SGX. The amount of work is linearly proportional to the number
of workers participating in the training.

The aggregation time of the unsecured workflow is lower than
that of the secured workflow, but the scaling overhead is similar.
The aggregation time of 25 workers is 3.74 seconds, which is only
around 46% of the secured aggregation time with the same number
of workers. When there are 100 workers, the unsecured aggrega-
tion time increases by 5.5X. Both the unsecured and the secured
aggregation time increase linearly with the increase in the number
of workers.

Since the aggregation server can become a single point bot-
tleneck of our system, we investigate the resource utilization to
determine if the aggregation server is overwhelmed by the number
of workers. We focus on CPU and memory utilization.

Fig. 10a shows the CPU utilization of the aggregator when han-
dling different numbers of workers. When there are 25 workers, the
CPU utilization for both unsecured and secured workflow is rela-
tively low, only around 20%. When the number of workers increases
to 50, the CPU utilization increases to around 34%. We observe a
similar pattern with even more workers. The aggregator CPU is
much more engaging when handling the aggregation workload of

Eugene Kuznetsov, Yitao Chen, and Ming Zhao

100 workers. The utilization increased to around 70%. In particu-
lar, the utilization of unsecured workflow is 60% and the secured
workflow is 82%. However, the CPU is still not fully utilized even
handling such a large amount of workers. For a quad-core CPU, the
utilization number is 400% when fully utilized. The CPU is only 82%
utilized because the calculation of weight averages is quite efficient
on modern CPUs.

Fig. 10b shows the memory utilization of the aggregator when
handling different numbers of workers. We obtain the RSS for the
process to monitor the memory utilization of the aggregator while
performing the tests. The memory utilization of the aggregator is
quite low, even when there are 100 workers. The total of all models
only reaches approximately 12 MB, showing that the memory of
the aggregation server is far from overloaded. We conclude that
the workload on the aggregator server is low, even in the case of
100 workers.

7 CONCLUSIONS

This paper presents SecureFL, a secure federated learning frame-
work that uses both SGX and TrustZone to defend against informa-
tion disclosure in the cloud and membership inference attacks on
the cloud and edge workers. It is a hardware secured end-to-end
federated learning framework that protects both the aggregator and
edge workers in practical settings. We show that our implementa-
tion is feasible using widely available hardware to provide privacy
to the federated learning framework. Our approach is orthogonal
to other federated learning security techniques, allowing additional
security techniques to be implemented on top of SecureFL.

We present a rigorous security analysis that proves SecureFL can
effectively protect user privacy against HBC adversaries on cloud
and edge resources. We provide an evaluation of our framework
using real edge worker devices and show a quantitative analysis
of the impact of enabling security features on the performance of
federated learning. SecureFL demonstrates reasonable overhead
given the provided security benefits. The overhead is 14% for a
system with ten Raspberry Pi based workers, and 23.6% for a system
with 100 QEMU-based workers. We believe that SecureFL can better
protect user privacy and allow users to adopt more intelligent
applications powered by federated learning.

8 ACKNOWLEDGEMENT

This research is sponsored by U.S. National Science Foundation
awards CNS-1629888, IIS-1633381, and CNS-1955593. We thank the
anonymous reviewers for their helpful suggestions.

REFERENCES

[1] Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X Yu, Sanjiv Kumar, and
Brendan McMahan. 2018. cpSGD: Communication-efficient and differentially-
private distributed SGD. In Advances in Neural Information Processing Systems.
7564-7575.

[2] Julien Amacher and Valerio Schiavoni. 2019. On the performance of ARM Trust-
Zone. In IFIP International Conference on Distributed Applications and Interoperable
Systems. Springer, 133-151.

[3] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. 7.

[4] Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan
Rogers. 2018. Protection against reconstruction and its applications in private
federated learning. arXiv preprint arXiv:1812.00984 (2018).

SecureFL: Privacy Preserving Federated Learning with SGX and TrustZone

(5]

[10]
[11]

[12

[13

[14]

[15]

[16

[17]

[18]

[19

[20]

[21

[22]

[23

[24]

[25

[26]

[27]

[28

[29]

[30]

Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. 2017. Software grand exposure: SGX cache
attacks are practical. In 11th USENIX Workshop on Offensive Technologies (WOOT
17).

Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yingian Zhang, Zhiqiang Lin, and
Ten H Lai. 2018. SGXpectre attacks: Leaking enclave secrets via speculative
execution. arXiv preprint arXiv:1802.09085 (2018).

Hong-You Chen and Wei-Lun Chao. 2020. FedBE: Making bayesian model en-
semble applicable to federated learning. (2020).

Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Francoise Beaufays. 2019.
Federated learning of out-of-vocabulary words. arXiv preprint arXiv:1903.10635
(2019).

Yitao Chen, Saman Biookaghazadeh, and Ming Zhao. 2019. Exploring the capa-
bilities of mobile devices in supporting deep learning. In Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing. 127-138.

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. 2016, 86 (2016), 1-118.

John R Douceur. 2002. The sybil attack. In International workshop on peer-to-peer
systems. Springer, 251-260.

Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit confidence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. 1322-1333.

google. 2019. Your chats stay private while Messages improves suggestions.
https://support.google.com/messages/answer/93279021.

Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Hani Jamjoom, Ankita
Lamba, Dimitrios Pendarakis, and Ian Molloy. 2018. YerbaBuena: Securing Deep
Learning Inference Data via Enclave-based Ternary Model Partitioning. arXiv
preprint arXiv:1807.00969 (2018).

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Francoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

ARM Holding. 2009. ARM Security Technology, Building a Secure System using
TrustZone Technology.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. 2019. Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977 (2019).

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, et al. 2019.
Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 1-19.

Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features
from tiny images. (2009).

Ya Le and Xuan Yang. 2015. Tiny ImageNet visual recognition challenge. CS
231N 7 (2015), 7.

Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. URL: http://yann.
lecun. com/exdb/lenet 20, 5 (2015), 14.

Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).
Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. 2020. Ensemble
Distillation for Robust Model Fusion in Federated Learning. In Advances in Neural
Information Processing Systems.

Yehida Lindell. 2005. Secure multiparty computation for privacy preserving data
mining. In Encyclopedia of Data Warehousing and Mining. IGI Global, 1005-1009.
Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative instructions
and software model for isolated execution. Hasp@ isca 10, 1 (2013).

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial Intelligence and Statistics. PMLR,
1273-1282.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, et al. 2016.
Communication-efficient learning of deep networks from decentralized data.
arXiv preprint arXiv:1602.05629 (2016).

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2017. Learning
differentially private recurrent language models. arXiv preprint arXiv:1710.06963
(2017).

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 691-706.

Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias
Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. DarkneTZ: towards
model privacy at the edge using trusted execution environments. In Proceedings
of the 18th International Conference on Mobile Systems, Applications, and Services.
161-174.

SEC ’21, December 14-17, 2021, San Jose, CA, USA

Milad Nasr, Reza Shokri, and Amir Houmansadr. 2018. Comprehensive privacy
analysis of deep learning: Stand-alone and federated learning under passive and
active white-box inference attacks. arXiv preprint arXiv:1812.00910 (2018).
Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and Christof
Fetzer. 2018. Varys: Protecting SGX enclaves from practical side-channel attacks.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18). 227-240.
OP-TEE. 2017. OP-TEE Trusted OS Documentation. https://www.op-tee.org/.
OP-TEE. 2019. OP-TEE Abort dumps. https://optee.readthedocs.io/en/latest/
debug/abort_dumps.html.

OP-TEE. 2020. OP-TEE Documentation. https://https://readthedocs.org/projects/
optee/downloads/pdf/latest/.

AJ Paverd, Andrew Martin, and Ian Brown. 2014. Modelling and automatically
analysing privacy properties for honest-but-curious adversaries. Tech. Rep. (2014).
Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Francoise Beaufays.
2019. Federated learning for emoji prediction in a mobile keyboard. arXiv preprint
arXiv:1906.04329 (2019).

Joseph Redmon. 2013-2016. Darknet: Open Source Neural Networks in C. http:
//pjreddie.com/darknet/.

Samsung. 2021. Knox White Paper. https://docs.samsungknox.com/admin/
whitepaper/kpe/samsung-knox.htm.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 3-18.

Ravid Shwartz-Ziv and Naftali Tishby. 2017. Opening the black box of deep
neural networks via information. arXiv preprint arXiv:1703.00810 (2017).

Amol Vasudeva and Manu Sood. 2018. Survey on sybil attack defense mechanisms
in wireless ad hoc networks. Journal of Network and Computer Applications 120
(2018), 78-118.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and
Yasaman Khazaeni. 2020. Federated Learning with Matched Averaging. In Inter-
national Conference on Learning Representations. https://openreview.net/forum?
id=BkluqlSFDS

Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. 2017. Leaky cauldron
on the dark land: Understanding memory side-channel hazards in SGX. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2421-2434.

Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Francoise Beaufays. 2018. Applied federated learning:
Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903
(2018).

Seehwan Yoo, Hyunik Kim, and Joongheon Kim. 2018. Secure compute-vm:
Secure big data processing with SGX and compute accelerators. In Proceedings of
the 3rd Workshop on System Software for Trusted Execution. 34-36.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. 2015.
Understanding neural networks through deep visualization. arXiv preprint
arXiv:1506.06579 (2015).

Matthew D Zeiler and Rob Fergus. 2014. Visualizing and understanding convolu-
tional networks. In European conference on computer vision. Springer, 818-833.
Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients. In
Advances in Neural Information Processing Systems. 14774-14784.

https:// support.google.com/messages/answer/9327902l
https://www.op-tee.org/
https://optee.readthedocs.io/en/latest /debug/abort_dumps.html
https://optee.readthedocs.io/en/latest /debug/abort_dumps.html
https:// https://readthedocs.org/projects/optee/downloads/pdf/latest/
https:// https://readthedocs.org/projects/optee/downloads/pdf/latest/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://docs.samsungknox.com/admin/whitepaper/kpe/samsung-knox.htm
https://docs.samsungknox.com/admin/whitepaper/kpe/samsung-knox.htm
https://openreview.net/forum?id=BkluqlSFDS
https://openreview.net/forum?id=BkluqlSFDS

	Abstract
	1 Introduction
	2 Background and related works
	2.1 Deep Learning and Neural Networks
	2.2 Federated learning
	2.3 Privacy Risk of Federated Learning
	2.4 Security Mechanisms

	3 Threat Model
	3.1 Federated Learning Architecture
	3.2 Adversaries

	4 System Design
	4.1 Design Overview
	4.2 Attestation
	4.3 Edge Components
	4.4 Cloud Components

	5 Security Analysis
	5.1 Broadcast
	5.2 Client Computation
	5.3 Aggregation
	5.4 Model Update
	5.5 Deployment
	5.6 Other Attacks

	6 Evaluation
	6.1 Methodology
	6.2 Runtime Overhead
	6.3 Runtime breakdown
	6.4 Resource Utilization
	6.5 Scalability

	7 Conclusions
	8 Acknowledgement
	References

