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ABSTRACT Increasing use of sensor data in intelligent transportation systems calls for accurate imputation
algorithms that can enable reliable traffic management in the occasional absence of data. As one of the
effective imputation approaches, generative adversarial networks (GANs) are implicit generative models
that can be used for data imputation, which is formulated as an unsupervised learning problem. This
work introduces a novel iterative GAN architecture, called Iterative Generative Adversarial Networks for
Imputation (IGANI), for data imputation. IGANI imputes data in two steps and maintains the invertibility of
the generative imputer, which will be shown to be a sufficient condition for the convergence of the proposed
GAN-based imputation. The performance of our proposed method is evaluated on (1) the imputation
of traffic speed data collected in the city of Guangzhou in China, and the training of short-term traffic
prediction models using imputed data, and (2) the imputation of multi-variable traffic data of highways
in Portland-Vancouver metropolitan region which includes volume, occupancy, and speed with different
missing rates for each of them. It is shown that our proposed algorithm mostly produces more accurate
results compared to those of previous GAN-based imputation architectures.

INDEX TERMS Generative adversarial networks, GAN, missing data, imputation, invertible neural net-

works (INN).

I. INTRODUCTION

Traffic data is generated faster than before as intelligent trans-
portation systems (ITS) develop. Various and numerous oper-
ating sensors from road-side cameras to vehicles equipped
with GPS tracking devices underscore the big-data features
of traffic records. Traffic management and control highly
depend on the collected data which is usually incomplete
because of sensor or transmission failures [1], [2]. Imputation
of traffic data is therefore crucial for an informative presen-
tation of them as well as for training prediction models based
on them. The choice of method for incomplete data analysis
is of critical importance as it directly affects the conclusion
validity. The methods for handling missing data ranges from
naive deletion of incomplete samples to modern machine
learning techniques for imputation. The propriety of a method
for missing data analysis depends on the missing rate, miss-
ingness mechanism, data type and size, and the acceptable
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accuracy of imputation or of downstream classification and
regression tasks based on the imputed data. [3].

Myriads of techniques have been proposed for the impu-
tation of missing data which are categorized into statisti-
cal and machine-learning based techniques as well as those
which are tailored for traffic data to address their spatial-
temporal correlations. In the past decade, statistical tech-
niques including mean/mode, linear regression, least square,
and expectation maximization have been outperformed by
machine-learning based techniques with respect to accuracy
and applicability to different missing mechanisms. These
statistical methods, such as the mean/mode method, are now
being implemented to rather serve as baseline for comparative
studies [4]-[6]. Major machine learning techniques for data
imputation include, but are not limited to, clustering-based
methods (e.g. KNN and K-means) [7], [8], Support Vec-
tor Machine (SVM), Denoising Autoencoders (DAEs) [9],
and Generative Adversarial Networks (GANs) [10]-[15].
Specialized imputation methods for traffic data are majorly
matrix/tensor repair methods which use statistical techniques
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such as matrix/tensor decomposition [16]-[19]. Tensor-based
methods have been proposed to overcome the shortcoming
of matrix based ones in the face of high missing rates as
tensors are capable of preserving multi-way features of traffic
data [2]. Despite the low-rank property of traffic data sets,
which is the foundation for tensor decomposition methods,
the choice of rank and decomposition method is subjective
and challenging especially for incomplete data [19].

Further development of imputation techniques using GAN
is highly motivated by ITS. First, the accuracy of GAN-based
imputation architectures have been significantly competitive
compared with both statistical and other machine-learning
techniques [10]-[15], so they are appealing to ITS where
poor traffic management based on erroneous data may cost
millions of dollars [20]. Second, traffic data are usually high
dimensional which can be represented by implicit models
like GAN avoiding the bias of paramateric distributions [21].
Third, a generative imputer once trained can be applied to
a single data, unlike clustering-based methods which must
search a sample of data for finding neighbors of the incom-
plete one. Finally, GAN models like every DNN can be
fine-tuned efficiently as ITS data are generated in large
volumes and velocity. Despite all the advantages of the
GAN-based imputation methods, they suffer from inaccu-
racy for high missing rates, and/or complicated architecture.
Therefore, more exploration is needed for traffic data impu-
tation using GAN in ITS.

The contribution of this work is as follows: A novel
GAN-based architecture for data imputation is proposed
which outperforms previous GAN-based architectures with
respect to:

e« accuracy,
« simplicity of architecture, and
o robustness.

The architecture, called Iterative Generative Adversarial
Networks for Imputation (IGANI), is simple as it enjoys
one generator and discriminator. The generator is iterated
over imputed data and the intuition behind such iteration
is to train a robust discriminator which can identify the
first-hand imputed data as real and the second-hand one
as fake. We will demonstrate how our proposed method
compare with competing imputation methods in accurately
imputing missing traffic (speed) data. As a comparison basis,
we also demonstrate that the imputed traffic data from our
method can better train a short-term traffic prediction model,
compared with other GAN-based imputation methods, and
that this superiority holds for different missing rates. Also,
the imputation is performed and evaluated for multi-variable
traffic data consisting of volume, occupancy, and speed with
different missing rates for each of them. It is demonstrated
that IGANI’s accuracy is substantially more robust compared
with other GAN-based architectures when the dimension of
input layer is increased.

The paper is organized as follows. First, a brief background
for generative models, GANs, and GAN-based imputation
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architectures is provided in Section II. Then in Section III
we propose the architecture of IGANI. Section IV includes
the application of the proposed imputation method on traffic
data and the discussion of the results.

Il. BACKGROUND
A. GENERATIVE MODELS
Generative models are models that generate data, either
explicitly or implicitly. Explicit generative models considers
the data to follow a density function pgy (x) whose parameters 0
are estimated through maximum likelihood method using the
log-likelihood function log pg (x). Though a computationally
intractable log-likelihood may be substituted by other objec-
tives like Jensen-Shannon divergence (JSD) [22]. Explicit
generative models are also known as prescribed probabilistic
models, because the parametric distribution is dictated in
contrast to implicit models which merely generate data [23].
Selecting computationally tractable densities is an impor-
tant step in explicit generative models, while the choice of
a density function that is capable of capturing data com-
plexity is not straightforward. Tractable densities are mod-
eled either by fully visible belief networks (FVBNs) [24] or
non-linear independent component estimation (NICE) [25].
FVBNS are based on the chain rule of probability as p(x) =
px)p(xalxy) ... p(xulx1, x2, ..., x,—1) which gives samples
entry-by-entry at a cost of O(n) for each sample. NICE con-
siders p(x) to be a continuous, invertible, nonlinear transfor-
mation which maps a latent variable z to x, i.e. x = g(z). Then
pr@) = p.(g7'(x))| det(dg'(x)/dx)| becomes a tractable
density function, if p, and the determinant is tractable. Data
generation by FVBNSs is time consuming and cannot be par-
allelized and NICE requires g to be invertible with x and z
having the same dimension [21]. If the explicit density is
not tractable, variational methods can be employed. A typ-
ical example is variational autoencoders (VAE) which uses a
tractable lower bound for an intractable log-likelihood [26].
Another option is Boltzman machines which is based on
Markov Chain Monte Carlo [27]. Boltzman machines sim-
ulate a sequence of samples x’ ~ ¢(x'|x) where ¢ is a
transition probability density designed in such a way that
the distribution of the samples will converge to p(x). While
variational methods like VAEs are affected by the accuracy
of the posterior or prior distributions, MCMC methods, such
as Boltzman machines, suffer from slow convergence [21].
As opposed to explicit methods, implicit generative models
do not parameterize the density of data, but are still appeal-
ing for high-dimensional data representation, model-based
reinforcement learning, data imputation, models with multi-
modal outputs, and realistic data generation [21]. Implicit
methods train functions which map from a latent variable to
the data space; though the mapping is deterministic, the latent
variable is the external stochastic source [23]. Implicit models
ranges from basic non-uniform random variate generator [28]
to Generative Stochastic Networks (GSNs) [29] and Genera-
tive Adversarial Networks (GANs) [30]. GSNs using MCMC
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FIGURE 1. The GAN architecture, where the generator G generates data
X = G(z) from the latent variable z and the discriminator D determines
whether x or x is fake or not. G and D are adversarial networks, i.e. G is
trained toward deceiving D and as a result the distribution of the
generated data x tends to that of x. The number of columns in x, z, and
equals the dimension of data and their number of rows is the number of
samples (or mini-batches).

are time-consuming especially for high-dimensional data as
they use Markov chains, while GANs do not have most of
the aforementioned shortcomings. First, data generation in
GAN:Ss is performed in parallel, independently of the dimen-
sion of x. Second, Markov chains, tractable densities, invert-
ible mapping from latent variable z, and variational bounds
are not required by GANs [21]. In the next section we present
a technical background on GANS.

B. GENERATIVE ADVERSARIAL NETWORK (GAN)
Generative Adversarial Networks (GANs) provide a
game-theoretic framework for obtaining the implicit distribu-
tion of data. This is performed by adversarial networks where
a discriminator network estimates the probability of a data
instance being real or fake. The data instances are mapped
from a latent variable z by a generative model called generator
which is trained to deceive the discriminator. The discrimina-
tor is therefore trained in a supervised way, where real and
fake data are labeled as one and zero, respectively [30].
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Let G and D be the generator and discriminator, each a
neural network that is differentiable with respect to its respec-
tive input, z and x, and also with respect to their respective
neural parameters, 8©) and 8. The generator G for each d-
dimensional (noise) input z returns a d-dimensional output
X, and the discriminator D for each input data (either x
or X) returns a scalar indicating (deterministically or prob-
abilistically) whether the data is real or fake. The train-
ing involves minimizing two cost functions associated with
the generator and discriminator, namely J (G)(O(G), oL )), and
JDP @@, 9P)). Note that both functions depends on both
0@ and . In each iteration of the training, a minibatch of
inputs, i.e. z and x are selected for D and G and gradient-based
optimization minimizes the cost functions of the generator
and discriminator subsequently. The architecture of GAN in
a training iteration is illustrated in Fig. (1) for the mini-batch
size of 3 and a 5-dimensional data.

The discriminator parameters ° are estimated by mini-
mizing JP) (0@, §P), while 0@ are estimated by minimiz-
ing J G @@, 9P)). The whole minimization is considered
as a game, because each network can control only its own
parameters [21]. The solution of such a game is that of Nash
equilibrium [31], i.e. the pair (8'©, 8®)) which locally min-
imizes JP(0©D, 9)) with respect to 0 and minimizes
J D@D, 9Py with respect to 09,

Different schemes for cost functions can be used in GANs.
These schemes usually differ in J(©, rather than in J® [21].
One simple choice for the discriminator’s cost function is
given by

1
ID@© D)y — _EEx log(D(x))

1
— 5E:(1 —log(DG@Y. (D)

where [E, denote the expected (or mean) value calculated
over the distribution of x. In the zero-sum game, the cost
of generator is selected such that it neutralizes the cost of
discriminator, i.e.,

JO = —g®. 2)
This is equivalent to a minimax optimization as follows
09" = arg minmax —J P (0@, ), 3)
9(G D)

which does not perform well in practice because both D and
G are minimizing and maximizing the same cross-entropy,
respectively. Instead of minimizing the probability of a cor-
rect discrimination, to avoid vanishing gradient issue in the
optimization, G can be trained by maximizing the probability
of a wrong discrimination, or effectively by minimizing the
following cost function
JO@© 9Dy = —%]EZ log(D(z)). )
The role of discriminator in predicting the probability of
being real or fake data can be relaxed using Wasserstein
distance in the cost functions. Wasserstein or Earth-Mover
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FIGURE 2. Generative imputer: blue and white squares denote observed
and missing values of incomplete data x. Noise is represented by red
squares as shown for the noise vector z. The generated data g(«) is shown

in purple. Note that the imputed vector v shares the observed values
with x.

u=xOm+z0((1—m)

distance facilitate the convergence of a probability distribu-
tion sequence for which popular measures for distributional
distance like Jensen-Shannon divergence, Kullback-Leibler
divergence do not converge. Therefore, training GANS using
Wasserstein distance (WGANS) is more stable and the results
are less sensitive to hyper-parameters and architectures [32].
WGANS uses a linear activation output layer instead of sig-
moid function for the discriminator (critic), employing the
Wasserstein distance in the cost functions, and constraining
the parameters (namely weights) of discriminator to fall into a
compact support by clipping. Clipping underuses the capacity
of discriminator and, if not tuned well, may lead to exploding
or vanishing gradient. This can be avoided by incorporating a
gradient penalty (GP) in WGAN Lipschitz constraint on the
discriminator loss [33] as follows

ID09, 0 = E,D(x) — E.D(G(2))
+AEy(IVy D) — D> (5)

where y = tG(z) + (1 — tH)x with 0 < ¢ < 1 and A is
a coefficient, usually set as A = 10. The cost function of
generator like Eq. (4) can be written as

I 9P = —E.D(). (6)

The proposed algorithm in this work uses WGAN-GP with
the cost functions defined in Egs. (5-6).

C. GAN-BASED IMPUTATION METHODS

As mentioned above, GAN is an implicit generative model
which can be applied to data imputation. A pioneer-
ing method is Generative Adversarial Imputation Network
(GAIN) [10] which has a sweet epoch in the training phase
urging early-stoping. GAIN has not been successful on block
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FIGURE 3. GAIN architecture: the generative imputer G is trained along
with the discriminator D which predicts the mask () using the imputed
data (v) and the hint (k).

missing patterns. For these patterns, another architecture,
called MisGAN, has been shown to be more effective [11].
In MisGAN, three generators for mask, complete data, and
imputed data are simultaneously trained together with their
corresponding discriminators. In [12], the performance of
MisGAN was questioned in uniform missing pattern and
a Generative Imputation (GI) was introduced as an accu-
rate method for both block and uniform missing patterns.
The problem of imputing multi-view and multi-modal data
which are observed from heterogeneous sources is addressed
in [13], [14]. GAN is also leveraged by Recurrent Neural Net-
work (RNN) to impute incomplete multivariate time series
in [15], and demonstrated accuracy improvement over GAIN
and MisGAN. In this work, we used GAIN and MisGAN
as the prominent competing architectures against which our
proposed IGANI method is compared. Before that, we define
what a generative imputer is:

Definition 1: Letx € R? denote a random vector andm €
{0, 1}d be its random mask where mj = 0 or m; = 1 means
that x; is observed or missing, respectively. A generative
imputer is defined as (u,v) = G(x, m, 7) where

u=x0m+z0(l—m)
v=xOm+gu) O —m) @)

where 7 € R? is noise and g(-) is a function to be learned,
and v is the imputed vector where v; = x; if x;j is observed.
Alternatively, one may write (u,v) = G(x(’"), m, z(l_’"))
where x™ =x Om and 71 =z © (1 — m).

In GAIN, shown in Fig. 3, a discriminator D maximizes
the probability of predicting mask m based on the imputed
data v. Prediction of the mask can also be interpreted as
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FIGURE 4. MisGAN architecture: three pairs of generators and
discriminators are trained simultaneously. G, Gx, and G; generate mask,
data, and imputed data, respectively. A mask function

f(x,m) =x ®m + t(1 — m) is used to train the data generator Gy and its
corresponding discriminator (Dx). Note that G; denotes the generative
imputer and v is the imputed data.

how real/fake every element of the imputed vector is. This
generalizes the role of conventional discriminators in GANs
which give a scalar score for the whole generated vector.
Mask prediction is realized by using a partial information
about the original mask matrix which is referred to as the
hint A. Specifically in GAIN, the hint mechanism chooses
one element of each row of the mask matrix randomly and
set it to be 0.5. Using the imputed data v and the hint A,
the discriminator D predicts the mask as m = D(h, X) whose
distance from m is minimized. Using the Sigmoid function as
the last layer, we force the entries of 2 to be in [0, 1]. The cost
functions for the discriminator and generator in Eqgs. (1, 4) are
therefore modified as:

d
JPOD, 0P = —Fyy o Y [m;logliny)
i=1
+ (1 —m)log(l —mpl]  (8)

and

d
JOO,0P) = —E,, ; [Z(l — m) logoﬁi)} ©)

i=1
MisGAN, compared to GAIN, has a more complicated
architecture and includes three pairs of generators and dis-
criminators trained simultaneously by the WGAN loss func-
tions in Eqs (5) and (6). Generators are G, Gy, and G; which
generate mask, data, and imputed data, respectively. Mask
generation is the first step, because we access to the real
mask matrix whose distribution can be implicitly recovered
by training G,, within a GAN scheme. The same procedure
can be applied to train Gy, i.e. the generator of observed
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FIGURE 5. IGANI architecture: iteration of the generative imputer G gives
a second-hand imputed data 7 which has less observed values compared
with the first-hand imputed data v; compare the blue squares between v
and 7. So G and D are trained to compensate the decline of observed
values after the secondary imputation, by means of imputing more
accurately.

data represented by the mask function f(x,m) = x O m +
7(1 —m). Note that the arbitrary constant t is a proxy for the
unobserved data and the choice of its value does not affect
the convergence. Given the distribution of mask and data as
described, one may train the imputer generator (G;) whose
output (v) is discriminated from the data generated by Gy, i.e.

().

lll. METHOD

In this section, we propose the architecture of IGANI as a
GAN-based data imputation method. As can be seen in Fig. 5,
this approach first applies the generative imputer G to pro-
duce the ‘imputed’ datav. Then in an iteration, it again applies
G, this time on v and a reshuffled mask matrix, to produce
a ‘re-imputed’ data v. Note that v has more observed values
compared to v. Then, the discriminator D seeks to distinguish
between ‘imputed’ and ‘re-imputed’ data, by giving scalar
scores to v and ¥ vectors separately, as done in conventional
GANSs. We train IGANI, or the two neural networks G and
D specifically, by minimizing the following WGAN loss
functions

ID) = B,D) — E.DG) + AE,(|V,DW)|| — 1),
I = —E.DG), (10)
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TABLE 1. Dimension of layers for different architectures.

Architecture | DNN| Layer dimensions

IGANI G Dense (214x512), ReLU, Dropout (p = 0.05),
Dense (512x512), ReLU, Dropout (p = 0.05), and
Dense (512x214)
Dense (214 x256), ReLU, Dense (256 x256), ReLU,
and Dense (256x214)

GAIN G Dense (214x512), ReLU, Dropout (p = 0.05),

Dense (512x512), ReLU, Dropout (p = 0.05), and
Dense (512x214)

D Dense ((2%x214)x256), ReLU, Dense (256x256),
ReLU, and Dense (256x214)

MisGAN G, | Dense (214x256), ReLU, Dense (256 x256), ReLU,
and Dense (256x214)

Dy, | Dense (214 x256), ReLLU, Dense (256 x256), ReLU,
and Dense (256x214)

G, | Dense (214x256), ReLU, Dense (256 x256), ReLU,
and Dense (256x214)

D, | Dense (214x256), ReLLU, Dense (256 x256), ReLU,
and Dense (256x214)

G; |Dense (214x512), ReLU, Dropout (p = 0.05),
Dense (512x512), ReLU, Dropout (p = 0.05), and
Dense (512x214)

D; | Dense (214x256), ReLLU, Dense (256 x256), ReL.U,
and Dense (256x214)

Short-term | Net | Dense (214x424), ReLU, Dropout (p = 0.05),
prediction Dense (424 x424), ReLU, Dropout (p = 0.05), and
Dense (424 x214)

Note: The dimension of inputs for Guangzhou data is always 214 for all the net-
works. The dimension of Portland-Vancouver data (discussed in Section IV-B)
is 480, which replaces 214 in this table.

wherey = tG(z) + (1 —t)y with0 <7 < 1 and A = 10.

According to the architecture in Fig. 5, the distribution of
v tends to that of v, if the GAN converges. However, the ulti-
mate goal is to show that the distribution of the imputed data
with the new mask (v = v ©®n) tends to that of the observed
data (*™ = x © m). Briefly speaking, we want to show
that p; — p, gives p,a — p,m. This is guaranteed by the
invertiblity of the generative imputer G in Def. (1) which is
preceded by showing that m is recovered almost everywhere
from (u, v). This is rather intuitive; as Fig. 2 shows, v differs
from u only for missing values:

Lemma 1: For a nonlinear function g in Eq. (7), m =
1=y holds almost everywhere.

Proof: 1If g is a nonlinear function, g(z) cannot be a
linear combination of z. Therefore, the measure of {7 €
R|3i < d : z; = g(u);} is zero, which means that u and
v are not equal for unobserved indices almost everywhere
and m = 1—y. Note that the function sequence {gi}fil
estimating g is trained by deep neural networks which are
nonlinear because of their nonlinear activation functions. [

Lemma 2: The generative imputer (u,v) = G(x(’”),m,
Z1=™) in Def. 1 is invertible for m = L=y
Proof: Eq. (7) is written as

u = xm 4 1-m

v=x"+gw) o1 —m) (11)
Then (x", m, z{1=™) can be written explicitly in terms of
(u, v) as follows

x™

v —g(u) © Ly
2 = u — v+ g) © L) 12)
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FIGURE 6. MAE of normalized imputed values by GAIN, MisGAN, and
IGANI where shaded area represents +30 for 5 models. The baseline,
mean imputation, shown by black star marker, does not outperform
IGANI even for higher missing rates.

which proves the invertibility of (&, v) = G(x", m,z1=™)
form = 1(u=v)~ O

Now consider the architecture in Fig. (5) which gives p; —
py provided that GAN converges. The aim is to show that
Py — Pyon- Let (u,v) = G&™, m,z0~™) and (@, %) =
Gw™, n,z17") where G is the generative imputer in Def.
landn ~ p,:

Theorem 1: pg 3 —> Du,y 8ives Py —> Pyom.

Proof: If ps 5 — puy, i.e.

pG(v("),n,z“’")) — pG(x(””,m,z“*"’)) (13)

invertibility of the generative imputer G as shown in Lemma 2
gives

Py g z(1=n) > Py(m) i 7(1=m). (14)

As the limit holds for joint distributions, it must hold for
marginals and p,m — pyom. O
Lemma 3: py — py gives ps 3 —> Du,y-
Proof: As shown in Fig. (2), the generative imputer
preserves the observed values of data, i.e. x™™ = v and
y® =" S0 Eq. (11) implies

Pu,y = Pyim) z(1-m) ,
Py = Py p0-m 5 15)

Also, let y (v, m, z) = v—v" — g(»v™ 4-z(1=™) = 0 which
gives y(¥,n,z) = 0 because the same generative model G
(and g) is used in the iterative imputation. Therefore, for
the same relation y, assuming n ~ p,, and p; — py, it is
concluded that p; 5 — pu,y. (|

Corollary 1: p; — py gives p,mw —> Dyom.

Proof: Lemma 3 states p; 3 — pu,y Which according to
Theorem 1 is enough to have p,m — pym. O

The GAN architecture described in Fig. 5 and implemented
in Algorithm (1) imputes the incomplete data x, provided that
GAN gives p; — py which according to Corollary 1 means

Py —> Pxlm.
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FIGURE 7. Logarithmic MAE of imputations by GAIN, MisGAN, and IGANI for an individual sample. IGANI outperforms GAIN and MisGAN especially for
higher missing rates. Vertical lines on left subplots represent missing value indices. The histograms of MAE for imputed values are also plotted.

IV. EXPERIMENTS

A. GUANGZHOU (CHINA) SPEED DATA

1) DATA DESCRIPTION

The dataset represents the speed of 214 road segments
in Guangzhou (China) collected over two months (from
August 1, 2016 to September 30, 2016) at 10-minute time
steps. [34]. The data is recommended by the providers for
data imputation, traffic prediction and pattern discovery. The
spatial and temporal window of the data, as mentioned above,
implies a structure of three-dimensional tensor of size 61 x
144 x214, whose dimensions are day, time, and road segment,
respectively. For learning, the dataset is reshaped as a 8784 x
214 tensor, meaning that the sample size is 8784. The original
missing rate of data is 1.29%, which is almost negligible for
imputation purposes, and the missing data is calculated using
an iterative imputer (that estimates each feature as a function
of all the others) before creating a ““‘complete’ reference data.
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The described dataset is divided into three portions: (i) 10%
for training the imputers, (ii) 80% for training the short-term
traffic prediction models, and (iii) 10% for testing the predic-
tion models. The imputation accuracy is tested on portions (ii)
and (iii).

2) ARCHITECTURE

Network dimensions of the architectures used in the exper-
iments is shown in table 1. To have a fair comparison of
imputer performance, the same capacity of it is used for them;
i.e. G for IGANI and GAIN and G; for MisGAN have the
same layer and dimensions.

3) IMPUTATION OF MISSING TRAFFIC DATA

The proposed method in this work, IGANI, is applied
to the mentioned data with different missing rates. The
missing mechanism is MCAR which is the common case
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FIGURE 8. MAE of normalized short-term traffic predictions using missing data imputed by GAIN, MisGAN, and IGANI, averaged over

5 trained imputers for each architecture.

Algorithm 1: Training of [GANI

Set Ng (number of epochs);
Set Npy (number of discriminator updates);
while epoch < Ng do
for (x,m) € (X, M) do
Sample noise z ~ p;;
for iter < Npy do
u,v) < G(x,m, z);
n < arandom shuffling of m;
(@,v) < G(v,n,2);
Update discriminator D by minimizing the
loss Jé‘l,)) in Egs. 10;

Update Generator G by minimizing the loss J&? )
in Egs. 10.;
Training parameters for this paper: learning rate = le-4, Np = 200,

Npy = 30 + [epoch/10]

for incomplete traffic data. The performance of IGANI
with respect to test accuracy is compared with two recent
GAN-based imputation methods, i.e. GAIN and MisGAN,
and the results are shown in Fig. 6. For each of the three
approaches, we ran 5 separate trainings, and the mean and
standard deviation results in Fig. 6 are calculated using 5 sep-
arate tests on the 5 trained models.

As can be seen, the mean absolute error (MAE) of impu-
tation by IGANI, compared with other methods, is lower
for all the missing rates. Also, GAIN and MisGAN are less
accurate than the baseline (mean imputation) for missing
rates higher than 70%, while IGANI always outperforms
the baseline. Superiority of IGANI is also visible for an
individual sample of data; see Fig. 7. The outperformance
of IGANI may be justified as follows. MisGAN architecture,
as can be seen from Fig. 4, is complicated with three pairs
of generator-discriminator trained together at every epoch.
The discriminator of imputer (D;) treats the output of data
generator (Gy) as the real data (x), which is far from being

VOLUME 9, 2021

0.16 1 —- GAIN
-4 MisGAN o
~@- IGANI o
0.14 #
W 0121
<
=
0.10
0.08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Missing Rate
FIGURE 9. MAE of normalized short-term speed predictions based on
imputed data by GAIN, MisGAN, and IGANI. Shaded area represents +3¢
for the 5 trained imputers. Training and testing data have the same
missing rate.

real in the early stages of training and mislead the imputer.
Such an adverse early-stage effect of NNs on each-other,
does not occur in GAIN and IGANI where both have only
one pair of generator and discriminator. However, the mask
hint as an input to the discriminator of GAIN (see Fig. 3)
is spoiler in the sense that the discriminator has an easier
job to distinguish the observed data from the missing one.
The effect of spoiling the discriminator becomes bold for
higher missing rate. The discriminator of IGANI does not
benefit from such a hint while training, instead it is trained to
recognize which data is imputed twice without any hint of the
masks. Therefore, the superiority of IGANI compared with
MisGAN and GAIN is attributed to its simple architecture
and mature discriminator.

4) SHORT-TERM TRAFFIC PREDICTION USING IMPUTED
DATA

In addition to assessing the accuracy of data imputation,
it is also important to evaluate how imputation methods,
which are unsupervised learning, perform when used in sub-
sequent analyses or predictions. In this study, we choose
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speed missing rates, respectively.

short-term traffic prediction using supervised learning-based
neural network using imputed data. In particular, the time
interval between two subsequent data samples is considered
to be 10 minutes and the aim is to predict an instance (the
speed) from its preceding one using a fully connected neural
network model. The authors admit that more advanced meth-
ods are available for predicting temporal data (like recurrent
neural networks (RNN) and its variants, e.g. long short-
term memory (LSTM) and gated recurrent unit (GRU)). But,
the choice of prediction model is beyond the aim of this work,
and our aim is to assess how the errors cause by different
imputation methods transcend into a subsequent prediction
task.

In this work, short-term prediction models are trained and
tested for different missing rates. These rates range from
0 to 0.9 for training and from 0.1 to 0.9 for testing models.
The imputation methods are GAIN, MisGAN, and IGANI
which implies a total of 10 x 9 x 3 = 270 models. The
MAE of testing models for predicting normalized data is
observed for all cases in Figs. 8 and 9. As can be seen from
these results, the superiority of IGANI is more significant
for higher missing rates where both GAIN and MisGAN
lose robustness in supervised learning-based tasks that use
imputed data. Generally, IGANI is more accurate and sta-
ble compared with previous GAN-based imputation meth-
ods and is strictly recommended for missing rates higher
than 50%.
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B. PORTLAND-VANCOUVER METROPOLITAN REGION:
VOLUME, OCCUPANCY, AND SPEED

In the previous experiment, a single variable of traffic con-
dition, i.e. speed, was imputed. Nowadays, traffic condition
is measured by detectors which are capable of capturing
more than one variable. Dual loop detectors are a common
type of traffic detector which measure volume, occupancy
and speed data. While dysfunctions such as communication
errors or hardware issues may lead to missing data from dual
loop detectors, faults such as chattering, pulse breakup, and
hanging on/off may produce low fidelity data [35]. As all
variable are not available and valid at the same time and
location, imputation of multi-variable traffic data is of critical
importance.

In this experiment, a dateset composed of volume, occu-
pancy and speed is used to evaluate our proposed method and
other GAN-based imputers. We considered different missing
rates for volume, occupancy and speed in order to study
the mutual effect of measured variables on the imputation
accuracy of the missing one.

1) DATA DESCRIPTION

The data used in this section is collected from the dual loop
detectors of highways in Portland-Vancouver Metropolitan
region [36]. The time span includes the first half of Jan-
uary 2021 with a time resolution of 15 minutes for detector
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speed missing rates, respectively.

IDs between 5000 and 6000. Detectors and time spots which
are entirely missing are removed from data, after which the
original missing rates for volume, occupancy, and speed were
found to be 0, 0, and 0.5%, respectively. Similarly to the
previous section, the small number of missing speed data
are calculated using iterative imputer to form the ‘“‘com-
plete” data. This data consists of three matrices of the size
1500 x 160 for volume, occupancy, and speed measured at
160 locations (detectors) and 1500 time points. Out of the
total data length (1500 time points), 85% of the data is used
to train the imputer and 15% is used to test it.

2) ARCHITECTURES

The imputation is performed with the same DNN layers,
as listed in Table (1), to evaluate the performance of archi-
tectures under fixed model capacity when only the input
dimension increases. The only difference is that in this case
study, the dimension of the input is 480, instead of 214.

3) IMPUTATION OF MISSING TRAFFIC DATA

In this case study, we consider four missing rates of 0.2,
0.4, 0.6 and 0.8 for each of the three variable (i.e. vol-
ume, occupancy, and speed). The imputation results for the
4* combinations of these rates are shown in Figs. 10 -
12 for different GAN-based imputation methods. As can
be seen, IGANI significantly outperforms GAIN and Mis-
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GAN whose performance are adversely affected in this case
where the dimension of input has increased from 214 to
480. Also, the expected error increase in higher missing
rates can hardly be seen in MisGAN results. The observed
inaccuracy for GAIN and MisGAN models, as well as the
erratic error behavior for MisGAN results can be due to the
fact that the hint mechanism of GAIN and complexity of
MisGAN architecture have become inefficient now that we
are applying them, with unchanged architecture and model
capacity, to a new dataset with a different dimension. This
shows that IGANI architecture is more robust and can show
similar performance levels for a larger data set, while the
dimension of layers in GAIN and MisGAN may need to be
re-designed.

The results obtained from the IGANI imputation show that
the change in the missing rates of the three variables affects
the imputation accuracy of other variables. This is more
obvious in Figs. 10 and 11, which show that the imputation
accuracy of volume and occupancy depends on the missing
rates of one another. This effect is less apparent in 12, how-
ever, where the speed imputation accuracy is not significantly
influenced by the availability of volume and occupancy data.
Such a behavior is probably because speed variation is not
significant for this set of highway data, which makes the
speed imputation an easier task, regardless of how incomplete
the volume and occupancy data are.
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missing rates, respectively.

V. CONCLUSION

In this work, a new GAN architecture, named IGANI, is intro-
duced for data imputation and its performance is evaluated
on imputation of missing traffic data and also short-term
traffic prediction. It is shown that IGANI significantly out-
performs the previous GAN-based imputation architectures
(like GAIN and MisGAN) accuracy. It is also shown that
when IGANI-imputed data is used in a supervised learning
framework to train short-term traffic predictions, the predic-
tion accuracy is higher compared to the cases where GAIN-
or MisGAN-imputed data is used. The proposed architecture
is especially instrumental for the imputation of big data, such
as traffic data generated in transportation systems. This is
because IGANI imputes traffic data with a higher accuracy
compared with other GAN-based methods at various missing
rates, and as opposed to clustering-based imputation methods
(like KNN) does not require searching within a large pool of
data to find closest neighbors for imputation. In case of multi-
variable data, like those obtained from traffic loop detectors,
IGANI outperforms GAIN and MisGAN, with respect to both
accuracy and behavior. This outperformance is demonstrated
through a dataset of volume, occupancy, and speed which
studies the effect of missing rate of one variable on the impu-
tation accuracy of the other one. Although the architecture is
shown to be accurate, robust, and simple, future works may
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address how to use IGANI for multiple, noisy data, and time
series imputation.
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