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Abstract

Aspergillus fumigatus causes a range of human and animal diseases collectively known as
aspergillosis. A. fumigatus possesses and expresses a range of genetic determinants of vir-
ulence, which facilitate colonisation and disease progression, including the secretion of
mycotoxins. Gliotoxin (GT) is the best studied A. fumigatus mycotoxin with a wide range of
known toxic effects that impair human immune cell function. GT is also highly toxic to A.
fumigatus and this fungus has evolved self-protection mechanisms that include (i) the GT
efflux pump GliA, (ii) the GT neutralising enzyme GIiT, and (iii) the negative regulation of GT
biosynthesis by the bis-thiomethyltransferase GtmA. The transcription factor (TF) RgIT is
the main regulator of GIiT and this GT protection mechanism also occurs in the non-GT pro-
ducing fungus A. nidulans. However, the A. nidulans genome does not encode GtmA and
GliA. This work aimed at analysing the transcriptional response to exogenous GT in A. fumi-
gatus and A. nidulans, two distantly related Aspergillus species, and to identify additional
components required for GT protection. RNA-sequencing shows a highly different transcrip-
tional response to exogenous GT with the RgIT-dependent regulon also significantly differ-
ing between A. fumigatus and A. nidulans. However, we were able to observe homologs
whose expression pattern was similar in both species (43 RgIT-independent and 11 RgIT-
dependent). Based on this approach, we identified a novel RgIT-dependent methyltranfer-
ase, MtrA, involved in GT protection. Taking into consideration the occurrence of RgIT-inde-
pendent modulated genes, we screened an A. fumigatus deletion library of 484 transcription
factors (TFs) for sensitivity to GT and identified 15 TFs important for GT self-protection. Of
these, the TF KojR, which is essential for kojic acid biosynthesis in Aspergillus oryzae, was
also essential for virulence and GT biosynthesis in A. fumigatus, and for GT protection in A.
fumigatus, A. nidulans, and A. oryzae. KojR regulates rglIT, gliT, gliJ expression and sulfur
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metabolism in Aspergillus species. Together, this study identified conserved components
required for GT protection in Aspergillus species.

Author summary

A. fumigatus secretes mycotoxins that are essential for its virulence and pathogenicity.
Gliotoxin (GT) is a sulfur-containing mycotoxin, which is known to impair several aspects
of the human immune response. GT is also toxic to different fungal species, which have
evolved several GT protection strategies. To further decipher these responses, we used
transcriptional profiling aiming to compare the response to GT in the GT producer A.
fumigatus and the GT non-producer A. nidulans. This analysis allowed us to identify addi-
tional genes with a potential role in GT protection. We also identified 15 transcription fac-
tors (TFs) encoded in the A. fumigatus genome that are important for conferring
resistance to exogenous gliotoxin. One of these TFs, KojR, which is essential for A. oryzae
kojic acid production, is also important for virulence in A. fumigatus and GT protection
in A. fumigatus, A. nidulans and A. oryzae. KojR regulates the expression of genes impor-
tant for gliotoxin biosynthesis and protection, and sulfur metabolism. Together, this work
identified conserved components required for gliotoxin protection in Aspergillus species.

Introduction

Aspergillus fumigatus is a saprophytic fungus that can cause a variety of human and animal dis-
eases known as aspergillosis [1]. The most severe of these diseases is invasive pulmonary asper-
gillosis (IPA), a life-threatening infection in immunosuppressed patients [2,3]. A. fumigatus
pathogenicity is a multifactorial trait that depends in part on several virulence factors, such as
thermotolerance, growth in the presence of hypoxic conditions, evasion and modulation of the
human immune system and metabolic flexibility [3-7]. Another important A. fumigatus viru-
lence attribute is the production of secondary metabolites (SMs). The genes that encode SMs
are generally organized in biosynthetic gene clusters (BGCs) [8] and A. fumigatus has at least
598 SM-associated genes distributed among 33 BGCs [9,10]. SMs can cause damage to the
host immune system, protect the fungus from host immune cells, or can mediate the acquisi-
tion of essential nutrients [11-18]. Gliotoxin (GT) is the best studied A. fumigatus SM and has
been detected in vivo in murine models of invasive aspergillosis (IA), in human cancer patients
[19], and in isolates derived from patients with COVID-19 and aspergillosis secondary co-
infections [20].

Numerous modes of action for GT in the mammalian host have been described: (i) GT
interferes with macrophage-mediated phagocytosis through prevention of integrin activation
and actin dynamics, resulting in macrophage membrane retraction and failure to phagocytose
pathogen targets [21]; (ii) GT inhibits the production of pro-inflammatory cytokines secreted
by macrophages and the activation of the NFkB regulatory complex [22]; (iii) GT interferes
with the correct assembly of NADPH oxidase through preventing p47phox phosphorylation
and cytoskeletal incorporation as well as membrane translocation of subunits p47phox,
p67phox and p40phox [23]; and (iv) GT inhibits neutrophil chemoattraction by targeting the
activity of leukotriene A4 (LTA4) hydrolase, an enzyme that participates in LTA biosynthesis
[24].
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GT is a sulfur-containing mycotoxin, a member of the epipolythiopiperazines, produced by
different fungal species, including Gliocadium fimbriatum (from which it was originally iso-
lated and named accordingly), A. fumigatus and closely related non-pathogenic species
[25,26], and also by species of Trichoderma and Penicillium [27-30]. In A. fumigatus, a BGC
on chromosome VI contains 13 gli genes responsible for GT biosynthesis and secretion [30].
GT biosynthesis is tightly regulated because it interferes with and depends on several cellular
pathways that regulate sulfur metabolism [cysteine (Cys) and methionine (Met)], oxidative
stress defenses [glutathione (GSH) and ergothioneine (EGT)], methylation [S-adenosyl-
methionine (SAM)], and iron metabolism (Fe-S clusters) [31-35]. Regulation of GT biosyn-
thesis involves numerous transcription factors (TFs), protein kinases, transcriptional and
developmental regulators, regulators of G-protein signalling as well as chromatin modifying
enzymes [30].

Even though the regulation of GT biosynthesis is well characterized, regulation of endoge-
nous protection from GT—which is also highly toxic to the fungus—is less well understood. A.
fumigatus self-protection against GT is predicted to be based on the following mechanisms: (i)
the major facilitator superfamily transporter GliA, which is part of the GT BGC, catalyses GT
efflux; (ii) the reversible enzymatic activity of the oxidoreductase GIiT, and (iii) the negative
regulation of GT biosynthesis through the off switch mechanism of the S-adenosylmethio-
nine-dependent gliotoxin bis-thiomethyltransferase GtmA. GliA is responsible for transferring
GT out of fungal cells and deletion of gliA increases susceptibility to GT [36]. GliT produces
the final toxic form of GT by catalysing disulphide bridge closure of the precursor dithiol glio-
toxin (dtGT) [30,37]. However, if there is excess GT production, GliT is able to reduce GSH
and produce dtGT attenuating GT toxicity [30,37]. GtmA, whose gene is not located in the GT
BGC, is able to convert dtGT into bisdethiobis(methylthio)-gliotoxin (bmGT) and to attenuate
GT production postbiosynthetically [38-41]. It is thought that the primary role of GtmA is a
decrease in GT biosynthesis and not a back up for GliT and toxin neutralisation [30].

Until recently, the TF regulating g¢liT has remained elusive. It has previously been shown
that gliT is not regulated by GliZ, a Zn(II),Cyss TF that is part of the gliotoxin BGC and is
required for gliotoxin biosynthesis [37]. The TF RgIT was shown to regulate not only GliZ but
several other gli genes, including gliT [30,36,37,42], through directly binding to the respective
promoter regions during GT-producing conditions. Interestingly, RglT and GliT were shown
to have similar roles in GT protection in A. nidulans, a fungus that does not produce GT [42].
The genome of A. nidulans lacks homologs for gliA and gtmA. Therefore, the aim of this work
is to elucidate additional components required for GT protection in Aspergillus species by
comparing the transcriptional response of A. fumigatus and A. nidulans to exogenous GT. By
using transcriptional profiling (RNA-seq), we investigate the influence of RglT in GT protec-
tion in the GT-producer A. fumigatus and in the GT-non producer A. nidulans. Although they
are both members of the genus Aspergillus, the two species are distantly related and the
sequence divergence of their genome sequences is on par to that of the human and fish
genomes [43,44]. We identified several novel genetic determinants dependent or not on RgIT
and that could be involved in GT protection, including a novel methyltransferase encoded by
mtrA whose deletion confers GT-sensitivity in both A. fumigatus and A. nidulans. We also
screened an A. fumigatus deletion library of 484 null mutants and identified, in addition to
RglT, 15 TFs that are potentially important for GT self-protection. We found that one of these
TFs is a KojR ortholog, previously reported as regulator of the kojic acid production gene clus-
ter in A. oryzae, is important as well for A. nidulans and A. oryzae GT protection and involved
in A. fumigatus virulence, GT self-protection and GT and bmGT biosynthesis. KojR regulates
the inorganic sulfur assimilation and transssulfuration pathways when A. fumigatus is exposed
to GT.
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Results

A. fumigatus RgIT controls the expression of GT- and other SM-encoding
genes when exposed to exogenous GT

To determine which genes are under the transcriptional control of RgIT in the presence of
exogenous GT, we performed RNA-sequencing (RNA-seq) of the A. fumigatus wild-type
(WT) and ArgIT strains when exposed to 5 pug/ml GT for 3 h. In these conditions, A. fumigatus
is protecting itself from the effects of GT, as has previously been shown [45]. Differentially
expressed genes (DEGs) were defined as those with a minimum log2 fold change of 2

[log2FC > 1.0 and < -1.0; p-value < 0.05; FDR (false discovery rate) of 0.05]. DEG compari-
sons were carried out for: (i) the WT strain, comparing the GT condition to the control (GT-
free condition) to determine which genes are modulated after 3 h exposure to GT; and (ii)
when comparing the rglT deletion strain to the WT strain in the presence of GT to determine
which genes are under the regulatory control of RgIT in these conditions.

In the WT strain, 260 genes were down-regulated and 270 genes up-regulated when com-
paring the GT to the control condition (S1 Table). FunCat (Functional Categorisation)
(https://elbe.hki-jena.de/fungifun/fungifun.php) analysis for the WT strain comparisons
showed a transcriptional up-regulation of genes coding for proteins involved in non-vesicular
ER transport, translation, mitochondrion, respiration and electron transport (p-value < 0.01;
Fig 1A). FunCat analysis for the down-regulated genes showed enrichment for genes involved
in homeostasis of metal ions, detoxification involving cytochrome P450, C-compound and
carbohydrate metabolism, and secondary metabolism (p-value < 0.01; Fig 1A). When compar-
ing the WT to the ArgIT strain in the presence of GT, a total of 269 genes were down-regulated
and 694 genes were up-regulated (S2 Table). FunCat enrichment analysis of these DEGs
showed a transcriptional up-regulation of genes encoding proteins involved in secondary
metabolism, C-compound and carbohydrate metabolism, cellular import, and siderophore-
iron transport (p-value < 0.01; Fig 1B). FunCat analysis of down-regulated DEGs showed
enrichment of transport facilities, lipid, fatty acid and isoprenoid metabolism, and homeostasis
of cations (p-value < 0.01; Fig 1B). These results suggest that A. fumigatus adapts to the pro-
longed presence of GT through transcriptionally inducing cellular homeostasis and detoxifica-
tion processes and that RgIT is important for these processes.

More specifically, RgIT is important for the expression of 11 out of the 13 genes present in
the GT BGC (including gliT and gliA) as well as gtmA (which is not part of the GT BGC) in the
presence of exogenous GT (Fig 1C). Interestingly, glil and gli] expression are not altered by the
presence of GT in the WT and in the ArgIT strains (Fig 1C). RNA-seq analysis also revealed
transcriptional modulation of other SM-encoding genes. For example, BGC genes encoding
components for the biosynthesis of pyripyropene, naphthopyrone, fumagillin, fumiquinazo-
lines, and fumigaclavine were shown to be under the transcriptional control of RgIT, with this
TF repressing these genes under prolonged GT exposing conditions (Fig 1D).

These results suggest that RglT is important not only for GT biosynthesis and self-protec-
tion, but also for the regulation of the expression of genes involved in the production of other
SMs.

Comparison of the A. fumigatus and A. nidulans transcriptional responses
when exposed to GT
Next, we performed RNA-seq for the A. nidulans WT (the GT MIC for A. nidulans is 30 pg/

ml) and ArglT strains in the same conditions (5 ug/ml GT for 3 h) as described above and iden-
tified DEGs. The same two comparisons were carried out as described above for A. fumigatus
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Fig 1. Functional characterisation (FunCat) of significantly differently expressed genes (DEGs) identified by
RNA-sequencing in the A. fumigatus ArglT strain. (A) FunCat analysis of DEGs up-regulated in the A. fumigatus
wild-type and in (B) ArgIT strain in comparison to the wild-type (WT) strains when exposed to 5 pug/ml GT for 3 h. (C)
Heat map depicting the log2 fold change (Log2FC) of differentially expressed genes (DEGs), as determined by RNA-
sequencing, and encoding enzymes present in the GT BGC required for GT biosynthesis. The gene gtmA was also
included in this heat map. (D) Heat map depicting the Log2FC of differentially expressed genes (DEGs), as determined
by RNA-sequencing, and encoding enzymes required for secondary metabolite (SM) biosynthesis. In both (C) and (D)
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log2FC values are based on the wild-type strain exposed to GT in comparison to the wild-type control and the ArgIT
exposed to GT in comparison to the wild-type exposed to GT. Heat map scale and gene identities are indicated.
Hierarchical clustering was performed in MeV (http://mev.tm4.org/), using Pearson correlation with complete linkage
clustering.

https://doi.org/10.1371/journal.pgen.1009965.g001

(WT GT vs. WT Control and ArglT GT vs WT GT). In the A. nidulans WT strain, 678 genes
were down-regulated and 675 genes were up-regulated when comparing the GT to the control
condition (S3 Table). We were not able to observe any Funcat enrichment for these DEGs and
then we employed gene ontology (GO; https://elbe.hki-jena.de/fungifun/fungifun.php) enrich-
ment analyses for the WT strain that showed transcriptional up-regulation of genes coding for
proteins involved in mitochondrial function, such as ATP synthesis coupled proton transport
and cytochrome-c oxidase activity, as well as ergot alkaloid biosynthetic process and a hetero-
geneous set of cellular components (p-value < 0.01; Fig 2A). GO analysis for the down-regu-
lated genes showed enrichment for a heterogeneous set of genes involved in biological
processes and cellular components (p-value < 0.01; Fig 2A). When comparing the WT to the
ArglT strain in the presence of GT, 132 genes were down-regulated and 68 genes were up-regu-
lated (S4 Table). GO enrichment analyses of the ArgIT strain showed a transcriptional up-regu-
lation of genes encoding proteins involved in nucleotide binding and cellular components (p-
value < 0.01; Fig 2B). GO analysis of down-regulated DEGs in the ArglT strain showed enrich-
ment of flavin adenine dinucleotide binding and oxidation-reduction processes (p-

value < 0.01; Fig 2B). In contrast to A. fumigatus, where prolonged exposure to GT resulted in
530 identified DEG in the WT strain (about 5.3% of the A. fumigatus 9,929 protein coding
sequences, CDSs), in A. nidulans 1,353 DEG (about 13.5% of the A. nidulans 9,956 CDSs) were
identified in the WT strain in these conditions. Similarly, in A. fumigatus, RglT controls the
expression of 963 genes (about 9.7% of the CDSs) when exposed to GT for 3 h, whereas the
number of genes regulated by RglT in A. nidulans is smaller (200 genes, about 2% of the
CDSs). Together, these results suggest very significant differences in the transcriptional
response to GT and for the role of RgIT in mediating this response between Aspergilus species.

To determine whether a conserved transcriptional response to GT in both A. fumigatus and
A. nidulans exists, we searched for homologous genes whose expression pattern was similar (i)
between the WT strains and (ii) RglT-dependent in both fungal species in the presence of GT.
When A. fumigatus wild-type DEGs were compared to A. nidulans wild-type DEGs, 35 and 11
homologs were up- and down-regulated in both species, respectively (S3 Table). Furthermore,
a total of 11 genes were found: six genes were dependent on RgIT for expression [GliT
(AN3963/AFUA_6G09740), a methyltransferase (AN3717/AFUA_6G12780), GprM
(AN3567/AFUA_7G05300), a Major Facilitator Superfamily transporter (AN1472/
AFUA_8G04630), AN8167/AFUA_5G02950, and AN1470/AFUA_5G8G04260 with unknown
functions]; and the other five genes were dependent on RglT for repression [lysozyme activity
(AN6470/AFUA_6G10130), L-PSP endoribonuclease (AN5543/AFUA_5G033780), oxidore-
ductase activity (AN9051/AFUA_7G00700), NmrA-transcription factor (AN9531/
AFUA_7G06920), and an ATP-binding cassette transporter (AN7879/AFUA_1G10390)] (Fig
2C and S4 Table).

We observed 43 homologs that were RglT-independent (54 Table) and among them, we
identified as induced by GT a putative cysteine synthase (AN7113/AFUA_4G03930) and
ZrcA, a zinc/cadmium resistance protein (AN10876/AFUA_7G06570) (S4 Table). Another
RglT-independent gene is the GliT paralogue AN6963/AFUA_5G03540; interestingly, this
gene is upregulated in A. nidulans and downregulated in A. fumigatus upon GT exposure
(S4 Table).
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Fig 2. Functional characterisation (FunCat) of significantly differently expressed genes (DEGs) identified by RNA-sequencing in
the A. nidulans ArgIT strain. (A) FunCat analysis of DEGs up-regulated in the A. nidulans wild-type in the presence of GT when
compared to the control condition, and in (B) the ArgIT strain in comparison to the wild-type (WT) strain when exposed to 5 pg/ml
GT for 3 h. (C) Heat map depicting the log2 fold change (Log2FC) of differentially expressed homologous genes (DEHGs), as
determined by RNA-sequencing, that have their expression dependent on RgIT. (D) Upper panel: heat map depicting the log2 fold
change (Log2FC) of 9 DEHGs and gtmA as determined by RNA-sequencing. Lower panel: heat map depicting the log2 fold change
(Log2FC) of 9 DEHGs and gtmA as determined by RT-qPCR. Log2FC values are based on the A. fumigatus (Afu) or A. nidulans (Ani)
wild-type strains exposed to GT when compared to the Afu or Ani wild-type control and the Afu or Ani ArglT strains exposed to GT
when compared to the Afu or Ani wild-type exposed to GT. Heat map scale and gene identities are indicated. Hierarchical clustering
was performed in MeV (http://mev.tm4.org/), using Pearson correlation with complete linkage clustering. For the RT-qPCR
experiments, the values represent the average of three independent biological repetitions (each with 2 technical repetitions). (D)
Pearson correlation analysis between the expression of 10 genes as measured by RT-qPCR and RNA-sequencing. A positive correlation

was seen for all analysed datasets.

https://doi.org/10.1371/journal.pgen.1009965.9002
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RNA-seq results were confirmed by RT-qPCR for the majority of the 9 selected A. fumiga-
tus/A. nidulans homologs and for the A. fumigatus GtmA-encoding gene (A. nidulans lacks a
homolog) (Figs 2D and 2E and S1). The expression of these 10 genes showed a high level of
correlation with the RNA-seq data (Pearson correlation from 0.896 to 0.952; Fig 2E).

Taken together, our results suggest that the transcriptional responses of A. fumigatus and A.
nidulans to GT are very different, although we were able to observe 54 homologs whose tran-
scriptional response was similar in both species. However, we note that we used an equal expo-
sure to GT (5 ug/ml GT for 3 hours) for both species but A. nidulans shows greater
susceptibility to GT than A. fumigatus.

A novel methyltransferase (MtrA) is important for GT self-defense in
Aspergilli
Among the genes dependent on Aspergilli RglT, we identified a methyltransferase (named
MtrA, AN3717/AFUA_6G12780). (Fig 2C and S4 Table). We deleted this gene in both A. nidu-
lans and A. fumigatus and tested the growth of two independent transformants for each dele-
tion in the presence of GT (Figs 3A and S3). A. fumigatus AmtrA deletion strains showed
about 20% growth reduction compared to the corresponding wild-type while A. nidulans
AmtrA deletion strains presented about 60% growth reduction (Fig 3A). Fig 3B shows the taxo-
nomic distribution of MtrA, RglT, GliT, and GT biosynthetic gene cluster (BGC) homologs
across Eurotiomycetes and Sordariomycetes. Phylogenetically informed model testing of the
distributions of RglT and MtrA suggests that the pattern of occurrence of RgIT is statistically
dependent on the distribution of MtrA but not vice-versa. This analysis suggests an evolution-
ary scenario in which the MtrA-based resistance mechanism is ancestral and the evolutionary
recruitment of RgIT regulation of GliT occurred subsequently.

These results strongly indicate that our approach to compare the transcriptomics of A.
fumigatus and A. nidulans ArglT mutants was efficient to identify novel genes involved in GT-
protection.

Screening of A. fumigatus TF deletion strains for sensitivity to GT

Our RNA-seq results show there are DEGs that are not dependent on RglT and suggest there
additional TFs that could be important for GT protection in Aspergilli. To identify these possi-
ble TFs involved in the GT self-protection response, we took advantage of the existing A. fumi-
gatus TF null deletion library [46] which we screened for sensitivity to 35 pg/ml of GT (A.
fumigatus minimal inhibitory concentration for GT is 70 pg/ml). In addition to ArgIT, 15 null
mutants exhibited increased sensitivity to 35 pug/ml of GT (Figs 4 and 5). Only
AFUA_3G09670 (oefA) is up-regulated in the ArglT mutant and only AFUA_4G13060 is up-
regulated in the wild-type strain in our RNA-seq experiments (S1 and S2 Tables).

Previous studies have shown that GT biosynthesis and self-protection is intimately linked
to sulfur metabolism, oxidative stress resistance, as well as iron and zinc metabolism [47-52].
To identify if any of the TFs identified in the screen are associated with these pathways, the
null mutants were screened for growth in the presence of (i) methionine or cysteine as single
sulfur sources (S2 Fig); (ii) oxidative stress-inducing agents such as allyl alcohol (converted to
the oxidative stress-inducing compound acrolein by alcohol dehydrogenases), t-butyl hydro-
xyperoxide, menadione, and diamide (a GSH scavenger); and (iii) increased and depleted
extracellular iron and zinc concentrations (Fig 6). None of these mutants showed altered
growth compared to the WT strain in the presence of methionine or cysteine as single sulfur
sources (S2 Fig). Six of the deletion strains [ArglIT, AsreA (AAFUA_5G12060),
AAFUA_5G140390, Ayapl (AAFUA_6G09930), AAFUA_6G09870, and AAFUA_8G07360]
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Fig 3. The A. fumigatus and A. nidulans AmtrA mutants are more sensitive to GT. (A) The A. fumigatus and A.
nidulans wild-type and two independent AmtrA strains were grown for 48 hours at 37°C on MM in the absence or
presence of 30 or 10 pg/ml of GT, respectively. The results are the average of three repetitions + standard deviation.
Statistical analysis was performed using a one-tailed, paired t-test when compared to the control condition (*, p <
0.01). (B) The phylogenetic distribution of MtrA, RglT, GliT and GT biosynthetic gene cluster homologs across 458
fungal genomes. A 4-gene phylogeny of genomes from Eurotiomycetes (shown by the red branches) and
Sordariomycetes (shown by the blue branches). For every tip in the phylogeny, the presence of MtrA, RglT, GliT and
gliotoxin BGC homologs is depicted using light green, orange, blue, and dark green, respectively; absences are depicted
in white. The dark green bar plots depict how many of the 13 Gli genes are present in the gliotoxin BGC homolog. The
tip corresponding to the A. fumigatus Af293 genome is indicated by a red dot, and the tip corresponding to the A.
nidulans A4 genome is indicated by a maroon dot.

https://doi.org/10.1371/journal.pgen.1009965.9003

were sensitive to at least one of the four oxidative stress-inducing agents (Fig 6A-6D). The
AAFUA_8G07360 mutant is resistant to diamide (Fig 6D). Four strains (AAFUA_3G13920,
AAFUA_5G11260, AAFUA_3G01100 and AAFUA_8G03970) had increased growth, while
AAFUA_3G09670, AAFUA_5G06800, and AAFUA_5G12060 presented significantly
decreased growth in iron starvation conditions (Fig 6F). Intriguingly, AAFUA_8G05460 had
reduced growth upon zinc starvation but increased growth upon zinc excess (Fig 6G and 6H).
The ArglT mutant has reduced growth in zinc starvation conditions but had increased growth
in iron starvation conditions (Fig 6F and 6H).

Taken together, these results strongly suggest that some of the mutants identified as more
sensitive to GT are also involved in pathways related to oxidative stress and iron and zinc
metabolism.

Production of gliotoxin and BmGT in the gliotoxin sensitive mutants

The ArglT and AgliT strains are not only sensitive to exogenous GT, but they also secrete signifi-
cantly less GT [37,42]. To determine if the TF deletion strains from our screen are also impaired
for GT and bmGT biosynthesis and secretion, we quantified extracellular GT and bmGT in cul-
ture supernatants of these strains when grown in GT-inducing conditions. As previously demon-
strated [42], high performance liquid chromatography and mass spectrometry experiments
showed that ArgIT has reduced GT and produces a similar amount of bmGT when compared to
the WT and rgIT complemented strains (S5 Table, Fig 7A-7C). The AkojR (AAFUA_5G06800),
AAFUA_5G12060, ArgdA (AAFUA_3G13920), AAFUA_8G07360, AsreA (AAFUA_5G11260),
and AAFUA_2G17860 strains secrete significantly less GT when compared to the WT strain
(Fig 7A and 7C). In contrast, the AoefC (AAFUA_3G09670), AAFUA_6G09870, and
AAFUA_5G14390 strains secrete significantly more GT than the WT strain (Fig 7A and 7C). Pro-
duction of bmGT is decreased in the AkojR (AAFUA_5G06800) but increased in most of the
strains (10 out of 16), with the exception of ArglT, AAFUA_5G12060, ArgdA (AAFUA_3G13920),
AsreA (AAFUA_5G11260), and AAFUA_2G17860 which produce similar concentrations of
bmGT than the WT strain (Fig 7B and 7C). Interestingly, the AkojR (AAFUA_5G06800) strain is
the only TF deletion strain with reduced GT and bmGT levels (Fig 7A-7C), whilst the
AAFUA_8G03970, AAFUA_6G09930, and AoefC (AAFUA_3G09670) strains have increased lev-
els of GT and bmGT in the supernatants (Fig 7A-7C).

Our results indicate that several TFs are involved in the induction or repression of GT and
bmGT biosynthesis. In contrast, only for the AkojR strain are GT and bmGT extracellular lev-
els significantly decreased, and we have chosen this TF for further characterisation.

RgIT and KojR are important for GT protection in Aspergilli

We have previously shown that RglT and GliT in A. fumigatus and A. nidulans have a similar
role in protecting each fungus from the deleterious effects of GT [42]. Homologs of RgIT and
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Fig 4. List of the transcription factor mutants identified as more sensitive to gliotoxin (the domais organization are based on http://smart.embl-heidelberg.de/).

https://doi.org/10.1371/journal.pgen.1009965.g004

GIiT are present in a number of Eurotiomycetes and Sordariomycetes suggesting that this
mechanism of GT protection is widespread, including in many species that are not GT pro-
ducers [42]. Similarly to MtrA, phylogenetically informed model testing led to an evolutionary
scenario in which the GliT-based resistance mechanism is ancestral and RglT-mediated regu-
lation of GliT occurred subsequently [42]. To determine whether a phylogenetic relationship
exists between RglT and KojR, we screened for the presence of GT and kojic acid BGCs as well
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Fig 5. Identification A. fumigatus TFs important for gliotoxin (GT) self-protection. Strains were grown from 10*
conidia for 2 days at 37°C on minimal medium (MM) supplemented with 30 pg/ml GT before colony radial diameter
was measured. The results are expressed as the radial diameter of the treatment divided by the radial diameter of the
growth in the control GT-free condition. The results are the means of three repetitions + standard deviation. Statistical
analysis was performed using a one-tailed, paired t-test when compared to the control condition (¥, p < 0.05).

https://doi.org/10.1371/journal.pgen.1009965.g005

as RglT and KojR homologs across Aspergillus and Penicillium species and constructed a phy-
logenetic tree (Fig 8A). Results suggest that their origins predate the origin of both genera. In
contrast, homologs of the kojic acid BGC are present in only A. oryzae and close relatives (Fig
8A). In contrast to RglT and GIiT, examination of the phylogenetic distribution patterns of
RglT and KojR revealed that they are not significantly correlated (scenario A). The same was
true for KojR and the kojic acid BGC, suggesting that KojR was recruited specifically for kojic
acid biosynthesis in A. oryzae and close relatives. In contrast, the distribution of the GT bio-
synthetic gene cluster is correlated with the presence of RgIT (scenario B) [42], but not vice-
versa; however, scenario A (lack of correlation between their distributions) also fit the
observed data well (Table 1).

To determine whether KojR is also required for protection from GT in other fungi, the cor-
responding homologous genes were deleted in A. nidulans (chosen because it does not produce
either GT or kojic acid) and A. oryzae (produces kojic acid). Similarly to A. fumigatus, deletion
of kojR significantly increased sensitivity to exogenously added GT in both A. nidulans and A.
oryzae (Fig 8B-8D). In contrast to deletion of rgIT, which made all three species fully sensitive
to GT, deletion of kojR resulted in only partial sensitivity to GT (Fig 8B-8D). We cannot explain
the increased sensitivity to GT in A. oryzae AkojR, but these results suggest that RglT functions
downstream of KojR and/or that RgIT is regulated by KojR in these conditions. To address this,
the A. oryzae WT, the rglT and the kojR deletion strains were first screened for kojic acid pro-
duction, which can be seen by the intensity of the red color (formed by chelating ferric ions) on
plates. As expected, deletion of kojR resulted in the absence of red colour and hence kojic acid
production, whereas deletion of rgIT did not affect kojic acid production in A. oryzae (Fig 8E).
These results suggest that RgIT does not regulate kojic acid production in A. oryzae.

GIliT and GtmA are partially dependent on Aspergilli KojR

To determine whether KojR is under the transcriptional control of RgIT in the presence of GT,
transcriptional levels of kojR in the A. fumigatus and A. oryzae rglT deletion strains were
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Fig 6. Growth phenotypes of the A. fumigatus GT-sensitive transcription factor deletion strains. Strains were grown from 10* conidia for 5 days
at 37°C on minimal medium supplemented with the indicated compounds. The results are expressed as the radial diameter of the treatment divided
by the radial diameter of the growth in the control, drug-free condition. The results are the means of three repetitions + standard deviation.
Statistical analysis was performed using a one-tailed, paired t-test when compared to the control condition (*, p < 0.05). (A) allyl alcohol 40 mM. (B)
menadione 0.01 mM. (C) ¢-butyl hydroxyperoxide 1 mM. (D) diamide 1.25 mM. (E) FeSO, 200 pM. (F) BPS 200 uM+Ferrozine 300 pM. (G) ZnSO,
200 puM. (H) phenanthroline 0.025 mM.

https://doi.org/10.1371/journal.pgen.1009965.9006
measured by RT-qPCR (Fig 9A). In A. fumigatus and A. oryzae, deletion of rglT resulted in sig-

nificantly decreased and increased kojR transcript levels, respectively, suggesting that RgIT reg-
ulates kojR in these fungi (Fig 9A). To determine whether rglT is under the transcriptional
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https://doi.org/10.1371/journal.pgen.1009965.g007
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gliotoxin. Graphs correspond to the radial diameter of the colony growth that is depicted in the pictures. Standard deviations represent the average of
three biological replicates with *p < 0.05 in a one-tailed, paired t-test. (E) Detection of kojic acid (KA) production in A. oryzae in medium containing
1 mM ferric ion (FeCls). A red colour indicates the presence of KA chelated with ferric ions. The first and second rows indicate the top and bottom of
the plates, respectively.

https://doi.org/10.1371/journal.pgen.1009965.9g008

control of KojR in the presence of GT, rgIT transcript levels were quantified by RT-qPCR in
the WT and kojR deletion strains (Fig 9B). In the A. fumigatus and A. oryzae AkojR strains,
rglT transcript levels were significantly reduced, suggesting that KojR regulates rgIT expression
in the presence of exogenous GT (Fig 9B). We were unable to measure the expression levels of
A. nidulans kojR and rgIT in the absence or presence of GT because the PCR amplification

Table 1. Akaike Information Criterium (AIC) of model fitting for phylogenetic correlation tests.

Independent Dependent X Dependent Y Interdependent
X: kojR; 0.767 0.104 0.113 0.016
Y: rgiT
X: kojR; 0.704 0.101 0.170 0.025
Y: kojic acid BGC
X: rglT; 0.336 0.471 0.068 0.125
Y: gliotoxin BGC

BGC = biosynthetic gene cluster

https://doi.org/10.1371/journal.pgen.1009965.t001
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Fig 9. GIiT and GtmA are dependent on Aspergilli RgIT and KojR. A. fumigatus, A. nidulans, and A. oryzae strains were grown for 21 h at 37°C before 5 pg/ml of GT
was added to cultures for 3 hours. RNA was extracted from all fungal strains, reverse transcribed to cDNA and RT-qPCRs were peformed. The expression of gtmA, kojR
and rgIT in the A. nidulans WT, ArglT and AkojR strains could not be measured due to either the absence of the gene (gtmA) or the absence of quantifyable mRNA.
Results are the average of three biological replicates + standard deviation. Statistical analysis was performed using a one-tailed, paired t-test when compared to the
control condition (*, p < 0.05). (A-D) A. fumigatus, A. nidulans, and A. oryzae wild-type, ArglT, and AkojR strains were grown for 21 h at 37°C and mycelia was exposed
to 5 ug/ml of GT for 3 hours. RT-qPCR analysis for kojR (A), rgIT (B), gliT (C and E), and rgIT (D and F) genes.

https://doi.org/10.1371/journal.pgen.1009965.g009

profiles were similar to the negative control (water), suggesting kojR and rgIT have very low
levels of expression in this fungus.

Finally, we further assessed the role of KojR in GT protection in A. fumigatus, A. nidulans,
and A. oryzae. We were unable to detect any GT and bmGT production in A. oryzae wild-type,
RglT and KojR (54 Fig). We previously demonstrated that the expression of gliT, encoding an
oxidoreductase with a GT neutralising function, is dependent on RglT in both A. fumigatus
and A. nidulans when GT was added exogenously to the medium [42] (Figs 2C and 9C). In
agreement with these data, the expression of A. oryzae gliT is decreased in the ArglT mutant,
suggesting that gliT expression is dependent on RgIT in all three Aspergillus species (Fig 9C).
Furthermore, gliT expression was also dependent on KojR in these fungal species with KojR
inducing gliT expression in A. fumigatus (about 20% reduction in the AkojR mutant) and A.
oryzae (about a three-fold reduction in the AkojR mutant) and repressing gliT in A. nidulans
(about 2.5-fold increase in the AkojR mutant; Fig 9D). Subsequently, gtmA transcript levels
were also quantified as gtmA is also important for GT self-protection [38]. The expression of
gtmA is also significantly decreased in A. fumigatus and A. oryzae ArglT mutants (Fig 9E) and
about 20% and 25-fold, respectively, in the A. fumigatus and A. oryzae AkojR mutants (Fig 9F).
No gtmA homolog is present in A. nidulans.

Together these results suggest: (i) a regulatory interplay exists between RglT and KojR in
GT protection that differs between Aspergillus spp; (ii) RgIT-dependent GliT protection from
exogenous GT is a conserved mechanism in GT-producing and non-producing Aspergillus
spp; (iii) the existence of further mechanisms of GT self-protection that significantly differ

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009965 January 18, 2022

16/34


https://doi.org/10.1371/journal.pgen.1009965.g009
https://doi.org/10.1371/journal.pgen.1009965

PLOS GENETICS

Gliotoxin biosynthesis and protection in Aspergillus species

between GT-producing and non-producing Aspergillus spp; and (iv) A. fumigatus KojR plays a
role in the gliT and gtmA regulation in the presence of GT.

A. fumigatus KojR is important for gli] expression, inorganic sulfur
assimilation, and virulence

We decided to investigate the influence of KojR on the expression of other genes that are
important for GT production and protection. Fig 10 summarizes the contributions of some of
these pathways and the different genes involved in GT biosynthesis and self-defense. We com-
pared the mRNA accumulation of selected genes described in Fig 10 when the wild-type and
the AkojR mutant were exposed to 5 pg/ml GT for 3 hours (Fig 11A). Thirteen gli genes in the
GT BGC, and gtmA, were up-regulated when A. fumigatus wild-type is exposed to GT (Fig
11A). Interestingly, different from the RNA-seq data (Fig 1C), we were able to see increased
glil and gli] mRNA levels when the wild-type is exposed to GT by using RT-qPCR (Fig 11A).
These results emphasize that the gli genes are up-regulated when A. fumigatus is exposed to
GT. The gliP, gliG, gliF, gliH, gliN, gliA, gliT, and gtmA (these two last ones previously shown
in the Fig 9) have about 20 to 30% less mRNA accumulation in the AkojR mutant than in the
wild-type while Agli] has a two-fold increase in the wild-type and it is significantly down-regu-
lated in the AkojR mutant (Fig 11A). The TF gliZ is about 10% more expressed in the AkojR
mutant than in the wild-type while gtmA is about 20% less expressed in the AkojR mutant

(Fig 11A).

Inorganic sulfur assimilation starts by the transport of sulfate by the sulfate transporter sB;
through several steps of metabolic transformation, sulfate is subsequently converted into sul-
fide and then to methionine through the subsequent action of sC, sD, sF, CysB, MetB, CysD,
and MetH (Figs 10 and 11B). In the A. fumigatus wild-type strain, there is an increased mRNA
accumulation of all the genes of the inorganic sulfur assimilation (sB, sC, sD, sF, and cysB)
including its transcriptional regulator metR and a decreased mRNA accumulation of selected
genes in the transsulfuration pathway (metB, metG, cysD, metH, and mecB) upon GT exposure
(Figs 10 and 11B). In contrast, the sB mRNA accumulation is significantly reduced about
10-fold in the AkojR mutant when compared to the wild-type strain (Fig 11B). There is a lower
mRNA accumulation of sB, sC, sD, sF, cysB, and cysD when compared to the wild-type strain
(Fig 11B). In contrast, metB, metH, and mecB have higher mRNA accumulation than the wild-
type and there are no differences between both strains for metG (Fig 11B).

The increased expression of transsulfuration genes (metB, metH, and mecB) when the
AkojR mutant is exposed to GT suggests that the AkojR mutant is trying to synthesize other sul-
fur metabolic intermediates through the transsulfuration pathway. We reasoned that if AkojR
mutant has problems in inorganic sulfur assimilation, growth in the presence of organic sulfur
sources, such as methionine or cysteine, could suppress the GT-sensitivity observed when
AkojR is grown on MM+S0O as a single inorganic sulfur source (Figs 8B and 11C). The GT-
sensitivity of the AkojR mutant is partially suppressed in MM+cysteine but not in MM+-
methionine (Fig 11C), strongly emphasizing not only the defects of assimilation of inorganic
sulfur by AkojR in the presence of GT but also possible defects in methionine assimilation.
Interestingly, the A. nidulans AkojR GT susceptibility is also suppressed by cysteine and only
partially by methionine as a single sulfur source (Fig 11D) while cysteine (but not methionine)
partially suppressed A. oryzae GT AkojR susceptibility (Fig 11E), strongly suggesting that A.
nidulans and A. oryzae KojR homologs are also important for sulfur assimilation during GT
protection. Additional evidence for that comes from the KojR-dependency on the expression
A. nidulans and A. oryzae of sB sulfate transporter homologs upon GT exposure (Fig 11F). We
also observed that GT-sensitivity of both A. fumigatus and A. oryzae ArglT mutants could not
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Fig 10. Schematic representation of the pathways that are important for GT production and self-defense. - The pathways of sulfate assimilation,
transsulfuration, and GT production are shown in the scheme. The depicted genes are: sB, sulfate transporter; sC, ATP sulfurylase; sD, adenosine 5’-
phosphosulfate (APS) kinase; sA, 3’-phosphoadenosine-5’-phosphosulfate (PAPS) reductase; sF, -subunit of the sulfite reductase; AFUA_6G08920, a-subunit of
the sulfite reductase; cysB, cysteine synthase; metB, cystathione- Y-synthase; metG, cysthationine-B-lyase; metH, methionine synthase; mecC,
5-adenosylmethionine synthetase; mecA, cystathionine-B-synthase; mecB, cystathionine- Y-lyase; cysD, homocysteine synthase; gliP, non-ribosomal peptide
synthetase; gliC, cytochrome P450 monooxygenase; gliG, glutathione-S-transferase; gliK, unknown protein; gliJ, membrane dipeptidase; glil, 1-aminocyclopropane-
1-carboxylic acid synthase; gliF, cytochrome P450 monooxygenase; gliC, cytochrome P450 monooxygenase; gliH, acetyl transferase; gliN, methyltransferase; gliT,
gliotoxin sulthydryl oxidase; gliA, major facilitator type glioxin transporter; gcs1, glutamate cysteine-ligase; gsh2, glutathione synthase; egtA, ergothioneine synthase;
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https://doi.org/10.1371/journal.pgen.1009965.9010

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009965 January 18, 2022 18/34


https://doi.org/10.1371/journal.pgen.1009965.g010
https://doi.org/10.1371/journal.pgen.1009965

PLOS GENETICS

Gliotoxin biosynthesis and protection in Aspergillus species

A.

gliP glic gliG gliF gliK gliJ

glil  gliH gliN gliT gliA gliM gliZ gtmA

C.

A. fumigatus

+ Gliotoxin 30 pg/ml

° -
£ 14 [l wid-type  — Wild-type ~ AkoR  AkojR:kojR*  ArgiT Wild-type AkojR  AkojRikojR®  ArgiT
é 12 [ akoiR <052 1.42 . N
é - .ﬂé MM+S0,2
X
; -
=4 gip, MM+
- IiC
3 gl;'G Met SmM “
2 gliF
g a0
5 o MM+
= g,’w Cys 5mM
3 giT
Rel giA
o glim
2 gliz
8 ima B MM+SO,
B. B MM+Met 5 mM
~ 090 # * # MM+Cys 56 mM
—_ o
5 5 £ oso z % I
£ 4 W vidtee  oo— 8 910 .
= ] akojR -1 356 5 060 # #
5 3 @ = 0.50
£ - S 2 040 #
g . s 3 g o030
o 8 s 020
0 sC £+ *
g 1 sD 3 0.10
= F
g ZysB 0 ) T ) i
£ 0 met8 Wild-type AkojR kojR::kojR’ ArgIT
% cysB  metB  metG metG
kel cysD
P metH
> oysD  metH oo
3 -2
D. A. nidulans E A. oryzae
+ Gliotoxin 30 pg/ml Gliotoxin 30 ug/ml
Wild-type AkojR-1  AkojR-2  ArgIT Wild-type AkojR-1 AkojR-2  ArgIT Wild-type AkojR ArgIT Wild-type _AkojR
MM+S0,2 i 1
PDA+SO,2
MM+
Met 5mM M:tl:)sﬁ:mM
MM+ PDA+
Cys 5mM Cys 5mM
B MM+SO, B MM+SO,
H MM+Met 5 mM M MM+Met 5 mM
= 1.00 # 4 # MM+Cys 5 mM ~ 080 " MM+Cys 5 mM
£ 0.90 - o -
= # aE el = 070
g 080 . "
£ 070 # £ 060 #
€ 060 # # . © 050 =
= S
S 0.50 * * T £ 040
g 040 H
g 1 o 0.30
= 0.30 =
£ 020 5 0% # .
S 041% . N . % E 0.10 ﬂ _
Wid-type  MkoRT  AkojR2 argm 0 Widtype MR ) ArgiT
F. Il wid-type
A. fumigatus i A i
g " ig: 5 ® A. nidulans 5 oa0 A. oryzae - AkojR
c c =
é 12 § 10 §
£ 2 2 030
o 10 o g g
£ : :
g g S o020
o 6 ; =
g, g 4 - 2 .
5 2 2 010
£ ** 2 2 2
o o
e o ° § 0
Wild-type AkojR Wild-type AkojR Wild-type AkojR

Fig 11. A. fumigatus gli] and sulfur assimilation genes are dowregulated in the AkojR mutant. - A. fumigatus was grown for 21 h at 37°C before 5 g/
ml of GT was added to cultures for 3 hours. RNA was extracted from the wild-type and AkojR strains, reverse transcribed to cDNA and RT-qPCRs were
peformed. Results are expressed as log2 fold increase and are the average of three biological replicates + standard deviation. Statistical analysis was
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performed using a one-tailed, paired t-test when compared to the control condition (**, p < 0.01 and ¥, p < 0.005). (A) Genes in the A. fumigatus GT
pathway and gtmA. (B) Selected genes in the A. fumigatus sulfur assimilation and transsulfuration pathways. Heat map scale and gene identities are
indicated. (C) A. fumigatus, (D) A. nidulans, and (E) A. oryzae wild-type, AkojR, AkojR::kojR", and ArglT mutants were grown for 48 hours at 37°C on
MM+80,7, MM+Met 5 mM, and MM+Cys 5 mM in the presence or absence of 10 or 30 pg/ml of GT. The results are the average of three

repetitions * standard deviation. Statistical analysis was performed using a one-tailed, paired t-test when compared to the control condition (*, p < 0.005
when comparing the mutant strains versus the wild-type and and #, p < 0.005 when comparing the growth on MM+Met or MM+Cys versus the growth
on MM+SOy). (F) A. fumigatus, A. nidulans, and A. oryzae were grown for 20 h at 37°C before 5 ug/ml of GT was added to cultures for 3 hours. RNA
was extracted from the wild-type and AkojR strains, reverse transcribed to cDNA and RT-qPCRs were peformed. Results are the average of three biological
replicates + standard deviation. Statistical analysis was performed using a one-tailed, paired t-test when compared to the control condition (**, p < 0.01
and *, p < 0.005).

https://doi.org/10.1371/journal.pgen.1009965.9011

be suppressed by either methionine or cysteine as a single sulfur souce while A. nidulans ArglT
GT susceptibility was partially suppressed by cysteine (Fig 11A-11E).

Taken together, these data indicate that although there is a global reduction in the expres-
sion of several genes in the GT BGC, including gliT (and also gtmA, not present in the GT
BGC), A. fumigatus KojR is essential for the gli] expression. Furthermore, A. fumigatus KojR is
also important for the transcriptional modulation of several genes involved in inorganic sulfur
assimilation and transsulfuration in the presence of GT. Cysteine suppression of GT suscepti-
bility in A. nidulans and A. oryzae and trancriptional control of the sA sulfate permease in the
presence of GT also indicated that KojR is involved in the regulation of the sulfur pathways in
these species upon GT stress.

We also investigated if KojR could impact A. fumigatus virulence in a chemotherapeutic
murine model of IPA. All mice infected with the WT and AkojR::kojR strains died between day
5 and day 7 post-infection (p.i.), whereas 10% of mice infected with the AkojR strain survived
for the duration of the experiment (Figs 12A and S5). Fungal burden in the lungs was also sig-
nificantly reduced for the AkojR strain after 3 days p.i. when compared to the WT and AkojR::
kojR strains (Fig 12B). In addition, histopathology of the lung tissue after 3 days p.i. with the
AkojR strain demonstrated a significantly reduced inflammation score (Fig 12C) and immune
cell recruitment to the tissue (Fig 12D) relative to the WT and AkojR::kojR strains. These
results strongly indicate that KojR is important for A. fumigatus inflammation and virulence.

Discussion

The transcriptional regulation of GT biosynthesis requires many components including TFs,
protein kinases, G-protein signalling and chromatin modifying enzymes, which together inte-
grate different signaling pathways [30]. In addition, GT biosynthesis requires GSH, of which
the sulfur-containing amino acids methionine and cysteine are biosynthetic precursors; and
GT biosynthesis is linked to cellular oxidative stress in mammalian and fungal cells via a yet to
be described mechanism [31-35]. In addition, GT self-protection is essential during GT bio-
synthesis. The three main mechanisms of GT self-protection in A. fumigatus are the GT-neu-
tralising oxidoreductase GliT, the GT efflux pump GliA, and the negative regulation of GT
biosynthesis through GtmA [30]. RgIT was recently identified as the main TF controlling the
expression of gliT and of gtmA in A. fumigatus. The RgIT homolog is also important for gliT
expression and GT protection in the non-GT producer A. nidulans [42]. Despite this similar-
ity, A. nidulans does not encode homologs of GtmA and GliA, suggesting that (i) these GT
protection mechanisms are not required or that (ii) additional, unknown GT protection mech-
anisms exist in this fungus. It is perhaps not surprising that GtmA and GliA are not present in
A. nidulans, because as a non-GT producing fungus, GtmA-mediated attenuation of GT bio-
synthesis and GT efflux are not required. We currently do not know how the presence of GT is
signalled and/or whether this mycotoxin can be taken up by A. nidulans. In this work, the tran-
scriptional response of A. fumigatus and A. nidulans upon prolonged exposure to GT was
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Fig 12. KojR is required for virulence in a mouse model of invasive aspergillosis. - (A) Survival curve (n = 10 mice/strain) infected with the
indicated A. fumigatus strains. Phosphate buffered saline (PBS) was administered in a negative control group (n = 5). The indicated P values are
based on the log-rank, Mantel-Cox, and Gehan-Breslow-Wilcoxon tests comparing the KojR deletion strain to the WT and complemented strains.
(B) Fungal burden in murine lungs after 3 days post-infection (p.i.) with the different strains. Murine lungs were excised, ruptured, and
resuspended before dilutions were prepared and incubated on plates containing complete medium. Fungal growth was assessed by counting the
colony-forming units (CFU) on the plates for each dilution. (C) Histopathology of mice infected with the different strains. Lungs were excised at 3
days post-infection (p.i.) before lung sections were prepared and stained with hematoxylin and eosin (H&E) and/or with Gomori’s methenamine
silver (GMS). (D) Inflammation (expressed as %) in murine lungs after 3 days post-infection (p.i.) with the different strains. Murine lungs were
excised, and slides of lungs sections were prepared. To quantify lung inflammation of infected animals, inflamed areas on slide images were
analyzed using the thresholding tool in Image] software. Values are averages + standard deviations (error bars) of three biological replicates (lungs
from different mice). Values that are significantly different in a two-way multiple comparison ANOVA test are indicated as follows: *p-

value < 0.05, ***p-value < 0.001.

https://doi.org/10.1371/journal.pgen.1009965.9012
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analysed and found to be significantly different between both fungal species. In agreement, the
RglT-dependent regulome in both fungal species is also very different. This may be due to the
evolutionary distance between both fungal species which share around 66-67% of amino acid
identity, a protein identity comparable to the phylogenetic relationship between mammals and
fish [53]. Despite this, our dataset also identified a conserved transcriptional response. These
genes encode proteins important for gliotoxin modification, such as the observed RglT-depen-
dent putative methyltransferase MtrA (AN3717/AFUA_6G12780) and one putative oxidore-
ductase (AN9051/AFUA_7G00700), attenuating directly or indirectly its activity. We have
investigated one of these genes, mtrA, and demonstrated that it is important for GT protection
in A. fumigatus and A. nidulans. The A. nidulans AmtrA is more sensitive to GT than the A.
fumigatus AmtrA most likely because there are additional mechanisms of GT protection in A.
fumigatus, such as GtmA. It remains to be investigated if MtrA is directly methylating GT or
other proteins important for GT protection.

To further identify conserved components important for GT self-protection, we screened
the A. fumigatus TF deletion library to identify TFs important for this process. We identified
15 TFs (4 have been characterized and 11 have not been characterized), whose deletion caused
a significant decrease in growth in the presence of exogenous GT. The 11 uncharacterized TFs
can broadly be classed into 4 categories based on their respective GT and bmGT biosynthesis
profiles: (i) AFUA_2G17860 and AFUA_5G12060 (whose deletion mutants are GT non-pro-
ducers and bmGT producers), (ii) AFUA_3G01100, AFUA_5G14390, AFUA_4G13060,
AFUA_6G09870, AFUA_8G07280 and AFUA_8G05460 (whose deletion mutants are GT pro-
ducers and bmGT overproducers), (iii) AFUA_8G03970 and oefC (AFUA_3G09670, whose
deletion mutants are GT and bmGT overproducers) and (iv) AFUA_8G07360 (whose deletion
mutant is a GT non-producer and bmGT overproducer). They present interesting targets for
future mycotoxin-related studies.

In addition, our work identified an additional 4 TFs, which have previously been character-
ized, as important for GT biosynthesis. Yapl (AFUA_6G09930, whose deletion mutant is a GT
overproducer and bmGT overproducer) is an important regulator of resistance to oxidative
stress [54]. SreA (AFUA_5G11260, whose deletion mutant is a GT non-producer and bmGT
producer) regulates iron uptake, through repressing iron-regulated genes and siderophore bio-
synthesis genes in high-iron conditions [55]. The identification of these TFs emphasizes the
close connection between GT production and oxidative stress and iron metabolism
[30,34,48,49]. RgdA (AFUA_3G13920, whose deletion mutant is a GT non-producer and
bmGT producer) has previously been reported as important for hyphal growth, asexual sporu-
lation and virulence [56]. In contrast to our results, these authors observed increased GT pro-
duction in the ArgdA mutant, which may be due to the fact they have used Af293 as a
background strain for the rgdA deletion mutant whereas this work used CEA17 as a back-
ground strain [56]. Differences in cellular responses between these two A. fumigatus back-
ground strains have been reported before and include the role of the calcium-responsive TF
CrzA during the caspofungin paradoxical effect [57]. KojR (AFUA_5G06800, whose deletion
mutant is a GT non-producer and bmGT non-producer) is the A. oryzae homolog involved in
the production of kojic acid [58]. It is perhaps not surprising that our work identified Yapl,
SreA and RgdA as involved in GT biosynthesis and self-protection, as oxidative stress, iron
metabolism, and fungal growth have all been shown to be important for GT and/or SM bio-
synthesis [30,34,48,49]. In contrast, the deletion of kojR was the only mutant strain where
reduced amounts of GT and bmGT was observed, suggesting that this TF is important for GT
metabolism. The role of this TF in GT protection was therefore further characterised in GT-
producing A. fumigatus and non-producing (A. nidulans and A. oryzae) Aspergillus species.
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These results expand significantly the number of TFs involved, and suggest additional complex
mechanisms in regulating GT protection and production.

As a preliminary step to understand additional KojR gene targets, we performed extensive
RTqPCR experiments with all the gli BGC genes, gtmA, and selected genes involved in the
inorganic sulfur assimilation and transsulfurattion pathways. Our results showed a global
reduction of 20 to 30% of the expression of the gli genes when the AkojR was exposed to GT,
except for gli], encoding a membrane dipeptidase, that is significantly down-regulated in the
mutant. These results strongly indicate that gliJ is a direct or indirect target for A. fumigatus
KojR. The blockage of the GT biosynthesis pathway caused by the lack of gliJ expression helps
to understand the lack of GT production in this mutant. As previously shown [45], we have
also observed that exposure of A. fumigatus to GT increases the expression of genes involved
in the inorganic sulfur assimilation and transsulfuration pathways. KojR is also negatively
affecting the increased mRNA accumulation of several genes in these pathways upon GT expo-
sure. This could impact the S-adenosyl methione (SAM):S-adenosyl homocysteine (SAH) bal-
ance, essential for the methylation of GT by GtmA, helping to explain why there is a decrease
in the bmGT production in the A. fumigatus AkojR mutant. Interestingly, cysteine supplemen-
tation (instead of inorganic sulfur) can suppress the AkojR GT-sensitivity, emphasizing the
role played by KojR in sulfur assimilation. The main TF for sulfur inorganic assimilation,
MetR, is transcriptionally induced in the presence of GT [33] and AmetR showed significantly
increased sensitivity to GT [59]. It remains to be investigated a possible interaction between
KojR and MetR since we observed decreased mRNA accumulation of metR upon GT in the
AkojR mutant.

We have also shown that KojR is essential for virulence in a chemotherapeutic murine
model of IPA. Both AkojR and AgliP (gliP encodes the nonribosomal peptide synthase of GT
BGC) do not produce GT but in contrast to AkojR, AgliP is still virulent in the chemotherapeu-
tic murine model of IPA [60]. Previously, we observed that ArgIT is hypovirulent in the same
murine model and suggest that these virulence defects could be due to defects in oxidative
stress resistance [42]. It is possible the impact of the lack of KojR in the sulfur metabolism
affects the growth and virulence of AkojR in the murine lungs. Additional experiments are nec-
essary to clarify this and it remains subject to future investigations.

We were able to show a conserved mechanism of protection from GT in these three fungi
whereby deletion of kojR and r¢IT increases sensitivity to exogenous GT. This protection is
likely to occur through the RglT-dependent regulation of GliT, where expression of gliT is
dependent on RgIT in the presence of GT in the three fungal species. Future studies will deter-
mine growth of the respective gliT deletion strains in order to confirm this conserved mecha-
nism of GT protection in Aspergillus species. The expression of gliT is also dependent on KojR
in all three fungi in the presence of GT; however, KojR is partially required for gliT expression
in A. fumigatus and A. oryzae, whereas KojR represses gliT in A. nidulans, which does not pro-
duce GT. These results suggest that KojR-dependent regulation of gliT differs between GT-
producing and non-producing Aspergillus species and these results are in agreement with our
A. fumigatus/A. nidulans RNA-seq dataset. In A. fumigatus and A. oryzae, rglT expression is
dependent on KojR and we suggest here that KojR directly regulates rgIT and indirectly gliT.
This regulatory hierarchy would therefore confer protection from GT in these fungi. In A.
fumigatus, kojR expression is dependent on RgIT whereas in A. oryzae kojR repression is
dependent on RgIT. These results suggest that differences in the regulation of both TFs in
these fungi.

Interestingly, we observed that both A. fumigatus and A. oryzae ArglT and AkojR are more
sensitive to GT and involved in the positive regulation of the oxidoreductase gliT and gtmA.
Although gliT expression is reduced in A. nidulans ArglT, it is increased in AkojR, suggesting
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the mechanism of gliT regulation is distinct in this species. Since GliT is essential for A. nidu-
lans GT detoxification, these results indicate that increased expression of gliT in the A. nidu-
lans AkojR strain is not enough to confer GT resistance to A. nidulans. These results suggest
that KojR is also important for GT detoxification in a GT non-producer and that there are
additional mechanisms of GT detoxification regulated by KojR in A. nidulans. Actually, two
pieces of evidence suggest that KojR is also affecting the inorganic sulfur assimilation in A.
nidulans and A. oryzae: (i) the sB sulfate permease gene is down-regulated in the presence of
GT, and (ii) cysteine as a single sulfur source can suppress GT toxicity in these two species. We
hypothesize that cysteine can suppress GT susceptibility in all three species because most likely
it can bypass the initial steps of inorganic sulfur assimilation, providing directly cysteine for
the synthesis of ergothioneine, glutathione, and methionine. Ergothioneine and glutathione
are essential for oxiredox balance in the cell and also for GT prodution while methione can
provide methyl groups for GT methylation, crucial for bmGT production. Interestingly, cyste-
ine as a single sulfur source can suppress A. nidulans ArglT GT sensitivity but not A. fumigatus
and A. oryzae ArglT GT sensitivity, suggesting diferences in the organic sulfur assimilation in
these species during GT detoxification.

Although A. oryzae has the GT BGC, we were unable to detect GT production in the A. ory-
zae wild-type, ArglT and AkojR strains (54 Fig). However, RglT and KojR are still regulating A.
oryzae gliT and gtmA. A. oryzae strains have been selected for millenia for the saccharification
of starch-rich rice to sugars that are fermentable by Saccharomyces cerevisiae into sake, the
high-alcohol rice wine [61]. The A. oryzae-rice mixture (koji-culture) is mixed with additional
steamed rice and fermented by S. cerevisiae. This A. oryzae rice starch breakdown and subse-
quent conversion into alcohol by S. cerevisiae occurs side by side [61]. Extensive genome anal-
ysis suggested that, through selection by humans, atoxigenic lineages of A. oryzae evolved into
“cell factories” important for the saccharification process [62]. Interestingly, production of the
secondary metabolite kojic acid was retained in these strains during the koji-culture [58]. The
kojic acid gene cluster is one of the simplest clusters of secondary metabolite production ever
reported, composed by three genes: an enzyme containing a FAD-dependent oxidoreductase
domain, a transporter, and a kojR encoding a GAL4-like Zn(II),Cys, transcription factor
[58,63]. As expected, A. oryzae AkojR is unable to produce kojic acid [58] but there is no
involvement of RgIT in kojic acid production.

There is extensive heterogeneity in drug susceptibility, nutritional requirements, and viru-
lence across A. fumigatus clinical and environmental isolates [57,64-66]. It remains to be
determined if GT-sensitive mutants in different Aspergillus spp isolates will behave accordingly
to what was observed in this manuscript using the available isolates. Our work provides new
opportunities to understand GT production and protection, and also highlights significant dif-
ferences in transcriptional responses to extracellular mycotoxins between fungal species. More
importantly, the identification of a conserved transcriptional response to exogenous GT in dif-
ferent Aspergillus species and isolates provides a basis for future studies which will further deci-
pher these protection pathways.

Materials and methods
Ethics statement

The animal procedures were designed as a prospective, randomized, blinded, experimental
study, and performed following the guidelines for animal research and the 3R principles of the
EU directive. Eight-week-old gender and age-matched C57Bl/6 mice were bred under specific-
pathogen-free conditions and kept at the Life and Health Sciences Research Institute (ICVS)
Animal Facility. Animal experimentation was performed following biosafety level 2 (BSL-2),
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and protocols were approved by the Institutional Animal Care and Use Committee (IACUC)
of the University of Minho. The ethical and regulatory approvals were consented by Ethics
Committee for Research in Life and Health Sciences of the University of Minho (SECVS 074/
2016). Furthermore, all in vivo procedures followed the EU-adopted regulations (Directive
2010/63/EU) and were conducted according to the guidelines sanctioned by the Portuguese
ethics committee for animal experimentation, Dire¢do-Geral de Alimentagdo e Veterinaria
(DGAV).

Strains and media

All strains used in this study are listed in S6 Table. Strains were grown at 37°C except for
growth on allyl alcohol-containing solid medium, which was carried out at 30°C. Conidia of
A. fumigatus and A. nidulans were grown on complete medium (YG) [2% (w/v) glucose, 0.5%
(w/v) yeast extract, trace elements] or minimal media (MM) [1% (w/v) glucose, nitrate salts,
trace elements, pH 6.5]. Solid YG and MM were the same as described above with the addition
of 2% (w/v) agar. Where necessary, uridine and uracil (1.2 g/L) were added. Trace elements,
vitamins, and nitrate salt compositions were as described previously [67]. Potato Dextrose
Agar (PDA, Difco) was used for A. oryzae. For iron or zinc starvation or excess experiments,
strains were growth in solid MM without FeSO, or zinc. For phenotypic characterization,
plates were inoculated with 10* spores per strain and left to grow for 120 h at 37 or 30°C. All
radial growth experiments were expressed as ratios, dividing colony radial diameter of growth
in the stress condition by colony radial diameter in the control (no stress) condition.

Phylogenomic inference of Aspergillus-Penicillium species phylogeny

Publicly available gene annotations for Aspergillus and Penicillium species (n = 55) were down-
loaded from NCBI in February 2021. OrthoFinder, v2.3.8 [68], was used to identify ortholo-
gous groups of genes using the protein sequences of the 55 proteomes as input. From the
18,979 orthologous groups of genes, 1,133 were identified to be single-copy and present in all
proteomes. All 1,133 genes were aligned using MAFFT, v7.402 [69], with the ‘auto’ option.
The corresponding nucleotide sequences were threaded onto the protein alignments using the
‘thread_dna’ function in PhyKIT, v1.1.2 [20]. The resulting nucleotide alignments were
trimmed using ClipKIT, v1.1.3 [26], with the ‘smart-gap’ option. All 1,133 genes were
concatenated into a single matrix with 2,446,740 sites using the ‘create_concat’ function in
PhyKIT [20]. The resulting alignment was used to reconstruct the evolutionary history of the
55 species using IQ-TREE, v2.0.6 [70]. During tree search, the number of trees maintained
during maximum likelihood inference was increased from five to ten using the ‘nbest’ option.
Bipartition support was assessed using 1,000 ultrafast bootstrap approximations [71].
Comparison of the inferred phylogeny showed that it was nearly identical to the phylogeny
inferred in a previous genome-scale examination of evolutionary relationships among Asper-
gillus and Penicillium species [44]. Minor differences were observed among bipartitions previ-
ously determined to harbor high levels of incongruence. These differences concern the
placements of Penicillium decumbens and Aspergillus awamori. Differences in gene and taxon
sampling may be responsible for these incongruences. All bipartitions received full support.

Identifying homologous biosynthetic gene clusters and orthologs of RgIT
and kojR
To identify homologs of the biosynthetic gene clusters involved in the production of gliotoxin

and kojic acid, the 13 protein sequences of the gliotoxin cluster from Aspergillus fumigatus and
the three protein sequences of the kojic acid cluster from Aspergillus oryzae were used as
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queries during sequence similarity searches to identify homologs in the 55 proteomes.
Sequence similarity searches were conducted using NCBI’s blastp function from BLAST+, v
2.3.0 [72], with an expectation value threshold of le-4. Across all homologs, the physical prox-
imity of each gene was assessed. We considered biosynthetic gene clusters to be homologous if
7 / 13 genes from the gliotoxin biosynthetic gene cluster were present including the nonriboso-
mal peptide synthase, gliP. For the kojic acid biosynthetic gene cluster, we required that 2 / 3
genes from the kojic acid cluster were present including kojA, the oxidoreductase required for
kojic acid production [73]. When examining gene proximity, a gene boundary distance of five
genes was used. To identify genes orthologous to RgIT and kojR, OrthoFinder results were
parsed to identify genes in the same orthologous group as each gene.

Testing the association of the phylogenetic distributions of kojR and RgIT

To evaluate if the distributions of kojR, RgIT, and their BGCs on the species phylogeny are sig-
nificantly associated, we examined the correlation of the phylogenetic distribution of the pres-
ence and absence patterns of the two genes on the species phylogeny. We used Pagel’s binary
character correlation test implemented in phytools, v0.7-70 [74] to examine four scenarios:
the distributions of two genes / BGCs are not correlated (scenario A), the distribution of one
gene is correlated with the distribution of another gene / BGC but not vice versa (scenarios B
and C), and the distributions of two genes / BGCs are correlated (scenario D). The best fitting
model was then determined using the weighted Akaike information criterion (AIC).

Mouse model of pulmonary aspergillosis

The A. fumigatus Aku80 pyrG* CEA17 and AkojR strains were grown on malt extract agar for
7 days before infection. To induce immunosuppression, 150 mg/Kg of cyclophosphamide
(Sigma) was administrated intraperitoneally on days -4, -1, and +2, while 200 mg/Kg of corti-
sone 21-acetate (Acros Organics) was administrated on day -3 via the subcutaneous route. On
day 0, mice were challenged intranasally with 1x10° live conidia following anesthesia with 75
mg/Kg of ketamine (Ketamidor, Richter Pharma) and 1 mg/Kg of medetomidine (Domtor,
Ecuphar). To avoid bacterial infections, animals were treated with 50 ug/mL of chlorampheni-
col in drinking water ad libitum. For the survival studies, animals (n = 10) were monitored
twice daily for 15 days after infection. Animals were weighted and sacrificed in case of 20%
loss weight, severe ataxia or hypothermia, and other severe complications. In some experi-
ments, mice (n = 5) were euthanized on day +3 and their lungs were aseptically removed,
weighed, and homogenized in 2 mL sterile PBS in a tissue homogenizer (Ultra-Turrax T25
Basic, IKA Works, Inc.). For fungal burden assessment, lung homogenates were plated on
Sabouraud 4% dextrose agar (Sigma) supplemented with chloramphenicol at 50 pg/mL
(Sigma). For histological analysis, lungs were excised and fixed with 10% buffered formalin
solution (Sigma) for at least 48 hours, processed and paraffin embedded. Lung paraffin sec-
tions were stained with Hematoxylin and Eosin (H&E) or Gomori’s Methenamine silver
(GMS) (Sigma) for pathological examination. Images were acquired using a widefield upright
microscope BX61 (Olympus) and a DP70 high-resolution camera (Olympus). Morphometry
analyses were carried out on slide images using Image]J software (v1.50i, NIH, USA).

Generation of deletion mutants for A. oryzae kojR and rglT, A. nidulans
kojR and mtrA, and A. fumigatus AkojR::kojR* and mtrA
The DNA fragment for kojR deletion, using the A. oryzae orotidine-5'-decarboxylase gene

(pyrG) as a selectable marker, was generated by fusion polymerase chain reaction (PCR) as fol-
lows: DNA fragments upstream and downstream of the kojR coding region were amplified by
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PCR using A. oryzae genomic DNA as a template and the primer sets BR-TF040-L-F

+ BR-TF040-L-R and BR-TF040-R-F + BR-TF040-R-R, respectively. The pyrG fragment was
amplified by PCR using A. oryzae genomic DNA as a template and the primers BR-TF040-P-F
and BR-TF040-P-R. Then, these three PCR fragments were mixed, and a second round of PCR
with the primers BR-TF040-L-F and BR-TF040-R-R was performed. For rgIT deletion, DNA
fragments upstream and downstream of the rgIT coding region were amplified by PCR using
the primer sets BR-TF390-L-F + BR-TF390-L-R and BR-TF390-R-F + BR-TF390-R-R, respec-
tively. The pyrG fragment was amplified by PCR using the primers BR-TF390-P-F and
BR-TF390-P-R. These three PCR fragments were mixed, and a second round of PCR without
primers was carried out. Then, a third round of PCR with BR-TF390-L-F_Nest and
BR-TF390-R-R_Nest was performed. The resultant PCR fragments were introduced into the
recipient strain RkuN16ptrl (Aku70::ptrA, pyrG™) according to [75].

In A. nidulans, the kojR and mtrA genes were deleted using a gene replacement cassettes
which were constructed by “in vivo” recombination in S. cerevisiae as previously described by
[76]. Thus, approximately 1.0 kb from each 5-UTR and 3’-UTR flanking region of the targeted
OREFs regions were selected for primer design. The primers AN4118 (kojR)/mtrA_pR-
$426_5UTR_fw and AN4118/mtrA_pRS426_3UTR_rv contained a short homologous
sequence to the MCS of the plasmid pRS426. Both the 5- and 3-UTR fragments were PCR-
amplified from A. nidulans genomic DNA (TNO2A3 strain). The pyrG gene placed within the
cassette as a prototrophic marker was amplified from pCDA21 plasmid using the primers
AN4118/mtrA_5UTR_pyrG_rv and AN4118/mtrA_3UTR_pyrG_fw. The cassette was PCR-
amplified from these plasmids utilizing TaKaRa Ex Taq DNA Polymerase (Clontech Takara
Bio) and used for A. nidulans transformation.

Complementation of the kojR gene in A. fumigatus was achieved via cotransformation. A
fragment containing the kojR gene flanked by 1-kb 5" and 3’ UTR regions was PCR amplified
(primers AfukojR complemented 5SUTR pRS fw and AfukojR complemented 3UTR pRS rv).
This DNA fragment was transformed into the AkojR strain along with the plasmid pPTR1
(TaKaRa Bio) containing the pyrithiamine resistance ptrA gene. Mutants were selected on
MM supplemented with 1 ug ml-1 pyrithiamine and confirmed with PCR using the external
primers (AfukojR 5UTR ext fw and AfukojR 3UTR ext rv). Primer sequences are listed in S7
Table. A. fumigatus mrtA gene was deleted using a gene replacement cassette which was also
constructed by “in vivo” recombination in S. cerevisiae. Approximately 1.0 kb from each 5’-
UTR and 3’-UTR flanking region of the targeted ORF regions were selected for primer design.
The primers Afu6g12780_pRS426_5UTR FW and Afu6g12780_pRS426_3UTR RV contained
a short homologous sequence to the MCS of the plasmid pRS426. The pyrG gene placed within
the cassette as a prototrophic marker was amplified from pCDA21 plasmid using the primers
Afu6g12780_5UTR_pyrG_RV and Afu6g12780_3UTR_pyrG_FW. Southern blot analysis to
confirm the mtrA deletion (S5 Fig). Primer sequences are listed in S7 Table.

Screening of A. fumigatus transcription factor deletion strains

A library of 484 A. fumigatus TFKO (transcription factor knock out) strains [46] was screened for
sensitivity to gliotoxin. To verify this sensitivity, gliotoxin concentrations lower than the mini-
mum inhibitory concentration (MIC) for the A. fumigatus wild type strain, CEA17, (70ug / mL)
[42] were used. Conidia were inoculated in 96-well plates at the final concentration of 10* spores /
well, in 200 ul MM supplemented or not with concentrations of gliotoxin ranging from 35 pg/ml
(0.5 x MIC of wt) to 70 pg/ml, and incubated at 37°C for 48 h. Three independent experiments
were carried out. Validation of this screening was carried out by growing sensitive strains at the
concentration of 10* spores in solid MM plates with 30 pg/ml gliotoxin at 37°C, for 48 h.
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Gliotoxin and Bis(methylthio)gliotoxin Presence Analysis by ultra-high-
performance liquid chromatography (UHPLC) coupled to high-resolution
electrospray ionization mass spectrometry (HRESIMS)

All strains were grown on Czapek Dox Agar (CDA) at 37°C in an incubator (VWR Interna-
tional) in the dark over four days. To evaluate the biosynthesis of gliotoxin (GT) and bis
(methylthio)gliotoxin (bmGT) in these fungal strains, cultures were extracted with organic sol-
vents and analyzed by mass spectrometry (see below). The agar plates were sprayed with
MeOH, chopped with a spatula, and then the contents were transferred into a scintillation vial.
Afterwards, acetone (~15 ml) was added to the scintillation vial, and the resulting slurry was
vortexed vigorously for approximately 3 min and then let too set at RT for 4 h. Next, the mix-
ture was filtered, and the resulting extract was dried under a stream of nitrogen gas.

HRESIMS experiments utilized a Thermo QExactive Plus mass spectrometer (Thermo
Fisher Scientific), equipped with an electrospray ionization source. This was coupled to an
Acquity UHPLC system (Waters Corp.), using a flow rate of 0.3 ml/min and a BEH C; col-
umn (2.1 mm x 50 mm, 1.7 um) that was operated at 40°C. The mobile phase consisted of
CH;CN-H,O (Fischer Optima LC-MS grade; both acidified with 0.1% formic acid). The gra-
dient started at 15% CH3CN and increased linearly to 100% CH;CN over 8 min, where it was
held for 1.5 min before returning to starting conditions to re-equilibrate.

Extracts were analyzed in biological triplicates and each of these in technical triplicate using
selected ion monitoring (SIM) in the positive ion mode with a resolving power of 35,000. For
GT, the SIM had an inclusion list containing the mass [M+H]" = 327.04677, with an isolation
window of 1.8 Da and a retention window of 2.5-5.0 min. For bmGT, the SIM had an inclu-
sion list containing the mass [M+H]" = 357.09373, with an isolation window of 1.8 Da and a
retention window of 2.5-4.5 min. The extracts, gliotoxin standard (Cayman Chemical), and
bis(methylthio)gliotoxin standard (isolated previously) [26] were each prepared at a concen-
tration of 2.5 mg/ml for the extracts and 0.01 mg/ml for the standards; all extracts were dis-
solved in MeOH and injected with a volume of 3 pl. To eliminate the possibility for sample
carryover, two blanks (MeOH) were injected between every sample, and the standards were
analyzed at the end of of the run.

To ascertain the relative abundance of GT and bmGT in these samples, batch process meth-
ods were run using Thermo Xcalibur (Thermo Fisher Scientific). For GT, we used a mass
range of 327.0437-327.0492 Da at a retention time of 3.24 min with a 5.00 second window.
For bmGT, we used a mass range of 357.0928-357.9937 Da at a retention time of 3.30 min
with a 5.00 second window.

RNA extraction, RNA-sequencing, cDNA synthesis and RT-qPCR

All experiments were carried out in biological triplicates and conidia (10”) were inoculated in lig-
uid MM (A. fumigatus and A. nidulans), or in Potato Dextrose Broth (A. oryzae). Gliotoxin was
added for 3 h to the culture medium to a final concentration of 5 pg/ml after strains were grown
for 21 h in MM. As GT was dissolved in DMSO, control cultures received the same volume of
DMSO for 3 h. For total RNA isolation, mycelia were ground in liquid nitrogen and total RNA
was extracted using TRIzol (Invitrogen), treated with RQ1 RNase-free DNase I (Promega), and
purified using the RN Aeasy kit (Qiagen) according to the manufacturer’s instructions. RNA was
quantified using a NanoDrop and Qubit fluorometer, and analyzed using an Agilent 2100 Bioa-
nalyzer system to assess the integrity of the RNA. All RNA had an RNA integrity number (RIN)
between 8.0 and 10 (Thermo Scientific) according to the manufacturer’s protocol.
RNA-sequencing was carried out using Illumina sequencing. The cDNA libraries were con-
structed using the TruSeq Total RNA with Ribo Zero (Illumina, San Diego, CA, USA). From
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0.1-1 pug of total RNA, the ribosomal RNA was depleted and the remaining RNA was purified,
fragmented and prepared for complementary DNA (cDNA) synthesis, according to manufac-
turer recommendations. The libraries were validated following the Library Quantitative PCR
(qPCR) Quantification Guide (Illumina). Paired-end sequencing was performed on the Illu-
mina NextSeq 500 Sequencing System using NextSeq High Output (2 x 150) kit, according to
manufacturer recommendations. The BioProject ID in the NCBI’s BioProject database is
PRJNA729661.

For RT-qPCR, the RNA was reverse transcribed to cDNA using the ImProm-II reverse
transcription system (Promega) according to manufacturer’s instructions, and the synthesized
cDNA was used for real-time analysis using the SYBR green PCR master mix kit (Applied Bio-
systems) in the ABI 7500 Fast real-time PCR system (Applied Biosystems, Foster City, CA,
USA). Primer sequences are listed in S7 Table. RNASeq data was processed to select genes for
normalization of the qPCR data, applying the method of [77]. Briefly, genes with a coefficient
of variation smaller than 10%, behaving in a normally distributed manner, and with large
expression values (FPKM) were selected. After experimental validation, Afu2g02680 (Putative
matrix AAA protease) and AN1191 [Small ubiquitin-like modifier (SUMO) protein]. For A.
oryzae experiments, tubA (AO090009000281) was used as a normalizer.

Kojic Acid (KA) production by A. oryzae

KA production by the A. oryzae strains was detected by the colorimetric method verifying the
intensity of the red color formed by chelating ferric ions [58,78]. The standard medium for KA
production [0.25% (w/v) yeast extract, 0.1% (w/v) K,HPOy, 0.05% (w/v) MgSO4-7H,0, and
10% (w/v) glucose, pH 6.0] containing 1 mM ferric ion (FeCls) was used for detecting KA pro-
duction by A. oryzae. The color of the medium turned red, indicating the presence of KA che-
lated with ferric ions. This color change could be observed at around 5 days after cultivation.
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nidulans genes that were significantly modulated in the RNA-sequencing experiments.
(PDF)

S2 Fig. Growth of the wild-type and GT-sensitive mutants in MM with different sulfur
sources. The strains were grown for 72 hs at 37°C.
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oryzae ArglT strain, and the wild-type (WT) A. oryzae strain grown on CDA (Czapek-Dox
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