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Abstract

Accurate genome annotations are essential to modern biology; however, they remain challenging to produce. Variation in gene structure
and expression across species, as well as within an organism, make correctly annotating genes arduous; an issue exacerbated by pitfalls in
current in silicomethods. These issues necessitate complementary approaches to add additional confidence and rectify potential misanno-
tations. Integration of epigenomic data into genome annotation is one such approach. In this study, we utilized sets of histone modification
data, which are precisely distributed at either gene bodies or promoters to evaluate the annotation of the Zea mays genome. We lever-
aged these data genome wide, allowing for identification of annotations discordant with empirical data. In total, 13,159 annotation discrep-
ancies were found in Z. mays upon integrating data across three different tissues, which were corroborated using RNA-based approaches.
Upon correction, genes were extended by an average of 2128 base pairs, and we identified 2529 novel genes. Application of this method
to five additional plant genomes identified a series of misannotations, as well as identified novel genes, including 13,836 in Asparagus offi-
cinalis, 2724 in Setaria viridis, 2446 in Sorghum bicolor, 8631 in Glycine max, and 2585 in Phaseolous vulgaris. This study demonstrates
that histone modification data can be leveraged to rapidly improve current genome annotations across diverse plant lineages.
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Introduction
Accurate genome annotations and assemblies are an essential
resource for modern biology. Their capacity to facilitate genetic
inquiry, as well as operate as the backbone for genome biology
makes their production vital. However, while the creation of
gapless, and near-perfect genome assemblies is becoming com-
monplace (Liu et al. 2020; Miga et al. 2020), genome annotation
remains challenging (Salzberg 2019). Generation of a genome an-
notation requires multiple lines of evidence in the form of mRNA
expression data, homology-based inference, and in silico predic-
tion algorithms, which are synthesized into a single concordant
annotation (Yandell and Ence 2012). The challenges of such com-
plex data synthesis, potentially compounded by the generation of
in silico artifacts at each aforementioned stage of analysis, make
accurate genome annotation precarious at best (Salzberg 2019).

The epigenome provides an invaluable untapped resource
which adds additional support to increase confidence in genome
annotation. Generally, eukaryotic genomes are divided into two
distinct domains, (1) euchromatin, which is gene-rich and has
abundant transcriptional activity, and (2) heterochromatin,
which is gene-poor, densely populated with repeats and trans-
posable elements and mostly devoid of transcriptional activity
(McClintock 1950; Hannah 1951). These two major domains of
the epigenome are defined by their occurrence with specific
covalent modifications to DNA and to the alpha globulin tail of

histones, which together comprise chromatin (Luger 1997).
Histone modifications are diverse and they correlate with a wide
range of biological phenomena. Some have proposed that chro-
matin comprises a “language” or code all its own in the genome,
with different combinations and permutations of histone
modifications correlating to distinct biological outputs (Strahl
and Allis 2000; Rando 2012). Evolutionarily, histone modifications
and their functions are deeply conserved, with eukaryotes using
similar sets of histone modifications around transcriptionally
active and inactive regions of the genome (Schübeler et al. 2004;
Bernstein et al. 2005; Morris et al. 2007), suggesting their essential-
ity to eukaryotic genomes.

In plants specifically, recent large-scale studies have corrobo-
rated histone modification function, and co-localization to
specific regions of the genome (Shi and Dawe 2006; Li et al. 2008;
Mahrez et al. 2016; Lu et al. 2019; Ricci et al. 2019). For example,
transcribed genes generally possess Histone H3 Lysine 4 trime-
thylation (H3K4me3) and Histone H3 Lysine 9/27/56 (H3K9/27/
56ac) acetylation near their transcriptional start sites and
H3K4me1 and H3K36me3 throughout their gene bodies (Zhang
et al. 2009; Roudier et al. 2011; Li et al. 2015; Oka et al. 2017; Lu et al.
2019; Ricci et al. 2019), whereas actively silenced genes often pos-
sess Histone H3 Lysine 27 trimethylation (H3K27me3) throughout
their gene bodies and promoter-proximal regions (Zhang et al.
2006, 2007; Zilberman et al. 2007; Bernatavichute et al. 2008;
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Li et al. 2008). The epigenomic landscape of heterochromatin is
quite distinct, as repeats and transposable elements are highly
enriched for DNA methylation, H3K9me2, and small RNAs (Lu
et al. 2005; Zhang et al. 2007; Zilberman et al. 2007; Bernatavichute
et al. 2008). The unique patterns and distributions of histone
modifications throughout the genome, especially within tran-
scribed genes, provides a unique opportunity to improve efforts
in genome annotations.

Histone modifications associated with transcription reflect
various features of transcriptional units. For example, in
Arabidopsis thaliana, H3K4 can be either mono- di- or tri-methyl-
ated by ARABIDOPSIS HOMOLOG OF TRITHORAX1 (ATX1) and
ARABIDOPSIS HOMOLOG OF TRITHORAX2 (ATX2), (Nislow et al.
1997; Alvarez-Venegas et al. 2003; Saleh et al. 2008). These histone
modifications primarily occur at genic regions of the genome,
with H3K4me2 and H3K4me3 being distributed specifically
around transcriptional start sites (Zhang et al. 2009). H3K4me3 as
well as ATX1 are also found tightly linked to Pol II occupancy, as
ATX1 and specific subunits of Pol II are consistently found to
co-localize at promoters (Fromm and Avramova 2014). Binding of
ATX1 and Pol II form a transcriptional initiation complex, allow-
ing for rapid transcriptional responses (Song et al. 2015). Paired
with this, increased proportions of H3K4me3 at promoters corre-
late with enhanced transcriptional rates (Zhang et al. 2009).

A histone modification which is intimately linked to
transcription elongation is Histone H3 Lysine 36 methylation.
During transcription the phosphorylated carboxy terminal
domain of RNA Pol II recruits the histone methyltransferase
Su(var)3-9, Enhancer-of-zeste and Trithorax 2, or SET2 (homo-
log SET DOMAIN GROUP 8, or SDG8 in A. thaliana), to methylate
H3K36 (Wagner and Carpenter 2012). Much like H3K4, H3K36
can be mono- di- or tri-methylated, but only di- and tri-methyl-
ation correlate with transcription in plants (Xu et al. 2008). SET2
limits the occupancy of Pol II in yeast, indicating its essential
role during transcription elongation (Kizer et al. 2005). In A. thali-
ana, mutation of SDG8 has been implicated in a range of pheno-
typic phenomena from development, to timing of flowering
(Cartagena et al. 2008; Cazzonelli et al. 2009; Bu et al. 2014; Jin
et al. 2015). In plants, H3K36me3 co-occurs with the length of
the transcribed units, demonstrating its deeply conserved func-
tion (Li et al. 2008; Lu et al. 2019). Uniquely in plant genomes,
H3K36me3 is correlated with the histone modification H3K4me1
across the length of the transcribed unit (Zhang et al. 2009; van
Dijk et al. 2010; Ricci et al. 2019). This is in stark contrast to
metazoan genomes where H3K4me1 primarily denotes inter-
genic enhancers (Bannister and Kouzarides 2011; Rada-Iglesias
et al. 2011).

Unlike the histone residues which are methylated, histone res-
idues which are acetylated have a direct functional impact on
transcription. Whereas methylated histones often act indirectly
by recruiting protein complexes that impact the chromatin
landscape, acetylated histones physically alter how DNA wraps
around the nucleosome (Allfrey et al. 1964; He et al. 2003).
The negatively charged acetyl groups added on the histone pro-
tein repel negatively charged DNA promoting a more permissive
environment for transcription (Allfrey et al. 1964; Earley et al.
2007). In plant genomes, acetylated histones co-occur with other
transcription initiation histone modifications, such as H3K4me3
around the promoter sequence of actively transcribed genes
(Roudier et al. 2011; Lu et al. 2019). Interestingly, in plants, histone
acetylation can also indicate accessible chromatin in proximal
and distal cis-regulatory elements (Oka et al. 2017; Zhao et al.
2018; Lu et al. 2019; Ricci et al. 2019).

Previous studies demonstrated that histone modification data
can be leveraged on a genome-wide scale for a multitude of uses.
For instance, in Sartor et al. epigenomic data was used to identify
the expressed regions of the maize genome, in what is sometimes
called the “expressome” (Sartor et al. 2019). This utilization fur-
ther allowed them to identify regions of the maize genome, which
are likely functional, and not constitutively repressed. However,
although this leveraging of epigenomic data provides valuable
insights into expressed regions of the genome, it does not seek to
amend potential annotations issues present in current annota-
tions (Sartor et al. 2019). Histone modification data has been used
to annotate regions of the genome potentially harboring unanno-
tated genes, or long noncoding RNAs (lncRNAs) (Guttman et al.
2009; Jarroux et al. 2017). A recent analysis of the Z. mays epige-
nome identified signals of actively transcribed transcriptional
units outside of currently annotated gene features (Ricci et al.
2019). However, to date, few studies have leveraged epigenomics
to improve the quality of genome annotations (Dozmorov 2017;
Ernst and Kellis 2017). In this study, we show that integration of
RNA-sequencing (RNA-seq) data with histone modification data
significantly improves genome annotations.

Methods
Genome versions and annotation
The maize genome V4 and annotation set version 4.38 of the an-
notation were acquired from gramene and used for all analysis
(Jiao et al. 2017). The asparagus genome was taken from the
asparagus genome project (http://asparagus.uga.edu/tripal/, Last
accessed 8.2.2021). The genomes for other genomes were re-
trieved from phytozome version 13 with the most recent annota-
tions used.

ChIP-seq data processing peaks
Raw reads from five different ChIP-seq libraries consisting of two
replicates each were used to identify regions of enrichment for
the histone modifications H3K36me3, H3K4me1, H3K56ac, and
H3K4me3, as well input genomic. Reads were trimmed using
trimmomatic, and aligned to the genome using bowtie2, “–very-
sensitive” (Langmead and Salzberg 2012; Bolger et al. 2014). Only
uniquely mapping reads were used for downstream analysis.
Peak calling was done for histone modifications known to have
broad peaks (H3K36me3 and H3K4me1) using the software epic2
with the parameters “–false-discovery-rate-cutoff .1 –keep-
duplicates,” as well as MACS2 to identify smaller regions of en-
richment using the parameters “callpeak –keep-dup all -g 1.6e9 -
q .1.” Narrow peaks (H3K56ac and H3K4me3) were called using
MACS2 with the parameters “–keep-dup all –extsize 147 -g 1.6e9 -
p .05” (Zhang et al. 2008; Stovner and Sætrom 2019). Peaks which
were within 480 bps of each other were merged. Intersection be-
tween replicates of the same histone modification were taken.
The minimum and maximum distanced regions were taken
between intersecting regions, and the results merged to give a
single peak which overlapped the extent of both peaks.

RNA-seq data processing
Raw reads were trimmed using trimmomatic with default param-
eters (Bolger et al. 2014). Reads were aligned to the Z. Mays refer-
ence genome version 4 using the STAR aligner, and the values
“–outSAMstrandField intronMotif –outSAMmapqUnique 255
–alignIntronMax 50000” (Dobin et al. 2013). TPM values were cal-
culated using TPMCalculator from NCBI.
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Generation of heatmaps and metaplots
ChIP-seq data were handled similarly to ChIP-seq peak calling,
with only uniquely mapping reads used. Libraries were normal-
ized by read number using the “bamCoverage” command found
in deepTools version 3.3.1, and normalized using counts per mil-
lion (CPM) mapped reads (Ramı́rez et al. 2014). Matrices were gen-
erated with the compute matrix function “scale-regions” with
parameters “-bs 20 -b 1000 -a 1000 –regionBodyLength 5000.”
Matrices were loaded into a custom R script and the R library
EnrichedHeatMap was used to plot heatmaps (Gu et al. 2018).
Genomic input reads were subtracted from ChIP-seq signal to ac-
count for genome bias, and the 95% quantile of each data set was
selected as the upper value.

Mappability control
In order to ensure that we were controlling for potential mapp-
ability issues in our analysis we utilized Genmap version 1.3.0
(Pockrandt et al. 2020). We generated mappability scores at single
base pair resolution for unique kmer size 75 (size of our ChIP-seq
reads) for the entire maize genome using the flags “-K 75.”

Annotating the genome using ChIP-seq
A custom pipeline was developed to annotate the genome using
peak calls from ChIP-seq. Current annotations were categorized
as either being expressed, or unexpressed based on alignment of
stranded RNA-seq reads (Greater than 5 RNA-seq reads), as well
as overlapping peak calls correlating with gene body extensions
(H3K36me3 and H3K4me1). Annotations were considered “good”
or “unaltered” if histone modifications H3K36me3 or H3K4me1
overlapped the length of the gene body, and the annotation
overlapped a peak correlating with promoter transcription initia-
tion (H3K56ac or H3K4me3) in the first 50% of the gene body.
Expressed annotations which did not contain a peak correlating
with a promoter were then further explored by searching up-
stream of the transcription start site. These extensions were only
carried out when the transcription initiation peak, and region in
between the gene body, had similar coverages of transcription
elongation modification across their extent. This class dubbed
the “extension class” was further sub-categorized based on the
length of extension. Minor extensions being defined as an anno-
tation being increased by less than 500 bp, or the length of a sin-
gle exon, major extensions defined as increasing the length of
annotation between 500 and 2000 bp, and hyper large extension
with protein-coding genes needing to be extended upwards of
2000 bp. Novel annotations were classified as those regions with
a corresponding transcription elongation peak, as well as a corre-
sponding transcription initiation peak that did not overlap within
any known protein-coding, or noncoding gene. Finally, the
merged class of annotations were those in which extension
caused overlap with another annotation. At these loci the coordi-
nates were shifted to encompass both annotations.

We avoided utilizing this method to split annotations due to
the possibility of potential “split” annotations representing
separate isoforms of the same transcriptional unit. Due to the
hereteogeneous nature of cell types within plant tissues, the
aggregate ChIP-seq signal would not provide clear evidence of
variable isoforms versus two separate transcriptional units.

Tandem duplication analysis
To test for tandem duplicates in the merger class, we generated a
blast protein database containing the original protein-coding
sequences of all genes found in this class. Tandem duplicates

were defined as those which had a percent identity greater
than 50%, and could align to at least 50% of the query protein
sequence length. Dotplots were also generated for all pairs, and
manually inspected for obvious signs of duplication. In addition,
68 gene pairs out of the 363 were removed from this analysis, as
we identified a set of annotations with multiple genes annotated
which were completely overlapping, and annotated to the same
transcriptional start sites. These loci likely represent different
isoforms of the same gene which have been misannotated, and
were thus discarded from our tandem duplicate analysis.

Assembly and validation of updated annotations
in maize
To validate updated loci, reads overlapping the hypothesized an-
notation regions were pulled from 23 strand specific tissue types
of the maize tissue atlas (Walley et al. 2016). StringTie was used
to assemble transcripts in each region with parameters “–rf -f
0.01 -a 2 -m 50 -c 3.0 -f 0.0.” Updated transcripts were then
compared to old annotations, and categorized as correct if the
updated transcript was larger than the original annotations. For
further validation, Iso-seq reads were gathered from three differ-
ent array express projects E-MTAB-7837, E-MTAB-7394, E-MTAB-
3826, E-MTAB-5957, E-MTAB-5915, and E-MTAB-5956, aligned us-
ing STARlong “–outFilterMultimapScoreRange 1 –outFilterMis
matchNmax 2000 –winAnchorMultimapNmax 200 –scoreGap
Noncan -20 –scoreGapGCAG -4 –scoreGapATAC -8 –scoreDelBase
-1 –scoreDelOpen -1 –scoreInsOpen -1 –scoreInsBase -1 –seed
SearchLmax 30 –seedSearchStartLmax 50 –seedPerReadNmax
100000 –seedPerWindowNmax 1000 –alignTranscriptsPerRead
Nmax 100000 –alignTranscriptsPerWindowNmax 10000” (Dobin
et al. 2013; Wang et al. 2016, 2018, 2020). Predicted annotation
regions were compared to Iso-seq alignments, and regions that
had a corresponding Iso-seq alignment which was greater than
the original annotation were considered as passing. Transcripts
were further processed through Transdecoder to identify open
reading frames, with the following parameters being used
“TransDecoder.LongOrfs -m 50” and “TransDecoder.Predict
–retain_long_orfs_length 100” (https://github.com/TransDecoder,
Last accessed 8.2.2021) .

Reannotation of other species using chromatin
data
Histone modification data were downloaded from a list of seven
species from previous work; gene expression omnibus number
GSE128434 (Lu et al. 2019). Reads were downloaded from GEO,
and treated identically as outlined in the ChIP-seq section of the
methods. Identical read alignment, and peak calling were per-
formed, adjusting for relative genome size in the epic2 and
MACs2 to alter peak calling stringency (Zhang et al. 2008 p. 2;
Stovner and Sætrom 2019). No replicates existed for other spe-
cies.

Results
To determine if histone modification data could be leveraged to
improve genome annotations, we used previously published
ChIP-seq data of histone modifications from leaf, root, and inflo-
rescence tissue of Zea mays (Ricci et al. 2019), which is known to
be challenging to annotate (Wang et al. 2016). These data were
used to define the chromatin landscape around expressed genes.
As previously reported, these data showed the expected enrich-
ment of histone modifications around expressed genes, with
H3K36me3 and H3K4me1 occurring across the gene body of
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actively transcribed genes as indicated by RNA-seq data, and
histone modifications H3K4me3 and H3K56ac at promoters
(He et al. 2003; Kizer et al. 2005; Chunyan et al. 2010) (Figures 1
and 2A). Hereafter, we refer to these histone modifications
collectively as either “transcription initiation” (H3K56ac
and H3K4me3) or “transcription elongation” (H3K4me1 and
H3K36me3). These histone modifications together are represen-
tative of the chromatin environment around transcribed genes,
considering many other modifications correlate with those
chosen (Li et al. 2007; Berr et al. 2011). We evaluated the co-
occurrence of regions enriched for either histone modification
comprising transcription initiation, and found that 64% of
these regions co-occurred, as compared to 74% of gene body
(H3K36me3 and H3K4me1) histone modifications (Figure 2B).
The percentage co-occurrence between similar histone

modifications is consistent across additional sampled tissues:
root and inflorescence (Supplementary Figures S1 and S2).

A greater number of transcription initiation enriched regions
than transcription elongation enriched regions were found in all
tissues sampled (7719 excess enriched domains in leaf, 9327
in inflorescence, and 12,164 in root). This larger number of
transcription initiation enriched domains as compared to tran-
scription elongation modifications can be explained by multiple
reasons. In total, 19,724 transcription initiation regions in leaf,
23,387 in root, and 20,941 in inflorescence overlapped genes.
This discrepancy compared with the transcription elongation
modifications can be in part explained by the fact that 917 genes
in leaf, 1580 in root, and 1331 in inflorescence overlapped greater
than one transcription initiation enriched regions, totaling an
additional 1981 transcription initiation domains in leaf, 3235 in
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Figure 1 The distribution of histone modifications across expressed genes: (A) An example of an annotated gene body, with corresponding histone
modifications indicative of transcription. Histone modifications associated with transcription initiation (H3K56ac and H3K4me3) are known to
correspond to the promoters, whereas histone modifications associated with transcription elongation (H3K36me3 and H3K4me1) occur across the
length of the gene body. (B) Metaplots of the top and bottom 20% of expressed genes in the genome of Z. mays ordered by expression.
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root, and 2736 in inflorescence. In addition, of genes that over-
lapped transcription initiation modifications, 2584 in leaf, 3441 in
root, and 2107 in inflorescence overlapped H3K27me3, a known
repressive histone modification. A total of 4822 in leaf, 6018 in
root, and 5939 transcription initiation regions did not overlap
with any annotated gene. Interestingly, of the subset of these

transcription initiation modifications; 550 in leaf, 805, in inflores-
cence, and 752 in root overlap H3K27me3 domains, possibly indi-
cating silenced unannotated genes in the genome. In addition,
1669 transcription initiation enriched loci in leaf, 2795 in inflores-
cence and 1782 in root, overlapped a region also enriched for
at least one transcriptional elongation histone modification,
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Figure 2 The histone modification landscape of expressed and unexpressed genes in Z. mays. (A) Representative screenshot of expressed genes in the
genome, and corresponding histone modifications. The histone modifications H3K36me3 and H3K4me1 are found across gene bodies, whereas
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possibly representing a set of unannotated genes. Finally, a
subclass of 2340 inflorescence, 2412 leaf, and 3486 root transcrip-
tion initiation enriched regions show no overlap with transcrip-
tion elongation modifications (Supplementary Figure S3). These
regions are generally small with a mean size of 678 bp, and are on
average 42,088 bp away from the nearest gene (Supplementary
Figure S3). The exact function of these regions remains unknown,
but comparative epigenomic approaches will be useful to further
understand them in the future.

The concordance of histone modification data around
expressed protein-coding genes was used to evaluate their poten-
tial to identify actively transcribed regions of the genome. Genes
that had a transcript per million (TPM) value greater than 1 were
labeled as “active” whereas those which had a TPM value less
than 1 TPM were labeled as “inactive.” To ensure that the analysis
did not suffer from in silico biases created by mappability issues in
the maize genome, only genes that were greater than 70% map-
pable were used for analysis (see Methods). Overall, 67% of active
genes had both histone modifications indicative of transcription
initiation and elongation (Figure 2C). Genes that had both histone
classes were likely to be more highly expressed as compared to
the other three groups (harboring only one class of histone modi-
fication, as compared to two, or no domain enrichment), a trend
observed across all three tissue types examined (Kolmogorov-
Smirnov tests: P< 2.2e-16) (Figure 2C; Supplementary Figures S1
and S2).

To further demonstrate the relationship between histone
modifications and transcribed regions of the genome, we evalu-
ated the distribution of the histone modifications throughout
gene bodies of active and inactive genes by generating metaplots
(Figure 2D). Transcribed genes generally show enrichment for
histone modifications of both transcription initiation, as well as
transcription elongation. Active genes also display the expected
meta profiles of the sampled histone modifications, with
H3K36me3 showing increased enrichment at the 5’ region of gene
bodies, and H3K4me1 showing increased enrichment at the 3’
end. In contrast, inactive genes show no enrichment for tran-
scriptionally related histone modifications, but do show enrich-
ment for histone modifications (H3K27me3) and variants (H2A.Z)
associated with facultative heterochromatin (Luo and Lam 2010).
These modifications are well documented to be present in genes
silenced by polycomb repressive groups of proteins, generally de-
marcating developmental or environmental specific genes
(Coleman-Derr and Zilberman 2012). The slight enrichment in
H3K4me3 around these silenced genes likely represents a set of
genes bivalently modified, likely poised for rapid upregulation
(Zeng et al. 2019). These results are similar for both inflorescence
and root tissues as well, and are consistent with expectations
based on previous findings about the distribution of histone mod-
ifications around active and inactive genes (Supplementary
Figures S1 and S2).

In the analysis of the histone modifications around expressed
genes, we identified two distinct subclasses of genes which vio-
lated the expected distributions of histone modifications. One
such subset of genes only co-occurred with transcription elonga-
tion histone modifications, whereas the other exclusively co-
occurred with transcriptional initiation histone modifications
(Figure 2C). After manually inspecting a set of genes from each of
these classes, we realized that a substantial proportion could be
explained by misannotations, with the histone modification data
clearly denoting the true extent of the gene model. For instance,
in the transcriptional elongation only class, oftentimes the

correct transcription initiation start site was clearly evident di-
rectly upstream. This led us to speculate that histone modifica-
tion data can be leveraged to improve gene annotations and to
identify novel genes not previously annotated in the genome.

Identification of previously ambiguous
annotation classes
After manually inspecting regions of the genome where the his-
tone modification data was discordant with the annotation, we
identified three distinct classes of putative misannotations. One
class labeled the “Gene merger” class featured histone modifica-
tion data supporting a single transcriptional unit, but instead,
multiple gene annotations existed at these loci in the reference
(Figure 3A). Furthermore, alignment of RNA-seq data clearly
shows reads bridging the gap between many of these putative
misannotations, further supporting that these are a single
transcribed unit. A second class of annotation issues found was
regions of the genome that had evidence of transcription, and
yet had no annotation present in the reference annotation.
This class, labeled the “Novel class,” likely identifies novel pro-
tein-coding genes or lncRNAs (Figure 3B). Finally, we identified an
annotation class based off of missing downstream or upstream
regions of the transcribed unit that we labeled the “Extension
class” (Figure 3C). This annotation class is defined by signals of
transcription initiation appearing upstream of the annotation, or
transcription elongation histone modifications extending past
their current length of the full transcript.

We further subdivided the “Extension class” based off the
distance added to the original annotation, with minor extensions
being annotations which were only extended by less than 500 bp
or the length of a single exon, major extensions comprising
regions falling between 500 and 2000 bp, and hyper large exten-
sion being those greater than 2000 bp.

Using these defined classes, we implemented a method to
identify these regions genome wide (see Methods section), across
three different maize tissues (inflorescence, leaf, and root). In to-
tal, we identified 4004 potential novel annotations, with 66%
(2645 loci) being identified in only a single tissue. We found 363
potential gene merger events, with 166 (45%) of these mergers be-
ing found in all tissues sampled. Of the potential mergers, 357
(98.3%) of the predicted mergers consisted of gene pairs, with the
remaining six (1.65%) representing loci where three or more
genes were hypothesized to be a single transcriptional unit, in to-
tal encompassing 732 gene features. Furthermore, 108 (29.8%) of
the potential merger events have identical gene ontology (GO)
terms, possibly indicating a single locus which was divided into
two during the annotation process. To rule out potential assem-
bly errors being the main cause of this merger class, we inter-
sected our merger class with a list of B73 contigs, and found all
but one (99.72%) were found on a single contig, ruling out large
scale genomic assembly errors as a potential cause of these
merged genes. In addition, to ensure that this approach was not
merging tandem gene duplicates, we used BLASTP to compare
the protein-coding sequences of merged pairs, and looked for se-
quence identity (States and Gish 1994). We found that only four
(1.4%) of these merged pairs had any significant sequence iden-
tity between them and of these four pairs, only two had identical
GO terms. Finally, of the three extension classes, 4252 minor
extensions, 4064 major extensions, and 543 hyper large exten-
sions were found. For both major, and minor extensions, root
comprises the highest proportion of uniquely identified exten-
sions, comprising 17% of the major extension class and 31% of
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the minor extension class. Transcripts found in each annotation
class were additional scanned for functional domains, we found
that within the hyper large gene class 433 (80%) had a functional
domain, as compared to 441 (60%) genes in the merger class,
2627 (61%) in the minor extension class, and 2944 (72%) in the
major extension class. In total, using histone modification data
we were able to identify 13,159 loci requiring further investiga-
tion. Either encompassing misannotations or potential novel loci
which have gone unannotated until now. With these regions
identified, we were then interested to see if we could validate
these hypothesized annotations.

Validation of hypothesized annotations
After identifying putative misannotations, we sought to validate
these hypothesized annotations by reassembling transcripts at
the specified locus using more inclusive computational parame-
ters. In parallel to assembling transcripts from RNA-seq data,
we also utilized full-length transcript isoform sequencing using
PacBio Iso-seq reads from multiple studies (see Methods) to
evaluate hypothesized annotations. Overall, 67% (335) of the hy-
per large class of genes were validated by both long-read se-
quencing, as well as re-assembled transcripts from short reads,
and 21.5% (115) were supported by one of these data types (Figure

A

B

C

D

Figure 3 Representative examples and counts of histone modification discordant annotations. (A–C) Representative examples of annotation types
found. Current annotations are represented in blue, and the hypothesized annotations are in gray. Histone modification data on the bottom coincides
with the length of the gene body (H3K36me3 or H3K4me1) or with the transcription start site (H3K4me3 and H3K56ac). (D) The number of each
annotation class found in one of the three tissues sampled (leaf, root, and inflorescence).

J. P. Mendieta et al. | 7

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/10/jkab263/6329263 by guest on 14 April 2022



4A). For the major extension class, 45.7% (1856) of regions were
supported by both RNA-seq and Iso-seq reads, with 28.5% (1157)
being validated by a single data type, and 25.9% (1051) of major
extension annotations being unsupported. In the gene merger
class, 47.9% (174) of the hypothesized mergers were validated
with RNA-seq and Iso-seq, 13.77% (50) supported by a single data
type, and 38.9% (139) had no additional support. In total, 68%
(2698) of the minor extension class were validated by at least one
alternative data source. For the novel class of annotations, we re-
assembled regions using RNA-seq from the corresponding tissue
in which the novel region was identified. In total, 72% (3253) of
the novel loci were supported by an assembled transcript. Of
these transcripts, we found that 74% (2421) were able to generate
an open reading, indicating that the remaining 28% likely consti-
tute lncRNAs. Overall, 6385 out of 9213 of the potential misanno-
tations were found to be corroborated from orthogonal datasets,
demonstrating the capacity of histone modification data to allow
for identification of potentially misannotated regions, and
hypothesis-driven annotation correction.

We next evaluated how the distribution of gene length shifted
after reannotation for each class. Only loci which had at least
one type of supplementary support (Iso-seq reads or RNA-seq)
were used for this analysis (Figure 4B). Overall, the distribution of

the merged class was the most radically changed, as the median
gene size shifted from 3089 bp in length to 29,704 bp
(Supplementary Figure S4). In contrast, the median gene size for
the novel class is 1962 bp, smaller than the median known gene
size for maize which is 2568 bp (Portwood et al. 2019). The major
extension gene class shifted from a median size of 2363
to3818 bp, the minor extension class shifted from 3165 to
3631 bp, and the hyper large gene class shifted from 6838 to
10,909 bp. To determine if the re-annotated regions more accu-
rately recapitulated the expected distribution of histone modifi-
cations around a transcribed gene, we regenerated metaplots.
The updated annotation sets more accurately reflect the known
landscape of histone modifications around transcribed units
(Figure 4C). This trend appears similarly in all found annotation
classes (Supplementary Figures S5 and S6). This implementation
of histone modification data allowed us to recapture previously
unannotated regions in the genome of Z. mays while also improv-
ing existing annotations. All updated annotation coordinates are
found in Supplementary Table S1. In addition, we compared the
class of merged annotations against a known list of 78 split anno-
tations pairs available on Gramene (Tello-Ruiz et al. 2021). In to-
tal, 31 (40%) of the Gramene split annotations were concordant
with the annotation mergers identified by our methods. The
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remaining 47 split gene pairs were either in regions where there
was missing data (20/78), mappability issues (20/78), or were
missed due to complex loci with multiple gene features in diverg-
ing directions (7/78). Comparisons between the merged dataset
and the Gramene split gene dataset are in Supplementary Table
S2. Although the Gramene split list is a set of well-documented
split errors in the maize genome, more recent studies using com-
parative annotation-based approaches have also been imple-
mented, posing an excellent opportunity to compare and
contrast the identified list of gene merger pairs further.

We were interested in comparing the merged annotation
group against a recent study that aimed to improve annotation of
the maize genome by comparing annotations of numerous
Z. mays cultivars (B73, PH207, and W22) against one another
(Monnahan et al. 2020). By utilizing a blastp based approach for
identification of potential gene merger pairs, followed by an
analysis focused on variation in expression patterns across tis-
sues, they identified split gene pairs that should be merged across
the genome (Monnahan et al. 2020). In total, 109 (48%) of the
merged annotation class identified in this study intersected gene
merger pairs identified in the Monnahan et al. study. Out of these
109 cross captured merger pairs, 34 were represented in the high
confidence gene merger class identified in Monnahan et al. In ad-
dition, 60 out of the 109 (55%) of the mergers found at the inter-
section of our studies fall into instances where they were
identified in Monnahan et al., but unable to be confidently classify
based off of differential RNA-seq analysis. The histone modifica-
tion data in our study provides clear evidence independent of
RNA-seq that these 60 loci should be merged (Supplementary
Figure S7). Finally, there was a small class of 15 loci (14%) that
were discordant between the two methods. With the histone
modification data supporting gene merger, whereas the analysis
by Monnahen et al. identifies that these loci should remain as
split pairs. All intersecting annotations found between our stud-
ies are in Supplementary Table S2. Overall, the concordance be-
tween these gene merger sets demonstrates the inherent

challenge associated with genome annotation while also demon-
strating the advantage ChIP-seq provides as an orthogonal assay
to RNA-seq based methods for gene annotation.

Knowing that Monnahan et al. identified 96 high-confident
gene merger pairs, we were interested in further investigating the
remaining 62 pairs to ascertain why these potential misannota-
tions were not identified by our method. Of the remaining 62 high
confidence candidates identified by Monnahan et al., the histone
modification data indicates that 30 of them should not be merged
(Supplementary Figure S8). The data provided by ChIP-seq
provides strong evidence of distinct genes possessing their own
transcription start sites and evidence of unique transcriptional
elongation activities at each gene (Supplementary Figure S8).
Upon individual inspection of the remaining uncaptured 32 high
confidence merger pairs identified by Monnahan et al. these can-
didates existed in either low mappability regions of the genome
(10/32) or did not intersect a combination of histone modification
enriched domains within the tissues that we sampled (22/32).
The lack of being able to capture these loci is a limitation of
our method; demonstrating the essentiality of utilizing many
methods to improve genome annotations.

Reannotation of multiple plant genomes
After successfully applying this method in Z. mays, we were inter-
ested in extending this method to other plant genomes with
available high-quality histone modification data. In total, we
included an additional five species, Asparagus officinalis, Setaria
viridis, Sorghum bicolor, Glycine max, and Phaseolous vulgaris (Lu
et al. 2019). In total, we identified 4640 novel annotations present
in the A. officinalis, 3404 minor extensions, 386 potential gene
mergers, 3090 major extensions, and 2316 hyper large extensions
(Figure 5A). The abundance of potential novel transcripts identi-
fied in A. officinalis was unexpectedly high, given that only a sin-
gle tissue type, leaf, was used for this analysis. This stands in
contrast to Z. mays, where across the three tissue types sampled,
we found 4004 potential novel regions. In G. max, we found a
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Figure 5 Reannotation of diverse plant genomes using epigenomic data. (A) Counts of each annotation type identified in each plant genome. (B)
Scatterplot of genome size of each species annotated versus the number of annotation counts in each class.

J. P. Mendieta et al. | 9

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/11/10/jkab263/6329263 by guest on 14 April 2022



further 121 hyper large extensions, 2165 major extensions, 3388
minor extensions, 428 merged genes, and 2529 novel annota-
tions. The annotations and relative counts of each annotation
class found in each species are found in Supplementary Table S2.
This analysis clearly demonstrates that histone modification
data can be utilized on diverse plant genomes to quickly assay
the quality of genomic annotations in a given tissue type.

Upon generating a list of hypothesized annotations, we no-
ticed a slight trend in regards to genome size and putative
annotation errors. We noticed that the smaller genomes that we
sampled, namely P. vulgaris, S. bicolor, and S. viridis appeared to
have smaller number of potential genome annotation errors as
compared to larger genomes. By correlating genome size with the
counts of annotation error of each type, we found that larger
genomes have more errors in the extension and novel classes of
genes (Figure 5B). Although this trend appears to be true for
G. max, and A. officinalis, it breaks down for the largest genome
sampled here, Z. mays. However, the fact that Z. mays does not
continue this trend may reflect the attention that this plant
garners; with less annotation errors reflecting the abundance of
resources, and groups working it. This large proportion of hyper
large and major extension genes also appears to reflect a certain
level of bias when annotating plant genomes, as we capture more
issues in regards to large gene classes in plant genomes which
are larger, and likely have a history of transposon expansion
around gene features, causing increased intron size (Figure 5B).

Discussion
In the post-genome assembly era, annotation represents the next
great hurdle in accurate genomic resource creation. Here, we
demonstrate that histone modification data offers a valuable un-
tapped resource to precisely improve plant genome annotations.
By easily assessing the transcribed space of the genome and iden-
tifying domains enriched with histone modifications that corre-
late with specific transcriptional events, valuable hypotheses
about annotation features can be generated. These hypotheses,
such as identifying potential transcript length and location of
transcription start sites, can be used in a manner complementary
to RNA-based methods to provide a way to quickly fix gene
models, and generate more accurate genome annotations.

This study demonstrates the power and advantages of using
histone modification data to generate hypothesis about the tran-
scribed genic space, offering valuable orthogonal assay. By utiliz-
ing histone modifications on a genome-wide scale, we identified
consistent trends where annotations were discordant with the
expected distribution of histone modification data and identified
five distinct classes of annotation errors. We validated a set of
these annotations using RNA-based methods. In total, we were
able to identify, and validate 7930 annotation errors. Of these
updated transcripts, 3253 represent novel transcripts, demon-
strating the capacity of histone modification data to capture pre-
viously unannotated genes. Upon correction and reannotation,
these updated annotations more accurately reflected what is
known about the histone modification landscape of transcribed
genes and captured previously unannotated gene space.

In addition, this study shows that the usefulness of epige-
nomic data is not unique to Z. mays. To demonstrate this we
assayed five additional plant genomes for possible annotation
errors using this method, and found varying abundances of either
novel or misannotations. We correlated the counts of annotation
errors with genome size, and found a slight correlation between
the two, although additional studies of a great number of species

will be required to know if this is significant. The abundance of
potential annotation errors found across these five species dem-
onstrates the importance of having orthogonal support for gene
annotations and illustrates the challenges in making accurate a
priori assumptions about gene features in plants.

Annotation errors are a natural part of generating genomic
resources. The complexity of genic space, paired with the tissue
and cell type specificity of many genes, and the assumptions re-
quired in each in silico step of annotation converge to create an
exceptionally challenging problem. These myriad challenges
make annotation errors an inevitability, and downstream cura-
tion a necessity. Currently, sophisticated community-driven
approaches exist to identify and fix annotation errors, but these
large-scale efforts are limited to only well-studied species. This
bias in community size greatly inhibits the potential value, as the
species with assembled genome increase in diversity.

The methodology presented here offers a protocol to appraise
current annotations, and potentially fill in this downstream gap.
However, while valuable, it is important to note that this method
is not a panacea. ChIP-seq remains a challenging experiment and
is not used as frequently as compared to RNA-seq. The lack of
publicly available data, as well as the limited number of the tis-
sue types sampled diminishes utility of this method. However,
the increased accuracy added to genome annotations due to this
method certainly introduce the potential of ChIP-seq becoming a
standard protocol when considering genome annotation meth-
ods. Having a sequenced genome is only the first step to creating
a valuable biological resource, and the challenges facing the pro-
duction of accurate genome annotations remain. Epigenomic
data offers one powerful orthogonal resource which, when uti-
lized correctly, can strengthen current efforts and mitigate some,
but not all, issues of genomic annotation moving forward.

Data availability
All novel data generated for this analysis can be found under the
GEO accession number GSE160944. The code used to run the
above analysis can be found on GitHub in the following reposi-
tory, https://github.com/Jome0169/MendietaPablo_Annotation_
Paper_scripts. Of special interest is the script Update_annota-
tion.py, which implements the re-annotation pipeline discussed
in the method section. Updated annotations and gene models for
Z. mays can be viewed at the Plant Epigenome JBrowse Genome
Browser. Supplementary material is available at figshare: https://
doi.org/10.25387/g3.14885733.
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