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Abstract
We introduce the reflexive hull discriminant as a tool to studynoncommutative algebras
that are finitely generated, but not necessarily free, over their centers. As an example,
we compute the reflexive hull discriminants for quantum generalized Weyl algebras
and use them to determine automorphism groups and other properties, recovering
results of Suárez-Alvarez, Vivas, and others.
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0 Introduction

The discriminant is a powerful tool in the study of noncommutative algebras. It has
proved useful in computing automorphism groups and solving isomorphism problems
[14–17,22], resolving the Zariski cancellation problem for different families of non-
commutative algebras [6,21,35], and studying the representations ofAzumaya algebras
[12,52,53]. Nguyen, Trampel, and Yakimov have also established a correspondence
between discriminants and Poisson geometry [38].
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In general, the discriminant can be difficult to compute by hand, although formulas
exist for special cases [12,17,18,20,38,39]. To apply these results one typically needs
the algebra to be a finite rank free module over its center (although this is not necessary
in [17]). Otherwise, one can use the notion ofmodified discriminant ideals, introduced
in [15]. In this case, the discriminant can be defined to be the gcd of the elements in
the modified discriminant ideal. This more general notion shares many properties with
the earlier definition, and they coincide for an algebra that is a free module over its
center. However, the gcd of the elements in the modified discriminant ideal may not
exist. To overcome this deficiency, we introduce the reflexive hull discriminant.

Throughout let k be a base field. Suppose A is a finitely generated (=affine) prime
k-algebra that is a finitely generatedmodule over its center Z (also calledmodule-finite
over Z for short) and let MD(A/Z) ⊆ Z denote the modified discriminant ideal of
A/Z [Definition 1.2(3)].We say A/Z satisfies the principal closure condition (orPCC
for short) if there exists a normal element d ∈ A such that MD(A/Z)A ⊆ d A and
GKdim(d A/MD(A/Z)A) ≤ GKdim A−2 (where GKdim denotes Gelfand–Kirillov
dimension). Let (−)∨ denote the Z -dual functor HomZ (−, Z). If Z is a Cohen–
Macaulay (CM) domain and A/Z satisfies the PCC (plus somemild hypotheses), then
Lemma 1.4 shows that (MD(A/Z)A)∨∨ = d A. In this case, d is called an extended
reflexive hull discriminant (or R-discriminant for short) of A over Z , and is denoted
�̄(A/Z). We also have a “non-extended” version of a reflexive hull discriminant (or
R-discriminant for short) of A over Z which is denoted by �(A/Z) (see Sect. 1 for
more details).

The R-discriminant (or R-discriminant) has the advantage of not requiring the
existence of gcds (e.g., of the elements in the modified discriminant ideal). Even in
the situation that a gcd of the elements in the modified discriminant ideal exists, theR-
discriminant is often easier to compute because it can be computed locally. However,
in general, it is not clear when an R-discriminant exists, even for connected graded
noetherian Calabi–Yau algebras which are module-finite over their centers [Question
4.9]. We are able to show thatR-discriminants exist for certain skew polynomial rings
over their centers.

Definition 0.1 Fix an integer n ≥ 2. Let p ∈ Mn(k
×) be a multiplicatively antisym-

metric matrix (so pii = 1 and pi j = p−1
j i for all 1 ≤ i < j ≤ n). The skew polynomial

ring kp[x1, . . . , xn] is the k-algebra generated by {x1, . . . , xn} and subject to relations

x j xi = pi j xi x j , 1 ≤ i < j ≤ n.

The algebra kp[x1, . . . , xn] is an Artin–Schelter regular algebra of global dimen-
sion n.

Theorem 0.2 (Theorem 4.6) Let A be a skew polynomial ring kp[x1, . . . , xn] where
each pi j is a root of unity. Then anR-discriminant of A over its center exists.

Note that the R-discriminant shares several nice properties with the (modified)
discriminant. Inmany applications, if the (modified) discriminant ideal is not principal,
one can use the R-discriminant instead. We denote the set of the units of a ring A by
A× and for f , g ∈ A, we write f =A× g if f = cg for some c ∈ A×. The following
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result shows that, like the earlier notions of the discriminant, the R-discriminant can
be used to study automorphisms and locally nilpotent derivations.

Theorem 0.3 (Theorem1.10) Assume that A is a prime algebrawith center Z. Assume
further that Z is an affine CM domain and that Hypothesis 1.1 holds for (A, Z).
Suppose d is an R-discriminant of A over Z.

(1) If g ∈ Aut(A), then g(d) =A× d.
(2) Suppose that char k = 0 and that A× = k

×. If δ is a locally nilpotent derivation
of A, then δ(d) = 0.

The following result is useful in computing theR-discriminant of a tensor product.
A slightly modified version is proved in Theorem 2.6 in geometric language.

Theorem 0.4 (Theorem 1.3) Let A, A′ be prime algebras which are module-finite
over their centers Z , Z ′ respectively. Let w = rk(A/Z) and w′ = rk(A′/Z ′). Assume
that A⊗ A′ is prime and that Hypotheses 1.1(2) and 1.9 hold for (A, Z) and (A′, Z ′).
Suppose d (resp. d ′) is anR-discriminant of A/Z (resp. A′/Z ′). Then dw′ ⊗ (d ′)w is
anR-discriminant of (A ⊗ A′)/(Z ⊗ Z ′).

The notion of the R-discriminant which we introduce here is a very natural gen-
eralization of the classical discriminant. In [17], the authors introduced a p-power
discriminant to handle the automorphism and cancellation problems for Veronese
subrings of skew polynomial rings. Similarly we briefly introduce the p-power reflex-
ive hull discriminant (respectively, extended p-power reflexive hull discriminant),
denoted Rp

v -discriminant (respectively, Rp
v -discriminant), see Sect. 3. Several other

generalizations of the classical discriminant exist in the literature, which we illustrate
in the following diagram.

Discriminants

Modified
discriminants

Higher-power
discriminants

R-discriminants
R-discriminants

Rp
v -discriminants

Rp
v -discriminants

To illustrate the power of the notion of the R-discriminant, we study the R-
discriminant for a certain family of generalized Weyl algebras (GWAs) [Definition
0.5]. The GWA construction is sufficiently general as to encompass many families of
well-known algebras, including the classical Weyl algebras and primitive quotients
of U (sl2) [2]. Much of the theory of GWAs so far generalizes well-known properties
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of those families of algebras, see [25–28,42,45,46]. The subclass known as quantum
GWAs includes quantum planes and quantumWeyl algebras. A fundamental problem
for any class of algebras is to study their automorphisms and isomorphisms within
that class. These questions have been addressed for quantum GWAs (of degree one) in
a number of papers [3,41,49] with the assumption that the base ring has Krull dimen-
sion one. In this paper we compute the automorphism groups for certain higher degree
quantum GWAs and recover a number of earlier results in the degree one case.

Definition 0.5 Let R be a ring, σ ∈ Aut(R), and h a nonzero central element of R.
The generalized Weyl algebra (GWA) of degree one R(x, y, σ, h) is generated over R
by x and y modulo the relations

xy = h, yx = σ−1(h), xr = σ(r)x, yr = σ−1(r)y,

for all r ∈ R. We say the GWA R(x, y, σ, h) is quantum if R = k[t] and σ(t) = qt
for some q ∈ k

×.

In Sect. 5.2, we compute the reflexive hull discriminant of a degree one quantum
GWAW with parameter a root of unity (which is not 1). In this case,when degt (h) > 1,
the center Z of W is a hypersurface singularity and W is not free over Z . In general,
both W and Z may have infinite global dimension.

Theorem 0.6 (Theorem 5.5) Let W := k[t](x, y, σ, h) be a quantum GWA of degree
one with |σ | = n < ∞. Then �(W/Z(W )) =Z(W )× tn

2(n−1) and �̄(W/Z(W )) =W×

tn
2(n−1).

Theorem 0.6 generalizes several known results. When h = t , then W is a quantum
plane and when h = t − 1, then W is isomorphic to a quantum Weyl algebra. Our
result recovers the discriminant in both of these special cases [14,18].

We also compute theR-(R-)discriminant for a class of higher degree GWAs [The-
orem 5.3]. We mention one application here.

Definition 0.7 An algebra A is cancellative if for any algebra B, A[x] ∼= B[x] implies
that A ∼= B.

Theorem 0.8 Let W := k[t](x, y, σ, h) be a quantum GWA of degree m > 1 (see
Definition 5.1).

(1) (Theorem 5.3) Suppose that each qi is a root of unity with ni = |σi | < ∞,
gcd(ni , n j ) = 1 for all i �= j , and ni > 1 for at least one i . Then the R-

discriminant of W over its center exists and �(W/Z(W )) =Z(W )× tn
2(n−1), where

n2 is the rank of W over its center.
(2) (Theorem 6.4(2)) Every tensor product of finitely many GWAs as in part (1) and

Theorem 0.6 is cancellative.

Remark 0.9 In this paper we mainly consider algebras that are module-finite over their
centers. For algebras that are not module-finite over their centers, one could either

(a) reduce the situation to the module-finite case by using mod p reduction, or
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(b) use other versions of the discriminant (e.g., the P-discriminants introduced in
[35]) and their reflexive hulls.

This paper is organized as follows. We introduce the notion of anR-(R-) discrim-
inant in Sect. 1 and give a geometric interpretation in Sect. 2. In Sect. 3 we briefly
introduce the notion of anRp

v -(Rp
v -) discriminant for positive integers p and v. The-

orem 0.2 is proved in Sect. 4. In Sect. 5 we prove Theorem 0.6 and in Sect. 5.3 we
prove a version of Theorem 0.6, namely, Theorem 0.8(1), for GWAs of higher degree.
We conclude, in Sect. 6, by demonstrating several applications of R-(R-) discrimi-
nants. We compute the automorphism group of a quantum GWA, recovering a result
of Suárez-Alvarez and Vivas [49]. We also recover their result that the set of locally
nilpotent derivations of a quantum GWA is trivial. We further extend these results to
tensor products of quantum GWAs and higher degree quantum GWAs.

1 Discriminants, modified discriminants, andR-(R-) discriminants

The goal of this section is to recall the definition of the (modified) discriminant and
introduce a new notion, called the (extended) reflexive hull discriminant. Let k be a
base field. All algebras will be assumed to be k-algebras unless otherwise stated, and
we write ⊗ for ⊗k.

Let R be a commutative domain, let B be an R-algebra, and assume that R is a
subalgebra of B. When R is the center of B, we often use Z instead of R. Let F
be a localization of R such that BF := B ⊗R F is finitely generated and free over
F with w = rkF (BF ) < ∞. There is a natural embedding of R-algebras given by
left-multiplication:

lm : B → BF → EndF (BF ) ∼= Mw(F).

Let trint denote the usual (internal) matrix trace in Mw(F). The regular trace is the
composition

trreg : B lm−→ Mw(F)
trint−−→ F .

In this paper, tr denotes the regular trace, unless otherwise stated. We remark that this
is merely for convenience, and one could also use the standard trace or reduced trace
map, see [12, Section 2.2], instead. We often use the following hypothesis.

Hypothesis 1.1 Let (B, R) satisfy the following conditions.

(1) B is a prime k-algebra containing R as a central subalgebra such that B is a finitely
generated R-module.

(2) The image of tr is contained in R.

Hypothesis 1.1(2) is essential for several results in this paper. By [40, Theorem
10.1], if B is a prime ring and R is the center of B such that R is a normal domain, then
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(B, R) satisfies Hypothesis 1.1(2). In the applications given in this paper, Hypothesis
1.1(2) can be checked easily. A general comment can be found in Lemma 4.2(2).

Suppose B is a prime ring. A regular normal element x ∈ B divides y ∈ B if y = bx
for some b ∈ B. If S is a subset of B, then an element x ∈ B is a common divisor of
S if (i) x is a regular normal element and (ii) x divides every z ∈ S. Furthermore, x is
the greatest common divisor (gcd) of S if any common divisor y of S divides x . The
gcd of S, if it exists, is unique up to a unit in B.

We now recall several definitions introduced in [15].

Definition 1.2 [15, Definition 1.2] Assume (B, R) satisfies Hypothesis 1.1. For a
positive integer v, let U = {ui }vi=1 and U ′ = {u′

i }vi=1 be v-element subsets of B.

(1) The discriminant of the pair (U ,U ′) is defined to be

dv(U ,U ′) = det(tr(uiu
′
j )

v
i, j=1) ∈ R.

(2) The v-discriminant ideal Dv(B/R) is the ideal in R generated by the set of
elements dv(U ,U) where U ranges over all v-element subsets of B.

(3) The modified v-discriminant ideal MDv(B/R) is the ideal in R generated by
the set of elements dv(U ,U ′) where U ,U ′ range over all v-element subsets of
B. If B is a finitely generated R-module of rank w then we use the notation
MD(B/R) := MDw(B/R).

(4) The v-discriminant dv(B/R) is the gcd in B, if it exists, of the elements in
MDv(B/R).

(5) The extended v-discriminant ideal MDv(B/R) is the ideal in B generated by
MDv(B/R), namely,MDv(B/R) = MDv(B/R)B. Similarly, we use the notation
MD(B/R) to denote the ideal MD(B/R)B.

In the special case that B is free over R of rankw,wehave Dw(B/R) = MDw(B/R)

generated by a single element d(B/R) := dw(B/R), which we call the discriminant
of B over R.

Here, we introduce a new variant of the discriminant which will be useful for
algebras that are finitely generated, but not necessarily free, over their centers.

Let M be a module over a fixed commutative domain R. Define M∨ =
HomR(M, R). The reflexive hull of M is defined to be M∨∨. There is a natural R-
morphism ι : M → M∨∨ defined by

ι(x)( f ) = f (x) (E1.2.1)

for all x ∈ M , f ∈ M∨. It is well-known that if I is an ideal of R, then I∨∨ is an ideal
of R. In fact, if B is a prime algebra that is a finitely generated reflexive module over
a central noetherian subalgebra and if M is an ideal of B, then M∨∨ is an ideal of B
containing M .

Definition 1.2 Retain the above notation. Let (B, R) satisfy Hypothesis 1.1.

(1) The R-discriminant ideal (or reflexive hull discriminant ideal) of B over R is
defined to be

R(B/R) := (MD(B/R))∨∨ ⊆ R.
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(2) If, further,R(B/R) is a principal ideal of R generated by an element d, then d is
called anR-discriminant (or reflexive hull discriminant) of B over R and denoted
by �(B/R).

(3) Suppose B is a reflexive R-module. TheR-discriminant ideal (or extended reflex-
ive hull discriminant ideal) of B over R is defined to be

R(B/R) := (MD(B/R))∨∨ ⊆ B.

(4) If, further, R(B/R) is a principal ideal of B generated by a normal element d,
then d is called anR-discriminant (or extended reflexive hull discriminant) of B
over R and denoted by �̄(B/R).

It is clear that �(B/R) (resp. �̄(B/R)), if it exists, is unique up to a unit in R
(resp. B).

If R is a UFD (e.g., any localization of the commutative polynomial ring), then
every reflexive ideal of R is principal and so �(B/R) always exists. Similarly, if B
is a noncommutative noetherian UFR, then �̄(B/R) exists under mild conditions (see
Theorem 4.8).

Next, we introduce some conditions that are closely related to the existence of
the R-discriminant, as well as weak R-(R-) discriminants. These notions can be
computationally useful. Throughout, we use Gelfand–Kirillov dimension, denoted by
GKdim, as our dimension function. We refer the reader to [30,37] for definitions and
basic properties related to Gelfand–Kirillov dimension. Our use of GK dimension is
not essential, and other exact dimension functions work equally well.

Definition 1.3 Let (B, R) satisfy Hypothesis 1.1. Let A be an algebra (which may be
B, R, or another algebra).

(1) We say an ideal I ⊆ A satisfies the principal closure condition (or PCC) if there
exists a normal element d ∈ A such that

(a) I ⊆ d A = Ad, and
(b) GKdim (d A/I ) ≤ GKdim A − 2.

(2) We say B/R satisfies the reflexive discriminant condition (or RDC for short) if
MD(B/R) ⊆ R satisfies PCC for some nonzero element d ∈ R. In this case d is
called a weak R-discriminant of B over R.

(3) We say B/R satisfies the extended reflexive discriminant condition (or ERDC for
short) if MD(B/R) ⊆ B satisfies PCC for a normal element d ∈ B. In this case
d is called a weak R-discriminant of B over R.

The element d in either part (1) or (2) or (3) (if it exists) may not be unique (even up
to a unit) in general, unless R is CM [Lemma 1.4].

In many examples, RDC and ERDC are practical conditions to use. We will show
that under some mild conditions, RDC (ERDC) implies the existence of a R-(R-)
discriminant.
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Recall from [13, Definitions 4.1 and 4.2] that the (homological) grade of a nonzero
R-module M is defined to be

j(M) = min{i | ExtiR(M, R) �= 0}.

We say that R isGK-Macaulay if, for all nonzero finitely generated R-modules M , we
have GKdim(M) + j(M) = GKdim(R). If R is an affine commutative domain, then
R being GK–Macaulay is equivalent to R being CM, see [13, Theorem 4.8(i)⇔(iv)].

Lemma 1.4 Let (B, R) satisfy Hypothesis 1.1. Suppose that R is an affine CM domain
and that B is a CM reflexive module over R.

(1) Let M be an ideal of B satisfying PCC with respect to d ∈ B. Then M∨∨ is a
principal ideal of B generated by d.

(2) Let I be an ideal of R satisfying PCC with respect to d ∈ R. Then I∨∨ is a
principal ideal of R generated by d.

(3) Suppose B/R satisfies RDC with respect to d ∈ R. Then

MD(B/R)∨∨ = dR and �(B/R) =R× d.

(4) Suppose B/R satisfies ERDC with respect to d ∈ B. Then

(MD(B/R))∨∨ = dB and �̄(B/R) =B× d.

Proof (1) By definition, there is a short exact sequence

0 → M → dB → dB/M → 0.

Applying (−)∨ = HomR(−, R) gives

0 → HomR(dB/M, R) → HomR(dB, R) → HomR(M, R) → Ext1R(dB/M, R).

Since R is CM (and hence GK–Macaulay by [13, p.1451] or [13, Theorem
4.8(i)⇔(iv)]) and M satisfies PCC with respect to d, we have GKdim(dB/M) ≤
GKdim B − 2 = GKdim R − 2. Therefore, j(dB/M) ≥ 2 by the GK–Macaulay
property. By definition, HomR(dB/M, R) = Ext1R(dB/M, R) = 0. Hence

M∨ = HomR(M, R) = HomR(dB, R) = (dB)∨ = d−1B∨.

Applying (−)∨ again yields the desired isomorphism.
(2) This is a special case of part (1) by taking B = R.
(3) This follows from part (2).
(4) This follows from part (1). ��
In all applications given in this paper, the hypotheses in Lemma 1.4 will be verified.
A useful property of the various flavors of discriminants is their invariance under

automorphisms (see [14, Lemma1.8], [15, Lemma1.4]).Wenext show that theR-(R-)
discriminant is preserved, up to a unit, by any automorphism.
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Lemma 1.5 Suppose B is an algebra with center R and suppose that (B, R) satisfy
Hypothesis 1.1. Assume additionally that R is a domain. Let G be a group of algebra
automorphisms of B.

(1) If I is a G-invariant ideal of R, then I∨∨ is also a G-invariant ideal of R.
(2) Suppose B is reflexive over R. Let I be a G-invariant ideal of B. Then I∨∨ is also

a G-invariant ideal of B.

Proof It suffices to prove (2), since (1) follows from (2) by setting B = R. The induced
action of G on I∨ = HomR(I , R) is given as follows: for any g ∈ G and ϕ ∈ I∨, we
have (gϕ)(x) = g(ϕ(g−1(x))). Similarly I∨∨ has an induced G-action.

Since B is reflexive, the map ι : B → B∨∨ as in (E1.2.1) is an isomorphism. Then
I∨∨ is the subset of elements x ∈ B such that ι(x)(I∨) ⊆ R. To show that I∨∨ is
G-invariant, it suffices to show that the induced action of G on I∨∨ is the same as the
G-action inherited as a subset of R. For x ∈ I and ϕ ∈ I∨, we have

(gι(x))(ϕ) = g(ι(x)(g−1ϕ)) = g((g−1ϕ)(x)) = gg−1(ϕ(g(x)))

= ϕ(g(x)) = ι(g(x))(ϕ),

which proves the claim. ��
The R-(R-) discriminant utilizes reflexive hulls to obtain a good principal ideal

in the case that the modified discriminant ideal MD(A/Z) is not principal. It may be
possible that other operations can be employed in similar ways.

Question 1.6 What are some other examples of closure operations on ideals (integral
closure, Frobenius closure, tight closure, etc) which send G-invariant ideals to G-
invariant ideals?

In the remainder of this section, we are interested in the modified discriminant
ideals and R-discriminants for tensor products of algebras. In order to study these
R-discriminants, we recall the definition of a quasi-basis from [15]. We refine the
definition slightly here by including the data of a generating set (the set X below) as
part of the data of a quasi-basis.

Definition 1.7 [15, Definition 1.10] Let B be an algebra which is module-finite over
a central subalgebra R. Let F be the field of fractions of R (or a localization of R).
Suppose that BF := B ⊗R F is a finite dimensional F-vector space. A set b =
{b1, . . . , bw} ⊆ B is a quasi-basis of B with respect to a finite set X = {x j } j∈J ⊆ B
if the following four conditions hold:

(a) b ⊆ X ,
(b) b is an F-basis of BF , where bi is viewed as bi ⊗ 1 ∈ BF ,
(c) X generates B as an R-module, and
(d) each x j is in the union of one-dimensional F-subspaces

⋃w
i=1 Fbi .

By part (d), for each j ∈ J , we can write x j = c j bi for some i (uniquely determined
by j) and some scalar c j ∈ F . Let C be the set of all such nonzero coefficients c j . If
only conditions (a)–(c) hold, we call b a semi-basis of B with respect to X .



40 Page 10 of 35 K. Chan et al.

By Definition 1.7(d), we may define a map f : J → {1, . . . , w} where f ( j) is
defined to be the i such that x j ∈ Fbi .We say I ⊆ J is aw-restricted subset if |I | = w

and f (I ) = {1, . . . , w}.
Lemma 1.8 [15, Lemma 1.11(1)] Let B be an algebra which is module-finite over a
central subalgebra R. Let X be a generating set of B over R and let b be a quasi-basis
of B with respect to X. Then, as ideals in R,

MD(B/R) = dw(b,b) 〈cI cK | I , K 〉 .

where I , K range over w-restricted subsets of J and where cI= ∏
j∈I c j and

cK= ∏
j∈K c j .

Although many of the results above hold for more general (B, R), for much of
the remainder of the paper, we will consider the specific case when R is the center
of B. Henceforth, we will often use the notation (A, Z) where A is an algebra with
center Z .

Hypothesis 1.9 Let A be an algebrawith center Z . Suppose that (A, Z) satisfyHypoth-
esis 1.1 and further suppose that:

(1) Z is affine and CM, and
(2) there is a quasi-basis with respect to a finite generating set of the Z -module A.

A derivation of an algebra A is a k-linear map δ : A → A satisfying the Leibniz
rule:

δ(ab) = δ(a)b + aδ(b)

for all a, b ∈ A. A derivation δ is called locally nilpotent if for every a ∈ A there
exists n ∈ N such that δn(a) = 0.

Theorem 1.10 Suppose (A, Z) satisfies Hypothesis 1.9(1).

(1) Suppose d is an R-discriminant of A over Z. If g ∈ Aut(A), then g(d) =Z× d.
(2) Suppose d is an R-discriminant of A over Z. If g ∈ Aut(A), then g(d) =A× d.
(3) Let d be either �(A/Z) or �̄(A/Z). Suppose that char k = 0 and that A× = k

×.
If δ is a locally nilpotent derivation of A, then δ(d) = 0.

Proof (1) Let g ∈ Aut(A). Then g naturally preserves the center Z of A. By
[15, Lemma 1.4], g preserves the modified discriminant ideal MD(A/Z). Since
MD(A/Z)∨∨ = dZ , then the result follows from Lemma 1.5.

(2) The proof is similar to the proof of part (1).
(3) This result is completely analogous to [15, Proposition 1.5]. ��
We will use the following notation for tensor products of finite sets. If b ⊆ A and

b′ ⊆ A′ are finite sets, then we define b ⊗ b′ = {a ⊗ b | a ∈ b, b ∈ b′} ⊆ A ⊗ A′.
An algebra is called PI if it satisfies a polynomial identity.
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Lemma 1.11 Let A and A′ be prime PI algebras with centers Z and Z ′, respectively,
such that Hypothesis 1.1 holds for both (A, Z) and (A′, Z ′). Let w = rk(A/Z) and
w′ = rk(A′/Z ′). Assume that A⊗A′ is prime (so that the center is a domain). Suppose
b = {bi }wi=1 and b

′ = {b′
i }w

′
i=1 are quasi-bases for A and A′ with respect to the (finite)

generating sets x = {x j } j∈J and x′ = {x ′
j } j∈J ′ , respectively. Then the following hold.

(1) The set b ⊗ b′ is a quasi-basis of A ⊗ A′ with respect to x ⊗ x′.
(2) MD(A/Z)w

′ ⊗ MD(A′/Z ′)w = MD
(
(A ⊗ A′)/(Z ⊗ Z ′)

)
. As a consequence,

MD(A/Z)w
′ ⊗ MD(A′/Z ′)w = MD

(
(A ⊗ A′)/(Z ⊗ Z ′)

)
.

(3) If MD(A/Z) ⊆ dZ and MD(A′/Z ′) ⊆ d ′Z ′ for some elements d ∈ Z and
d ′ ∈ Z ′, respectively, then

MD((A ⊗ A′)/(Z ⊗ Z ′)) ⊆ (dw′ ⊗ (d ′)w)(Z ⊗ Z ′).

(4) If MD(A/Z) ⊆ dZ and MD(A′/Z ′) ⊆ d ′Z ′ for some normal elements d ∈ A
and d ′ ∈ A′, respectively, then

MD((A ⊗ A′)/(Z ⊗ Z ′)) ⊆ (dw′ ⊗ (d ′)w)(A ⊗ A′).

Proof It is easy to see that Z(A ⊗ A′) = Z ⊗ Z ′. Part (1) follows directly from the
definition of quasi-basis, and parts (3,4) are consequences of part (2). It remains to
show part (2).

To prove (2), we use the generators of the ideal MD(B/R) given by Lemma 1.8
to identify MD

(
(A ⊗ A′)/(Z ⊗ Z ′)

)
with the tensor product MD(A/Z)w

′ ⊗ MD
(A′/Z ′)w.

As above, we define a map f : J → {1, . . . , w} by letting f (α) be the unique
index such that xα = cαb f (α). We define f ′ : J ′ → {1, . . . , w′} similarly so that
x ′
α = c′

αb
′
f ′(α)

. Then f × f ′ : J × J ′ → {1, . . . , w} × {1, . . . , w′} is well-defined.
Adopting the notation that if I ⊆ J then cI = ∏

i∈I cI (and similarly for subsets of
J ′ and J × J ′), we can write out the generators of the modified discriminant ideals
explicitly:

MD (A/Z) = dw(b,b)〈cI cK | w − restricted subsets I , K ⊆ J 〉
MD

(
A′/Z ′) = dw′(b′,b′)〈c′

I ′c′
K ′ | w′ − restricted subsets I ′, K ′ ⊆ J ′〉

MD
(
(A ⊗ A′)/(Z ⊗ Z ′)

) = dww′(b ⊗ b′,b ⊗ b′)
〈γMγN | ww′ − restricted subsets M, N ⊂ J × J ′〉

where γM = ∏
(α,β)∈M cα ⊗ c′

β for M ⊆ J × J ′. The following equality

dww′(b ⊗ b′,b ⊗ b′) = dw(b,b)w
′ ⊗ dw′(b′,b′)w

is elementary, as it follows from properties of Kronecker products of matrices, so we
omit its justification.
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Let pr1 and pr2 denote the projections of J × J ′ to J and J ′, respectively. Suppose
that M, N are ww′-restricted subsets J × J ′. For each n ∈ {1, 2, . . . , w} and n′ ∈
{1, 2, . . . , w′} we define

I ′
n = ( f ◦ pr1)

−1(n) ∩ M K ′
n = ( f ◦ pr1)

−1(n) ∩ N

In′ = ( f ′ ◦ pr2)
−1(n′) ∩ M Kn′ = ( f ′ ◦ pr2)

−1(n′) ∩ N .

Note that since M and N are ww′-restricted subsets of J × J ′, we have, for each
n, n′, that |In′ | = |Kn′ | = w and |I ′

n| = |K ′
n| = w′ (and these are w and w′-restricted

subsets of J and J ′, respectively). Then

γMγN =
w′
∏

n′=1

cIn′ cKn′ ⊗
w∏

n=1

c′
I ′
n
c′
K ′
n
. (E1.12.1)

Hence, dww′(b⊗b′,b⊗b′)γMγN ∈ MD(A/Z)w
′ ⊗MD(A′/Z ′)w. Conversely, let C

denote the right hand side of (E1.12.1) where In′ , Kn′ arew-restricted subsets of J and
I ′
n , K

′
n are w′-restricted subsets of J ′. Then we can express C in the form C = γM̃γÑ

where

M̃ =
w′
⋃

n′=1

w⋃

n=1

(In′ × J ′) ∩ (J × I ′
n)

Ñ =
w′
⋃

n′=1

w⋃

n=1

(Kn′ × J ′) ∩ (J × K ′
n).

Indeed, for each 1 ≤ n ≤ w and 1 ≤ n′ ≤ w′, we can write (In′ × J ′) ∩ (J × I ′
n)

(somewhat perversely) as the singleton
(
( f |In′ )

−1(n), ( f ′∣∣
I ′
n
)−1(n′)

)
since In′ being

a w-restricted subset of J means f |In′ (and similarly f |I ′
n
) is invertible. This shows

that M̃ and Ñ are ww′-restricted subsets of J × J ′. It follows from the definition that
( f ◦ pr1)

−1(n) ∩ M̃ = I ′
n and ( f ′ ◦ pr2)

−1(n′) ∩ M̃ = In′ (similar statements hold
for Ñ , K ′

n and Kn′ ).
This verifies the formula C = γM̃γÑ which shows that

dw(b,b)w
′
dw′(b,b′)wC ∈ MD

(
(A ⊗ A′)/(Z ⊗ Z ′)

)
.

This completes the proof of the first equation of (2). The second equation is an imme-
diate consequence of the first. ��
Lemma 1.2 Let A be a noetherian prime PI algebra. Suppose M1, M2 are commuting
ideals of A and d1, d2 are commuting normal elements of A such that, for i = 1, 2,

(a) Mi ⊆ di A and
(b) GKdim (di A/Mi ) ≤ GKdim(A) − 2.
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Then

(1) M1M2 ⊆ d1d2A and
(2) GKdim(d1d2A/M1M2) ≤ GKdim(A) − 2.

Proof Clearly we can assume that d1d2 �= 0. By replacing Mi by d−1
i Mi we can

assume that di = 1 (for i = 1, 2). We get a short exact sequence

0 → M1/M1M2 → A/M1M2 → A/M1 → 0.

By hypothesis (b), GKdim(A/M1) ≤ GKdim(A)−2 and sinceM1/M1M2 is a finitely
generated A/M1-module, we also have

GKdim(M1/M1M2) ≤ GKdim(A/M2) ≤ GKdim(A) − 2.

Hence by additivity of GKdim on short exact sequences, we conclude that
GKdim(A/M1M2) ≤ GKdim(A) − 2. ��
Theorem 1.3 Retain the hypothesis of Lemma 1.11.

(1) Suppose that A/Z (resp. A′/Z ′) satisfies RDC with respect to d (resp. d ′), a weak
R-discriminant of A/Z (resp. A′/Z ′). Then (A⊗A′)/(Z⊗Z ′) satisfies RDCwith
respect to dw′ ⊗ (d ′)w, which is a weakR-discriminant of (A⊗ A′)/(Z ⊗ Z ′). If
further Hypothesis 1.9(1) holds for (A⊗ A′, Z ⊗ Z ′), then dw′ ⊗ (d ′)w =(Z⊗Z ′)×
�((A ⊗ A′)/(Z ⊗ Z ′)).

(2) Suppose that A/Z (resp. A′/Z ′) satisfies ERDCwith respect to d (resp. d ′), a weak
R-discriminant of A/Z (resp. A′/Z ′). Then (A ⊗ A′)/(Z ⊗ Z ′) satisfies ERDC
with respect to dw′ ⊗(d ′)w, which is a weakR-discriminant of (A⊗A′)/(Z⊗Z ′).
If furtherHypothesis 1.9(1) holds for (A⊗A′, Z⊗Z ′), then dw′ ⊗(d ′)w =(A⊗A′)×
�̄((A ⊗ A′)/(Z ⊗ Z ′)).

Proof (1) Let R = Z ⊗ Z ′, M1 = MD(A/Z)w
′ ⊗ Z ′ and M2 = Z ⊗ MD(A′/Z ′)w.

Let d1 = dw′
and d2 = (d ′)w. The first assertion follows from Lemmas 1.11 and 1.2

applied to R.
Since Z and Z ′ are affine noetherian, then so is R. Moreover, Z and Z ′ are CM

so R is as well by [8, Theorem 2.1]. The second assertion now follows from Lemma
1.4(1) and the first assertion.

(2) The proof of this assertion is analogous to the proof of part (1). ��
In [20], the authors studied discriminants of twisted tensor products of algebras.

Question 1.4 Under similar hypotheses to those in [20], is it possible to compute the
R-(R-) discriminant of a twisted tensor product of two algebras?

To conclude this section, we make an observation. It is easy to see that if d is a
weakR-discriminant of B over R [Definition 1.3(2)], then it is a weakR-discriminant
of B over R [Definition 1.3(2)]. Note that if R is an affine CM normal domain,
then the R-discriminant (resp. R-discriminant) exists if and only if the weak R-
discriminant (resp.R-discriminant) exists [Lemmas1.4 and2.4].Combining the above
two sentences, under some mild hypothesis, if �(B/R) exists, then so does �̄(B/R)

and �̄(B/R) = �(B/R).
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Lemma 1.5 AssumeHypothesis 1.1 for (A, Z). Suppose that Z is an affine CM normal
domain and that A is reflexive over Z. If �(A/Z) exists, then so does �̄(A/Z) and
�̄(A/Z) =A× �(A/Z).

2 A geometric interpretation

In this section we provide a geometric motivation for the reflexive hull discriminant.
For convenience, we assume the next hypothesis for a large part of this section.

Hypothesis 2.1 Let (A, Z) satisfy Hypothesis 1.1. Let X := Spec Z be an affine
integral normal k-variety. LetD (resp.D) be the sheafification of the ideal MD(A/Z)

in Z (resp. MD(A/Z) in A).

We are interested in the reflexive hull of the modified discriminant ideal D of the
OX -order A and consider it as a subsheaf of OX . Note that D∨∨ is, by definition, a
reflexive sheaf of rank one, so we can construct it using the following well-known fact
[50, Lemma 0AY6].

Lemma 2.2 Let X bean integral locally noetheriannormal scheme. LetLbea coherent
OX -module. The following are equivalent:

(a) L is reflexive,
(b) there exists an open subscheme ι : U → X such that

(b1) every irreducible component of X \U has codimension ≥ 2 in X,
(b2) ι∗L is finite locally free, and
(b3) L = ι∗ι∗L.
Let L1 and L2 be two coherent reflexiveOX -modules. By Lemma 2.2, L1 ∼= L2 if

there is an open subscheme ι : U ⊆ X such that X \ U has codimension ≥ 2, ι∗L1
and ι∗L2 are locally free, and ι∗L1 ∼= ι∗L2. The following lemma is a special case of
Lemma 2.2, and is useful in computing reflexive hull discriminants.

Lemma 2.3 Suppose (A, Z) satisfies Hypothesis 2.1. Let U be an open subset of X
such that X \U has codimension ≥ 2.

(1) If there exists a normal element d ∈ A such that the principal ideal (d) of A
agrees withMD(A/Z) on U, then �̄(A/Z) =A× d.

(2) Similarly, if there exists an element d ∈ Z such that the principal ideal (d) of Z
agrees withMD(A/Z) on U, then �(A/Z) =Z× d.

The following lemma is easy.

Lemma 2.4 Let A be an OX -order and assume (A, Z) satisfies Hypothesis 2.1.

(1) Suppose that A is a CM Z-module. Let m ∈ X be a regular closed point. Then

MD(Am/Zm) = MD(A/Z)m = (MD(A/Z)m)∨∨

is a principal, hence reflexive, ideal of Zm. As a consequence, the support
of D∨∨/D has codimension ≥ 2, or equivalently, GKdim

(
MD(A/Z)∨∨/

MD(A/Z)) ≤ GKdim Z − 2.
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(2) Suppose that A is a CM normal Z-module. Let m ∈ X be a regular closed point.
Then

MD(Am/Zm) = MD(A/Z)m = (MD(A/Z)m)∨∨

is a principal, hence reflexive, ideal of Am. As a consequence, the support of
D∨∨

/D has codimension ≥ 2, or equivalently, GKdim (MD (A/Z)∨∨/MD
(A/Z)) ≤ GKdim A − 2.

(3) Suppose that V is an affine open subset of X such that A|V is locally free. Then

MD(A/Z)|V = MD(A|V /O(V )) = OV (D)

where D is given by the zero locus of the usual discriminant d ∈ OV (V ).

Proof (1) Since m is a smooth closed point, Zm is local and regular. Since A is
CM over Z , Am is CM over Zm. By the Auslander–Buchsbaum formula, Am is a
finite projective (hence free) module over Zm. So the (modified) discriminant ideal is
principal and hence reflexive.

The consequence is clear.
(2) The proof is similar to the proof of part (1).
(3) By commutative algebra, taking reflexive hulls commutes with localization as

does the formation of modified discriminants. Thus the assertion follows. ��

Let U be the maximal open subvariety such that D|U is locally free. When A is
CM over Z , then U contains the non-singular locus of X by Lemma 2.4(1) (so the
R-discriminant exists over an open subvariety whose complement has codimension
≥ 2). We can write D|U = D∨∨∣

∣
U = OU (D) where D is a Cartier divisor on U .

Denote by ι : U → X the inclusion map, then D∨∨ = ι∗OU (D) by Lemma 2.2.
Therefore one might consider this Cartier divisor as a “shadow” of the reflexive hull
discriminant D∨∨. In other words, theR-discriminant is a “completion” or “closure”
of this Cartier divisor. A similar comment can be made forD which is considered as a
subsheaf of (the sheafification of) A. It is interesting towork out the closed subvarieties
so that D (resp. D∨∨, D, and D∨∨

) are not locally free.
The upshot of Lemmas 2.3 and 2.4 is that to compute D∨∨ (resp. D∨∨

) we do
not have to compute the modified discriminant ideal, i.e., we do not have to consider
all rk(A/Z) × rk(A/Z)-minors of a large matrix. This reduces the computation sig-
nificantly. Once we have determined D as a Cartier divisor on U (or equivalently, a
locally free ideal of O(U )), the question of whether the reflexive hull of the modified
discriminant ideal is principal becomes a question in algebraic geometry: is ι∗OU (D)

locally free? Or equivalently, does the Cartier divisor D onU extend to a Cartier divi-
sor on all of X? We illustrate this recipe by computing the R-discriminant of several
classes of algebras in the following examples as well as in Sects. 4 and 5.

Example 2.5 Suppose char k �= 2. Let A = kp[x1, x2, x3] as in Definition 0.1 (for
n = 3). Note that �(A/Z) exists by Theorem 4.6.
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(1) Let (p12, p13, p23) = (−1, 1, 1). The center of A is Z = k[u, v, w] where
u = x21 , v = x22 , and w = x3. The rank of A over Z is 4. The discriminant,
modified discriminant, and reflexive hull discriminant are all equal to �(A/Z) =
�̄(A/Z) =k× (uv)2 = x41 x

4
2 .

(2) Let (p12, p13, p23) = (−1,−1, 1). The center of A is k[u, v, w, z]/(vw − z2)
where u = x21 , v = x22 ,w = x23 , and z = x2x3. The rank of A over Z is 4. Let V be
the open subset of X with v �= 0.OverV , the discriminant of Av is (uv)2, or simply
u2, since v2 is a unit in Zv . LetW be the open subset of X with w �= 0. Similarly,
overW , the discriminant of Aw is u2. Note that X \(V ∪W ) has codimension 2, so
the R-discriminant is �(A/Z) = �̄(A/Z) =k× u2 = x41 , which agrees with the
modified discriminant given in [15, Example 1.3(3)]. The modified discriminant
ideal is generated by {x41 xi2x4−i

3 }4i=0 by [15, Example 1.3(3)].
(3) Let (p12, p13, p23) = (−1,−1,−1). The center of A is k[u, v, w, z]/(uvw− z2)

where u = x21 , v = x22 , w = x23 , and z = x1x2x3. Let U3 be the open subset of
X with uv �= 0. Over U3, the discriminant of Auv is (x1x2)4 which is equivalent
to 1. Let U2 (resp. U1) be the open subset of X with uw �= 0 (resp, vw �= 0).
Since X \ (U1 ∪ U2 ∪ U3) has codimension 2 in X , the R-discriminant of A/Z
is �(A/Z) = �̄(A/Z) =k× 1.

To conclude this section we prove a geometric version of Theorem 1.3.

Theorem 2.6 Let k be an algebraically closed field. Suppose that

(a) A is a prime algebra that is module-finite over its center Z,
(b) Z is an affine normal CM domain and that �(A/Z) exists, and
(c) A is CM as a module over Z.

Let (A′, Z ′) be another pair satisfying (a)–(c). Let w (resp. w′) be the rank of A (resp.
A′) over Z (resp. Z ′). Further assume that A ⊗ A′ is prime. Then the following hold.
(1) Z ⊗ Z ′ is a normal CM domain.
(2) A ⊗ A′ is a prime ring with center Z ⊗ Z ′ and A ⊗ A′ is CM as a module over

Z ⊗ Z ′.
(3) �(A ⊗ A′/Z ⊗ Z ′) =(A⊗A′)× �(A/Z)w

′ ⊗ �(A/Z ′)w.
(3’) Suppose A ⊗ A′ is reflexive over Z ⊗ Z ′. If �(A/Z) is replaced by �̄(A/Z) in

(b), then �̄(A ⊗ A′/Z ⊗ Z ′) =(Z⊗Z ′)× �̄(A/Z)w
′ ⊗ �̄(A/Z ′)w.

Proof (1) By [43, Lemma 1.1], Z ⊗ Z ′ is a domain. That Z ⊗ Z ′ is CM follows by
the same argument as in Theorem 1.3. Since k is algebraically closed, every simple
module over Z ⊗ Z ′ is a tensor product of simple modules over Z and Z ′ respectively.
Thus, singular points on Spec Z ⊗ Z ′ are of the form (z, z′) where either z ∈ Spec Z
or z′ ∈ Spec Z ′ is singular. This implies that the singular locus of Spec Z ⊗ Z ′ has
codimension ≥ 2. By Serre’s criterion for normality, Z ⊗ Z ′ is normal.

(2) It is clear that the center of A ⊗ A′ is Z ⊗ Z ′. Since Z is affine and CM, by
Noether normalization, there is a polynomial subring S ⊆ Z such that Z is a finite
free module over S. Since A is CM over Z , A is a finite free module over S. Similarly,
there is a polynomial subring S′ ⊆ Z ′ such that both Z ′ and A′ are finite free module
over S′. Then A ⊗ A′ is finite and free over the central polynomial subring S ⊗ S′.
Hence A ⊗ A′ is CM over S ⊗ S′ and over Z ⊗ Z ′.
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(3) LetU be the non-singular locus of X := Spec Z . Then X \U has codimension
≥ 2 in X as Z is normal. Similarly, the non-singular locus of X ′ := Spec Z ′, denoted
by U ′, has complement with codimension ≥ 2 in X ′. Since k is algebraically closed,
U × U ′ is an open scheme of the non-singular locus of X × X ′ := Spec(Z ⊗ Z ′)
whose complement has codimension ≥ 2 in X × X ′. By Lemma 2.4(1) and a local
version of Lemma 1.11 (with b = x and b′ = x′), overU ×U ′, MD(A⊗ A′/Z ⊗ Z ′)
is equal to MD(A⊗ A′/Z ⊗ Z ′)∨∨ and equal to the Cartier divisorOU×U ′(D) where
D is determined by d := �(A/Z)w

′
�(A/Z ′)w. Since d is defined over X × X ′,

MD(A ⊗ A′/Z ⊗ Z ′)∨∨ is the principal ideal generated by d by Lemma 2.2. The
assertion follows.

(3’) This is similar to the proof of (3).
��

3 Rp
v-discriminants

Next, we introduce the p-power reflexive hull v-discriminant (or Rp
v -discriminant),

as well as its extended counterpart, the Rp
v -discriminant. These notions generalize

the p-power discriminants introduced in [17]. As we illustrate in Example 3.2, there
are situations in which the R-discriminant does not exist, but for some p, the Rp

v -
discriminants do exist. Hence, in these situations, the Rp

v -discriminant can serve as
a useful invariant (see Theorem 3.3). For the sake of brevity, in this section, we omit
some non-essential details.

Definition 3.1 Assume Hypothesis 1.1 for (B, R). Fix two positive integers p, v.

(1) The p-power v-discriminant ideal, denoted by MDp
v (B/R), is the ideal (MDv

(B/R))p (where MDv(B/R) is given in Definition 1.2(3)).
(2) The p-power reflexive hull v-discriminant ideal or Rp

v -discriminant ideal of B
over R is defined to be

Rp
v (B/R) = (MDp

v (B/R))∨∨.

(3) If further Rp
v (B/R) is a principal ideal generated by an element d in R, then d

is called the p-power reflexive hull v-discriminant orRp
v -discriminant of B over

R and denoted by �
[p]
v (B/R).

(4) The p-power extended reflexive hull v-discriminant ideal or Rp
v -discriminant

ideal of B over R is defined to be

Rp
v (B/R) =

(
MD

p
v (B/R)

)∨∨
.

(5) If furtherRp
v (B/R) is a principal ideal generated by a normal element d in B, then

d is called the p-power extended reflexive hull v-discriminant orRp
v -discriminant

of B over R and denoted by �̄
[p]
v (B/R).

It is clear that if it exists, �
[p]
v (B/R) (resp. �̄

[p]
v (B/R)) is unique up to a unit in R

(resp. in B).
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Theorem 4.8 in the next section indicates that if R (resp. B) is nice enough, then
�

[p]
v (B/R) (resp. �̄

[p]
v (B/R)) exists. In general, the existence of �

[p]
v (B/R) (resp.

�̄
[p]
v (B/R)) is dependent on (p, v) as the next example shows.

Example 3.2 Let Z = k[a, b, c]/(ab − c3) and consider the A2 singularity X =
Spec(Z). The divisor class group Div(X) of X is isomorphic to Z/3Z with genera-

tor given by I = (a, c). Let A be the matrix algebra

(
Z I
Z Z

)

. Then the modified

discriminant is MD(A/Z) = I 2. The rank of A over its center Z is 4.

(1) For every q ≥ 1, I q is not principal, and so no p-power discriminant ideal
MD(A/Z)p is principal.

(2) TheR-discriminant ideal (I 2)∨∨ is not principal as Div(X) ∼= Z/3Z with gener-
ator given by I = (a, c). So �(A/Z) (namely, �[1]

4 (A/Z)) does not exist.
(3) Since I 3 = (a3, a2c, ac2, c3) = a(a2, ac, c2, b) and GKdim(Z/(a2, ac, c2, b))

= 0 we have, by Lemma 1.4(1), that (I 3)∨∨ = (a) is principal. Hence (I 6)∨∨ =
(a2) is also principal. This means that �[3]

4 (A/Z) =k× a2.
(4) One can check that

�[p]
w (A/Z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 1 ≤ w ≤ 3, p ≥ 1,

a
p
3 w = 3, 3 | p,

does not exist w = 3 or w = 4, 3 � p,

a
2p
3 w = 4, 3 | p,

0 w ≥ 5, p ≥ 1.

The proof of the following result is similar to the proof of Theorem 1.10 and is
omitted.

Theorem 3.3 Let (A, Z) satisfy Hypotheses 1.1 and 1.9(1) where Z is the center of A.
Fix two positive integers p, v.

(1) Suppose d is an Rp
v -discriminant of A of Z. If g ∈ Aut(A), then g(d) =Z× d.

(2) Suppose d is an Rp
v -discriminant of A of Z. If g ∈ Aut(A), then g(d) =A× d.

(3) Suppose that char k = 0 and that A× = k
×. If δ is a locally nilpotent derivation

of B, then δ(d) = 0.

4 Proof of Theorem 0.2

In this section we first make a few elementary remarks about Hypotheses 1.1, 1.9, and
2.1 and then prove Theorem 0.2.

Let A be a prime affine algebra that is module-finite over its center Z := Z(A).
Following Brown and Hajarnavis [10], A is called homologically homogeneous (or
hom-hom for short) of dimension d if all simple A-modules have the same projective
dimension d (see also [47,48]). Hom-hom rings appear naturally in several contexts.
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Example 4.1 The following are examples of hom-hom rings:

(1) Affine noetherian prime Hopf algebras that are module-finite over their centers
and have finite global dimension [9, Theorem A].

(2) Connected graded noetherian Artin–Schelter regular PI algebras [48]. These
include the PI skew polynomial rings defined in Definition 0.1.

(3) Noncommutative crepant resolutions, in the sense of Van den Bergh [51].

The results in the following lemma are well-known.

Lemma 4.2 [10,47,48] Let A be a hom-hom ring with center Z.

(1) Z is normal. As a consequence, Hypothesis 2.1 holds.
(2) The image of tr is in Z. As a consequence, Hypothesis 1.1 holds.
(3) Suppose Z is affine. Then A is a reflexive module over Z.

Proof (1) This is [10, Theorem6.1] (or [48, Theorem5.6(ii)]). Note that aKrull domain
is just a noetherian normal domain.

(2) By [48, Theorem 5.4(iii)], A is equal to its trace ring, which implies, by defini-
tion, that the image of tr is in Z .

(3) By [47, Theorem 2.3(1,4)], A is a CM tame Z -order in the sense of [47, Section
2]. So A is a finitely generated CM (and then free) module over a polynomial subring
R of Z . Hence A is reflexive over R. It follows from [47, Lemma 2.1] that A is also
reflexive over Z . ��
Lemma 4.3 Let A be a prime ring with center Z. Suppose that Z is normal and that
char k does not divide the rank of A over Z. Then Z is CM. As a consequence,
Hypothesis 1.9(1) holds.

Proof If char k = 0, then the result follows from [47, Theorem 2.3(3)]. Now suppose
that char k > 0. Since char k does not divide the rank of A over Z , tr is a nonzero
scalar multiple of the identity map when restricted to Z . Then Z is a Z -module direct
summand of A, and the assertion follows from [10, Theorem 2.5]. ��

Note that Hypothesis 1.9(1) fails if char k divides rkZ (AZ ), see [11, Example 7.3]
for a local example. An affine version can be made using the idea of [11, Example
7.3], see explanation in [13, Example 2.3(vi)].

Hypothesis 1.9(2) is a technical condition and we expect that Lemma 1.11 and
Theorem 1.3 hold without this hypothesis, see Theorem 2.6.

For a hom-hom ring A, the dualizing module ωA is defined in [47, p.663]. We say
A is Calabi–Yau if ωA ∼= A as A-bimodule [47, Remark 3.2]. When A is a prime
affine algebra and module-finite over its center, this definition is equivalent to other
definitions, for example, the one given given by Ginzburg [23].

Lemma 4.4 Let A be an affine Calabi–Yau prime algebra that is module-finite over its
center Z. Then Z is Gorenstein.

Proof This follows from [47, Lemma 2.5(5)]. ��
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For the rest of this section we prove Theorem 0.2. The skew polynomial ring
kp[x1, . . . , xn], as in Definition 0.1, isZ

n-graded with deg xi = ei . It is also connected
N-graded when we set deg xi = 1 for all i .

Lemma 4.5 Let A be the skew polynomial ring kp[x1, . . . , xn] such that each pi j is a
root of unity. Let r2 be the rank of A over its center Z.

(1) char k and r are coprime. As a consequence, Z is a CM normal domain.
(2) Let M be an ideal of A generated by monomials, namely, Z

n-homogeneous ele-
ments. Then M∨∨ is a principal ideal of A.

(3) For every monomial f , tr( f ) =
{
r2 f f ∈ Z

0 f /∈ Z .

(4) Let U and U ′ be two v-element sets of monomials. Then

dv(U ,U ′) ∈ Z ∩ k

∏

f ∈U , f ′∈U ′
f f ′,

which is a monomial in Z.
(5) For every pair of positive integers (p, v), MDp

v (A/Z) is generated by a set of
monomials in Z.

(6) For every pair of positive integers (p, v),MD
p
v (A/Z) is an ideal of A generated

by a set of monomials in Z.

Proof (1) For each i, j , let ni j denote the order of pi j . If char k > 0, then char k is
coprime to ni j for all i, j . Since the rank of A over Z is a factor of (

∏
i< j ni j )

2, it
follows that r and char k are coprime. By Lemma 4.3, Z is CM and by Lemma 4.2(1),
Z is normal.

(2) Let M be an ideal of A generated by a set S of monomials. We can write
M = SA since each element in S is normal in A. For each i , there is a positive integer
wi such that ai := xwi

i is in Z . Let Ui denote the open subset of X := Spec Z with∏
j �=i a j �= 0.

Let U := ⋃n
i=1Ui . First, we claim that X \ U has codimension ≥ 2. Note that

the subalgebra R = k[a1, . . . , an] is a polynomial subring of Z such that A is finitely
generated over R. Since A and Z are CM, both A and Z are finitely generated free
R-modules. As a consequence, {a1, . . . , an} is an R-regular sequence (and also a Z -
regular sequence) in A and in Z . Write Z as a factor ring k[a1, . . . , an, b1, . . . , bw]/I
for some generators b1, . . . , bw. If m is a closed point which is not in U , then there
are at least two i0 �= j0 such that ai0 = 0 = a j0 . Since {a1, . . . , an} is a Z -regular
sequence, GKdim (Z/(ai0 , a j0)) = GKdim Z − 2 = n − 2. Therefore X \ U has
dimension at most n − 2 and we have proved the claim.

Now for each f ∈ S, write f = xh11 · · · xhnn and define pi ( f ) := hi for each i .
Let si = min{pi ( f ) | f ∈ S} and define d = xs11 · · · xsnn . It is clear that d is the
gcd of the elements in S and that M ⊆ d A. We now claim that M∨∨ is the principal
ideal of A generated by d. Since A is Z -reflexive [Lemma 4.2(3)], d A is reflexive
and contains M∨∨. By Lemma 2.2, it suffices to show that (M∨∨)

∣
∣
U = (d A)|U , or
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equivalently, that for each i , we have (M∨∨)
∣
∣
Ui

= (d A)|Ui
. Over Ui , we invert the

elements a j = xw j for all j �= i . Note that

A|Ui
= A[a−1

1 , . . . ,
̂a−1
i , . . . , a−1

n ] = A[x−1
1 , . . . ,

̂x−1
i , . . . , x−1

n ]
= kp[x±1

1 , . . . , x±1
i−1, xi , x

±1
i+1, . . . , x

±1
n ].

Hence

M |Ui
= (SA)|Ui

=
∑

f ∈S
f A|Ui

=
∑

f ∈S
x pi ( f )
i A|Ui

= xsii A|Ui
= (d A)|Ui

which implies that (M∨∨)
∣
∣
Ui

= (d A)|Ui
as required. This proves the claim.

(3) Consider A as a Z
n-graded algebra. Choose a semi-basis of A over Z to consist

of Z
n-homogeneous elements (namely, monomials). By linear algebra, for each Z

n-
homogeneous element f , tr( f ) is either 0 or equal to r2 f . The second case happens
if and only if f is in Z .

(4) This is [15, Lemma 2.6].
(5, 6) We can choose a generating set of A over Z consisting of Z

n-homogeneous
elements. Both assertions follow from part (4). ��
Theorem 4.6 Let A be a skew polynomial ring kp[x1, . . . , xn]where each pi j is a root

of unity. Then, for any two positive integers p, v, �̄[p]
v (A/Z) exists.

Proof By Lemma 4.5(6), MD
p
v (A/Z) is generated by a set of monomials. Now the

assertion follows from Lemma 4.5(2). ��
By the proof of Theorem 4.6, one can verify that in this case, �̄(A/Z) agrees with

the usual discriminant dr2(A/Z) defined in [15, Definition 1.2(3)].
In Example 2.5, we computed theR- andR-discriminants for several specific skew

polynomial rings kp[x1, x2, x3] over their centers. We ask the following question.

Question 4.7 Let A be a skew polynomial ring kp[x1, . . . , xn] where each pi j is a
root of unity. When does the R-discriminant �(A/Z) exist? In terms of p, what are
the formulas for �̄(A/Z) and �(A/Z)?

A ring R is called a noetherian unique factorization ring (noetherian UFR) if R is a
prime left and right noetherian ring such that every nonzero prime ideal of R contains
a non-zero principal prime ideal. Hence, in a noetherian UFR every height one prime
ideal is principal. Since the skew polynomial rings in Theorem 4.6 are noetherian
hom-hom UFRs, part (2) of the following result is more general than Theorem 4.6,
but has a less constructive proof.

Theorem 4.8 Assume Hypothesis 1.1 for (A, Z). Fix two positive integers p, v.

(1) If Z is a UFD, then the Rp
v -discriminant �

[p]
v (A/Z) exists.

(2) Suppose A is a noetherian hom-hom UFR with affine center Z. Then the Rp
v -

discriminant �[p]
v (A/Z) always exists.
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Proof (1) This follows immediately since every reflexive ideal of a UFD is principal.
(2) Since A is hom-hom, by Lemma 4.2(3), A is a tame Z -order and a reflexive

Z -module. Thus, by [47, Lemma 2.1], every reflexive Z -module is reflexive as an
A-module (see also [44, Corollary 1.6]). By [1, Lemma 3.3(ii)], every reflexive ideal
of A is principal. It follows that the R-discriminant of A over its center exists. ��

Motivated by the above results, we ask the following questions.

Question 4.9 Let A be a hom-hom ring with center Z . Under what conditions does
�̄(A/Z) (resp. �(A/Z)) exist? For example, if A is Calabi–Yau, does �̄(A/Z) (resp.
�(A/Z)) exist?

5 Examples

Much of the recent literature on discriminants (e.g., [14,15,17,18]) has focused on con-
nected graded hom-hom rings (namely, noetherian connected graded Artin–Schelter
regular algebras satisfying a polynomial identity). In this paper we will test discrim-
inant theory for a class of noncommutative algebras, the quantum generalized Weyl
algebras (quantum GWAs), which are generally neither connected graded nor of finite
global dimension.

We begin by introducing GWAs in full generality and recalling some well-known
facts regarding GWAs. We then proceed to work out theR-discriminant for quantum
GWAs.

5.1 Properties of quantum GWAs

The following definition is motivated by Bavula [2].

Definition 5.1 Let R be a k-algebra, σ = (σ1, . . . , σm) a set of m commuting auto-
morphisms of R, and h = (h1, . . . , hm) a set of m central regular elements in R such
that σi (h j ) = h j for i, j ∈ {1, . . . ,m}, i �= j . With this data, we define the GWA of
degree m as the k-algebra generated over R as an algebra by x = (x1, . . . , xm) and
y = (y1, . . . , ym) with relations

xir = σi (r)xi yi r = σ−1
i (r)yi for all i ∈ {1, . . . ,m}, r ∈ R

xi yi = hi yi xi = σ−1
i (hi ) for all i ∈ {1, . . . ,m}

[xi , x j ] = [yi , y j ] = [xi , y j ] = 0 for all distinct i, j ∈ {1, . . . ,m}.

We denote this algebra by R(x, y, σ, h). We say R(x, y, σ, h) is a quantum GWA if
R = k[t] and there exist nonzero scalars q = (q1, . . . , qm) ∈ (k\{0, 1})m such that
σi (t) = qi t for all i ∈ {1, . . . ,m}. If qi has finite order in the multiplicative group k

×,
then we let ord(qi ) denote the order of qi .

In general, the base ring R in Definition 5.1 need not be commutative but in this
paper, R is always taken to be a commutative polynomial ring. We also only consider



Reflexive hull discriminants and applications Page 23 of 35 40

the case where each qi is a root of unity. More specifically, we will only consider the
case in which the ord(qi ) are pairwise relatively prime.

IfW is a GWAof degreem, then for each i = 1, . . . ,m the subalgebraWi generated
by xi and yi is a degree one GWA isomorphic to R(xi , yi , σi , hi ) [Definition 0.5].
More generally, let I ⊆ {1, . . . ,m}. Set xI = (xi )i∈I , yI = (yi )i∈I , σI = (σi )i∈I ,
and hI = (hi )i∈I . Then {xI , yI } generate a degree |I | GWA over R that we denote by
R(xI , yI , σI , hI ).

The class ofGWAs is also closed under tensor products overk. IfW = R(x, y, σ, h)

and W ′ = R′(x′, y′, σ ′, h′) are GWAs of degree k and �, respectively, then

W ⊗ W ′ = (R ⊗ R′)((x, x′), (y, y′), (σ, σ ′), (h, h′))

is a GWA of degree k + �. The following facts are well-known.

Lemma 5.2 Let R be a k-algebra and suppose W = R(x, y, σ, h) is a degree m GWA
over R.

(1) If R is a left (right) noetherian ring, then so is W.
(2) If R is a domain, then so is W.
(3) There is a Z

m-grading on W obtained by setting deg(r) = 0 for all r ∈ R and
deg(xi ) = ei , deg(yi ) = −ei for all i .

Suppose W = R(x, y, σ, h) is a GWA of degree m. For γ = (γ1, . . . , γm) ∈ Z
m ,

let zγ denote zγ11 . . . zγmm formally where zγii = xγi
i when γi ≥ 0 and zγii = y−γi

i when
γi < 0. By a result of Benkart and Ondrus [7, Proposition 2.5], the center Z(W ) ofW
is generated by R〈σ 〉 = {r ∈ R | σi (r) = r for all i = 1, . . . ,m} and thosemonomials
zγ such that σγ := ∏m

i=0 σ
γi
i = IdR . Note that this generalizes a result of Kulkarni

[31, Corollary 2.0.2] in the case of a degree one GWA over a commutative domain.
In Sect. 5.3 we will use the following.

Corollary 5.3 Let R a commutative domain and let W = R(x, y, σ, h) be a GWA of
degree m with ni = |σi | < ∞ for all i . Suppose gcd(ni , n j ) = 1 for all i �= j . Then
Z(W ) is generated over R〈σ 〉 by xn11 , yn11 , . . . , xnmm , ynmm .

Proof By the hypotheses on the ni , the subgroup of Aut(R) generated by the σi is a
finite abelian group of order n = ∏m

i=1 ni . The result now follows directly from [7,
Proposition 2.5]. ��

An automorphism σ of a k-algebra R is called locally algebraic if every finite-
dimensional subspace of R is contained in a finite-dimensional σ -stable subspace of
R. It is clear that if σ has finite order, then σ is locally algebraic.

The following result uses [19] but it may also be possible to apply [54] to the same
effect.

Lemma 5.4 Let R be an affine k-algebra and W := R(x, y, σ, h) a degree m GWA
over R. If |σi | < ∞ for all i , then GKdimW = GKdim R + m.

Proof Let W (1) = R(x1, y1, σ1, h1). Since |σ1| < ∞, then σ1 is locally algebraic.
Hence, [19, Theorem 26] gives GKdimW (1) = GKdim R + 1.
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Let k ≥ 1, I = {1, . . . , k}, and W (k) = R(xI , yI , σI , hI ). Assume that
GKdimW (k) = GKdim R+k. Recall thatW (k+1) ∼= W (k)(xk+1, yk+1, σk+1, hk+1)

where σk+1 extends to W (k) by setting σk+1(xi ) = xi and σk+1(yi ) = yi for all
i < k + 1. Consequently, |σk+1| has finite order as an automorphism of W (k) and so
σk+1 is locally algebraic on W (k). Applying [19, Theorem 26] again gives

GKdimW (k + 1) = GKdimW (k) + 1 = GKdim R + (k + 1).

Now the assertion follows by induction. ��
Conjecture 5.5 The conclusion of the previous lemma holds whenever R is a finitely
generated module over RG where G = 〈σ1, . . . , σm〉.

The following is an extended version of [29, Proposition 3.2]. We refer the reader
there for the definition of Auslander–Gorenstein.

Lemma 5.6 Let W = k[t](x, y, σ, h) be a GWA of degree m. Then W is Auslander–
Gorenstein and GK–Macaulay.

Proof Set S0 = k[t]. For i = 1, . . . ,m, let Si = Si−1[xi ; σi ] where σi is extended
to Si−1 by setting σi (x j ) = x j for j < i . Set T0 = Sm . For i = 1, . . . ,m, let Ti =
Ti−1[yi ; σ−1

i , δi ] where σ−1
i is extended to Ti−1 by setting σ−1

i (y j ) = y j for j < i ,
δi (r) = 0 for all r ∈ R, δi (y j ) = δi (x j ) = 0 for i �= j , and δi (xi ) = σ−1

i (hi ) − hi .
Set T = Tm .

Let ki = degt (hi ). Filter T by setting deg(t) = 2 and deg(xi ) = deg(yi ) = ki .
Then gr(T ) is a connected graded ring which itself is an iterated Ore extension over
k[t]. For each i = 1, . . . ,m, σ i preserves the grading on gr(T ) so gr(T ) is GK–
Macaulay by [32, Lemma (ii)]. Thus, T is Auslander–Gorenstein and GK–Macaulay
by [48, Lemma 4.4].

Since σi (h j ) = h j for i �= j , then the elements zi = xi yi − hi are central in T .
Moreover, each Wi is a domain and so (z1, . . . , zm) is a regular sequence of central
elements. Hence, T /(z1, . . . , zm) ∼= W is Auslander–Gorenstein and GK–Macaulay
by [32, Lemma (iii)]. ��

The global dimension of degree one GWAs has been studied extensively. Less is
known in the case of higher degreeGWAs. For our purposes, the next result is sufficient.

Lemma 5.7 [4,27] Let W = k[t](x, y, σ, h) be a quantum GWA with q �= 1 a root of
unity. If h has multiple roots, then gldimW = ∞. Otherwise, gldimW = 2.

5.2 TheR-discriminant of a degree one quantumGWA

In this subsection, let W = k[t](x, y, σ, h) denote a degree one quantum GWA with
n = |σ | < ∞. We study the center of W and the trace map, and conclude this
subsection by computing the reflexive hull discriminant of W over its center. This
subsection serves as a warmup to the next subsection where we study higher degree
quantum GWAs, but omit some details.
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By [31, Corollary 2.0.2], the center of W is generated by a = xn, b = yn, c = tn .
Set p(c) = ∏n−1

j=0 h
σ j

(t) where hσ j
(t) = h(σ j (t)) = h(q j t). Then the generators

satisfy a single relation as follows

Z := Z(W ) = k[a, b, c]/ (ab − p(c)) . (E5.7.1)

Lemma 5.2 The center Z given in (E5.7.1) is an affine normal CM domain. As a
consequence, Hypotheses 1.9(1) and 2.1 hold for (W , Z).

Proof By definition, Z has hypersurface singularities and so it is Gorenstein (and
consequently, CM). It is clear that Z has isolated singularities. Hence Z is normal by
Serre’s criterion for normality.

It is easy to see that the rank of W over Z is n2. Since q is a primitive nth root of
unity, char k does not divide rkZ (WZ ). The consequence follows from [40, Theorem
10.1] and Lemma 4.3. ��

Note that the form of the trace map tr is not essential in our proof of the main result
of this section [Theorem 5.5]. However, a proof of Theorem 5.5 can be done totally
algebraically, in which case the trace map would be used in an essential way. In this
particular case, it is easy to work out the trace map. We can write W as a Z -algebra
as follows

W = Z〈x, y, t〉
(xt − qtx, yt − q−1t y, xy − h(t), xn − a, yn − b, tn − c)

. (E5.8.1)

Using this presentation, observe that W is generated as a Z -module by the following
elements

{xi t j , yi t j | i, j = 0, . . . , n − 1}. (E5.8.2)

Let τ = (1, t, t2, . . . , tn−1) ∈ W⊕n and

v = (τ, xτ, x2τ, . . . , xn−1τ, yτ, y2τ, . . . , yn−1τ) ∈ W⊕(2n2−n),

considered as a column vector (or a (2n2 − n) × 1 matrix). The components of v
generate W as a module over Z (E5.8.2), and the first n2 components of v form a
semi-basis of W (with respect to v). Consequently, the rank of W over Z is n2. The
modified discriminant ideal MD(W/Z) = MDn2(W/Z) of W is generated by the
n2 × n2 minors of the (2n2 − n) × (2n2 − n) matrix

D = tr ·vvT .

We show that most of the entries of D are zero in the next lemma.

Lemma 5.3 We have tr(xi t j ) �= 0 and tr(yi t j ) �= 0 if and only if i ≡ 0 mod n and
j ≡ 0 mod n.
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Proof The Z -algebra W has a Z/nZ-graded algebra structure, obtained by assigning
the Z -algebra generators x, y, t the degrees 1,−1, 0 respectively. Indeed, the relations
provided in (E5.8.1) are all homogeneous under this grading.

Left multiplication by xi t j shifts the degree by a nonzero integer unless i ≡ 0 mod
n. Therefore, if i �≡ 0 mod n, then tr(xi t j ) = 0. Next assume i = kn for some integer
k. Left multiplication by xknt j for j �≡ 0 mod n permutes the semi-basis {xi t j }n−1

i, j=0

(up to scalar). Therefore, if i, j �≡ 0 mod n, then tr(xi t j ) = 0. Finally, if i ≡ j ≡ 0
mod n, then xi t j ∈ Z so left multiplication by xi t j can be represented by a diagonal
matrix, hence tr(xi t j ) = n2xi t j . The above argument still works if we replace all
occurrences of x by y. So this completes the proof. ��

It is very complicated to compute theR-discriminant by using the definition, since
MD(W/Z) is complicated. So we will compute the R-discriminant locally first. In
the following lemma, we use the elements of v to index the rows and columns of D,
so that the first row of D is the 1 row, the second row is the t row, and so on.

Lemma 5.4 The following hold for the (2n2−n)×(2n2−n) square matrix D= tr ·vvT .
(1) Let 0 < i < n. The only nonzero entries in the xi t j row of D are in the xn−i tn− j

and yi t j
′
columns for some 0 ≤ j ′ ≤ n − 1.

(2) The statement in (1) holds if we switch x and y.
(3) The only nonzero entry in row t j is in column tn− j .

Proof Consider the product ρ = (xi t j )(yktl). Using Lemma 5.3, and the grading on
W given in the proof, we see that tr(ρ) �= 0 implies that i ≡ k mod n. Similarly,
tr((xi t j )(xktl)) �= 0 if and only if i + k ≡ 0 mod n and j + l ≡ 0 mod n. The
statement for tr(t j ) follows similarly. ��

Recall from Lemma 5.2 that Z is a normal CM domain.

Theorem 5.5 Retain the above notation. Then �(W/Z) =Z× cn(n−1) =Z× tn
2(n−1).

As a consequence, �̄(W/Z) =W× cn(n−1) =W× tn
2(n−1).

Proof LetUa andUb denote the open subsets of X wherea �= 0 and b �= 0 respectively.
Note that the complement ofU := Ua ∪Ub has codimension 2. It is easy to check that
Wa := W |Ua

= W [a−1] is free of rankn2 andhas basis {xi t j | i, j = 0, . . . , n−1}. By
[18, Proposition 1.4(2)] or by a computation using Lemma 5.4(1,3), the discriminant
of Wa is given by (ac)n(n−1) =Z(Wa)× cn(n−1), up to some unit in Z(Wa). Similarly
the discriminant of Wb is given by (bc)n(n−1) =Z(Wb)

× cn(n−1), again up to some unit
in Z(Wb). This defines a Cartier divisor on U , which extends to a Cartier divisor on
all of X . Indeed, the data {(Ua, cn(n−1)), (Ub, cn(n−1)), (X , cn(n−1))} defines a Cartier
divisor on X which restricts to the above Cartier divisor on U . The assertion now
follows by Lemma 2.2.

For the consequence, we must show that W is a reflexive Z -module. By Lemma
5.6, W is GK–Macaulay, or equivalently, W is CM. In particular, W satisfies Serre’s
S2 property. Since Spec(Z) is a normal surface, it satisfies the hypotheses of [24,
Proposition 1.9], so we conclude that W is reflexive. ��
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5.3 TheR-discriminant of a degreem quantumGWA

Our goal in this subsection is to generalize results from the previous subsection to
higher degree quantum GWAs. This result will be used in our applications.

Throughout this subsection, letW = k[t](x, y, σ, h) be a quantum GWA of degree
m. As in Corollary 5.3, set ni = |σi | < ∞ for all i and assume gcd(ni , n j ) = 1 for
all i �= j . Set n = n1 · · · nm . The center Z := Z(W ) of W is generated by ai = xnii ,
bi = ynii , and c = tn . Let

pi (c) =
ni−1∏

j=0

h
σ

j
i

i (t)

where h
σ

j
i

i (t) = hi (σ
j
i (t)) = hi (q

j
i t). Thus, by Corollary 5.3,

Z = k[a1, . . . , am, b1, . . . , bm, c]
(aibi − pi (c) | 1 ≤ i ≤ m)

.

In Theorem 5.3 we show that the R-discriminant of W is cn(n−1) ∈ Z .

Lemma 5.6 Let Z be the algebra defined as above. Then Z is an affine normal CM
domain. As a consequence, Hypotheses 1.9(1) and 2.1 hold for (W , Z).

Proof By definition, Z is a complete intersection. Hence it is Gorenstein and CM.
By the Jacobian criterion, the singular locus of X := Spec Z has codimension ≥ 2.
Indeed, the Jacobian matrix of the defining ideal is given by the block matrix J =
(diag(b1, · · · , bm)|diag(a1, · · · , am)|v) where v ism × 1 and depends only on c. The
singular locus of X occurs when rank(J ) < m, and a necessary condition for this
is ai = bi = 0 for some i . This shows that codimX (Xsing) ≥ 2, so X is normal by
Serre’s criterion for normality. ��

We can write W as a Z -algebra as follows:

W = Z〈x1 . . . , xm, y1, . . . , ym, t〉
(xi t − qi t xi , yi t − q−1

i t yi , xi yi − hi (t), x
ni
i − ai , y

ni
i − bi , tn − c)

.

(E5.12.1)

Lemma 5.2 Retain the above notation. Then W is reflexive over Z.

Proof The proof is almost identical to the dimension 2 case (c.f. Theorem 5.5). Since
Z is a CM with codimX (Xsing) ≥ 2 (where X := Spec Z ), the hypotheses of [24,
Proposition 1.9] are satisfied. Then W is Z -reflexive since it is a CM [Lemma 5.6]
(hence S2) Z -module. ��

Here is the main result of this subsection.
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Theorem 5.3 Let W be a quantum GWA of degree m > 1 as given in (E5.12.1). Then
we have �(W/Z) =Z× cn(n−1) =Z× tn

2(n−1). As a consequence, �̄(W/Z) =W×
cn(n−1) =W× tn

2(n−1).

Proof Let U denote the open set of X := Spec Z with
∏m

i=1 ai �= 0. Then W |U is
free over its center, with basis given by {xαt j := xα1

1 xα2
2 · · · xαm

m t j } where αi ranges
from 0 to ni − 1 and j ranges from 0 to n − 1 (here n = n1 · · · nm). This shows that
rk(W |U ) = n2.

We can use (E5.12.1) to compute the discriminant of W |U . Given a basis element
b = xαt j , there is exactly one other basis element b′ whose product with b has nonzero
trace. Moreover b′ is given as follows

b′ =

⎧
⎪⎪⎨

⎪⎪⎩

1 if α = 0, j = 0
tn− j if α = 0, j �= 0
xα′

if α �= 0, j = 0
xα′

tn− j otherwise

where

α′
j =

{
0 if α j = 0
n j − α j otherwise.

This shows that the discriminant dU of W |U is given by

dU = cn(n−1)
m∏

j=1

a
n(n−n/n j )

j .

That is, dU =(W |U )× cn(n−1). This can be obtained from a direct calculation.
Now consider another open subset V of X where we replace the condition∏m
i=1 ai �= 0 with

∏m
i=1 a

′
i �= 0 where a′

i is either ai or bi . By the symmetry of
(xi , yi ), V is another U after we switch some xi with yi . Then dV can be obtained by
the same computation (by replacing the ai ’s with a′

i ’s). Hence dV =(W |V )× cn(n−1).
Thus the data {(V , dV := cn(n−1))} (where V ranges over all open subsets with∏m

i=1 a
′
i �= 0) define a Cartier divisor on X\C , where C represents the union of sub-

varieties {ai = bi = 0} for i = 1, . . . ,m. It is clear that C has codimension ≥ 2 in
X . Just as in the degree one case, since Z is an affine CM normal domain, the data
{(V , cn(n−1)), (X , cn(n−1))} extends to a Cartier divisor on all of X , so we are done
by Lemma 2.2.

As in Theorem 5.5, combining Lemmas 1.5 and 5.2 implies thatW is reflexive and
the second consequence follows. ��

In some sense, quantum GWAs provide an ideal setting in which to study R-
discriminants. This is because the center of a GWA is not a polynomial ring, but is
reasonably nice and easy to compute. Other possible algebras to consider are quantized
Weyl algebras and quantum matrix algebras.



Reflexive hull discriminants and applications Page 29 of 35 40

Question 5.4 For which other families of algebras is theR-discriminant computable?
Furthermore, for which algebras is the reflexive hull of the modified discriminant ideal
a principal ideal?

6 Applications

The purpose of this section is to show how to useR-discriminants to study important
questions in noncommutative algebra. In particular, we consider the Automorphism
Problem, the IsomorphismProblem, and theZariskiCancellationProblem for quantum
GWAs. These results are known in the degree one case and so our primary interest
is extending them to higher degree quantum GWAs and tensor products of quantum
GWAs. To avoid some degenerate cases, for a quantum GWA W = k[t](x, y, σ, h)

we assume for the rest of this section that

hi /∈ k for every i (E6.0.1)

as in many other papers. Note that (E6.0.1) implies that W× = k
×.

6.1 Automorphisms

Let W = k[t](x, y, σ, h) be a degree one quantum GWA. We recall the description
of Aut(W ) given by Suárez–Alvarez and Vivas [49]. Write h = ∑d

i=0 ci t
i , where the

ci ∈ k and d = degt (h), and set g = gcd{i − j | i < j, ci c j �= 0}. Let Cg denote
the subgroup of k

× consisting of gth roots of 1. If h is a monomial, we make the
convention that g = 0 and Cg = k

×. For each γ ∈ Cg and each μ ∈ k
×, there is an

automorphism ηγ,μ of A given by

ηγ,μ(x) = μx, ηγ,μ(y) = μ−1γ d y, ηγ,μ(t) = γ t .

Let G denote the subgroup of Aut(W ) consisting of the ηγ,μ. When q = −1, there is
an automorphism � of W defined by

�(x) = y, �(y) = x, �(t) = −t .

Werecover the following result of Suárez–Alvarez andVivas using theR-discriminant.

Proposition 6.2 [49, Theorem B] Let q ∈ k be a root of unity and W be a degree one
quantum GWA. If q2 �= 1, then Aut(W ) ∼= G. If q = −1, then Aut(W ) ∼= G � Z/2Z

where Z/2Z is generated by �.

Proof It follows from (E6.0.1) thatW× = k
×. Let φ ∈ Aut(W ). By Theorem 1.10(1),

φ fixes theR-discriminant up to a unit. Hence, φ(tn
2(n−1)) =k× tn

2(n−1) by Theorem
5.5. Since W is a Z-graded domain with deg x = 1, deg y = −1 and deg t = 0,
degφ(t) = 0. Then φ|W0

is an automorphism of W0 = k[t] so φ(t) = γ t for some
γ ∈ k

×.
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Observe that φ(x)φ(y) = φ(xy) = φ(h) is a homogeneous element of degree
0. Hence, φ(x) and φ(y) are homogeneous elements with degφ(x) = − degφ(y).
Since φ(x), φ(y), φ(t) generate W as an algebra, we must have degφ(x) = ±1. So
φ(x) = αx or φ(x) = αy for some α ∈ k[t], α �= 0. Similarly, φ(y) = β y or
φ(y) = βx for some β ∈ k[t], β �= 0. Thus,

degt (xy)=degt (h)=degt (φ(h))=degt (φ(xy))=degt (α)+degt (β)+degt (xy),
(E6.1.1)

so degt (α) = degt (β) = 0. Thus, α, β ∈ k
×. If φ(x) = αy, then 0 = φ(xt − qtx) =

αγ (1 − q2)yt , so q2 = 1.
Case 1 Assume φ(x) = αx and φ(y) = β y for some α, β ∈ k

×. Write h =∑d
i=0 ci t

i with ci ∈ k and cd �= 0. Then

d∑

i=0

αβci t
i = (αβ)h = (αβ)xy = φ(xy) = φ(h) =

d∑

i=0

ciγ
i t i .

This implies that αβ = γ i for all i such that ci �= 0. In particular, αβ = γ d , so
β = α−1γ d . Now if i < d and ci �= 0, then we have γ d = γ i , so ord(γ ) | d − i .
Hence, with g = gcd{d − i | i < d, ai �= 0} as above, we must have γ g = 1. It
follows that φ = ηγ,g ∈ G.

Case 2 Assume φ(x) = αy and φ(y) = βx for some α, β ∈ k
×, so that q = −1

by the argument after (E6.1.1). Now φ ◦ � is of the type in Case 1, so φ ◦ � = η−γ,g ,
whence φ = η−γ,g ◦ �. ��

Proposition 6.2 extends easily to the degree m case, as long as the orders of the
automorphisms σi are pairwise coprime.

Proposition 6.2 Let W = k[t](x, y, σ, h) be a quantum GWA of degree m. Suppose
that each qi is a root of unity with 1 < ni = |σi | < ∞ and gcd(ni , n j ) = 1 for
all i �= j . Let φ ∈ Aut(W ). Then for each i , φ restricts to an automorphism of the
quantum GWA subalgebra Wi = k[t](xi , yi , σi , hi ).
Proof By Theorem 5.3 and similar to the proof of Proposition 6.2, φ(t) = γ t for some
γ ∈ k. For i ∈ {1, . . . , n}, we have φ(xi yi ) = φ(hi ) and deg(hi ) = 0. Using the
Z
n-grading on W , we have that there exists j ∈ {1, . . . , n} such that

(1) φ(xi ) = αi x j , φ(yi ) = βi y j or (2) φ(xi ) = αi y j , φ(yi ) = βi x j .

Suppose we are in case (1). A similar argument holds in case (2). Then

0 = φ(xi t − qi t xi ) = αiγ (q j − qi )t x j .

By our hypothesis on the qi , we have qi = q j . Hence, j = i . This shows that φ

restricted to Wi is of the form ηγ,g or, when q = −1, possibly ηγ,g ◦ �. ��
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Let W1, . . . ,Wk be a collection of degree one quantum GWAs with canonical
generators {xi , yi , ti } and parameters {qi , hi }. Set A = W1 ⊗ · · · ⊗ Wk . Note that A
is a degree k GWA with base ring k[t1] ⊗ · · · ⊗ k[tk]. The next proposition should be
compared to [33, Theorem C] in the context of quantized Weyl algebras.

Proposition 6.3 Let A = W1 ⊗ · · · ⊗ Wk as above. Assume each qi is a root of unity
with q2i �= 1. Also assume degti hi ≥ 2 for all i . If φ ∈ Aut(A), then the following
hold:

(1) There exists τ ∈ Sk such that φ(Wi ) = Wτ(i) for all i = 1, . . . , k.
(2) There exists scalars α1, β1, . . . , αk, βk ∈ k

× and a sequence {ε1, . . . , εk} ∈
{±1}k such that for each i = 1, . . . , k,

φ(xi ) = αi xτ(i), φ(yi ) = βi yτ(i), if εi = 1,

φ(xi ) = αi yτ(i), φ(yi ) = βi xτ(i), if εi = −1.

Moreover, there exists scalars γ1, . . . , γk ∈ k
× such that

hi (γi t) =
{

αiβi hτ(i)(t) if εi = 1

αiβi hτ(i)(q−1t) if εi = −1.

Proof Let k be the algebraic closure of k. It is clear that we only need to show the
statements for A⊗kk. In other words, wemay assumek is algebraically closedwithout
loss of the generality. Let Z be the center of A.

By Lemma 5.6, each Wi is Auslander–Gorenstein and GK–Macaulay. Hence, A
is as well. Similarly, each Wi is module-finite over its center, so A is CM over Z .
Together with Lemma 5.2 and Theorem 5.5 we may now apply Theorem 2.6.

By induction and Theorem 2.6, the R-discriminant of A/Z is �(A/Z) =
t N1
1 · · · t Nk

k =: d for some positive integers Ni . Let φ ∈ Aut(A). By Theorem 1.10,
φ(d) =W× d and since W× = k

×, therefore φ(d) has degree 0 in the Z
k-graded

domain A. Since Z
k can be given a total order, this implies that each φ(ti ) is homoge-

neous of some Z
k-grading. We claim that φ(ti ) = γi tτ(i) for some γi ∈ k

× and some
τ ∈ Sk .

After reordering, we may assume N1 ≥ N2 ≥ · · · ≥ Nk . Suppose x p
i is a factor

of φ(t1) for some i ∈ {1, . . . , k} and some p > 0. Hence, x pN1
i is a factor of φ(d).

Since φ(d) has degree 0 in the Z
k-grading, then it follows that y pN1

i is a factor of
φ(d). Then (x p

i y
p
i )N1 is a factor of φ(d). As A0 = k[t1, . . . , tk] is a domain and d

is homogeneous in the ti -grading, then hi = tqi for some q ≥ 2. This implies d has
ti -degree at least pqN1 > N1 in d, a contradiction. It follows that φ(t1) = γ1ti for
some i . In this case we also obtain that Ni = N1. The claim now follows by induction.

By the claim just proved above, φ preserves the polynomial subring A0 :=
k[t1, . . . , tk]. Now,

h(γi tτ(i)) = h(φ(ti )) = φ(h(ti )) = φ(xi yi ) = φ(xi )φ(yi ). (E6.3.1)
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It follows from the Z
k-grading that deg(φ(xi )) = ±eτ(i) for some τ ∈ Sk and

deg(φ(xi )) = − deg(φ(yi )). Furthermore, an argument as in (E6.1.1) show that
φ(Wi ) = Wτ(i). Now it is straightforward to fill out all details. ��

6.2 Isomorphisms

First we reprove one case of [49, Theorem A].

Proposition 6.2 [49, Theorem A] Let W = k[t](x, y, σ, h) and W ′ = k[T ](X ,Y ,

σ ′, H) be degree one quantum GWAs where σ(t) = qt and σ ′(T ) = q ′T . Assume
q, q ′ �= 1 are roots of unity. If � : W → W ′ is an isomorphism, then q ′ = q±1 and
there exists γ, μ ∈ k

× such that

h(γ t) =
{

μH(T ) if q ′ = q

μH(q−1T ) if q ′ = q−1.

Moreover, if q ′ = q±1 and there exist γ, μ satisfying the above condition, then
W ∼= W ′.

Proof It is easy to verify that an isomorphismW → W ′ exists under these conditions.
So assume� : W → W ′ is an isomorphism. An argument as in Proposition 6.2 shows
that �(t) = γ T for some γ ∈ k

×, and that either �(x) = αX and �(y) = βY , or
else �(x) = αY and �(y) = βX for some α, β ∈ k

×. In the first case, we have

0 = �(xt − qtx) = αγ (XT − qT X) = αγ (q ′ − q)T X ,

so q ′ = q, and

h(γ t) = �(h(t)) = �(xy) = �(x)�(y) = (αβ)XY = (αβ)h(T ).

The second case is similar. ��
Now we extend this to higher degree quantum GWAs.

Proposition 6.3 Let W = k[t](σ, h) and W ′ = k[T ](σ ′, H) be quantum GWAs
of degree m and m′, respectively, with parameters (q1, . . . , qm) and (q ′

1, . . . , q
′
m′),

respectively, such that q2i , (q
′
i )
2 �= 1 for all i . Suppose both W and W ′ satisfy the

hypothesis of Proposition 6.2. If φ : W → W ′ is an isomorphism, then m = m′ and
there exists τ ∈ Sm such that Wi ∼= W ′

τ(i).

Proof By Lemma 5.4, m + 1 = GKdimW = GKdimW ′ = m′ + 1, so m = m′.
Denote the canonical generators of W by x1, y1, . . . , xm, ym and those of W ′ by
X1,Y1, . . . , Xm,Ym . Let φ : W → W ′ be the given isomorphism, then using similar
arguments to the above we have φ(t) = γ T for some γ ∈ k

×. Then φ(xi )φ(yi )
has degree 0 for each i . Hence, there is some index j such that φ(xi ) = αi X j and
φ(yi ) = βi Y j , or else φ(xi ) = αi Y j and φ(yi ) = βi X j . We now refer to Proposition
6.2 for a description of the isomorphism Wi → Wj . ��
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6.3 Cancellation

The Zariski cancellation problem (ZCP) asks whether an algebra isomorphism A[x] ∼=
B[x] implies the existence of an algebra isomorphism A ∼= B; if so, then A is called
cancellative [Definition 0.7]. Solving the ZCP for various classes of noncommutative
algebras has attractedmuch recent interest [5,6,21,34,35]. In this subsectionwe useR-
discriminants to prove that degreem quantum GWAs, as well as their tensor products,
are cancellative. For simplicity, we assume that char k = 0 in this subsection.

Makar-Limanov showed that the cancellation property is inherently tied to the
study of locally nilpotent derivations [36]. We we denote the set of locally nilpotent
derivations of an algebra A by LND(A). We say A is LND-rigid if LND(A) = {0}
[6, p.1711].

A degree one quantum GWA W is cancellative by [6, Corollary 3.7 (2)]. Alterna-
tively, one recovers this result by combining [6, Theorem 3.6] and [49, Lemma 2.1].

Theorem 6.4 Let W = k[t](x, y, σ, h) be a quantum GWA of degree m and Z its
center.

(1) Suppose that each qi is a root of unity with ni = |σi | < ∞, gcd(ni , n j ) = 1 for
all i �= j , and ni > 1 for at least one i . Then W is cancellative.

(2) Let A be the tensor product of finitely many algebras in part (1). Then A is
cancellative.

Proof (1) By [6, Theorem 3.6], it suffices to prove that W is LND-rigid. Let δ ∈
LND(W ) and let d denote the R-discriminant of W given in Theorem 5.3. Since we
assume (E6.0.1), W× = k

×. By Theorem 1.10(2), δ(d) = 0. By the Leibniz rule and
because W is a domain, δ(t) = 0. Since xi yi ∈ k[t], then by [18, Lemma 7.4] and
[36, p. 4], δ(xi ) = δ(yi ) = 0. Thus, LND(A) = {0}.

(2) The result for tensor products of quantumGWAs is similar. First we need to pass
to the case when k is algebraically closed. Then d := �(A/Z(A)) exists by Theorem
2.6(3) and 5.3. Then we can copy the proof of part (1) with minor changes. ��
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