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We study finite-dimensional semisimple Hopf algebra actions on noetherian connected

graded Artin–Schelter regular algebras and introduce definitions of the Jacobian, the

reflection arrangement, and the discriminant in a noncommutative setting.

0 Introduction

The Shephard–Todd–Chevalley theorem states that if G is a finite group acting linearly

and faithfully on the commutative polynomial ring k[x1, · · · , xn], where the charac-

teristic of the base field k is zero, the fixed subring k[x1, · · · , xn]G is isomorphic to

k[x1, · · · , xn] if and only if G is generated by pseudo-reflections of the space V :=⊕n
i=1 kx∗

i . Such a group G is called a reflection group. Note that k[x1, · · · , xn] is the

ring of regular functions on V. This paper is part of a project to extend properties of the

action of reflection groups on commutative polynomial algebras to a noncommutative

setting.

In the noncommutative setting we consider here, the commutative polynomial

ring k[x1, · · · , xn] is replaced by an Artin–Schelter regular k-algebra, denoted by A, and

the group G (or the group ring kG) is replaced by a (finite-dimensional) semisimple Hopf

k-algebra, denoted by H. We say H is a reflection Hopf algebra or reflection quantum
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9854 E. Kirkman and J. J. Zhang

group if the fixed subring AH (E0.1.2) is again Artin–Schelter regular [33, Definition 3.2].

The 1st example of a noncommutative and noncocommutative reflection Hopf algebra

(the Kac–Palyutkin algebra [28] acting on ki[u, v] where i2 = −1) was given in [31,

Example 7.4]. A systematic study of dual reflection groups (where H = (kG)∗) was begun

in [33]. This noncommutative (and noncocommutative) context for noncommutative

invariant theory has proved fruitful, and results include:

(a) The rigidity of (noetherian) Artin–Schelter regular algebras under finite

group or semisimple Hopf algebra actions [1, 17, 30, 33].

(b) The homological determinant and Watanabe’s theorem. The homological

determinant of a group action on Artin–Schelter regular algebras was

introduced in [27], and that of a Hopf action in [31].

(c) The Nakayama automorphism and twisted (skew) Calabi–Yau property [19,

33, 43, 44].

(d) The pertinency and radical ideal associated to Hopf actions on Artin–

Schelter regular algebras, Auslander’s theorem, the McKay correspondence,

and noncommutative resolutions [6, 7, 15, 16, 18, 23, 41].

A survey on noncommutative invariant theory in this context is given in [29].

An important topic in classical invariant theory is the arrangements of hyper-

planes associated to reflection groups [40]. It is related to combinatorics, algebra,

geometry, representation theory, complex analysis, and other fields.

In this paper we investigate the possibility of defining a noncommutative

version of a hyperplane arrangement. Some fundamental work of Steinberg [47], Stanley

[46], Terao [49], Hartmann–Shepler [24], Orlik–Terao [40], and many others offered an

algebraic approach that can be adapted to the noncommutative case. In particular, we

will introduce a few concepts that characterize significant structures of the actions of

reflection Hopf algebras on Artin–Schelter regular algebras.

Throughout the rest of this paper, let k be a base field that is algebraically

closed, and all vector spaces, (co)algebras, Hopf algebras, and morphisms are over k.

In general we do not need to assume that the characteristic of k is zero. However,

in several places where we use results from other papers (e.g., [32, 33]), we add the

characteristic zero hypothesis because those results were proved under that extra

hypothesis. Let H denote a semisimple (hence finite-dimensional) Hopf algebra, and

let K be the k-linear Hopf dual H∗ of H. Throughout we use standard notation (see

e.g., [38]) for a Hopf algebra H(�, ε, S). It is well known that a left H-action on an

algebra A is equivalent to a right K-coaction on A, and we will use this fact freely.
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Reflection Hopf Algebras 9855

Let GKdim A denote the Gelfand–Kirillov dimension of the algebra A [34]. Let k× be the

set of invertible elements in k. If f , g ∈ A and f = cg for some c ∈ k×, then we write

f =k× g.

Hypothesis 0.1. Assume the following hypotheses:

(a) A is a noetherian connected graded Artin–Schelter regular algebra that is a

domain, see Definition 1.1;

(b) H is a semisimple Hopf algebra;

(c) H acts on A inner faithfully [14, Definition 1.5] and homogeneously so that

A is a left H-module algebra;

(d) H acts on A as a reflection Hopf algebra in the sense of [33, Definition 3.2],

or equivalently, of Definition 1.4.

Let G(K) be the group of grouplike elements in K := H∗. For each g ∈ G(K), define

Ag := {a ∈ A | ρ(a) = a ⊗ g}, (E0.1.1)

where ρ : A → A ⊗ K is the corresponding right coaction of K on A. The fixed subring of

the H-action on A is defined to be

AH := {a ∈ A | h · a = ε(h)a ∀ h ∈ H}. (E0.1.2)

We refer to [31, Section 3] for the definition of the homological determinant of the H-

action on A. Let hdet : H → k be the homological determinant of the H-action on A.

Then hdet, considered as an element in K, is a grouplike element. By [14, Theorem 0.6],

hdet is nontrivial (unless A = AH ) when H is a reflection Hopf algebra. Since hdet is an

element in G(K), both Ahdet and Ahdet−1 are defined by (E0.1.1).

Theorem 0.2 (Corollary 2.5(1) and Theorem 3.8(1)). Assume Hypotheses 0.1. Let R be

the fixed subring AH .

(1) There is a nonzero element jA,H ∈ A, unique up to a nonzero scalar, such that

Ahdet−1 is a free R-module of rank one on both sides generated by jA,H .

(2) There is a nonzero element aA,H ∈ A, unique up to a nonzero scalar, such

that Ahdet is a free R-module of rank one on both sides generated by aA,H .
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9856 E. Kirkman and J. J. Zhang

(3) The products jA,HaA,H and aA,H jA,H in A are elements of R that are either

equal, or they differ only by a nonzero scalar in k, or equivalently,

jA,HaA,H =k× aA,H jA,H .

The above theorem allows us to define the following fundamental concepts.

Definition 0.3. Assume Hypotheses 0.1.

(1) The element jA,H in Theorem 0.2(1) is called the Jacobian of the H-action on

A.

(2) The element aA,H in Theorem 0.2(2) is called the reflection arrangement of

the H-action on A.

(3) The element jA,HaA,H , or equivalently, aA,H jA,H , in Theorem 0.2(3) is called the

discriminant of the H-action on A, and denoted by δA,H .

The above concepts are well defined up to a nonzero scalar in k, and under some

hypotheses we show they exist more generally.

In the classical (commutative) setting, when G is a reflection group acting on

a vector space V over the field of complex numbers C, the Jacobian (respectively, the

reflection arrangement, the discriminant) in Definition 0.3 is essentially equivalent to

the classical Jacobian determinant of the basic invariants of G in the commutative poly-

nomial ring C[V∗] := O(V) (respectively, the reflection arrangement, the discriminant of

the G-action). When we let A = C[V∗] and H = CG in Hypotheses 0.1, a well-known

result of Steinberg [47] states that

jA,H =C×
v∏

s=1

f es−1
s , (E0.3.1)

where {fs}v
s=1 is the complete list of the linear equations of the reflecting hyperplanes

of G, and each es is the exponent of the pointwise stabilizer subgroup that consists of

pseudo-reflections in G associated to the corresponding reflecting hyperplane. After we

identify each hyperplane in V with its linear form in V∗, the set of reflecting hyperplanes

is uniquely determined by the following equation [40, Examples 6.39 and 6.40] (where

det and det−1 are switched due to different convention used in the book [40])

aA,H =C×
v∏

s=1

fs, (E0.3.2)
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Reflection Hopf Algebras 9857

which suggests calling aA,H in Definition 0.3 the reflection arrangement of the H-action

on A. In this paper, we can prove only the following weaker version of Steinberg’s

theorem [24, 47] in the noncommutative setting [Theorem 0.5].

Hypothesis 0.4. Assume the following hypotheses:

(1) Assume Hypotheses 0.1.

(2) char k = 0.

(3) H is commutative, or equivalently, H = (kG)∗ for some finite group G.

(4) A is generated in degree 1.

Theorem 0.5 (Theorem 2.12(2)). Assume Hypotheses 0.4. Then the following hold.

(1) jA,H is a product of elements of degree 1.

(2) aA,H is a product of elements of degree 1.

When A is noncommutative, it is usually not a unique factorization domain.

Then the decompositions of jA,H and aA,H into products of linear forms in Theorem 0.5,

formulas like (E0.3.1) and (E0.3.2), are not unique, see Examples 2.2(2) and 4.2.

Therefore, it is difficult to imagine and define individual reflecting hyperplane at this

point, though, in some special cases, there are natural candidates for such hyperplanes,

see (E2.2.2). We have some general results as follows.

Theorem 0.6 (Theorem 3.8(2)). Assume Hypotheses 0.1. Then aA,H divides jA,H from the

left and the right.

In the classical setting, when H = kG, for G a reflection group acting on a vector

space V, then δA,H agrees with the classical definition of discriminant of the G-action

[40, Definition 6.44]. When R is central in A and H is a dual reflection group, then δA,H

is closely related to the noncommutative discriminant dis(A/R) studied in [8, 12, 13].

Theorem 0.7 (Theorem 3.10(2)). Assume Hypotheses 0.4. Suppose that R := AH (E0.1.2)

is central in A. Then δA,H and dis(A/R) have the same prime radical.

We refer to [51, 52] for the definition of Auslander regularity and [27, Definition

0.1] for the definition of Artin–Schelter Cohen–Macaulay used in the next theorem and

its proof. By Theorem 2.4, the Jacobian jA,H can be defined in a more general setting,

which is used in the next theorem.
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9858 E. Kirkman and J. J. Zhang

Theorem 0.8 (Theorem 3.9). Assume Hypotheses 0.1. Suppose AH is Auslander regular.

Then AG := ⊕
g∈G(K) Ag is Artin–Schelter Gorenstein and

jA,H =k× jAG,(kG)∗ .

The theorem above leads to the following question.

Question 0.9. Assume Hypotheses 0.1. Is there a Hopf subalgebra H0 ⊆ H such that

AH0 = AG?

In the classical case, either the Jacobian jA,H or the reflection arrangement aA,H

completely determines the collection of reflecting hyperplanes via (E0.3.1) or (E0.3.2),

respectively. In the noncommutative case, since A is not a unique factorization domain,

the decomposition such as (E0.3.1) (or (E0.3.2)) is not unique. Consequently, it is not clear

how to define individual reflecting hyperplanes. We propose the following temporary

definitions. For any homogeneous element f ∈ A, define the set of left (respectively,

right) divisors of degree 1 of f to be

Rl( f ) := {kv | v ∈ A1, vfv = f for some fv ∈ A}. (E0.9.1)

and

Rr( f ) := {kv | v ∈ A1, fvv = f for some fv ∈ A}. (E0.9.2)

Unfortunately, in general (when H is neither commutative nor cocommutative),

Rl(aA,H) �= Rr(aA,H),

see (E4.2.6) and (E4.2.7).

Some further results related to other invariants (e.g., the homological deter-

minant, pertinency, and the Nakayama automorphism) are stated as corollaries to

Theorem 2.4.

This paper is organized as follows. Section 1 reviews some basic material. We

define and study the Jacobian and the reflection arrangement in Section 2. In Section 3

we focus on the discriminant. In Section 4, we give some nontrivial examples with some

details.
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Reflection Hopf Algebras 9859

1 Preliminaries

In this section we recall some basic concepts and fix some notation that will be used

throughout.

An algebra A is called connected graded if

A = k⊕ A1 ⊕ A2 ⊕ · · ·

and 1 ∈ A0, AiAj ⊆ Ai+j for all i, j ∈ N. We say A is locally finite if dimkAi < ∞ for all i.

The Hilbert series of A is defined to be

hA(t) =
∑
i∈N

(dimkAi)t
i.

The Gelfand–Kirillov dimension (or GKdimension) of a connected N-graded, locally

finite algebra A is defined to be

GKdim(A) = lim sup
n→∞

log
(∑n

i=0 dimk Ai

)
log(n)

,

see [37, Chapter 8], [34], or [48, p.1594].

The algebras that replace the commutative polynomial rings are the so-called

Artin–Schelter regular algebras [4]. We recall the definition below.

Definition 1.1. A connected graded algebra A is called Artin–Schelter Gorenstein (or

AS Gorenstein, for short) if the following conditions hold:

(a) A has injective dimension d < ∞ on the left and on the right,

(b) Exti
A(Ak,A A) = Exti

A(kA, AA) = 0 for all i �= d, and

(c) Extd
A(Ak,A A) ∼= Extd

A(kA, AA) ∼= k(l) for some integer l. Here l is called the AS

index of A.

If in addition,

(d) A has finite global dimension, and

(e) A has finite Gelfand–Kirillov dimension,

then A is called Artin–Schelter regular (or AS regular, for short) of dimension d.
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9860 E. Kirkman and J. J. Zhang

Let M be an A-bimodule, and let μ, ν be algebra automorphisms of A. Then μMν

denotes the induced A-bimodule such that μMν = M as a k-space, and where

a ∗ m ∗ b = μ(a)mν(b)

for all a, b ∈ A and m ∈ μMν(= M). Let 1 denote also the identity map of A. We use μM

(respectively, Mν ) for μM1 (respectively, 1Mν ).

Let A be a connected graded finite-dimensional algebra. We say A is a Frobenius

algebra if there is a nondegenerate associative bilinear form

〈−, −〉 : A × A → k,

which is graded of degree −l, or equivalently, there is an isomorphism A∗ ∼= A(−l) as

graded left (or right) A-modules. There is a (classical) graded Nakayama automorphism

μ ∈ Aut(A) such that 〈a, b〉 = 〈μ(b), a〉 for all a, b ∈ A. Further, A∗ ∼= μA1(−l) as graded A-

bimodules. A connected graded AS Gorenstein algebra of injective dimension 0 is exactly

a connected graded Frobenius algebra. The Nakayama automorphism can be defined for

certain classes of infinite-dimensional algebras; see the next definition.

Definition 1.2. Let A be an algebra over k, and let Ae = A ⊗ Aop.

(1) A is called skew Calabi–Yau (or skew CY, for short) if

(a) A is homologically smooth, that is, A has a projective resolution in the

category Ae-Mod that has finite length and such that each term in the

projective resolution is finitely generated, and

(b) there is an integer d and an algebra automorphism μ of A such that

Exti
Ae(A, Ae) =

⎧⎨⎩0 i �= d

1Aμ i = d,
(E1.2.1)

as A-bimodules, where 1 denotes the identity map of A.

(2) If (E1.2.1) holds for some algebra automorphism μ of A, then μ is called the

Nakayama automorphism of A, and is usually denoted by μA.

(3) We call A Calabi–Yau (or CY, for short) if A is skew Calabi–Yau and μA

is inner (or equivalently, μA can be chosen to be the identity map after

changing the generator of the bimodule 1Aμ).
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Reflection Hopf Algebras 9861

If A is connected graded, the above definition should be made in the category of

graded modules and (E1.2.1) should be replaced by

Exti
Ae(A, Ae) =

⎧⎨⎩0 i �= d

1Aμ(l) i = d,
(E1.2.2)

where 1Aμ(l) is the shift of the graded A-bimodule 1Aμ by degree l.

We will use local cohomology later. Let A be a locally finite N-graded algebra

and m be the graded ideal A≥1. Let A-GrMod denote the category of Z-graded left A-

modules. For each graded left A-module M, we define

�m(M) = {x ∈ M | A≥nx = 0 for some n ≥ 1} = lim
n→∞ HomA(A/A≥n, M)

and call this the m-torsion submodule of M. It is standard that the functor �m(−) is

a left exact functor from A-GrMod to itself. Since this category has enough injectives,

the ith right derived functors, denoted by Hi
m or Ri�m, are defined and called the local

cohomology functors. Explicitly, one has

Hi
m(M) = Ri�m(M) := lim

n→∞ Exti
A(A/A≥n, M).

See [5, 50] for more details.

The Nakayama automorphism of a noetherian AS Gorenstein algebra can be

recovered by using local cohomology [43, Lemma 3.5]:

Rd�m(A)∗ ∼= μA1(−l), (E1.2.3)

where l is the AS index of A.

The following notation will be used throughout.

Notation 1.3. (G, {pi}, {pg}, Ag). Let H denote a semisimple Hopf algebra. Since k is

algebraically closed, the Artin–Wedderburn theorem implies that H has a decomposition

into a direct sum of matrix algebras

H = Mr1
(k) ⊕ Mr2

(k) ⊕ · · · ⊕ MrN−1
(k) ⊕ MrN

(k) (E1.3.1)

with

1 = r1 = · · · = rn < rn+1 ≤ · · · ≤ ri ≤ ri+1 ≤ · · · ≤ rN . (E1.3.2)
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9862 E. Kirkman and J. J. Zhang

Each block Mri
(k) corresponds to a simple left H-module, denoted by Si. Then {Si}N

i=1 is

the complete list of simple left H-modules and dimk Si = ri for all i. The center of H is

a direct sum of N copies of k, each of which corresponds to a block Mri
(k). Since H is a

Hopf algebra, r1 = 1. Further, we can assume that Mr1
= k

∫
where

∫
is the integral of H.

Each copy of Mri
(k) = k, for i = 1, · · · , n, gives rise to a central idempotent in H, which

is denoted by pi. Let Icom be the ideal of H generated by commutators [a, b] := ab − ba

for all a, b ∈ H. Then

Icom = Mrn+1
(k) ⊕ · · · ⊕ MrN−1

(k) ⊕ MrN
(k) and H/Icom = k⊕n. (E1.3.3)

It is well known that Icom is a Hopf ideal, and consequently, Hab := H/Icom is a

commutative Hopf algebra. Since k is algebraically closed, Hab is the dual of a group

algebra kG. By (E1.3.3), the order of G is n. There is another way of interpreting G. Let K

be the dual Hopf algebra of H, and let G(K) be the group of grouplike elements in K. Then

G is naturally isomorphic to G(K), and we can identify G with G(K). For every grouplike

element g ∈ G(K), the correspondence idempotent in Hab is denoted by pg. Then the

Hopf algebra structure of Hab is given in [33, p.61]. Let e be the unit or identity element

of the group G (later, the identity in G is also denoted by 1G or 1). Lifting the idempotent

pg ∈ Hab from Hab to the corresponding central idempotent in H, still denoted by pg, we

have, in H,

pgph =
⎧⎨⎩pg g = h,

0 g �= h,
and

∑
g∈G

pg �= 1H , unless n = N, (E1.3.4)

and

�(pg) =
∑
h∈G

ph ⊗ ph−1g + Xg, and ε(pg) =
⎧⎨⎩1k g = e,

0 g �= e,
(E1.3.5)

where Xg is in Icom ⊗ H + H ⊗ Icom. Since Icom is a Hopf ideal, we also have �(Icom) ⊆
Icom ⊗ H +H ⊗ Icom. Note that {pg}g∈G agrees with the idempotents {pi}n

i=1. By the duality

between H and K, the idempotent in H corresponding to the integral of H is p1 where 1 ∈
K is the identity element (or the unit element 1G of the group G). In other words, p1 = ∫

.

Note that p1 is also the 1st central idempotent corresponding to the decomposition

(E1.3.1).

Let A be a connected graded algebra and let H be a semisimple Hopf algebra

acting on A homogeneously and inner faithfully [14, Definition 1.5] such that A is an H-

module algebra. For each idempotent pi, where i = 1, · · · , n, · · · , N, we write Api
= pi · A.
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Reflection Hopf Algebras 9863

Then there is a natural decomposition

A = ⊕N
i=1Api

(E1.3.6)

following from the fact 1H = ∑N
i=1 pi. Each pi, for each i = 1, · · · , n, equals pg, for some

g ∈ G, and we write

Ag := pg · A = {a ∈ A | pg · a = a}.
We recall a definition.

Definition 1.4. [33, Definition 3.2] Suppose H acts homogeneously and inner faithfully

on a noetherian Artin–Schelter regular domain A that is an H-module algebra such that

the fixed subring AH (E0.1.2) is again Artin–Schelter regular. Then we say that H acts

on A as a reflection Hopf algebra or reflection quantum groups. By abuse of language,

sometimes we just say that H is a reflection Hopf algebra without mentioning A. If,

further, hdet−1 = hdet, then H is called a true reflection Hopf algebra.

Lemma 1.5. Retain the notation above, and consider A as a K-comodule algebra where

ρ : A → A ⊗ K is the right coaction.

(1) For each g ∈ G, Ag = {a ∈ A | ρ(a) = a ⊗ g}.
(2) AgAh ⊆ Agh for all g, h ∈ G.

(3) Let AG be
⊕

g∈G Ag. Then AG is a subalgebra of A.

(4) If A is a domain, then G0 := {g ∈ G | Ag �= 0} is a subgroup of G.

(5) Suppose A is a domain and Ag (for some g ∈ G) is a nonzero free module over

AH on the left and the right, then Ag is a rank one free module over AH on

the left and the right.

(6) Assume Hypotheses 0.1. Then each nonzero Ag is a rank one free module

over AH on the left and the right.

Proof. (1) Let {h1, · · · , hα} be a k-linear basis of H and {h∗
1, · · · , h∗

α} be the dual basis

of H∗ =: K. Then the element
∑

i hi ⊗ h∗
i is independent of the choice of k-linear bases

{hi}αi=1. Since A is a left H-module, then A is a right K-comodule algebra with coaction

given by

ρ(a) =
α∑

i=1

(hi · a) ⊗ h∗
i (E1.5.1)

for all a ∈ A.
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9864 E. Kirkman and J. J. Zhang

We pick a nice basis consisting of matrix units that correspond to the matrix

decomposition (E1.3.1), making {pg}g∈G a part of the basis for H. Since kG(K) is the

dual Hopf algebra of Hab = H/Icom, then g(Icom) = 0 for each g ∈ G(K). For every

h ∈ G = G(K), it is easy to see that g(ph) = δgh. This implies that {g}g∈G is a part

of the corresponding dual basis for K. Now the assertion follows from (E1.5.1) and a

straightforward calculation.

(2) Let x ∈ Ag and y ∈ Ah, then IcomAg = IcomAh = 0 implies that Icomx =
Icomy = 0. By (E1.3.5), pgh(xy) = pg(x)ph(y) = xy. Thus, xy ∈ Agh.

(3) This follows from part (2).

(4) This follows from part (2) and the fact that A is a domain.

(5) Since A is a domain, xAg ⊆ AH for every nonzero x ∈ Ag−1 . Thus, the rank of

Ag over AH is one.

(6) By [33, Lemma 3.3(2)] (where the hypothesis that the char k is zero is not

necessary), Ag is free over AH on both sides. The assertion follows from part (5). �

Notation 1.6. ({ fg}, φg). Let R denote the fixed subring AH . Assume that H is a

reflection Hopf algebra acting on a noetherian Artin–Schelter regular domain A. By

Lemma 1.5(6), each nonzero Ag is of the form

Ag = fgR = Rfg, (E1.6.1)

where fg ∈ Ag is a (fixed) nonzero homogeneous element of lowest degree. Note that fg

is unique up to a nonzero scalar in k. There is a graded automorphism φg ∈ Aut(R) such

that

fgx = φg(x)fg (E1.6.2)

for all x ∈ R [33, (E3.5.1)]. For every pair (g, h) of elements in G, define cg,h ∈ R such that

fgfh = cg,h fgh (E1.6.3)

[33, (E3.5.2)]. Then cg,h is a normal element in R and

cg,h = fgfh f −1
fg , and φ−1

gh (cg,h) = f −1
fg fgfh. (E1.6.4)
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Lemma 1.7. Let H be a semisimple Hopf algebra acting on an algebra A.

(1) If M is a simple left H-module and N a one-dimensional left H-module, then

both N ⊗ M and M ⊗ N are simple left H-modules of dimension equal to

dimkM.

(2) If M ⊆ A is a simple left H-module and 0 �= bg ∈ Ag where Ag is defined as in

Lemma 1.5(1), then both Mbg and bgM (if nonzero) are simple left H-modules

of dimension equal to dimkM.

Proof. (1) This follows from the fact that N ⊗− and −⊗N are auto-equivalences of the

category of left H-modules.

(2) This follows from the fact that the multiplication map μ : A ⊗ A → A is a left

H-module map. Further, as left H-modules, bgM ∼= kbg ⊗ M and Mbg
∼= M ⊗ kbg when

bgM and Mbg are nonzero. �

Fixed an integer d > 0. Let {Sd,i}wd
i=1 be the complete list of simple left H-modules

of dimension d. For each g ∈ G(K), there are permutations in the symmetric group,

σg,d, τg,d ∈ Swd
, such that

kg ⊗ Sd,i = Sd,σd,g(i), and Sd,i ⊗ kg ∼= Sd,τd,g(i). (E1.7.1)

Let {pd,i}wd
i=1 be the complete list of primitive central idempotents of H corresponding to

the set {Sd,i}wd
i=1, and let Ad,i = pd,iA. By Lemma 1.7(2), we have that

bgAd,i ⊆ Ad,σd,g(i), and Ad,ibg ⊆ Ad,τd,g(i) (E1.7.2)

for all g, i.

For every d, define

Ad :=
wd⊕
i=1

Ad,i.

Let R be an Ore domain. If M is a left R-module, the rank of M over R is defined

to be

rk M := dimQ Q ⊗R M,

where Q is the total quotient division ring of R.
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9866 E. Kirkman and J. J. Zhang

Lemma 1.8. Suppose that A is a domain. Let rk denote the rank over AH . Suppose that

Ad,1 �= 0 for some d.

(1) rkAd ≥ rkA1.

(2) Suppose there are (d′, i′) such that Ad′,i′ �= 0 and that Sd,1 ⊗ Sd′,i′ is a direct

sum of simple H-modules of dimensions d1, · · · , ds. Then

rk Ad,1 ≤
s∑

α=1

rk Adα
.

(3) Suppose there are (d′, i′) such that Ad′,i′ �= 0 and that (
⊕wd

i=1 Sd,j) ⊗ Sd′,i′ is a

direct sum of simple H-modules of dimensions d1, · · · , ds. Then

rkAd ≤
s∑

α=1

rkAdα
.

(4) Suppose that Sd,1 ⊗ Sd,i is a direct sum of one-dimensional H-simples for

some i such that Ad,i �= 0. Then rkAd,1 ≤ rkA1.

(5) If for any Ad,i �= 0, Sd,i ⊗ Sd,1 is a direct sum of one-dimensional H-simples,

then rkAd ≤ rkA1.

Proof. (1) Let 0 �= x ∈ Ad,1 such that x is in a simple left H-module M. By Lemma 1.7(2),

A1x ⊆ A1M ⊆ Ad.

Therefore,

rkAd ≥ rkA1x = rkA1.

(2) Let 0 �= x ∈ Ad′,i′ . By the ideas in the proof of Lemma 1.7(2),

Ad,1x ⊆
s⊕

α=1

Adα
.

Therefore,

rkAd,1 = rkAd,1x ≤
s∑

α=1

rkAdα
.

(3) The proof is similar to the proof of part (2).

(4,5) These are consequences of parts (2) and (3). �
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The above lemma has some consequences. For example, if H has only one simple

S of dimension d larger than 1 and S ⊗ S is a direct sum of one-dimensional H-modules,

then A1 and Ad have the same rank. When |G| = d2 this implies that dimkH = 2d2 [2, 3].

Definition 1.9. Retain the notation as in Lemma 1.5 and let G = G(K).

(1) The subalgebra AG as defined in Lemma 1.5(3) is called the G-component

of A.

(2) The k-vector space AGc := ⊕N
i=n+1 pi · A where n and N are defined in

(E1.3.2) is called the G-complement of A. By Lemma 1.7(2), AGc is an AG-

bimodule and there is an AG-bimodule decomposition

A = AG ⊕ AGc .

An A-bimodule M is called H-equivariant in the sense of [43, Definition 2.2] if

h · (amb) =
∑

(h1 · a)(h2 · m)(h3 · b)

for all h ∈ H, a, b ∈ A and m ∈ M. The following lemma is more or less proved in [43].

Lemma 1.10. Let Y be an H-equivariant graded A-bimodule that is free of rank one

over A on both sides. Then Y is isomorphic to e ⊗ A such that

(1) ke is a one-dimensional left H-module and there is an g ∈ G(K) such that

h · e ⊗ 1 = g(h)e ⊗ 1,

(2) e⊗ 1 is a generator of the free right A-module Y, namely, (e⊗ 1)a = e⊗ a for

all a ∈ A,

(3) there is a graded algebra automorphism μ of A such that

a(e ⊗ 1) = e ⊗ μ(a)

for all a ∈ A,

(4) μ
(
�r

g(h) · a
) = �l

g(h) · μ(a), where �r
π is the right winding automorphism of

H associated to g, defined to be

�r
g : h �→

∑
h1g(h2) (E1.10.1)

for all h ∈ H.
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9868 E. Kirkman and J. J. Zhang

In this case, we write

Y = (ke) ⊗ μA1. (E1.10.2)

When Y is Rd�m(A)∗ for an AS Gorenstein ring A, μ is the Nakayama automorphism of A.

The proof of the above lemma is easy and omitted. If we want to specify the

algebra A, (E1.10.2) can be written as

YA = (keA) ⊗ μA1. (E1.10.3)

Definition 1.11. Suppose a Hopf algebra H acts inner faithfully and homogeneously

on a connected graded algebra A. Let R be AH .

(1) The left covariant module of the H-action on A is defined to be

Al,cov H := A/AR≥1,

which is a left A and right R-bimodule.

(2) The right covariant module of the H-action on A is defined to be

Ar,cov H := A/R≥1A,

which is a right A and left R-bimodule.

(3) The covariant algebra of the H-action on A is defined to be the factor ring

Acov H := A/(R≥1).

(4) We say the H-action on A is tepid if AR≥1 = R≥1A. In this case we say the

covariant ring Acov H is tepid.

There are reflection Hopf algebras H such that the H-action on A is not tepid

and the covariant ring Acov H is not Frobenius, see Example 4.2.

2 The Jacobian and the Reflection Arrangement

In this section we will introduce two important concepts for Hopf algebra actions on

Artin–Schelter regular algebras: the Jacobian and the reflection arrangement. We also

study the connection between the Jacobian and the pertinency ideal.
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As in the previous sections, H is a semisimple Hopf algebra. In this section we

will use the homological determinant [31, Definition 3.3] in a slightly more general

situation. Assume that A is a noetherian connected graded AS Gorenstein algebra

(which is not necessarily regular). Let hdet denote both the homological determinant

hdet : H → k and the corresponding grouplike element in K (in [31] it is called co-

determinant). As usual, suppose that H acts on A homogeneously and inner faithfully.

To motivate our definition, we first briefly recall some facts in the commutative

situation. Let A be the commutative polynomial ring k[V∗] = k[x1, · · · , xn] and G be a

finite subgroup of GL(V) acting on A naturally. Suppose that G is a reflection group and

R := AG is a polynomial ring, written as k[f1, · · · , fn]. Then the Jacobian J (also called

the Jacobian determinant) of the basic invariants { f1, · · · , fn} is defined to be

J := det

(
∂fi

∂xj

)n

i,j=1

,

see [24, Introduction]. It is well known that deg J = −n + ∑n
i=1 deg(fi) and that g · J =

(det g)−1J for all g ∈ G, see [46, p. 139] or [40, p.229]. In the commutative case, we have

hdet = det. It is also well known that Ahdet−1 is free over R on both sides and the lowest

degree of nonzero elements in Ahdet−1 is −n + ∑n
i=1 deg(fi). Hence, Ahdet−1 = JR = RJ

[46, p.139].

A result of Steinberg [24, 47] says that the Jacobian determinant J in the

commutative case is a product of linear forms (with multiplicities) that correspond to

the reflecting hyperplanes (E0.3.1). The product of the distinct linear forms, denoted by

a, corresponding to the reflecting hyperplanes, namely, the reduced defining equation

of the Jacobian determinant (E0.3.2), has the property that g · a = det(g)a for all g ∈ G

and the degree of a is the lowest degree of nonzero elements in Ahdet. This means that

Ahdet = aR = Ra, see [46, Theorem 2.3] and [40, p. 229].

The following definition attempts to mimic these classical concepts in the

noncommutative setting. See Definition 0.3 under Hypotheses 0.1.

Definition 2.1. Let A be AS Gorenstein, hdet ∈ K be the homological determinant of

the H-action on A and R = AH .

(1) If Ahdet−1 is free of rank one over R on both sides, namely, Ahdet−1 =
fhdet−1R = Rfhdet−1 �= 0, then the Jacobian of the H-action on A is defined to

be

jA,H :=k× fhdet−1 ∈ A.
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9870 E. Kirkman and J. J. Zhang

(2) If Ahdet is free of rank one over R on both sides and Ahdet = fhdetR = Rfhdet �=
0, the reflection arrangement of the H-action on A is defined to be

aA,H :=k× fhdet ∈ A.

In the above definition we do not assume that the fixed subring AH is Artin–

Schelter regular. Next we give some easy examples; in (1) and (3) AH is not AS regular,

but the Jacobian and the reflection arrangement are still defined.

Example 2.2.

(1) If hdet is trivial, then both jA,H and aA,H are 1 ∈ A.

(2) [33, Example 3.7] In [33] we assume that char k = 0, but, in fact, it suffices

to assume that char k �= 2 in this example. Let G be the dihedral group of

order 8. It is generated by r of order 2 and ρ of order 4 subject to the relation

rρ = ρ3r. Let A be generated by x, y, z subject to the relations

zx = −xz,

yx = zy,

yz = xy.

Then A is an AS regular algebra of global dimension 3. Let H = (kG)∗ and

define the G-degree of the generators of A as

degG(x) = r, degG(y) = rρ, degG(z) = rρ2.

Then kG coacts on A. By [33, Example 3.7], the Hopf algebra H acts on A as

a (true) reflection Hopf algebra and the fixed subring AH is isomorphic to

the polynomial ring k[t1, t2, t3], which is AS regular. (Note that t1 = x2, t2 =
y2, t3 = z2.) One can check that hdet = hdet−1 = rρ3 (so H is a true reflection

Hopf algebra) and that

jA,H = aA,H =k× zxy =k× zyz =k× xyx =k× xzy =k× yzx =k× yxz, (E2.2.1)

which is a product of elements of degree 1. By [33, Theorem 3.5(2)], the

covariant algebra Acov H is always tepid in this setting.
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(2) Let us recall the notation introduced in (E0.9.1) and (E0.9.2). For any

homogeneous element f ∈ A, define the set of left (respectively, right)

divisors of degree 1 of f to be

Rl( f ) := {kv | v ∈ A1, vfv = f for some fv ∈ A}.

and

Rr( f ) := {kv | v ∈ A1, fvv = f for some fv ∈ A}.

It is clear that Rl(jA,H) contains {kx,ky,kz}. By using the fact that y is

normal, one can show (with details omitted) that if yxz =k× f1 f2 f3 for three

elements fi of degree 1, then f1 f2 f3 must be, up to scalars on fi, one of the

expressions given in (E2.2.1). Therefore,

Rl(jA,H) = Rl(aA,H) = Rr(jA,H) = Rr(aA,H) = {kx,ky,kz}. (E2.2.2)

One might consider the set {kx,ky,kz} as (linear forms of) reflecting

hyperplanes.

(3) Let A be the down-up algebra

D(0, 1) := k〈u, d〉
(u2d − du2, ud2 − d2u)

.

Then A is noetherian, AS regular of global dimension 3. Let H be the Hopf

algebra (kG)∗ where G is the dihedral group of order 8 as in part (2). This

is the setting in [17, Example 2.1]. By [17, Example 2.1], we have hdet =
hdet−1 = ρ2. The fixed subring AH is not AS regular but is AS Gorenstein.

By [17, Lemma 2.2(3)], the Jacobian and the reflection arrangement of the

H-action on A are

aA,H = jA,H =k× u2 ∈ A.

One can show directly that the covariant algebra Acov H is tepid.

Remark 2.3. The definition of the Jacobian in Definition 2.1(1) agrees with the Jaco-

bian (determinant) when we consider classical reflection groups acting on commutative

polynomial rings.
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(1) In the commutative case, both jA,H and aA,H are products of linear forms

(E0.3.1) and (E0.3.2). It is natural to ask if A is generated in degree 1, under

what hypotheses, are both jA,H and aA,H products of elements of degree 1?

(2) In the commutative case one sees from (E0.3.1) and (E0.3.2) that aA,H divides

jA,H . Is there a generalization of this statement in the noncommutative

setting? We will discuss this question in Section 3 (see Theorem 3.8(2)).

(3) More importantly, the definitions of the Jacobian and the reflection

arrangement suggest that we should search for a generalization of

hyperplane arrangements in the noncommutative setting.

(4) In the classical case, aA,H is reduced, namely, every factor is squarefree in

aA,H . What is the analog of this statement? See Example 2.2(2,3).

Next we have a result concerning the existence of jA,H . Let π : H → k be an

algebra homomorphism, namely, π ∈ K is a grouplike element. Recall from (E1.10.1)

that the right winding automorphism of H associated to π is defined to be

�r
π : h �→

∑
h1π(h2)

for all h ∈ H. The left winding automorphism �l
π of H associated to π is defined

similarly, and it is well known that both �r
π and �l

π are algebra automorphisms of H.

For any element x ∈ A, let ηx denote the “conjugation” map

ηx : a → x−1ax

whenever x−1ax is defined. In particular, this map could be defined for all a in a subring

of A. In the following result we do not assume that the H-action on A is inner faithful.

Recall that

∑
hdet(h1) hdet−1(h2) =

∑
hdet(h2) hdet−1(h1) = ε(h) (E2.3.1)

for every h ∈ H.

Theorem 2.4. Let A be a noetherian AS Gorenstein algebra. Let hdet be the homological

determinant of the H-action on A.
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(1) [43, Lemma 3.10] Let μ be the Nakayama automorphism of A. Then, for every

a ∈ A and h ∈ H,

�l
hdet(h) · μ(a) = μ

(
�r

hdet(h) · a
)

. (E2.4.1)

As a consequence, μ(AH) = AH .

(2) If AH is AS Gorenstein, then the Jacobian jA,H is defined and

(a) lAH = l + deg jA,H , where l indicates the respective AS indices Definition

1.1(c),

(b) μAH = ηjA,H
◦ μ.

(3) If jA,H exists, then AH is AS Gorenstein.

(4) μ(Ahdet−1) = Ahdet−1 . As a consequence, if jA,H exists, then μ(jA,H) =k× jA,H .

(5) μ(Ahdet) = Ahdet. As a consequence, if aA,H exists, then μ(aA,H) =k× aA,H .

(6) Let A be a domain. Suppose there is a short exact sequence of Hopf algebras

1 → H0 → H → H → 1

such that AH and AH0 are AS Gorenstein. Then

jA,H =k× jA,H0
jAH0 ,H =k× jAH0 ,H jA,H0

.

Proof. (1) Let R denote AH . The 1st claim is a special case of [43, Lemma 3.10] when the

antipode S of H has the property that S2 is the identity. (Note that since H is semisimple,

S2 is the identity.) For the consequence, we have, for h ∈ H and r ∈ R,

h · μ(r) =
∑

hdet(h2)h1 · μ(r) hdet−1(h3)

=
∑

�r
hdet(h1) · μ(r) hdet−1(h2)

= μ
(∑

�l
hdet(h1) · r hdet−1(h2)

)
= μ

(∑
hdet(h1)h2 · r hdet−1(h3)

)
= μ

(∑
hdet(h1)ε(h2)r hdet−1(h3)

)
= ε(h)μ(r).

This implies that μ(r) ∈ R, and completes the proof of part (1). In the above computation

we used (E2.3.1).
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We will use the notation introduced in [31]. Let Hi
m(A) be the ith local cohomol-

ogy of A with respect to the graded maximal ideal m := A≥1. Let (−)∗ denote the graded

k-linear dual of a graded vector space. Let d be the injective dimension of A. By [31,

p.3648] or (E1.2.3),

(Hi
m(A))∗ =

⎧⎨⎩0 i �= d

μA1(−l) =: Y i = d,

and

(Hi
mR(R))∗ =

⎧⎨⎩0 i �= d

Y · ∫ = S(
∫
) · Y i = d.

As a consequence, the injective dimension of R is also d if R is AS Gorenstein. Here μ is

the Nakayama automorphism of A, and μR is the Nakayama automorphism of R. Note

that Y has an A-bimodule structure with compatible H-action, or in other words, Y is

an H-equivariant A-bimodule in the sense of [43, Definition 2.2], see [43, Lemma 3.2(a)].

Using the notation in [31, (3.2.1) and (3.2.2)] or in Lemma 1.10, Y = (ke) ⊗ μA1 as

a left H-module (as well as graded A-bimodule) where deg(e) = l and the H-action on e

is given by

h · e = hdet(h)e (E2.4.2)

by [31, Definition 3.3]. (In [31], the authors used the right H-action, one can easily

transfer to the left action by composing with the antipode S.) By [31, Lemma 2.4(1)],

there is an R-bimodule decomposition

A = R ⊕ C, (E2.4.3)

where R ⊆ A is a graded subalgebra. Further, as a left H-module, R is a direct sum of

trivial H-modules, and,

R = {a ∈ A | p1 · a = a};
and

C = {a ∈ A | (1 − p1) · a = a},
where p1 is the idempotent in (E1.3.1) corresponding to the integral of H. The decompo-

sition (E2.4.3) gives rise to a decomposition of Y, as R-bimodules,

Y = (
Hd

m(A)
)∗ = (

Hd
mR(A)

)∗ = (
Hd

mR(R)
)∗ ⊕ (

Hd
mR(C)

)∗, (E2.4.4)
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where
(
Hd

mR(R)
)∗ is preserved by the left action of p1 and (Hd

mR(C))∗ is preserved by the

left action of 1 − p1. Using the fact, Y = (ke) ⊗ μA1, we can write

(
Hd

mR(R)
)∗ = (ke) ⊗ V, and

(
Hd

mR(C)
)∗ = (ke) ⊗ W

for some graded R-bimodules V, W with μA1 = V ⊕ W.

(2) Assume that R is AS Gorenstein. Then the R-bimodule (Hd
mR(R))∗ is isomor-

phic to μRR1(−lR). In particular, (Hd
mR(R))∗ is free of rank one on both sides. This implies

that V is a free R-module of rank one on both sides.

Since (Hd
mR(R))∗ is preserved by the left action of p1 and (Hd

mR(C))∗ is preserved

by the left action of 1 − p1, by (E2.4.2), V is preserved by the left action of phdet−1 and W

is preserved by the left action of 1−phdet−1 . Thus, V = μA1
hdet−1 = Ahdet−1 where the last

equation follows from the fact that the H-action on μA1 agrees with the H-action on A.

Combining these assertions with ones in the last paragraph, we obtain that jA,H exists.

For the two sub-statements, note that the right R-module (Hd
mR(R))∗ is free with

a generator e ⊗ jA,H . Using the notation introduced in (E1.10.3), we have

eR = e ⊗ jA,H = eA ⊗ jA,H . (E2.4.5)

Then

lR = deg eR = deg(eA ⊗ jA,H) = deg eA + deg jA,H = lA + deg jA,H .

Hence, sub-statement (a) follows. Considering elements inside Y := e⊗A, for every r ∈ R,

using part (1), we have

r(eR ⊗ 1) = r(e ⊗ jA,H1)

= e ⊗ μ(r)jA,H = e ⊗ jA,H

(
j−1
A,Hμ(r)jA,H

)
= (eR ⊗ 1)

(
j−1
A,Hμ(r)jA,H

)
,

which implies that μR(r) = ηjA,H
◦ μ(r); hence, we have verified sub-statement (b).

(3) The proof of the converse is similar. Since jA,H is defined, V := Ahdet−1 is a free

R-module of rank one on both sides. Then (Hd
mR(R))∗ = (ke) ⊗ V is a free R-module of

rank one on both sides. By [43, Lemma 1.7(2)], (Hd
mR(R))∗ is isomorphic to μRR1(−lR) for

some automorphism μR of R and some integer l. By [31, Lemma 1.6], R is AS Gorenstein.
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9876 E. Kirkman and J. J. Zhang

(4) For r ∈ Ahdet−1 and h ∈ H, we have

h · μ(r) =
∑

hdet−1(h1) hdet(h2)h3 · μ(r)

=
∑

hdet−1(h1)�l
hdet(h2) · μ(r)

=
∑

hdet−1(h1)μ(�r
hdet(h2) · r) by (E2.4.1)

=
∑

hdet−1(h1)μ
(∑

hdet(h3)h2 · r
)

=
∑

hdet−1(h1)μ
(∑

hdet(h3)hdet−1(h2)r
)

=
∑

hdet−1(h1)μ
(∑

ε(h2)r
)

= hdet−1(h)μ(r).

Hence, the main assertion follows, and the consequence is clear.

(5) For r ∈ Ahdet and h ∈ H, we have

h · μ(r) =
∑

hdet−1(h1) hdet(h2)h3 · μ(r)

=
∑

hdet−1(h1)�l
hdet(h2) · μ(r)

=
∑

hdet−1(h1)μ
(
�r

hdet(h2) · r
)

by (E2.4.1)

=
∑

hdet−1(h1)μ
(∑

hdet(h3)h2 · r
)

=
∑

hdet−1(h1)μ
(∑

hdet(h3) hdet(h2)r
)

=
∑

hdet−1(h1) hdet(h2) hdet(h3)μ(r)

=
∑

ε(h1) hdet(h2)μ(r) = hdet(h)μ(r).

Hence, the main assertion follows, and the consequence is clear.

(6) Let r ∈ H0 and h ∈ H. Since H0 is normal,
∑

S(h1)rh2 ∈ H0, and for all x ∈ AH0 ,

we have

∑
S(h1)rh2(x) = ε

(∑
S(h1)rh2

)
(x) = ε(r)ε(h)x.

Then

rh(x) =
∑

h1S(h2)rh3(x) =
∑

h1ε(h2)ε(r)(x) = ε(r)(h(x)),
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Reflection Hopf Algebras 9877

which implies that AH0 is a left H-module algebra. By the definition, H0-action on AH0

is trivial, so H acts on AH0 naturally and

AH = (AH0)H = (AH0)H .

By (E2.4.5),

eAH = eA ⊗ jA,H , and

eAH = eAH0 ⊗ jAH0 ,H

= (
eA ⊗ jA,H0

) ⊗ jAH0 ,H

= (
eA ⊗ jA,H0

)
jAH0 ,H

= eA ⊗ (
jA,H0

jAH0 ,H

)
inside Y. Then

jA,H = jA,H0
jAH0 ,H . (E2.4.6)

For the 2nd equation, we use part (4). Since both AH and AH0 are AS Gorenstein, by

part (4), we have μ(jA,H) =k× jA,H and μ(jA,H0
) =k× jA,H0

. Applying μ to the equation

jA,H = jA,H0
jAH0 ,H , and using the hypothesis that A is a domain, we obtain that

μ(jAH0 ,H) =k× jAH0 ,H . (E2.4.7)

Applying μAH0 to jAH0 ,H and using part (4), we have

μAH0 (jAH0 ,H) =k× jAH0 ,H . (E2.4.8)

Combining (E2.4.7), (E2.4.8) with part (2b),

jAH0 ,H =k× ηjA,H
(jAH0 ,H)

or equivalently,

jAH0 ,H jA,H =k× jA,H jAH0 ,H . (E2.4.9)

Since A is a domain, the combination of (E2.4.6) and (E2.4.9) implies that

jAH0 ,H jA,H0
=k× jA,H0

jAH0 ,H

as desired. �
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9878 E. Kirkman and J. J. Zhang

Theorem 2.4(6) is useful for the case when H is obtained by an abelian exten-

sion of Hopf algebras. We wonder if there is a version of Theorem 2.4(6) for aA,H .

Theorem 2.4(2b) is a generalization of [33, Theorem 0.6(1)]. Though the Jacobian exists,

it is not clear if the reflection arrangement exists when R is AS Gorenstein. We have

three corollaries, including the existence of the reflection arrangement when R is AS

regular. The 1st of the corollaries is Theorem 0.2(1,2).

Corollary 2.5. Assume Hypotheses 0.1. Let R = AH and ξ(t) = hA(t)(hR(t))−1.

(1) Both jA,H and aA,H exist.

(2) deg ξ(t) = deg jA,H .

(3) hAl,cov H (t) = hAr,cov H (t) = ξ(t). As a consequence,

dim Al,cov H = dim Ar,cov H = ξ(1),

where hAl,cov H (t) and hAr,cov H (t) are the Hilbert series of Al,cov H and Ar,cov H .

Proof. (1) By Theorem 2.4, the Jacobian jA,H exists. In particular, Ahdet−1 �= 0. Since K

is finite dimensional, hdet is a power of hdet−1. So Ahdet �= 0. By Lemma 1.5(6), Ahdet is

a free R-module of rank one on both sides, and hence by definition, aA,H exists.

(2) Let pA(t) = (hA(t))−1 and pR(t) = (hR(t))−1. By [48, Proposition 3.1],

deg pA(t) = lA and deg pR(t) = lR. By Theorem 2.4(2a),

deg jA,H = lR − lA = deg pR(t) − deg pA(t) = deg ξ(t).

(3) Since AR is a finitely generated free R-module, hA(t) = hAl,cov H (t)hR(t), and

the assertion follows. The consequence is clear. �

The next corollary is a rigidity result.

Corollary 2.6. Let A be a noetherian AS Gorenstein algebra with finite GKdimension.

Suppose H acts on A such that AH is AS Gorenstein.

(1) Suppose A is Cohen–Macaulay. If hdet is not trivial, then p(A, H) ≤ 1, where

p(A, H) is defined in Definition 2.8(3).

(2) Suppose that there is no graded ideal I ⊆ A such that GKdimA/I =
GKdimA − 1. Then hdet is trivial.
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Reflection Hopf Algebras 9879

(3) If A is projectively simple in the sense of [42, Definition 1.1] and if

GKdimA ≥ 2, then there is no graded ideal I ⊆ A such that GKdimA/I =
GKdimA − 1.

Proof. (1) If hdet is not trivial, then there is an R-bimodule C such that

A = AH ⊕ Ahdet ⊕ C = R ⊕ jA,HR ⊕ C

[Theorem 2.4(2)]. Then EndR(A) is not N-graded. Therefore, the natural map A#H →
EndR(A) cannot be an isomorphism of a graded algebras. By [7, Theorem 3.5],

p(A, H) ≤ 1.

(2) Suppose to the contrary that hdet is not trivial. By Theorem 2.4, f := jA,H ∈
A≥1 exists. By definition, fR = Rf inside A. Consider the (A, R)-bimodule M := A/Af ,

which is finitely generated on both sides; we have GKdim(M) = GKdimA − 1. Let

I = annA(AM). Since MR is finitely generated, M = ∑s
i=1 miR. Then I = ⋂

annA(mi).

For each i, GKdim(A/annA(mi)) ≤ GKdim M. Then GKdim A/I ≤ GKdim M. Since

I ⊆ Af , GKdim A/I ≥ GKdim M. Therefore, GKdim A/I = GKdim M = GKdim A − 1,

a contradiction.

(3) This is clear from the definition of a projectively simple ring (also called a

just-infinite ring). �

The 3rd corollary puts some constraints on the homological determinant hdet.

Recall from [43, p. 318] that an AS Gorenstein algebra A is called r-Nakayama, for some

r ∈ k×, the Nakayama automorphism of A is of the form

μ : a → rdeg aa (E2.6.1)

for all homogeneous element a ∈ A. For example, every Calabi–Yau AS regular algebra

is 1-Nakayama.

Corollary 2.7. Let A be a noetherian AS Gorenstein algebra that is r-Nakayama for

some r ∈ k×. (We need only that �r
hdet(h) is a stable map of μ-isotropy classes.)

(1) Assume that the H-action on A is faithful. Then hdet is a central element in

G(K). As a consequence, if the center of G(K) is trivial, then hdet is trivial

and AH is AS Gorenstein.
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9880 E. Kirkman and J. J. Zhang

(2) Suppose that A is an AS regular domain and that G �= {1} is a finite group

with trivial center (e.g., G is non-abelian simple). If H := (kG)∗ acts on A

inner faithfully and homogeneously such that A is an H-module algebra,

then hdet is trivial and H is not a reflection Hopf algebra in the sense of

Definition 1.4.

Proof. (1) Under hypothesis of μ being r-Nakayama and the fact that μ is a graded

algebra homomorphism, (E2.4.1) becomes

�r
hdet(h) · a = �l

hdet(h) · a

for all a ∈ A and h ∈ H. Since the H-action is faithful, we have �r
hdet(h) = �l

hdet(h)

for all h ∈ H. Applying g ∈ G(K) to the above equation, we obtain that (g ◦ hdet)(h) =
(hdet ◦ g)(h). Thus, hdet commutes with all elements g ∈ G(K). This shows the main

assertion, and the consequence is clear.

(2) By Lemma 1.5(4), G0 := {g ∈ g | Ag �= 0} is a subgroup of G. Since the H-action

on A is inner faithful, the K-coaction on A is inner faithful. Thus, G0 = G. This implies

that H-action on A is in fact faithful. By part (1), hdet is trivial. By [14, Theorem 0.6], AH

is not AS regular; hence, H is not a reflection Hopf algebra. �

Definition 2.8. Let H act on A and
∫

be the integral of H.

(1) The pertinency ideal of the H-action on A is defined to be

PA,H := (A#H)(1#
∫
)(A#H) ⊆ A#H.

(2) [25, Definition 1.4] The radical ideal of the H-action on A is defined to be

rA,H := PA,H ∩ A

identifying A with A#1 ⊆ A#H.

(3) [7, Definition 0.1] The pertinency of the H-action on A is defined to be

p(A, H) := GKdim(A#H) − GKdim(A#H/PA,H).
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Reflection Hopf Algebras 9881

The radical ideal of a group G-action on an algebra A was introduced in [25,

Definition 1.4] using pertinence sequences. By the proof of [25, Proposition 2.4], that

definition agrees with Definition 2.8(2) when H is a group algebra.

Under some mild hypotheses, we will show that the radical ideal is essentially

the Jacobian of the H-action on A when H is a reflection Hopf algebra. For simplicity,

let m stand for hdet−1 following the notation of [33].

From now on until Theorem 2.12, let H = (kG)∗ for some finite group G. Assume

that char k = 0. Then the integral
∫

of H is p1 where 1 is the identity of G. Since

H = ⊕
g∈G kpg, we have A = ⊕g∈GAg where Ag = pg · A. By using the comultiplication

given in (E1.3.5), one easily checks that the following equations hold.

Lemma 2.9. Let H = (kG)∗, g, h ∈ G and bh ∈ Ah. Then

(1) (bh#1)(1#pg) = bh#pg.

(2) (1#pg)(bh#1) = bh#ph−1g.

(3) (1#phg)(bh#1) = bh#pg.

Lemma 2.10. Let
∫

be the integral of H = (kG)∗. Then

(A#1) ∩ (A#H)(1#
∫
)(A#H) = ( ⋂

g∈G AAg

)
#1.

As a consequence,

rA,H =
⋂
g∈G

AAg.

Proof. We compute

(A#H)(1#
∫
)(A#H) =

(∑
h

A#ph

)
(1#p1G

)

⎛⎝∑
i,j

Ai#pj

⎞⎠
= (A#1)(1#p1G

)

⎛⎝∑
i,j

Ai#pj

⎞⎠
= (A#1)

⎛⎝∑
i,j

Ai#pi−1pj

⎞⎠
=

∑
i

AAi#pi−1 .
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9882 E. Kirkman and J. J. Zhang

If x ∈ (A#1) ∩ (A#H)(1#
∫
)(A#H), then x = y#1 = y#

∑
i pi−1 for y ∈ A. By the above

computation, y ∈ AAi for all i ∈ G. Thus, y ∈ ⋂
g∈G AAg as required. �

Lemma 2.11. Assume Hypotheses 0.4. Let m := hdet−1 ∈ G.

(1) For each g ∈ G, there is a nonzero fg ∈ A such Ag = Rfg = fgR.

(2) For each g ∈ G, there is an h ∈ G such that fh fg =k× fm.

(3) ⋂
g∈G

AAg =
⋂
g∈G

Afg = Afm = fmA.

Proof. (1) By [33, Theorem 3.5(1)], for each g ∈ G, Ag = Rfg = fgR for some homogeneous

element 0 �= fg ∈ A.

(2) By [33, Theorem 3.5(2)], the covariant algebra AcovH [Definition 1.11] is the

quotient algebra A/I where I = ⊕g∈G(AH)≥1fg, and AcovH is Frobenius. Further, AcovH

has a k-basis { fg}g∈G. Since AcovH is graded and Frobenius, for every g, there is an h ∈ G

such that fh fg = afm for some 0 �= a ∈ k. Then hg = m and fh fg = afm.

(3) As a consequence of part (2), Afm ⊆ Afg for all g. Therefore,
⋂

g∈G Afg = Afm.

By [33, Theorem 0.5(1)], fm is a normal element. Then Afm = fmA. This finishes the

proof. �

Now we prove Theorem 0.5, which is Theorem 2.12(2) below. Following [33], let

G := {h ∈ G | deg fh = 1}. (E2.11.1)

(In [33], this set is denoted by R.)

Theorem 2.12. Assume Hypotheses 0.4.

(1) The radical ideal rA,H is a principal ideal of A generated by jA,H .

(2) Both jA,H and aA,H are products of elements in degree 1 of the form fh.

(3) aA,H divides jA,H from the left and the right.

Proof. (1) The assertion follows from Lemmas 2.10 and 2.11(1).

(2) By [33, Theorem 3.5(5)], the covariant algebra AcovH is generated by elements

{ fh | h ∈ G}. Using the G-grading and the fact that AcovH is a skew Hasse algebra [33,

Definition 2.3(2)], every fg is a product of fh1
· · · fhs

if g = h1 · · · hs where s = lG(g) [33,

Definition 2.1]. In particular, both jA,H and aA,H are products of elements in {fh | h ∈ G}.
(3) See proof of Lemma 2.11(2). �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/13/9853/5706031 by U
niversity of W

ashington user on 14 April 2022



Reflection Hopf Algebras 9883

Note that, in general, Theorem 2.12(1) fails, see (E4.2.12) and (E4.2.13). Motivated

by the above result, we have the following remarks and questions, which can be viewed

as a continuation of Remark 2.3.

Remark 2.13. Assume Hypotheses 0.1.

(1) What is the connection between rA,H and jA,H? The relation between them is

not obvious, but we believe that rA,H is contained in AjA,H . See Lemma 3.13

for a partial result.

(2) As in Remark 2.3(2), we ask: does aA,H divide jA,H (from the left and the right)?

The answer is yes, see Theorem 3.8(2). As a consequence, Rl(aA,H) is a subset

of Rl(jA,H). This suggests another question: does the equation

Rl(aA,H) = Rl(jA,H)

always hold?

(2) On the other hand, we will give an example where Rl(jA,H) �= Rr(jA,H), see

(E4.2.6) and (E4.2.7) in Example 4.2.

(2) One question related to this inequality is: do we have an isomorphism φ such

that φ(Rl(jA,H)) = Rr(jA,H) (respectively, φ(Rl(aA,H)) = Rr(aA,H))?

(3) In the classical case, deg aA,H is the number of reflecting hyperplanes and

deg jA,H is the number of pseudo-reflections. What are the meanings of

deg jA,H and deg aA,H in the noncommutative case?

(4) Suppose that A is generated in degree 1. Are aA,H and jA,H products of

elements of degree 1? If yes, are these products of elements in Rl(aA,H) ∪
Rl(aA,H)?

Further, assume that H is (kG)∗ and that A is generated in degree 1.

(5) It follows from [33, Theorem 0.4] that G can be considered as a subset of

both Rl(jA,H) and Rr(jA,H). As a consequence, |G| ≤ |Rl(jA,H)|.
(6) Is the deg aA,H = |G|? For example, in Example 2.2(2) G = {r, rρ, rρ2} and

deg aA,H = 3.

(7) Does the set {fh | h ∈ G} coincide with Rl(aA,H)? In the ideal situation, we

should call Rl(aA,H) the collection of “reflecting hyperplanes”. In Example

2.2(2) both the “reflecting hyperplanes” and the set {fh | h ∈ G} are basically

{kx,ky,kz}. See Lemma 4.1(2) for a case when H is not (kG)∗.

The Jacobian is defined even when H is not a reflection Hopf algebra and so in

Example 2.2(1,3) we note the following.
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9884 E. Kirkman and J. J. Zhang

Example 2.14.

(1) If the H-action on A has trivial homological determinant, then jA,H = 1, but

the radical ideal rA,H is not the whole algebra A. As a consequence rA,H �

(jA,H).

(2) In Example 2.2(3) it follows from [17, Lemma 2.2] that

rA,H = u2(dR + uduR)A ∩ (u3R + dudR)A � u2A = (jA,H).

3 Discriminants

Geometrically the discriminant locus of a reflection group G acting on k[V] is the image

of reflecting hyperplanes in the corresponding affine quotient space [40, Proposition

6.106]. Algebraically, the discriminant of G is the product of Jacobian and reflection

arrangement (as an element in the fixed subring k[V]G). In the noncommutative case,

we can define the discriminant as the product of the Jacobian and the reflection

arrangement. However, the product of two elements in a noncommutative ring is

dependent on the order of these elements. Therefore, we make the following definitions.

Definition 3.1. Suppose that both the Jacobian jA,H and the reflection arrangement

aA,H exist, namely, Ahdet−1 = jA,HR = RjA,H and that Ahdet = aA,HR = RaA,H where

R = AH .

(1) The left discriminant of the H-action on A, or the left H-discriminant of A,

is defined to be

δl
A,H :=k× aA,H jA,H ∈ R.

(2) The right discriminant of the H-action on A, or the right H-discriminant of

A, is defined to be

δr
A,H :=k× jA,H aA,H ∈ R.

(3) If δl
A,H =k× δr

A,H , then δr
A,H is called discriminant of the H-action on A, or the

H-discriminant of A, and denoted by δA,H .

(4) The ideal rA,H ∩ R of R is called the H-dis-radical, and denoted by �A,H .

We consider the following list of hypotheses that are weaker than

Hypotheses 0.1.
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Hypothesis 3.2. Assume the following hypotheses:

(a) A is a noetherian connected graded AS Gorenstein algebra.

(b) Hypotheses 0.1(b,c).

(c) A is a free module over R on both sides.

(d) G0 := {g ∈ G | Ag �= 0} is a subgroup of G(K) and each Ag, for g ∈ G0, is a free

R-module of rank one on both sides.

Continuing Example 2.2, up to scalars, in Definition 3.1 (1) δA,H = 1, in (2) δA,H =
z2x2y2, and in (3) δA,H = u4. Note that in part (3) δA,H exists although Hypothesis 3.2(c)

above is not satisfied. It is possible that Hypothesis 3.2(c) can be weakened in part (2)

of the following lemma.

Lemma 3.3.

(1) Assume Hypotheses 0.1. Then Hypotheses 3.2 holds.

(2) Assume Hypotheses 3.2. Then R is AS Gorenstein and both jA,H and aA,H

exist.

Proof. (1) Nothing needs to be proved for Hypotheses 3.2(a,b). Part (c) is [33, Lemma

3.3.(2)]. Part (d) is Lemma 1.5(4,6). (2) By [45, Theorem 11.65], there is a standard spectral

sequence for change of rings

Extp
A

(
TorR

q (A, M), A
)

⇒ Extp+q
R (M, A)

for all left R-modules M. Since A is finitely generated and free over R on both sides, the

above spectral sequence collapses to

Extp
A(A ⊗R M, A) = Extp

R(M, A).

This implies that R has finite injective dimension and Extd
R(k, R) is finite dimensional.

By [52, Theorem 0.3], R is AS Gorenstein. By Theorem 2.4, jA,H is defined, or equivalently,

hdet−1 ∈ G0. Since G0 is a group and hdet ∈ G0, Ahdet is free of rank one on both sides

by Hypothesis 3.2(d). Then aA,H is defined. �

The following lemma shows the existence of the discriminant under

Hypotheses 3.2.
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9886 E. Kirkman and J. J. Zhang

Lemma 3.4. Assume Hypotheses 3.2. Let g ∈ G0; then Ag and Ag−1 are free of rank one

over R on both sides. Let fg and fg−1 be the generators of Ag and Ag−1 , respectively, over

R; then the following properties hold.

(1) Every fg−1fg is a normal element in R. In particular, both δl
A,H and δr

A,H are

normal elements in R.

(2) If g′ ∈ G0, then Ag′ ∩ AGfg = Rfg′ ∩ Rfg′g−1fg and Ag′ ∩ fgAG = fg′R ∩ fgfg−1g′R.

As a consequence, if fg is a normal element in AG and fg′ divides fg from the

left and the right, then fgfg−1g′ =k× fg′g−1fg. In particular, if fg is a normal

element in AG, then fgfg−1 =k× fg−1fg.

(3) Rδl
A,H = R ∩ AGjA,H and δr

A,HR = R ∩ jA,HAG.

(4) If jA,H is a normal element in AG, then δA,H is well defined.

Proof. Since g ∈ G0, g ∈ G(K) such that Ag �= 0. Since G0 is a group [Hypothesis 3.2(d)],

Ag−1 is nonzero. By Hypothesis 3.2(d), Ag and Ag−1 are free of rank one over R on both

sides.

(1) Clearly fg−1fg is an element in R for every g ∈ G0. It follows from (E1.6.2) that

fg−1fgx = fg−1φg(x)fg = (
φg−1 ◦ φg

)
(x)fg−1fg.

Hence, fg−1fg is a normal element in R.

(2) We will use Lemma 1.7. For g, g′ ∈ G0, we compute

Ag′ ∩ AGfg = Rfg′ ∩
⎛⎝ ∑

d=1,i

Ad,i fg

⎞⎠
= Rfg′ ∩

(∑
h∈G

Rfh fg

)

= Rfg′ ∩
⎛⎝Rfg′g−1fg ⊕

∑
h�=g′g−1

Rfh fg

⎞⎠
= Rfg′ ∩ Rfg′g−1fg.

Similarly, we have Ag′ ∩ fgAG = fg′R ∩ fgAG = fg′R ∩ fgfg−1g′R. If fg is a normal element

in AG, then AGfg = fgAG. Since fg′R = Rfg′ and since fg′ divides fg from the left and the
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Reflection Hopf Algebras 9887

right, we have

fgfg−1g′R = fg′R ∩ fgfg−1g′R

= fg′R ∩ fg AG

= Ag′ ∩ AGfg

= Ag′ ∩ fgAG

= Rfg′ ∩ Rfg′g−1fg

= Rfg′g−1fg.

Then fg fg−1g′ =k× fg′g−1fg. Let g′ = 1; we obtain that fgfg−1 =k× fg−1fg.

(3) The assertion follows from part (2) by taking g′ = 1 and g = hdet−1.

(4) The assertion follows from parts (2,3) and the fact that f1 = 1 divides fhdet−1

trivially. �

The following is Theorem 0.2(3) in a special case.

Theorem 3.5. Assume Hypotheses 0.1. Suppose that char k = 0 and that H is

commutative, namely, H = (kG)∗.

(1) The discriminant δA,H is defined, namely,

δl
A,H = δr

A,H = δA,H .

(2) �A,H is the principal ideal of R generated by δA,H .

Proof. (1) By [33, Theorem 0.5(1)], jA,H = fhdet−1 is a normal element in A. Now the

assertion follows from Theorem 2.12(1) and Lemma 3.4(4).

(2) The assertion follows from Theorem 2.12(1) and Lemma 3.4(3). �

Remark 3.6. Here we make some remarks and ask some questions before we prove

one of the main results in this section, namely, Theorem 3.8.

(1) Assuming Hypotheses 0.1 or 3.2, is δA,H always defined? The answer is YES,

see Theorem 3.8. We might further ask: is �A,H = (δA,H)? This is not true, see

Example 4.2.

(2) Note that in the commutative case, R/(δA,H) is always reduced. So we ask the

following questions in the noncommutative case: assuming Hypotheses 0.1.

is the factor ring R/(δA,H) semiprime?

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/13/9853/5706031 by U
niversity of W

ashington user on 14 April 2022



9888 E. Kirkman and J. J. Zhang

(2) In Example 2.2(2), δA,H =k× x2y2z2 = t1t2t3 and R/(δA,H) is semiprime and

reduced.

(3) In the commutative case, aA,H is reduced in A. When aA,H is normal in

A (which is not always true by Example 4.2), we can ask if A/(aA,H) is

semiprime.

(3) In Example 2.2(2), aA,H =k× xyx and A/(aA,H) is semiprime, but contains

nonzero nilpotent elements.

(4) Suppose that A is generated in degree 1. We ask if

Rl(aA,H) = Rl(jA,H) = Rl(δA,H) = {kfg | g ∈ G}?

A similar question can be asked for Rr.

To prove the existence of δA,H , we need to recall some terminology introduced in

Section 1. For every left A-module,

Hi
m(M) = lim

n→∞ Exti
A(A/A≥n, M).

The local cohomology functors are defined similar for right A-modules M. When M is

an A-bimodule that is finitely generated on both sides, then Hi
m(M) can be computed

as a left A-module or a right A-module (the result is the same). If R is a subring of A

such that A is finitely generated over R on both sides, then Hi
m(M) can be computed by

considering M as a module over R. In the next lemma, we might calculate Hd
m(M) in the

category of graded right R-modules.

Lemma 3.7. Assume Hypotheses 3.2. Let d be the injective dimension of A. Suppose

g ∈ G0.

(1) Then the left action pg : A → A is a right R-module map such that it

decomposes into

pg : A
p̃g−→ fg R

p−1
g−−→ A. (E3.7.1)

(2) Applying Hd
m(−) to (E3.7.1), Hd

m(pg) is the left action of pg−1 on the module

Hd
m(A), which decomposes into

Hd
m(A)

Hd
m(p−1

g )−−−−−→ Hd
m( fgR)

Hd
m(p̃g)−−−−→ Hd

m(A).
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Reflection Hopf Algebras 9889

(3) Let lfg
be the left multiplication of element fg on A, then Hd

m(lfg
) is the right

multiplication by fg on Hd
m(A).

(4) The composition

� := pg ◦fg
◦p1 : A

p1−→ A
lfg−→ A

pg−→ A (E3.7.2)

maps R, as a component of A (E1.3.6), to fgR = Rfg and other component of A

to zero. The restriction of the map � on R with image fgR is an isomorphism

of right R-modules.

(5) After applying Hd
m(−) to (E3.7.2),

Hd
m(�) = Hd

m

(
pg ◦fg

◦p1

)
: Hd

m(A)
pg−1−−−→ Hd

m(A)
rfg−→ Hd

m(A)
p1−→ Hd

m(A)

maps Hd
m( fgR) to Hd

m(R) and other component of Hd
m(A) to zero where rfg

is

the right multiplication by fg.

(6) Hd
m( fgR) = {x ∈ Hd

m(A) | h · x = g(h)x} = e ⊗ fhdet−1g−1R and Hd
m(R) = {x ∈

Hd
m(A) | h · x = ε(h)x} = e ⊗ fhdet−1R.

(7) fhdet−1 =k× f(
hdet−1g−1

)fg.

(8) fhdet−1 =k× fh f(
h−1hdet−1

) and deg fhdet−1 ≥ deg fh for all h ∈ G0.

(9) fhdet−1 is a normal element in AG.

(10) AG/(R≥1) is Frobenius.

Proof. (1) In this case Ag = fgR, which is free of rank one over R on both sides. Since

the left action of pg is a right R-module map, we obtain a right R-module decomposition

of the map pg.

(2) Note that Hd
m(A) is an H-equivariant A-bimodule where the left H-action

comes from the natural right H-action on Hd
m(A) [43, Lemma 3.2(a)]. By definition [43,

(E2.4.1)] for i = 0, Hd
m(pg) is pg−1 . The decomposition follows from (E3.7.1).

(3) Again this follows from [43, Lemma 3.2(a)] and its proof.

(4) This follows from the decomposition of A and Lemma 1.7(2).

(5) Note that Hd
m(A) is an H-equivariant A-bimodule. By the proof of [43, Lemma

3.2(a)], Hd
m(p1), Hd

m(lfg
), and Hd

m(pg) are p1, rfg
, and pg−1 (by part (2)). The assertion

follows.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/13/9853/5706031 by U
niversity of W

ashington user on 14 April 2022



9890 E. Kirkman and J. J. Zhang

(6) Note that g, hdet ∈ G0, which is a finite group. By part (5), Hd
m(fgR) is the

image of the idempotent pg−1 . Hence,

Hd
m( fgR) =

{
x ∈ Hd

m(A) | pg−1 · x = x
}

=
{
x ∈ Hd

m(A) | h · x = g−1(g)x; ∀ h ∈ H
}

= (ke) ⊗ Rhdet−1g−1

= (ke) ⊗ fhdet−1g−1R.

This proves the 1st equation. The 2nd equation is a consequence by taking g = 1.

(7) By part (5), Hd
m(�), considered as a map from Hd

m(fgR) to Hd
m(R), is the right

multiplication by fg. By part (6), this map agrees with

rfg
: (ke) ⊗ f(

hdet−1g−1
)R → (ke) ⊗ fhdet−1R.

Since Hd
m(�) is an isomorphism, we obtain that f

(hdet−1g−1)
Rfg = fhdet−1R. Hence, the

assertion follows.

(8) The 1st assertion follows by taking g = h−1hdet−1. The 2nd assertion is clear.

(9) Every element in AG is a linear combination of fgr for some g ∈ G0 and r ∈ R.

Then, by part (8),

fhdet−1( fgr) =k× f
(hdet−1g hdet)f(hdet−1g−1)

fgr

=k× f
(hdet−1g hdet)fhdet−1r

=k×
(

f
(hdet−1g hdet)φhdet−1(r)

)
fhdet−1 .

The assertion follows.

(10) Let F := AG/(R≥1). Then F = ⊕
g∈G0

kfg with multiplication satisfying part

(7) or (8). For every element x ∈ F, write x = ∑
cgfg with cg �= 0. Pick g so that deg fg is

smallest among all g such that cg �= 0. Then

f(
hdet−1g−1

)x = cg f(
hdet−1g−1

) fg =k× fhdet−1 ,

which implies that F is Frobenius. �
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Reflection Hopf Algebras 9891

Now we are ready to prove Theorems 0.2(3) and 0.6. Following (E2.11.1), we

define

R(jA,H) :=
{
kfg | g ∈ G0, deg fg = 1

}
. (E3.7.3)

Theorem 3.8. Assume Hypotheses 3.2.

(1) jA,H aA,H =k× aA,H jA,H . As a consequence, the discriminant δA,H of the

H-action is defined.

(2) aA,H divides jA,H .

(3) R(jA,H) is a subset of both Rl(jA,H) and Rr(jA,H).

(4) Assuming the hypotheses of Theorem 0.5, then R(jA,H) = {kfg | fg ∈ G}
where G is defined in (E2.11.1).

Proof. (1) By Lemma 3.7(9), jA,H = fhdet−1 is a normal element in AG. The assertions

follow from Lemma 3.4(2,4) by setting g = hdet−1.

(2) This is Lemma 3.7(7,8).

(3) This follows from Lemma 3.7(7,8).

(4) This is clear. �

Now we are to prove Theorems 0.2, 0.6 and 0.8.

Proof. of Theorem 0.2 (1,2) This is Corollary 2.5(1).

(3) This is Theorem 3.8(1). �

Theorem 0.6 is a consequence of Lemma 3.3(1) and Theorem 3.8(2). The next

theorem is Theorem 0.8.

Theorem 3.9. Assume Hypotheses 0.1. Suppose R is Auslander regular. Then AG is AS

Gorenstein and jA,H =k× jAG,(kG)∗ in AG.

Proof. By Hypotheses 0.1, A is a domain, and hence so is AG.

Since R is AS regular, it is trivially AS Cohen–Macaulay in the sense of [27,

Definition 0.1]. Since AG is a finitely generated free module over R, it also is AS Cohen–

Macaulay. Therefore, the hypotheses of [27, Theorem 6.1(1◦)] hold, and the hypotheses

of [27, Theorem 6.1(3◦)] hold because R is AS regular, see [27, Proposition 5.5]. By the

proof of [27, Proposition 5.7], using the fact that R is Auslander regular, we see that the

hypotheses of [27, Theorem 6.1(2◦)] hold. Combining the facts that R is AS regular and

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/13/9853/5706031 by U
niversity of W

ashington user on 14 April 2022



9892 E. Kirkman and J. J. Zhang

AG/(R≥1) is Frobenius [Lemma 3.7(10)], we obtain that the Hilbert series of AG satisfies

hAG
(t) = ±tmhAG

(t−1).

Now the 1st assertion follows from [27, Theorem 6.1].

For the 2nd assertion, note that B := AG satisfies Hypotheses 3.2. It is clear that

B(kG)∗ = AH = R. Let f ′
g be the generator of Bg as defined in (E1.6.1). Then f ′

g = fg for all

g ∈ G. By Lemma 3.7(7), both f ′
hdet−1 and fhdet−1 (with different meanings of hdet−1) have

the highest degree among { f ′
g | g ∈ G} and { fg | g ∈ G}. Thus, f ′

hdet−1 = fhdet−1 . This is

equivalent to jAG,(kG)∗ = jA,H by definition. �

Next we prove Theorem 0.7. The discriminant has been an important tool in

number theory and algebraic geometry for many years. The discriminant of a reflection

group is a fundamental invariant of reflection group actions. Next we will compare the

H-discriminant in the noncommutative case [Definition 3.1(3)] to the noncommutative

discriminant over a central subalgebra, which was used in recent studies of automor-

phism groups and locally nilpotent derivations [8, 12, 13].

If I is an ideal of a commutative ring, let
√

I denote the prime radical ideal of I.

Theorem 3.10. Assume Hypotheses 0.1. Further, assume that

(a) char k = 0,

(b) H = (kG)∗, and

(c) R := AH is central in A.

Let dis(A/R) be the discriminant defined in [12, Definition 1.3(3)]. Then

(1) dis(A/R) =k×
∏

g∈G( fg−1fg).

(2)

√
(dis(A/R)) =

√
(�A,H) =

√
(δA,H)

as ideals of R.

Proof. (1) Since A = ⊕g∈GfgR, A can be embedded into the matrix algebra Mr(R) by the

left multiplication, where r = |G|. For each g, the left multiplication by fg is

lfg
: fh �→ fgfh = cg,hfgh for cg,h ∈ R (see ((E1.6.2))).
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If g �= e, gh �= g, then the regular trace of fg [12, Example 1.2(3)], denoted by tr(fg), is

zero. As a consequence, we have

tr( fg fh) = tr(cg,h fgh) =
⎧⎨⎩0 gh �= e,

ch−1,h = fh−1fh g = h−1.
(E3.10.1)

By [12, Definition 1.3(3)], the discriminant dis(A/R) is the determinant of the matrix

(
tr( fg fh)

)
G×G

.

Using (E3.10.1), every row (and every column) contains only one nonzero entry, namely,

fh−1fh. Hence, we have

dis(A/R) =k×
∏
h∈G

fh−1fh.

(As an example, note that in Example 2.2(2)

∏
h∈G

fh−1fh = (x2)(y2)(z2)(xyzy)(xzxz)(zyxy)(xzyxzy) =k× z8x8y8.)

(2) By Theorem 3.5, �A,H is the principal ideal of R generated by δA,H . Hence,

�A,H = (δA,H), and it remains to show that
√

(dis(A/R)) = √
(δA,H).

Since δA,H = fm−1fm, by part (1), δA,H divides dis(A/R). By the proof of Lemma

2.11, every fg divides fm from the left and the right. Hence, there are a, b ∈ A such

that afg−1fgb = f 2
m. Since fg−1fg is in the central subring R, we have fg−1fgab = f 2

m. This

implies that fg−1fg divides f r
m ∈ R. (Note that f 2

m �∈ R in general.) As a consequence,

dis(A/R) divides ( f r
m)r. Finally ( f r

m)r divides δr2

A,H . Therefore,

√
(δA,H) = √

dis(A/R) =
√

f r
m

as desired. �

Theorem 0.7 is Theorem 3.10(2). Note that there are many examples where R is

not central in A, even when R is a commutative polynomial ring [Example 4.2]. Without

the hypothesis of H = (kG)∗, it is easy to construct examples where

√
(�A,H) �=

√
(δA,H),

see (E4.2.14).
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9894 E. Kirkman and J. J. Zhang

Remark 3.11. Suppose H is a semisimple Hopf algebra.

(1) Let G(K) be the group of all grouplike elements in K. In general, kG(K) is

NOT a normal Hopf subalgebra [35].

(2) One could ask if kG(K) is a normal Hopf subalgebra under Hypothesis 0.1.

This is related to Question 0.9.

(3) If kG(K) is a normal Hopf subalgebra, then there is a short exact sequence

of Hopf algebras

1 → kG(K) → K → K0 → 1, (E3.11.1)

where K0 = K/(kG(K))+. There is a dual short exact sequence

1 → H0 → H → (kG(K))∗ → 1, (E3.11.2)

where H0 = (K0)∗. If we further assume Hypotheses 0.1, then AG = AH0 and

Question 0.9 has a positive answer under these extra hypotheses.

We end this section by providing some results that can be used to compute the

radical ideal of the H-action, particularly when A has dimension 2.

Definition 3.12. Let H be a semisimple Hopf algebra acting on A.

(1) If

�(
∫
) = �(p1) = ∑

h∈G(K) ph ⊗ ph−1 + X1,

where X1 ∈ Icom ⊗ Icom, see (E1.3.5), then H is called rife.

(2) Assume Hypotheses 0.1. We say the H-action is rife if

(a) H is rife.

(b) jA,H is normal in A.

(c) the radical ideal of the H-action rA,H is generated by jA,H .

By Theorem 2.12(1), when H is (kG)∗, then the H-action is rife. Otherwise, the

H-action may not be rife, even when H is rife [Example 4.2].

Lemma 3.13. Assume Hypotheses 0.1. If H is rife, then rA,H is a subspace of AjA,H .
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Proof. For each g ∈ G(K), since H is rife, we have

(A# ∫)(A#pg) = (A#1)

⎛⎝ ∑
h∈G(K)

ph−1A#phpg + X1 · (A#pg)

⎞⎠
= (A#1)

(
Ag−1#pg

)
= AAg−1#pg

= Afg−1#pg.

If x ∈ rA,H , then x#1 ∈ (A#H)(A#
∫
)(A#H). Multiplying 1#pg from the right, x#pg ∈

(A#H)(A#
∫
)(A#pg). By computation,

(A#H)(A#
∫
)(A#pg) = (A#

∫
)(A#pg) = Afg−1#pg,

which implies that x ∈ Afg−1 for all g ∈ G(K). Hence, x ∈ ⋂
g∈G(K) Afg, which is a subspace

of Afhdet−1 = AjA,H . �

For every (left) ideal I in a noetherian algebra A, let I denote the largest ideal

containing I such that I/I is finite dimensional. The following lemma is well known.

Lemma 3.14. Let A be AS regular of global dimension 2. (So A is noetherian). Let I be a

nonzero graded two-sided ideal. If I = I, then I is a principal ideal generated by a normal

element. In particular, I is always a principal ideal generated by a normal element.

Proof. Since I = I, A/I is m-torsionfree, so H0
m(M) = 0, see definition in Section 1. By

Auslander–Buchsbaum formula [26, Theorem 3.2], the left A-module A/I has projective

dimension at most 1. Since A/I is not projective, it has projective dimension one.

Consequently, the left A-module I is projective. Since A is connected graded, I is free

(of rank one). Thus, I = Ax for some homogeneous element x ∈ A. By symmetry, I = yA

for some homogeneous element y. Then Ax = yA implies that x =k× y. Thus, x is normal

and the assertion follows. �

We use Lemma 3.14 to make the following definitions in the case that A has

global dimension 2.

Definition 3.15. Assume Hypotheses 0.1. Further, assume that A has global dimension

2 and that the radical ideal of the H-action rA,H is nonzero.
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(1) Any element that generates the principal ideal rA,H in A is called a principal

radical of the H-action on A, and is denoted by r̃A,H .

(2) Any element that generates the principal ideal �A,H in R is called a principal

dis-radical of the H-action on A, and is denoted by �̃A,H .

Note that the principal radical r̃A,H is always defined for any Hopf algebra

H acting on an AS regular algebra A of global dimension 2, while the principal dis-

radical �̃A,H is defined only when, in addition, H is a reflection Hopf algebra.

4 Examples

When a Hopf algebra H acts on a noetherian AS regular algebra A, there is a list of impor-

tant invariants that can be studied. Starting from A, we can consider the following data:

(•) the Nakayama automorphism of A, denoted by μ [Definition 1.2].

(•) the AS index of A, denoted by l [Definition 1.1].

(•) the twisted superpotential associated to A [20, Definition 1] or [10, p.1502].

For H, since we assume that H is semisimple, it is Calabi–Yau with trivial Nakayama

automorphism. When H acts on A, we can consider the following:

(•) the pertinency p(A, H) [Definition 2.8(3)].

(•) the pertinency ideal P(A, H) [Definition 2.8(1)].

(•) the radical ideal rA,H [Definition 2.8(1)]. In global dimension 2 case, we can

ask for the principal radical r̃A,H [Definition 3.15(1)].

(•) H-dis-radical ideal �A,H [Definition 3.1(4)]. In global dimension 2 case, we

can ask for the principal dis-radical �̃A,H [Definition 3.15(2)].

(•) the homological determinant hdet of the H-action on A [31, Definition 3.3].

(•) the fusion rules for H, or the McKay quiver for representations of H.

When the fixed subring AH is AS Gorenstein (or AS regular), we can further consider the

following:

(•) the Jacobian jA,H [Definition 2.1(1)].

(•) the reflection arrangement aA,H [Definition 2.1(2)].

(•) Rl(jA,H) and Rl(aA,H), see (E0.9.1).

(•) the discriminant δA,H [Definition 3.1(3)].

There are several algebras associated to (A, H): the fixed subring AH , the covariant ring

Acov H , the G-component AG, A/(aA,H) if aA,H is normal, R/(δA,H) when δA,H is defined. If
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any of the these algebras is AS Gorenstein, we can compute the corresponding data in

the first two •s.

First we compute the Jacobian when A = k−1[x, y] and H is a group algebra kG

for some finite group G. Let us recall some facts from [32]. We consider two different

kinds of automorphisms of k−1[x, y]. The 1st is of the form

σa : x �→ ax, y �→ y, or τb : x �→ x, y �→ ay. (E4.0.1)

and the 2nd one is of the form

τ1,2,λ : x �→ λy, y �→ −λ−1x. (E4.0.2)

Let α and β be two positive integers such that β is divisible by both 2 and α. Let M(2, α, β)

be the subgroup of Autgr(k−1[x, y]) generated by

{σa | aα = 1} ∪ {τ1,2,λ | λβ = 1}

(see [32] in discussion before [32, Lemma 5.3]). By [32, Lemma 5.3], if G is not generated

only by a single σa or τ1,2,a in (E4.0.1) and (E4.0.2) and k−1[x, y]G is AS regular, then

G ∼= M(2, α, β). As one example, the groups M(2, 1, 2�) are the binary dihedral groups

of order 4� generated by τ1,2,1 and τ1,2,λ for λ a primitive 2�th root of unity, that is, the

representation generated by the two mystic reflections:

g1 =
(

0 1

−1 0

)
andg2 =

(
0 λ

−λ−1 0

)
.

Lemma 4.1. Suppose that A = kq[x, y] where 1 �= q ∈ k× and that H = kG for a finite

group G. Assume Hypotheses 0.1. Then one of the following holds.

(1) G = 〈σ 〉 × 〈τ 〉 ∼= Cn × Cm where σ and τ are of the form given in (E4.0.1) and

of order n and m, respectively. In this case jA,H =k× xn−1ym−1, aA,H =k× xy

and

Rl(jA,H) = Rl(aA,H) = Rr(jA,H) = Rr(aA,H) = {kx,ky}.

(2) q = −1 and G = M(2, α, β) for α ≥ 2. Then

aA,H = xy(xβ − yβ) and jA,H = xα−1yα−1(xβ − yβ).
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Further,

Rl(jA,H) = Rr(jA,H) = Rl(aA,H) = Rr(aA,H) = {kx,ky} ∪ {k(x + ξy) | ξβ = 1}.

(3) q = −1 and G = M(2, 1, β) (for) α = 1. Then

aA,H = jA,H = (xβ − yβ).

Further,

Rl(jA,H) = Rr(jA,H) = Rl(aA,H) = Rr(aA,H) = {k(x + ξy) | ξβ = 1}.

Proof. By [32, Theorem 1.1], G is generated by quasi-reflections in the sense of [32, p.

131]. When q �= ±1, Autgr(A) = (k×)2 and every quasi-reflection is a reflection in the

sense of [32, Definition 2.3(1)], namely, of the form in (E4.0.1). One can check easily from

this observation that G ∼= Cn × Cm. The statements in part (1) are easy to check now.

When q = −1, one extra possibility is that G is generated by mystic reflections

in the sense of [32, Definition 2.3(1)]. In this case, by [32, Lemma 5.3], G is the group

M(2, α, β), and AG is the commutative polynomial ring k[xαyα, xβ + yβ ] [32, Proposition

5.4].

(2) When α ≥ 2 one can check directly that nonzero elements of the minimal

degree in Ahdet and Ahdet−1 are

aA,kG = xy(xβ − yβ) and jA,kG = xα−1yα−1(xβ − yβ),

respectively. From this we obtain, after an easy calculation, that

Rl(jA,kG) = Rr(jA,kG) = Rl(aA,kG) = Rr(aA,kG) = {kx,ky} ∪ {k(x + ξy) | ξβ = 1}.

The assertion follows.

(3) When α = 1, the computation is similar to the one in part (2). �

By Lemma 4.1(2,3), kM(2, α, β) is a true reflection Hopf algebra acting on

k−1[x, y] if and only if α = 1 or 2. When α = 1, M(2, 1, β) is isomorphic to a binary

dihedral group. Note in this case that the number of mystic reflections is the degree
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of jA,kG, also equals to |Rl(jA,kG)|. Further that the Jacobian (and hence the reflection

arrangement) is central, but AG is not central in A.

For the rest of this section we give an example where H is neither commutative

or cocommutative. This example is the smallest possible in terms of dimensions, H

having k-dimension 8 and A having global dimension 2. Even in this “small” example,

computations are still quite complicated, unfortunately. To save some space, some non-

essential details are omitted, especially toward the end of the example. Some additional

information concerning this example is given in [21] and [31, Example 7.4].

Example 4.2. Assume that char k = 0. Let H be the Kac–Palyutkin Hopf algebra H8. By

[9, p. 341], H is self-dual and it has no nontrivial dual cocycle twist in the sense of [36,

39]. Recall that H is generated by x, y, z and subject to the following relations:

x2 = y2 = 1, xy = yx, zx = yz,

zy = xz, z2 = 1

2
(1 + x + y − xy).

The comultiplication of H is determined by

�(x) = x ⊗ x,

�(y) = y ⊗ y,

�(z) = 1

2
(1 ⊗ 1 + 1 ⊗ x + y ⊗ 1 − y ⊗ x)(z ⊗ z).

The group of grouplike elements in H is G(H) = {1, x, y, xy}, the Klein four-group. Let

ki[u, v] be the skew polynomial algebra generated by u, v and subject to the relation

vu = iuv, (E4.2.1)

where i2 = −1. By [43, Example 5.5], the Nakayama automorphism of A is determined by

μ : u �→ −iu, v �→ iv

and, in dimension 2, the twisted superpotential is trivially the single relation, namely,

ω = vu − iuv.
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By [31, Example 7.4], H acts on A := ki[u, v] inner faithfully with commutative (but not

central) regular fixed subring AH = k[u2 + v2, u2v2]. Thus, Hypotheses 0.1 (and hence

Hypotheses 3.2) holds.

It is easy to check that AR≥1 �= R≥1A. So the H-action on A is not tepid, see

Definition 1.11(4). It is routine to check that the covariant algebra Acov H := A/(R≥1) is

isomorphic to A/(k(u2+v2)⊕A≥3), which has Hilbert series 1+2t+2t2. As a consequence,

Acov H is not Frobenius, which is different from the classical (commutative) case and the

case of the dual reflection groups in [33, Theorem 0.4].

Recall from [31, Example 7.4] that there is a unique 2D H-representation V =
ku ⊕ kv given by the assignment:

x →
(

−1 0

0 1

)
, y →

(
1 0

0 −1

)
, z →

(
0 1

1 0

)
,

which uniquely determines the H-action on A = ki[u, v].

Our 1st goal is to calculate the Jacobian, the reflection arrangement, and the

discriminant of this H-action on A. Note that x + y, xy, and z2 are all central in H.

Consider the central idempotents in H:

f1 = (1 + x + y + xy)/4, and f2 = (1 − x − y + xy)/4.

It is easy to check that f1z2 = z2f1 = f1 and f2z2 = z2f2 = −f2. In addition we have the

following two idempotents in H that are not central:

f3 = (1 − x + y − xy)/4, and f4 = (1 + x − y − xy)/4.

These idempotents satisfy fifj = 0 for all i �= j. Using the above information, we define

the following central idempotents of H, which correspond to the group of grouplike

elements G(K)(= {1, g, g′, gg′}), where K is the dual Hopf algebra of H,

p1 = ∫ = ( f1 + zf1)/2 = (1 + x + y + xy + z + xz + yz + xyz)/8

pg = ( f1 − zf1)/2 = (1 + x + y + xy − z − xz − yz − xyz)/8

pg′ = ( f2 + izf2)/2 = (1 − x − y + xy + iz − ixz − iyz + ixyz)/8

pgg′ = ( f2 − izf2)/2 = (1 − x − y + xy − iz + ixz + iyz − ixyz)/8.
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Using the fact that zu2 = v2, zv2 = u2, z(uv) = −iuv, z(u3v) = iuv3, etc., we obtain

p1A = AH = R = k[u2 + v2, u2v2]

pgA = (u2 − v2)R

pg′A = (uv)R

pgg′A = (u3v + uv3)R = (uv(u2 − v2))R.

As a consequence, we have the decomposition of AG into graded pieces (as in

Lemma 1.5(3))

AG = p1A ⊕ pgA ⊕ pg′A ⊕ pgg′A = A(2),

where A(2) is the 2nd Veronese subring of A. It is clear that (u2 + v2)u = u(u2 − v2),

which is not in AR≥1. Hence, R≥1A �= AR≥1, and consequently, the H-action on A is not

tepid in the sense of Definition 1.11(4). By an easy calculation,

ξ(t) = hA(t)(hR(t))−1 = (1 + t)(1 + t + t2 + t3),

which has degree 4. It follows from Corollary 2.5(2) then deg jA,H = 4. Hence,

jA,H =k× uv(u2 − v2) (E4.2.2)

and

hdet−1 = gg′. (E4.2.3)

Since hdet2 = 1, we obtain that

aA,H = jA,H =k× uv(u2 − v2) (E4.2.4)

and

δA,H =k× u2v2(u2 − v2)2 = u2v2[(u2 + v2)2 − 4u2v2] ∈ R. (E4.2.5)

As a consequence of (E4.2.4), H is a true reflection Hopf algebra. Using the fact that

u2 − v2 =
(
u + e

3
8 (2π i)v

) ((
u + e

1
8 (2π i)v

)
=

(
u + e

7
8 (2π i)v

) ((
u + e

5
8 (2π i)v

)
and that u and v are normal, we can calculate

Rl(aA,H) = Rl(jA,H) = {
ku,kv,k(u + e

3
8 (2π i)v),k(u + e

7
8 (2π i)v)

}
(E4.2.6)
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and

Rr(aA,H) = Rr(jA,H) = {
ku,kv,k(u + e

1
8 (2π i)v),k(u + e

5
8 (2π i)v)

}
. (E4.2.7)

Since jA,H is not normal (easy to check), AjA,H is not a 2-sided ideal. So rA,H �=
AjA,H . By Lemma 3.13 (after verifying the hypotheses in Lemma 3.13), rA,H is a subspace

of AjA,H .

Our 2nd goal is to calculate the radical ideal of this H-action. Let

E = (1 − xy)/2 = 1 − (p1 + pg + pg′ + pgg′),

a central idempotent of H so

H = kp1 ⊕ kpg ⊕ kpg′ ⊕ kpgg′ ⊕ EH.

We have the relations:

Ef3 = f3, Ef4 = f4, f3f4 = f4f3 = 0, zf3 = f4z, zf4 = f3z.

Further,

f3z2 = 1

8
(1 − x + y − xy)(1 + x + y − xy) = 1

8
(2 − 2x + 2y − 2xy) = f3

and similarly

f4z2 = 1

8
(1 + x − y − xy)(1 + x + y − xy) = 1

8
(2 + 2x − 2y − 2xy) = f4.

Hence, let m12 = f3zf4 = f3z = zf4 and m21 = f4zf3 = f4z = zf3. Then

m12m21 = ( f3z)(zf3) = f3z2f3 = f3 f3 = f3,

m21m12 = ( f4z)(zf4) = f4,

and

m2
12 = ( f3zf4)( f3zf4) = 0,

m2
21 = ( f4zf3)( f4zf3) = 0.
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So the subspace EH is isomorphic to 2 × 2-matrix, and for convenience, we write

EH ∼=
(

f3 m12

m21 f4

)
=

(
m11 m12

m21 m22

)
.

Next we find xi,j, yi,j so that

�(∫) = �(p1) = p1 ⊗ p1 + pg ⊗ pg + pg′ ⊗ pg′ + pgg′ ⊗ pgg′

+
∑

1≤i,j≤2

mij ⊗ xij +
∑

1≤i,j≤2

yij ⊗ mij.

First compute

�(∫) = �((1 + x + y + xy)(1 + z)/8) = �(1 + x + y + xy)�(1 + z)/8

= 1

8
(1 ⊗ 1 + x ⊗ x + y ⊗ y + xy ⊗ xy)(1 ⊗ 1

+ z ⊗ z + z ⊗ xz + yz ⊗ z − yz ⊗ xz

2
)

= (1 ⊗ 1 + x ⊗ x + y ⊗ y + xy ⊗ xy)

8

+ (z ⊗ z + xz ⊗ xz + yz ⊗ yz + xyz ⊗ xyz)

16

+ (z ⊗ xz + xz ⊗ z + yz ⊗ xyz + xyz ⊗ yz)

16

+ (yz ⊗ z + xyz ⊗ xz + z ⊗ yz + xz ⊗ xyz)

16

− (yz ⊗ xz + xyz ⊗ z + z ⊗ xyz + xz ⊗ yz)

16
.

After some tedious computation, we obtain that

�(
∫
) = �(p1) = p1 ⊗ p1 + pg ⊗ pg + pg′ ⊗ pg′ + pgg′ ⊗ pgg′

+ (( f3 ⊗ f3) + ( f4 ⊗ f4) + (m12 ⊗ m12) + (m21 ⊗ m21))/2.

Let L be the left ideal of A generated by elements w satisfying

w =
∑

i

bi( f3 · ai) +
∑

j

dj(m12 · cj) (E4.2.8)
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0 =
∑

i

bi(m21 · ai) +
∑

j

dj( f4 · cj) (E4.2.9)

for some ai, bi, cj, dj in A. Let L′ be the left ideal of A generated by elements w satisfying

w =
∑

i

bi( f4 · ai) +
∑

j

dj(m21 · cj) (E4.2.10)

0 =
∑

i

bi(m12 · ai) +
∑

j

dj( f3 · cj) (E4.2.11)

for some ai, bi, cj, dj in A.

It follows from the definition of the radical ideal [Definition 2.8(2)] that we have

Lemma 4.3. Retain the above notation. The radical ideal is

(rH,A) = AjA,H ∩ L ∩ L′.

Proof. The main idea here is to do finer computations than ones in the proof of Lemma

3.13. To save space, details are omitted. �

As a consequence, one can calculate the radical ideal in this example:

rA,H = rA,H = (r̃A,H), (E4.2.12)

where

r̃A,H =k× uv(u4 − v4) =k× jA,H(u2 + v2). (E4.2.13)

Further,

�A,H = �A,H =
(
j2A,H (u2 + v2)

)
=

(
δA,H (u2 + v2)

)
. (E4.2.14)

This is the end of the example.

Complex reflection groups are important in many areas of current research,

for example, in defining rational Cherednik algebras. In this paper we have presented

generalizations of the various invariants that are used in studying complex reflection

groups, their geometry, and their actions on polynomial rings (see, e.g., [11]). The tools

developed here, the Jacobian, the reflection arrangement, and the discriminant, as well

as the pertinency ideal, the radical of the H-action, the homological determinant, and

the Nakayama automorphism should further the understanding of Hopf actions on AS
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regular algebras. If there is ever a version of rational Cherednik algebras for Artin–

Schelter regular algebras, then one should understand better reflection Hopf algebras,

and whence, the invariants introduced in this paper.
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