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We study finite-dimensional semisimple Hopf algebra actions on noetherian connected
graded Artin-Schelter regular algebras and introduce definitions of the Jacobian, the

reflection arrangement, and the discriminant in a noncommutative setting.

0 Introduction

The Shephard-Todd-Chevalley theorem states that if G is a finite group acting linearly

and faithfully on the commutative polynomial ring klx,,---,x,], where the charac-
teristic of the base field k is zero, the fixed subring klx,,--- ,Xn]G is isomorphic to
klx,,---,x,] if and only if G is generated by pseudo-reflections of the space V :=

D, kx;. Such a group G is called a reflection group. Note that klx;,---,x,] is the
ring of regular functions on V. This paper is part of a project to extend properties of the
action of reflection groups on commutative polynomial algebras to a noncommutative
setting.

In the noncommutative setting we consider here, the commutative polynomial
ring klx,,--- ,x,] is replaced by an Artin-Schelter regular k-algebra, denoted by 4, and
the group G (or the group ring kG) is replaced by a (finite-dimensional) semisimple Hopf

k-algebra, denoted by H. We say H is a reflection Hopf algebra or reflection quantum
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group if the fixed subring A¥ (E0.1.2) is again Artin-Schelter regular [33, Definition 3.2].
The 1st example of a noncommutative and noncocommutative reflection Hopf algebra
(the Kac-Palyutkin algebra [28] acting on k;lu,v] where i?> = —1) was given in [31,
Example 7.4]. A systematic study of dual reflection groups (where H = (kG)*) was begun
in [33]. This noncommutative (and noncocommutative) context for noncommutative

invariant theory has proved fruitful, and results include:

(a) The rigidity of (noetherian) Artin-Schelter regular algebras under finite
group or semisimple Hopf algebra actions [1, 17, 30, 33].

(b) The homological determinant and Watanabe’s theorem. The homological
determinant of a group action on Artin-Schelter regular algebras was
introduced in [27], and that of a Hopf action in [31].

(c) The Nakayama automorphism and twisted (skew) Calabi—-Yau property [19,
33, 43, 44].

(d) The pertinency and radical ideal associated to Hopf actions on Artin—
Schelter regular algebras, Auslander’s theorem, the McKay correspondence,

and noncommutative resolutions [6, 7, 15, 16, 18, 23, 411].

A survey on noncommutative invariant theory in this context is given in [29].

An important topic in classical invariant theory is the arrangements of hyper-
planes associated to reflection groups [40]. It is related to combinatorics, algebra,
geometry, representation theory, complex analysis, and other fields.

In this paper we investigate the possibility of defining a noncommutative
version of a hyperplane arrangement. Some fundamental work of Steinberg [47], Stanley
[46], Terao [49], Hartmann-Shepler [24], Orlik-Terao [40], and many others offered an
algebraic approach that can be adapted to the noncommutative case. In particular, we
will introduce a few concepts that characterize significant structures of the actions of
reflection Hopf algebras on Artin-Schelter regular algebras.

Throughout the rest of this paper, let k be a base field that is algebraically
closed, and all vector spaces, (co)algebras, Hopf algebras, and morphisms are over k.
In general we do not need to assume that the characteristic of k is zero. However,
in several places where we use results from other papers (e.g., [32, 33]), we add the
characteristic zero hypothesis because those results were proved under that extra
hypothesis. Let H denote a semisimple (hence finite-dimensional) Hopf algebra, and
let K be the k-linear Hopf dual H* of H. Throughout we use standard notation (see
e.g., [38]) for a Hopf algebra H(A,¢,S). It is well known that a left H-action on an

algebra A is equivalent to a right K-coaction on A, and we will use this fact freely.
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Let GKdim A denote the Gelfand—Kirillov dimension of the algebra A [34]. Let k* be the

set of invertible elements in k. If f,g € A and f = cg for some ¢ € k*, then we write

f =K< g

Hypothesis 0.1. Assume the following hypotheses:

(a) A is a noetherian connected graded Artin—Schelter regular algebra that is a
domain, see Definition 1.1;

(b) H is a semisimple Hopf algebra;

(c) H acts on A inner faithfully [14, Definition 1.5] and homogeneously so that
A is a left H-module algebra;

(d) H acts on A as a reflection Hopf algebra in the sense of [33, Definition 3.2],

or equivalently, of Definition 1.4.

Let G(K) be the group of grouplike elements in K := H*. For each g € G(K), define

Ag = facA|pla=a®g} (E0.1.1)

where p : A - A ®K is the corresponding right coaction of K on A. The fixed subring of
the H-action on A is defined to be

Af :={aeA|h-a=e(h)aVheH}. (E0.1.2)

We refer to [31, Section 3] for the definition of the homological determinant of the H-
action on A. Let hdet : H — k be the homological determinant of the H-action on A.
Then hdet, considered as an element in K, is a grouplike element. By [14, Theorem 0.6],
hdet is nontrivial (unless A = A¥) when H is a reflection Hopf algebra. Since hdet is an
element in G(K), both Ay 4., and A, ;.1 are defined by (EO0.1.1).

Theorem 0.2 (Corollary 2.5(1) and Theorem 3.8(1)). Assume Hypotheses 0.1. Let R be
the fixed subring A",

(1) There is a nonzero element j, ; € A, unique up to a nonzero scalar, such that
A, 4ot~ 18 a free R-module of rank one on both sides generated by j4 -
(2) There is a nonzero element a, ; € A, unique up to a nonzero scalar, such

that Ay 4, is a free R-module of rank one on both sides generated by a, .
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(3) The products j, ya, y and a, gjs i in A are elements of R that are either

equal, or they differ only by a nonzero scalar in k, or equivalently,

ja,p@am =K< QaHlan-
The above theorem allows us to define the following fundamental concepts.

Definition 0.3. Assume Hypotheses 0.1.

(1) The element j, 5 in Theorem 0.2(1) is called the Jacobian of the H-action on
A.

(2) The element a, ;; in Theorem 0.2(2) is called the reflection arrangement of
the H-action on A.

(3) The element j, ya, g, or equivalently, @, g, 7, in Theorem 0.2(3) is called the

discriminant of the H-action on 4, and denoted by 8, .

The above concepts are well defined up to a nonzero scalar in k, and under some

hypotheses we show they exist more generally.

In the classical (commutative) setting, when G is a reflection group acting on
a vector space V over the field of complex numbers C, the Jacobian (respectively, the
reflection arrangement, the discriminant) in Definition 0.3 is essentially equivalent to
the classical Jacobian determinant of the basic invariants of G in the commutative poly-
nomial ring C[V*] := O(V) (respectively, the reflection arrangement, the discriminant of
the G-action). When we let A = C[V*] and H = CG in Hypotheses 0.1, a well-known
result of Steinberg [47] states that

1’4
lam =cx Hfses_l, (E0.3.1)
s=1

where {f;}{_, is the complete list of the linear equations of the reflecting hyperplanes
of G, and each e, is the exponent of the pointwise stabilizer subgroup that consists of
pseudo-reflections in G associated to the corresponding reflecting hyperplane. After we
identify each hyperplane in ¥V with its linear form in V*, the set of reflecting hyperplanes
is uniquely determined by the following equation [40, Examples 6.39 and 6.40] (where

det and det™! are switched due to different convention used in the book [40])

\%4
aaH =Cx Hfs, (E0.3.2)

s=1
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which suggests calling a4 ;; in Definition 0.3 the reflection arrangement of the H-action
on A. In this paper, we can prove only the following weaker version of Steinberg’s

theorem [24, 47] in the noncommutative setting [Theorem 0.5].

Hypothesis 0.4. Assume the following hypotheses:

(1) Assume Hypotheses 0.1.
(2) chark =0.
(3) H is commutative, or equivalently, H = (kG)* for some finite group G.

(4) A is generated in degree 1.

Theorem 0.5 (Theorem 2.12(2)). Assume Hypotheses 0.4. Then the following hold.

(1) ja g is a product of elements of degree 1.

(2) a4y is a product of elements of degree 1.

When A is noncommutative, it is usually not a unique factorization domain.
Then the decompositions of j, y and a, g into products of linear forms in Theorem 0.5,
formulas like (E0.3.1) and (E0.3.2), are not unique, see Examples 2.2(2) and 4.2.
Therefore, it is difficult to imagine and define individual reflecting hyperplane at this
point, though, in some special cases, there are natural candidates for such hyperplanes,

see (E2.2.2). We have some general results as follows.

Theorem 0.6 (Theorem 3.8(2)). Assume Hypotheses 0.1. Then a,  divides j, 5 from the
left and the right.

In the classical setting, when H = kG, for G a reflection group acting on a vector
space V, then §, ; agrees with the classical definition of discriminant of the G-action
[40, Definition 6.44]. When R is central in A and H is a dual reflection group, then § AH

is closely related to the noncommutative discriminant dis(A/R) studied in [8, 12, 13].

Theorem 0.7 (Theorem 3.10(2)). Assume Hypotheses 0.4. Suppose that R := A¥ (E0.1.2)

is central in A. Then §, ;; and dis(4/R) have the same prime radical.

We refer to [61, 52] for the definition of Auslander regularity and [27, Definition
0.1] for the definition of Artin—-Schelter Cohen-Macaulay used in the next theorem and
its proof. By Theorem 2.4, the Jacobian j, ;y can be defined in a more general setting,

which is used in the next theorem.
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Theorem 0.8 (Theorem 3.9). Assume Hypotheses 0.1. Suppose A is Auslander regular.
Then A; := Dycgx) Ag is Artin-Schelter Gorenstein and

lag =K jAg,(]kG)*'
The theorem above leads to the following question.

Question 0.9. Assume Hypotheses 0.1. Is there a Hopf subalgebra H, € H such that
Ao = A2

In the classical case, either the Jacobian j, g or the reflection arrangement a, g
completely determines the collection of reflecting hyperplanes via (E0.3.1) or (E0.3.2),
respectively. In the noncommutative case, since A is not a unique factorization domain,
the decomposition such as (E0.3.1) (or (E0.3.2)) is not unique. Consequently, it is not clear
how to define individual reflecting hyperplanes. We propose the following temporary
definitions. For any homogeneous element f € A, define the set of left (respectively,

right) divisors of degree 1 of f to be
%l(f) ={kv | veA,, vf, =f forsome f, € A}. (E0.9.1)

and
R'(f):=1{kv | ve A,,f,v=Ff forsome f, € A}. (E0.9.2)

Unfortunately, in general (when H is neither commutative nor cocommutative),

R(@y g) # R @y ),

see (E4.2.6) and (E4.2.7).

Some further results related to other invariants (e.g., the homological deter-
minant, pertinency, and the Nakayama automorphism) are stated as corollaries to
Theorem 2.4.

This paper is organized as follows. Section 1 reviews some basic material. We
define and study the Jacobian and the reflection arrangement in Section 2. In Section 3
we focus on the discriminant. In Section 4, we give some nontrivial examples with some
details.
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1 Preliminaries

In this section we recall some basic concepts and fix some notation that will be used
throughout.
An algebra A is called connected graded if

and 1 € Ay, A4;A; € Ay forall i,j € N. We say A is locally finite if dimy A; < oo for all i.
The Hilbert series of A is defined to be

ha(t) = (dimy At
ieN

The Gelfand—Kirillov dimension (or GKdimension) of a connected N-graded, locally

finite algebra A is defined to be

log (31 dimy A,
GKdim(A) — limsup 28 (Zi=0 4imi4y)
n— oo log(n)

’

see [37, Chapter 8], [34], or [48, p.1594].
The algebras that replace the commutative polynomial rings are the so-called

Artin—Schelter regular algebras [4]. We recall the definition below.

Definition 1.1. A connected graded algebra A is called Artin-Schelter Gorenstein (or

AS Gorenstein, for short) if the following conditions hold:

(a) A has injective dimension d < oo on the left and on the right,
(b) Extl(4k,,A) = Extl(ky,A,) = 0foralli+#d, and
(c) Extfql(A]k,A A= Extﬁ(]kA,AA) = k(l) for some integer [. Here [ is called the AS
index of A.
If in addition,
(d) A has finite global dimension, and

(e) A has finite Gelfand—Kirillov dimension,

then A is called Artin—Schelter regular (or AS regular, for short) of dimension d.
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Let M be an A-bimodule, and let u, v be algebra automorphisms of A. Then *M"

denotes the induced A-bimodule such that “M" = M as a k-space, and where
axmxb=p(aymv(b)

forall a,b € A and m € "M"(= M). Let 1 denote also the identity map of A. We use "M
(respectively, M") for “M! (respectively, 1 M").
Let A be a connected graded finite-dimensional algebra. We say A is a Frobenius

algebra if there is a nondegenerate associative bilinear form
(= —) AxA—>kL,

which is graded of degree —I, or equivalently, there is an isomorphism A* = A(-I) as
graded left (or right) A-modules. There is a (classical) graded Nakayama automorphism
w € Aut(A) such that (a,b) = (u(b),a) for all a, b € A. Further, A* = *A!(—[) as graded A-
bimodules. A connected graded AS Gorenstein algebra of injective dimension 0 is exactly
a connected graded Frobenius algebra. The Nakayama automorphism can be defined for

certain classes of infinite-dimensional algebras; see the next definition.

Definition 1.2. Let A be an algebra over k, and let A® = A ® A°P.
(1) A is called skew Calabi-Yau (or skew CY, for short) if

(a) A is homologically smooth, that is, A has a projective resolution in the
category A°-Mod that has finite length and such that each term in the
projective resolution is finitely generated, and

(b) there is an integer d and an algebra automorphism p of A such that

ot e O i+d
xthe (A, A%) = (E1.2.1)
law j=d,

as A-bimodules, where 1 denotes the identity map of A.
(2) If (E1.2.1) holds for some algebra automorphism u of A, then u is called the
Nakayama automorphism of A, and is usually denoted by 1 ,.
(3) We call A Calabi-Yau (or CY, for short) if A is skew Calabi-Yau and pu,
is inner (or equivalently, 1, can be chosen to be the identity map after

changing the generator of the bimodule 'A#).
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If A is connected graded, the above definition should be made in the category of

graded modules and (E1.2.1) should be replaced by

i e O i#d
Xthe (A, A%) = (E1.2.2)
lany i=d,

where 'A%(l) is the shift of the graded A-bimodule !A* by degree .
We will use local cohomology later. Let A be a locally finite N-graded algebra
and m be the graded ideal A.,. Let A-GrMod denote the category of Z-graded left A-

modules. For each graded left A-module M, we define
M) ={xeM|A.,x=0forsomen > 1} = nlim Homy(A/A.,,, M)
> e >

and call this the m-torsion submodule of M. It is standard that the functor I' ,(—) is
a left exact functor from A-GrMod to itself. Since this category has enough injectives,
the ith right derived functors, denoted by HY, or RIT',, are defined and called the local

cohomology functors. Explicitly, one has
Hy, (M) = R'T (M) := lim Exty(A/A.,, M).

See [5, 50] for more details.
The Nakayama automorphism of a noetherian AS Gorenstein algebra can be

recovered by using local cohomology [43, Lemma 3.5]:
RIT, (A)* = *AL (-, (E1.2.3)

where [ is the AS index of A.

The following notation will be used throughout.

Notation 1.3. (G, {pi},{pg},Ag). Let H denote a semisimple Hopf algebra. Since k is
algebraically closed, the Artin-Wedderburn theorem implies that H has a decomposition

into a direct sum of matrix algebras
H=M, (KoM, )& oM, k&M, k& (E1.3.1)

with

Tigg < <Ty. (E1.3.2)
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Each block M, (k) corresponds to a simple left H-module, denoted by S;. Then (S, is
the complete list of simple left H-modules and dim; S; = r; for all i. The center of H is
a direct sum of N copies of k, each of which corresponds to a block M, (k). Since H is a
Hopf algebra, r; = 1. Further, we can assume that M, =k [ where [ is the integral of H.
Each copy of Mri(lk) =k, fori=1,---,n, gives rise to a central idempotent in H, which
is denoted by p;. Let I,

-om D€ the ideal of H generated by commutators [a, b] := ab — ba
for all a,b € H. Then

Lom=M, (k& &M, = k%", (E1.3.3)

com Tnt1 N-1

(k) & M, (k) and H/I,

om

It is well known that I, is a Hopf ideal, and consequently, H,, := H/I,,, is a

m om

commutative Hopf algebra. Since k is algebraically closed, H,, is the dual of a group
algebra kG. By (E1.3.3), the order of G is n. There is another way of interpreting G. Let K
be the dual Hopf algebra of H, and let G(K) be the group of grouplike elements in K. Then
G is naturally isomorphic to G(K), and we can identify G with G(K). For every grouplike
element g € G(K), the correspondence idempotent in Hg, is denoted by p,. Then the
Hopf algebra structure of H,, is given in [33, p.61]. Let e be the unit or identity element
of the group G (later, the identity in G is also denoted by 1. or 1). Lifting the idempotent
Py € Hyy, from Hy, to the corresponding central idempotent in H, still denoted by p,, we

have, in H,
pg g=h,
Pgbn = and Zpg # 1y, unless n=N, (E1.3.4)
g 75 hr gEG
and
1, g=e,
APy =D Pr®pyig+X, and epy)=1 ° (E1.3.5)
heG 0 g#e,

where X, is in I, ® H + H ® Iy, Since I, is a Hopf ideal, we also have A(I,,,)
Lom ® H+H®I . Note that {pg},; agrees with the idempotents {p;}" . By the duality
between H and K, the idempotent in H corresponding to the integral of H is p, where 1 €
K is the identity element (or the unit element 1, of the group G). In other words, p; = [.
Note that p,; is also the 1st central idempotent corresponding to the decomposition
(E1.3.1).

Let A be a connected graded algebra and let H be a semisimple Hopf algebra
acting on A homogeneously and inner faithfully [14, Definition 1.5] such that A is an H-
-A.

module algebra. For each idempotent p;, wherei=1,--- ,n,--- ,N, we write Ap, =D;

2202 Iudy 1 uo Josn uojBuIyseA JO ANSIAIUN AG LE090LS/EG86/E L/LZ0Z/AI0IE/UIWIWoo" dNo"olWapEsE//:S)Y WOl PEPEojUMOd



Reflection Hopf Algebras 9863

Then there is a natural decomposition

N
A=al A, (E1.3.6)
following from the fact 1, = Zivzl p;. Each p;, foreachi=1,---,n, equals Dg: for some

g € G, and we write

Ag::pg-A:{aeAlpg-a:a}.

We recall a definition.

Definition 1.4. [33, Definition 3.2] Suppose H acts homogeneously and inner faithfully
on a noetherian Artin-Schelter regular domain A that is an H-module algebra such that
the fixed subring A¥ (E0.1.2) is again Artin-Schelter regular. Then we say that H acts
on A as a reflection Hopf algebra or reflection quantum groups. By abuse of language,
sometimes we just say that H is a reflection Hopf algebra without mentioning A. If,
further, hdet™! = hdet, then H is called a true reflection Hopf algebra.

Lemma 1.5. Retain the notation above, and consider A as a K-comodule algebra where

p:A— AQ®K is the right coaction.

(1) ForeachgeG,Ag:{aeA|p(a):a®g}.

(2) AgAh - Agh forallg,h € G.

(3) Let Ag be Pycq Ay Then Ag is a subalgebra of A.

(4) If Ais a domain, then G, :={g € G | A, # 0} is a subgroup of G.

(5) Suppose A is a domain and A, (for some g € G) is a nonzero free module over
AH on the left and the right, then Ag is a rank one free module over A¥ on
the left and the right.

(6) Assume Hypotheses 0.1. Then each nonzero A, is a rank one free module
over A¥ on the left and the right.

Proof. (1) Let {h,,--- ,h,} be a k-linear basis of H and {h},---,h}} be the dual basis
of H* =: K. Then the element } ; h; ® h} is independent of the choice of k-linear bases
{h;}{_,. Since A is a left H-module, then A is a right K-comodule algebra with coaction

given by

p@ =Y (h-a)®h; (E1.5.1)

i=1

forall a € A.
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We pick a nice basis consisting of matrix units that correspond to the matrix
decomposition (E1.3.1), making {pglgec @ part of the basis for H. Since kG(K) is the
dual Hopf algebra of H,, = H/I,,,, then g(I,,,) = 0 for each g € G(K). For every
h € G = G(K), it is easy to see that g(py) = Sgh- This implies that {9Ygec is a part
of the corresponding dual basis for K. Now the assertion follows from (E1.5.1) and a
straightforward calculation.

(2) Let x € Ag and y € Ay, then I, A, = 1

comAg comAn = 0 implies that I,,x =

Ioomy = 0. By (E1.3.5), pgp,(xy) = py(x)pp(y) = xy. Thus, xy € Agy,.

(3) This follows from part (2).

(4) This follows from part (2) and the fact that A is a domain.

(5) Since A is a domain, xA, C AH for every nonzero x € Agr. Thus, the rank of
A, over A" is one.

(6) By [33, Lemma 3.3(2)] (where the hypothesis that the char k is zero is not

necessary), 4, is free over AH on both sides. The assertion follows from part (5). |

Notation 1.6. ({f;},#y). Let R denote the fixed subring AH,_ Assume that H is a
reflection Hopf algebra acting on a noetherian Artin-Schelter regular domain A. By

Lemma 1.5(6), each nonzero A is of the form
A, =f,R =Rf, (E1.6.1)

where f, € A, is a (fixed) nonzero homogeneous element of lowest degree. Note that f,
is unique up to a nonzero scalar in k. There is a graded automorphism Pg € Aut(R) such
that

fox = dg(0f, (E1.6.2)

for all x € R [33, (E3.5.1)]. For every pair (g, h) of elements in G, define ¢ ;, € R such that

Jofn = Cgnfgn (E1.6.3)

[33, (E3.5.2)]. Then Cg.h is a normal element in R and

Con =Ffulp' s and ol (cyn) = fr' Fofi- (E1.6.4)
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Lemma 1.7. Let H be a semisimple Hopf algebra acting on an algebra A.

(1) If M is a simple left H-module and N a one-dimensional left H-module, then
both N @ M and M ® N are simple left H-modules of dimension equal to
dim; M.

(2) If M C Ais asimple left H-module and 0 # bg IS Ag where Ag is defined as in
Lemma 1.5(1), then both Mbg and bgM (if nonzero) are simple left H-modules

of dimension equal to dimy M.

Proof. (1) This follows from the fact that N® — and — ® N are auto-equivalences of the
category of left H-modules.

(2) This follows from the fact that the multiplication map u: A® A — A is a left
H-module map. Further, as left H-modules, bgM = ]kbg ® M and Mbg =M ]kbg when
byM and Mb, are nonzero. |

Fixed an integer d > 0. Let {Sd,i};'/fl be the complete list of simple left H-modules
of dimension d. For each g € G(K), there are permutations in the symmetric group,

0g,dr Tg,d € Bw,, such that
]kg % Sd,i = Sdrod,g(i)' and Sd,i %) }kg = Sdrfd,g(i)' (E171)

Let {pd'i};.";dl be the complete list of primitive central idempotents of H corresponding to
the set {S; ;}

wq
i=1"

and let Ay ; = pg ;A. By Lemma 1.7(2), we have that
bg'Ad,i g 'Ad,(fd,g(i)’ and ‘Ad,ibg g Adr'fd,g(i) (E172)

for all g, 1.
For every d, define

wg
Ad = @ Ad,i‘
i=1

Let R be an Ore domain. If M is a left R-module, the rank of M over R is defined
to be

rk M := dim, Q ®g M,

where Q is the total quotient division ring of R.
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Lemma 1.8. Suppose that A is a domain. Let rk denote the rank over A”. Suppose that
Ag 1 # 0 for some d.

(1) rkAg >rkA,.
(2) Suppose there are (d',7') such that Ay , # 0 and that S;; ® Sy ;s is a direct

sum of simple H-modules of dimensions d;,--- ,d,. Then

N
rk Ad,l < Z rk Ada .

a=1

(3) Suppose there are (d',i') such that Ay ; # 0 and that (@?;dl Sqj) ®Sq,yis a

direct sum of simple H-modules of dimensions d;,--- ,d,. Then
S
I'kAd < ZrkAda.
a=1

(4) Suppose that S;; ® Sy ; is a direct sum of one-dimensional H-simples for
some i such that A;; # 0. Then rkA,; ; < rkA,.

(6) Ifforany A;; #0,S;; ® Sy, is a direct sum of one-dimensional H-simples,
then rkA; < rkA;.

Proof. (1) LetO # x € A, such that x is in a simple left H-module M. By Lemma 1.7(2),
.AlX - AIM - ‘Ad'

Therefore,
rkA; >tk A x =1k A,.

(2) Let 0 # x € Ay ;. By the ideas in the proof of Lemma 1.7(2),

N
Ad,IX C @ ‘Ada'

a=1
Therefore,

N
rk Ay, =1k Ay x < Z rk A, .

a=1
(3) The proof is similar to the proof of part (2).

(4,5) These are consequences of parts (2) and (3). |
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The above lemma has some consequences. For example, if H has only one simple

S of dimension d larger than 1 and S® S is a direct sum of one-dimensional H-modules,
then A, and A, have the same rank. When |G| = d? this implies that dim, H = 2d? [2, 3].

Definition 1.9. Retain the notation as in Lemma 1.5 and let G = G(K).

(1)

(2)

The subalgebra A; as defined in Lemma 1.5(3) is called the G-component
of A.

The k-vector space Agc = @?,:nJrl p; - A where n and N are defined in
(E1.3.2) is called the G-complement of A. By Lemma 1.7(2), Age is an Ag-

bimodule and there is an A-bimodule decomposition

A =AG @AGc.

An A-bimodule M is called H-equivariant in the sense of [43, Definition 2.2] if

h-(amb) = > (h, - a)(hy - m)(hy - b)

forallhe H, a,b € A and m € M. The following lemma is more or less proved in [43].

Lemma 1.10. Let Y be an H-equivariant graded A-bimodule that is free of rank one

over A on both sides. Then Y is isomorphic to ¢ ® A such that

(1)

(2)

(3)

(4)

ke is a one-dimensional left H-module and there is an g € G(K) such that
h-e®1l=ghexl,

¢ ® 1 is a generator of the free right A-module ¥, namely, (¢ ® 1)a = ¢ ® a for
alla € A,

there is a graded algebra automorphism p of A such that
ae®1l)=c¢eQ® u(a)
forall a € A,

M(E;(h) a) = Ey(h) - n(a), where 27 is the right winding automorphism of
H associated to g, defined to be

Ep:h> > hig(hy) (E1.10.1)

forall h € H.
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In this case, we write
Y = (ke) @ AL, (E1.10.2)

When Y is RdFm(A)* for an AS Gorenstein ring A, u is the Nakayama automorphism of A.

The proof of the above lemma is easy and omitted. If we want to specify the

algebra A, (E1.10.2) can be written as
Y, = (key) @ AL, (E1.10.3)

Definition 1.11. Suppose a Hopf algebra H acts inner faithfully and homogeneously
on a connected graded algebra A. Let R be AF.

(1) The left covariant module of the H-action on A is defined to be
AlevH .~ AJAR_,

which is a left A and right R-bimodule.

(2) The right covariant module of the H-action on A is defined to be
ATCVH .= A/R_|A,

which is a right A and left R-bimodule.

(3) The covariant algebra of the H-action on A is defined to be the factor ring
A H = A/(R.)).

(4) We say the H-action on A is tepid if AR.; = R.;A. In this case we say the

covariant ring A" # is tepid.

There are reflection Hopf algebras H such that the H-action on A is not tepid

and the covariant ring A°" # is not Frobenius, see Example 4.2.

2 The Jacobian and the Reflection Arrangement

In this section we will introduce two important concepts for Hopf algebra actions on
Artin-Schelter regular algebras: the Jacobian and the reflection arrangement. We also

study the connection between the Jacobian and the pertinency ideal.
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As in the previous sections, H is a semisimple Hopf algebra. In this section we
will use the homological determinant [31, Definition 3.3] in a slightly more general
situation. Assume that A is a noetherian connected graded AS Gorenstein algebra
(which is not necessarily regular). Let hdet denote both the homological determinant
hdet : H — k and the corresponding grouplike element in K (in [31] it is called co-
determinant). As usual, suppose that H acts on A homogeneously and inner faithfully.

To motivate our definition, we first briefly recall some facts in the commutative
situation. Let A be the commutative polynomial ring k[V*] = klx;,--- ,x,] and G be a
finite subgroup of GL(V) acting on A naturally. Suppose that G is a reflection group and
R := AC is a polynomial ring, written as k[f},--- ,f,]. Then the Jacobian J (also called

the Jacobian determinant) of the basic invariants {f,--- ,f,} is defined to be

of, \
J :=det (—‘) ,
8X]' ..
1j=1

see [24, Introduction]. It is well known that degJ = —n + > 1 | deg(f;) and that g - J =
(detg)~'J for all g € G, see [46, p. 139] or [40, p.229]. In the commutative case, we have
hdet = det. It is also well known that A, ;.1 is free over R on both sides and the lowest
degree of nonzero elements in A, 4 .1 is —n + X1 | deg(f;). Hence, A} 4,1 = JR = RJ
[46, p.139].

A result of Steinberg [24, 47] says that the Jacobian determinant J in the
commutative case is a product of linear forms (with multiplicities) that correspond to
the reflecting hyperplanes (E0.3.1). The product of the distinct linear forms, denoted by
a, corresponding to the reflecting hyperplanes, namely, the reduced defining equation
of the Jacobian determinant (E0.3.2), has the property that g-a = det(g)aforallg € G
and the degree of a is the lowest degree of nonzero elements in A, 4.;. This means that
Ay g4t = @R = Ra, see [46, Theorem 2.3] and [40, p. 229].

The following definition attempts to mimic these classical concepts in the

noncommutative setting. See Definition 0.3 under Hypotheses 0.1.

Definition 2.1. Let A be AS Gorenstein, hdet € K be the homological determinant of
the H-action on A and R = AH,

(1) If Ap4e-1 is free of rank one over R on both sides, namely, A}, =
Jhdet-1R = Rfpqet-1 # 0, then the Jacobian of the H-action on A is defined to
be

jag =1 Jhder! €A
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(2)

If A} 4et 15 free of rank one over R on both sides and A} 45 = fLaetR = Rfhdet #

0, the reflection arrangement of the H-action on A is defined to be

as g =ix Jhdet € A-

In the above definition we do not assume that the fixed subring A¥ is Artin-

Schelter regular. Next we give some easy examples; in (1) and (3) A¥ is not AS regular,

but the Jacobian and the reflection arrangement are still defined.

Example 2.2,

(1)
(2)

If hdet is trivial, then both j, ; and a, ;; are 1 € A.

[33, Example 3.7] In [33] we assume that char k = 0, but, in fact, it suffices
to assume that char k # 2 in this example. Let G be the dihedral group of
order 8. It is generated by r of order 2 and p of order 4 subject to the relation

rp = p3r. Let A be generated by x, y, z subject to the relations

ZX = —XZ,
yX = zy,
yZ = Xy.

Then A is an AS regular algebra of global dimension 3. Let H = (kG)* and
define the G-degree of the generators of A as

dego(x) =1, degs(y)=rp, degg(2) = rp2.

Then kG coacts on A. By [33, Example 3.7], the Hopf algebra H acts on A as
a (true) reflection Hopf algebra and the fixed subring A" is isomorphic to
the polynomial ring klt,, 5, t5], which is AS regular. (Note that t; = x2, t, =
y?,t3 = z%) One can check that hdet = hdet™! = rp® (so H is a true reflection
Hopf algebra) and that

Jag =84y =K« ZXY =|x ZVZ =|x XYX =|x XZY =)« VZX =« yxz, (E2.2.1)

which is a product of elements of degree 1. By [33, Theorem 3.5(2)], the

covariant algebra A" is always tepid in this setting.
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(2) Let us recall the notation introduced in (E0.9.1) and (E0.9.2). For any
homogeneous element f € A, define the set of left (respectively, right)

divisors of degree 1 of f to be
%l(f) ={kv | veA,, vf, =ffor some f, € A}.

and
R'(f) :=1{kv | veA,f,v=fforsomef, € A}

It is clear that SRZ(jAIH) contains {kx, ky, kz}. By using the fact that y is
normal, one can show (with details omitted) that if yxz =« f; f, f5 for three
elements f; of degree 1, then f; f, f; must be, up to scalars on f;, one of the

expressions given in (E2.2.1). Therefore,
Riap) =R(@up) =R (a0 =N @y ) = (kx, ky, kz}. (E2.2.2)

One might consider the set {kx,ky,kz} as (linear forms of) reflecting
hyperplanes.
(3) Let A be the down-up algebra

k{u, d)
(u?d — du?, ud? — d?u)’

D(0, 1) :=

Then A is noetherian, AS regular of global dimension 3. Let H be the Hopf
algebra (kG)* where G is the dihedral group of order 8 as in part (2). This
is the setting in [17, Example 2.1]. By [17, Example 2.1], we have hdet =
hdet™! = p2. The fixed subring A¥ is not AS regular but is AS Gorenstein.
By [17, Lemma 2.2(3)], the Jacobian and the reflection arrangement of the

H-action on A are
— i — 2
Qg = lag =K< U €A
One can show directly that the covariant algebra A" ¥ is tepid.
Remark 2.3. The definition of the Jacobian in Definition 2.1(1) agrees with the Jaco-

bian (determinant) when we consider classical reflection groups acting on commutative

polynomial rings.
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(1) In the commutative case, both j, ; and a, ; are products of linear forms
(E0.3.1) and (E0.3.2). It is natural to ask if A is generated in degree 1, under
what hypotheses, are both j, ;; and a, 5 products of elements of degree 1?

(2) Inthe commutative case one sees from (E0.3.1) and (E0.3.2) that a, 5 divides
jag- Is there a generalization of this statement in the noncommutative
setting? We will discuss this question in Section 3 (see Theorem 3.8(2)).

(3) More importantly, the definitions of the Jacobian and the reflection
arrangement suggest that we should search for a generalization of
hyperplane arrangements in the noncommutative setting.

(4) In the classical case, anm is reduced, namely, every factor is squarefree in

a, g- What is the analog of this statement? See Example 2.2(2,3).

Next we have a result concerning the existence of j, . Let 7 : H — k be an
algebra homomorphism, namely, # € K is a grouplike element. Recall from (E1.10.1)

that the right winding automorphism of H associated to 7 is defined to be
EL :h> > hym(hy)

L of H associated to = is defined

r =l
T and E

for all h € H. The left winding automorphism E

similarly, and it is well known that both E are algebra automorphisms of H.

For any element x € A, let n, denote the “conjugation” map
Ny :a— x lax

whenever x~!ax is defined. In particular, this map could be defined for all @ in a subring
of A. In the following result we do not assume that the H-action on A is inner faithful.
Recall that

> hdet(h,) hdet™ ' (h,) = > hdet(h,) hdet " (h,) = e(h) (E2.3.1)

for every h € H.

Theorem 2.4. Let A be anoetherian AS Gorenstein algebra. Let hdet be the homological

determinant of the H-action on A.
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[43, Lemma 3.10] Let u be the Nakayama automorphism of A. Then, for every
acAandh cH,

Elaet(R) - 1(@) = p (Bfger(R) - a) . (E2.4.1)

As a consequence, u(Af) = Af,

If A¥ is AS Gorenstein, then the Jacobian j, ; is defined and

(@) I4m = I+ degj, 5, where [ indicates the respective AS indices Definition
1.1(c),

(b)  pgr = Mg ©H

If j, ; exists, then A is AS Gorenstein.

U(Apger-1) = Apget-1- As a consequence, if j, 7 exists, then (i, g) =k ja g-

U(Apget) = Anget- AS @ consequence, if a, 5 exists, then u(a, ) =K« a, g-

Let A be a domain. Suppose there is a short exact sequence of Hopf algebras
1—-Hy—~>H— H—1

such that A® and AHo are AS Gorenstein. Then

la, g =K< la,H)aH0 7 =k* lako @la,Hy

Proof. (1) Let R denote A¥. The 1st claim is a special case of [43, Lemma 3.10] when the

antipode S of H has the property that S? is the identity. (Note that since H is semisimple,

S? is the identity.) For the consequence, we have, for h € H and r € R,

h-u(r) =) hdet(hy)h, - u(r) hdet™" (hy)
= Eger(Ry) - (r) hdet™ (ry)
=11 (2 Ehgerm) - T hdet ™ (hy))
—u (Z hdet(h,)h, - 7 hdet ™! (h3))
= 10 (2 hdet(hyehy)r hdet™ (hy))

=e(h)u(r).

This implies that u(r) € R, and completes the proof of part (1). In the above computation
we used (E2.3.1).
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We will use the notation introduced in [31]. Let an(A) be the ith local cohomol-
ogy of A with respect to the graded maximal ideal m := A_ ;. Let (—)* denote the graded
k-linear dual of a graded vector space. Let d be the injective dimension of A. By [31,
p.3648] or (E1.2.3),

. i#+d
H, (A)* =
rAl(—y =Y i=d,
and
. | £ d
H L (R)* = e

Y-[=S() Y i=d.

As a consequence, the injective dimension of R is also d if R is AS Gorenstein. Here u is
the Nakayama automorphism of A, and uy is the Nakayama automorphism of R. Note
that Y has an A-bimodule structure with compatible H-action, or in other words, Y is
an H-equivariant A-bimodule in the sense of [43, Definition 2.2], see [43, Lemma 3.2(a)].

Using the notation in [31, (3.2.1) and (3.2.2)] or in Lemma 1.10, ¥ = (ke¢) @ “A! as
a left H-module (as well as graded A-bimodule) where deg(¢) = [ and the H-action on ¢

is given by
h - ¢ = hdet(h)e (E2.4.2)

by [31, Definition 3.3]. (In [31], the authors used the right H-action, one can easily
transfer to the left action by composing with the antipode S.) By [31, Lemma 2.4(1)],

there is an R-bimodule decomposition

A=R®C, (E2.4.3)
where R C A is a graded subalgebra. Further, as a left H-module, R is a direct sum of
trivial H-modules, and,

R={acA|p,-a=a};
and
C={acA|(l—-py-a=a},

where p, is the idempotent in (E1.3.1) corresponding to the integral of H. The decompo-

sition (E2.4.3) gives rise to a decomposition of ¥, as R-bimodules,

Y = (HEA) = (H:(4)" = HL:®)" @ (H:(0)", (E2.4.4)
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where (HfinR (R))" is preserved by the left action of p; and (HfinR (C))* is preserved by the
left action of 1 — p,. Using the fact, ¥ = (ke) ® »Al we can write

(H(R) = (ko ®V, and (HIL(C) = (k)@ W

for some graded R-bimodules V, W with “A! = V@ W.

(2) Assume that R is AS Gorenstein. Then the R-bimodule (HzlR (R))* is isomor-
phic to “RRl(—[R). In particular, (HiR (R))* is free of rank one on both sides. This implies
that V is a free R-module of rank one on both sides.

Since (HiR (R))* is preserved by the left action of p; and (HiR(C))* is preserved
by the left action of 1 — p,, by (E2.4.2), V is preserved by the left action of p; ;,,-1 and W
is preserved by the left action of 1 —py ;,-1. Thus, V = MAlhdet—l = A} 4ot-! Where the last
equation follows from the fact that the H-action on “A! agrees with the H-action on A.
Combining these assertions with ones in the last paragraph, we obtain that j, ; exists.

For the two sub-statements, note that the right R-module (HiR (R))* is free with

a generator ¢ ® j, ;. Using the notation introduced in (E1.10.3), we have
CR=¢Q®jag=¢aQjag (E2.4.5)

Then

[r = degeg = deg(ey ®ju ) = degey +degjy g =4 +degjy g

Hence, sub-statement (a) follows. Considering elements inside ¥ := ¢®A, for every r € R,

using part (1), we have

reg®1) =re®jyl)
=e®@uMigg = ®iam(isgtMian)

= (g ® D (71 Miag)

which implies that ug(r) = Mipn © w(r); hence, we have verified sub-statement (b).

(3) The proof of the converse is similar. Since 4 ;; is defined, V := A, ;.1 is a free
R-module of rank one on both sides. Then (HiR (R))* = (ke) ® V is a free R-module of
rank one on both sides. By [43, Lemma 1.7(2)], (HiR (R))* is isomorphic to “RR!(—Iz) for

some automorphism uz of R and some integer [. By [31, Lemma 1.6], R is AS Gorenstein.
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(4) Forr ¢ A} det! and h € H, we have

h-ur) = Zhdet’l(hl) hdet(h,)hy - 1(r)
= > hdet ™ (h)) Bl 4o (hy) - ()
= > hdet™! (h))u(Ef 4o (hy) - 7) by (E2.4.1)
— > hdet ™ (h))u (Z hdet(hg)h, - r)
— > hdet ™ (h))u (Z hdet(hS)hdet_l(hz)r)

= Z:hdet_1 (hpp (Z G(hz)r)

= hdet ! (W) u(r).

Hence, the main assertion follows, and the consequence is clear.

(5) For r € Ay 4. and h € H, we have

h-u(r) =Y hdet™ (k) hdet(hy)hg - u(r)
= > hdet ™" (1)) B} 4o, (hy) - (1)
= > hdet ! () (Bfger (B2) - 7) by (E2.4.1)
= > hdet™! (b)) (Z hdet(hy)h, - r)
= > hdet™! (b)) (Z hdet(h) hdet(hz)r)
= > hdet™' (k) hdet(hy) hdet(hy)u(r)

= > e(hy) hdet(hy)u(r) = hdet(h)u(r).

Hence, the main assertion follows, and the consequence is clear.

(6) Let r € Hy and h € H. Since H,, is normal, > S(h,)rh, € Hy, and for all x € Ao,

we have
> S(hy)rhyx) = € (z S(hl)rhz) *) = e(r)e(h)x.
Then

rh(x) = D hS(hy)rhy(x) = D hie(hy)e(r)(x) = (r)(h(x)),
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which implies that A® is a left H-module algebra. By the definition, H,-action on Ao

is trivial, so H acts on AHo naturally and
AH — (AHO)H _ (AHO)E
By (E2.4.5),
ea = ¢4 @jam and
CAH = €4H ®jAH0'ﬁ
= (ca ®Jam) ®laro 7
= (ca ®ja,m)iamo 5

=4 ® (jA,HOjAHO H)

inside Y. Then

Jag = lamlato 7 (E2.4.6)
For the 2nd equation, we use part (4). Since both A¥ and A™0 are AS Gorenstein, by

part (4), we have wu(jspy) =y« jag and n(am,) =xx lam,- APPlying u to the equation
ja.ir = lamiaro 7 and using the hypothesis that 4 is a domain, we obtain that

Wiafo ) =3¢ iafho 7 (E2.4.7)
Applying u,m, to ju, 7 and using part (4), we have
Mt (a0 ) =1kx JaHo F- (E2.4.8)
Combining (E2.4.7), (E2.4.8) with part (2b),
lato g =kx M, , (ako 7)

or equivalently,

lato ,ﬁjA,H =kx jA,HjAHO H (E2.4.9)

Since A is a domain, the combination of (E2.4.6) and (E2.4.9) implies that

laHo ma,Hy =kx Ja,HolaHo H

as desired. [ ]
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Theorem 2.4(6) is useful for the case when H is obtained by an abelian exten-
sion of Hopf algebras. We wonder if there is a version of Theorem 2.4(6) for a, j.
Theorem 2.4(2b) is a generalization of [33, Theorem 0.6(1)]. Though the Jacobian exists,
it is not clear if the reflection arrangement exists when R is AS Gorenstein. We have
three corollaries, including the existence of the reflection arrangement when R is AS

regular. The 1st of the corollaries is Theorem 0.2(1,2).

Corollary 2.5. Assume Hypotheses 0.1. Let R = A7 and £(t) = h, (t)(hg(t)) " .

(1) Both j, z and a4 ; exist.

(2) deg&(t) =degjy g
() hpicovn(t) = hyreovu(t) = £(t). As a consequence,

dim AV H — dim A7V H — £(1),

where K ico0 1 (t) and hyrcov s (t) are the Hilbert series of AL€°VH and A7cov H,

Proof. (1) By Theorem 2.4, the Jacobian j, 5 exists. In particular, 4; 4.1 # 0. Since K
is finite dimensional, hdet is a power of hdet™!. So Ay 4., # 0. By Lemma 1.5(6), A} 4¢; 1S
a free R-module of rank one on both sides, and hence by definition, a, p exists.

(2) Let pu(t) = (hy(®)! and pgr(t) = (hg(t))"!. By [48, Proposition 3.1],
degp,(t) = I, and deg pr(t) = lz. By Theorem 2.4(2a),

degja g =g — 4 = degpgr(t) — degp,(t) = degé(?).

(3) Since Ay is a finitely generated free R-module, h,(t) = hyicova(t)hg(t), and

the assertion follows. The consequence is clear. |
The next corollary is a rigidity result.

Corollary 2.6. Let A be a noetherian AS Gorenstein algebra with finite GKdimension.

Suppose H acts on A such that A¥ is AS Gorenstein.

(1) Suppose A is Cohen—-Macaulay. If hdet is not trivial, then p(4,H) < 1, where
p(4, H) is defined in Definition 2.8(3).

(2) Suppose that there is no graded ideal I € A such that GKdimA/I =
GKdimA — 1. Then hdet is trivial.
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(3) If A is projectively simple in the sense of [42, Definition 1.1] and if
GKdimA > 2, then there is no graded ideal I C A such that GKdimA/I =
GKdimA — 1.

Proof. (1) If hdet is not trivial, then there is an R-bimodule C such that
A=A" QA ®C=R®j,zROC

[Theorem 2.4(2)]. Then Endg(A) is not N-graded. Therefore, the natural map A#H —
Endgi(A) cannot be an isomorphism of a graded algebras. By [7, Theorem 3.5],
p(A,H) <1.

(2) Suppose to the contrary that hdet is not trivial. By Theorem 2.4, f :=j, 4 €
A, exists. By definition, fR = Rf inside A. Consider the (4, R)-bimodule M := A/Af,
which is finitely generated on both sides; we have GKdim(M) = GKdimA — 1. Let
I = ann,(4M). Since My, is finitely generated, M = >;_; m;R. Then I = () ann,(m;).
For each i, GKdim(A/ann,(m;)) < GKdimM. Then GKdimA/I < GKdimM. Since
I C Af, GKdimA/I > GKdim M. Therefore, GKdimA/I = GKdimM = GKdimA — 1,
a contradiction.

(3) This is clear from the definition of a projectively simple ring (also called a

just-infinite ring). |

The 3rd corollary puts some constraints on the homological determinant hdet.
Recall from [43, p. 318] that an AS Gorenstein algebra A is called r-Nakayama, for some

r € k*, the Nakayama automorphism of A is of the form
w:a— riesag (E2.6.1)

for all homogeneous element a € A. For example, every Calabi-Yau AS regular algebra

is 1-Nakayama.

Corollary 2.7. Let A be a noetherian AS Gorenstein algebra that is r-Nakayama for

some r € k*. (We need only that E] ;,(h) is a stable map of ;1-isotropy classes.)

(1) Assume that the H-action on A is faithful. Then hdet is a central element in
G(K). As a consequence, if the center of G(K) is trivial, then hdet is trivial

and AH is AS Gorenstein.
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(2) Suppose that A is an AS regular domain and that G # {1} is a finite group
with trivial center (e.g., G is non-abelian simple). If H := (kG)* acts on A
inner faithfully and homogeneously such that A is an H-module algebra,
then hdet is trivial and H is not a reflection Hopf algebra in the sense of

Definition 1.4.

Proof. (1) Under hypothesis of i being r-Nakayama and the fact that u is a graded

algebra homomorphism, (E2.4.1) becomes
Efder(M) - @ = Elge(h) - @

for all a € A and h € H. Since the H-action is faithful, we have Ef, (h) = Eildet(h)
for all h € H. Applying g € G(K) to the above equation, we obtain that (g o hdet)(h) =
(hdet o g)(h). Thus, hdet commutes with all elements g € G(K). This shows the main
assertion, and the consequence is clear.

(2) By Lemma 1.5(4), Gy :={g € g | A, # 0} is a subgroup of G. Since the H-action
on A is inner faithful, the K-coaction on A is inner faithful. Thus, G, = G. This implies
that H-action on A is in fact faithful. By part (1), hdet is trivial. By [14, Theorem 0.6], AH

is not AS regular; hence, H is not a reflection Hopf algebra. [ |

Definition 2.8. Let H act on A and | be the integral of H.

(1) The pertinency ideal of the H-action on A is defined to be
Pap = (A#H)(1# [)(A#H) C A#H.
(2) [25, Definition 1.4] The radical ideal of the H-action on A is defined to be
tapg = PA'H NA

identifying A with A#1 C A#H.
(3) [7, Definition 0.1] The pertinency of the H-action on A is defined to be

P(A, H) := GKdim(A#H) — GKdim(A#H/P, ).
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The radical ideal of a group G-action on an algebra A was introduced in [25,
Definition 1.4] using pertinence sequences. By the proof of [25, Proposition 2.4], that
definition agrees with Definition 2.8(2) when H is a group algebra.

Under some mild hypotheses, we will show that the radical ideal is essentially
the Jacobian of the H-action on A when H is a reflection Hopf algebra. For simplicity,
let m stand for hdet™! following the notation of [33].

From now on until Theorem 2.12, let H = (kG)* for some finite group G. Assume
that char k = 0. Then the integral [ of H is p, where 1 is the identity of G. Since
H = @geG kpg, we have A = ®gechy where Ay = py - A. By using the comultiplication
given in (E1.3.5), one easily checks that the following equations hold.

Lemma 2.9. LetH = (kG)*, g,h € G and b, € 4j,. Then

(1) (bp#1)(1#py) = bp#p,,.
(2)  (1#pgy)(by#1) = by#pp-1,.
(3)  (1#ppy) (bp#1) = bp#p,.

Lemma 2.10. Let [ be the integral of H = (kG)*. Then
(A#1) N (A#H)(1# [)(A#H) = (ﬂgeGAAg)#l.

As a consequence,

tan = [ | A4,
geG

Proof. We compute

(A#H)(1# [)(A#H) = (ZA#ph) (1#p,,) | D_A#p;
h ij

= (A#1)(1#p, ) [ D A#p;
ij

= (A#1) [ D_A#p;1p;
ij

= > AA#p;1.
i
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If x € (A#1) N (A#H)(1# [)(A#H), then x = y#1 = y# > ;p;1 for y € A. By the above
computation, y € AA; foralli e G. Thus, y € ﬂgecAAg as required. ]

Lemma 2.11. Assume Hypotheses 0.4. Let m := hdet™! € G.
(1) Foreach g € G, there is a nonzero fg € A such Ay = ng =ng.
(2) For each g € G, there is an h € G such that fhfg =px -
(3)
(A4, = (| Af, = Afy = FrnA.

geG geG

Proof. (1) By[33, Theorem 3.5(1)], for each g € G, Ay = ng = ng for some homogeneous
element 0 ;éfg e A.

(2) By [33, Theorem 3.5(2)], the covariant algebra A°VH [Definition 1.11] is the
quotient algebra A/I where I = @y (A7), f,, and A" is Frobenius. Further, A®"¥
has a k-basis {jTg}geg. Since A®"H is graded and Frobenius, for every g, thereisanh € G
such that f}, f, = af,, for some 0 # a € k. Then hg = m and f;, f, = af,,.

(3) As a consequence of part (2), Af,, € Afg for all g. Therefore, ﬂgeGAfg = Af,,.
By [33, Theorem 0.5(1)], f;, is a normal element. Then Af,, = f,,A. This finishes the
proof. |

Now we prove Theorem 0.5, which is Theorem 2.12(2) below. Following [33], let
& :={heG|degf;, =1} (E2.11.1)
(In [33], this set is denoted by fR.)

Theorem 2.12. Assume Hypotheses 0.4.

(1) The radical ideal v, ; is a principal ideal of A generated by j, 5.
(2) Both j, y and a4 y are products of elements in degree 1 of the form f;,.
(3) ay g divides j, ; from the left and the right.

Proof. (1) The assertion follows from Lemmas 2.10 and 2.11(1).
(2) By [33, Theorem 3.5(5)], the covariant algebra A°°"¥ is generated by elements
{fu | h € ®). Using the G-grading and the fact that A" is a skew Hasse algebra [33,
Definition 2.3(2)], every f, is a product of f; ---fj, if g = hy---h; where s = I3 (g) [33,
Definition 2.1]. In particular, both j, y and a,  are products of elements in {f}, | h € &}.
(3) See proof of Lemma 2.11(2). [ ]
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Note that, in general, Theorem 2.12(1) fails, see (E4.2.12) and (E4.2.13). Motivated

by the above result, we have the following remarks and questions, which can be viewed

as a continuation of Remark 2.3.

Remark 2.13. Assume Hypotheses 0.1.

(1)

(2)

(2)

(2)

(3)

(4)

What is the connection between t, ; and j, 5 ? The relation between them is
not obvious, but we believe that v, ; is contained in Aj, . See Lemma 3.13
for a partial result.

As in Remark 2.3(2), we ask: does a, ;; divide j, ; (from the left and the right)?
The answer is yes, see Theorem 3.8(2). As a consequence, %l(aA'H) is a subset

of E)%Z(jA,H). This suggests another question: does the equation

ml(aA,H) = 0! (a,m)

always hold?

On the other hand, we will give an example where E)‘il(jA'H) # R (j45) see
(E4.2.6) and (E4.2.7) in Example 4.2.

One question related to this inequality is: do we have an isomorphism ¢ such
that ¢(RL(j, ) = R ([, ) (respectively, ¢(Rl(@, ;) = R (@, 1))?

In the classical case, dega, g is the number of reflecting hyperplanes and
degj, g is the number of pseudo-reflections. What are the meanings of
degj,  and dega, y in the noncommutative case?

Suppose that A is generated in degree 1. Are a, y and j, g products of
elements of degree 1? If yes, are these products of elements in %l(aA'H) U
R(@y p)?

Further, assume that H is (kG)* and that A is generated in degree 1.

(5)

(6)

(7)

It follows from [33, Theorem 0.4] that & can be considered as a subset of
both ERl(jA,H) and R (j, ). As a consequence, |&| < |9%l(jA'H)|.

Is the dega, y = |6|? For example, in Example 2.2(2) & = {r, rp,rp?} and
dega, g = 3.

Does the set {f;, | h € &} coincide with Df{l(aA'H)? In the ideal situation, we
should call D%Z(aA,H) the collection of “reflecting hyperplanes”. In Example
2.2(2) both the “reflecting hyperplanes” and the set {f}, | h € &} are basically
{kx, ky, kz}. See Lemma 4.1(2) for a case when H is not (kG)*.

The Jacobian is defined even when H is not a reflection Hopf algebra and so in

Example 2.2(1,3) we note the following.
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Example 2.14.

(1) If the H-action on A has trivial homological determinant, then | ag =1 but
the radical ideal v, ; is not the whole algebra A. As a consequence vty g ¢

(a,m)-
(2) In Example 2.2(3) it follows from [17, Lemma 2.2] that

ty g = u?(dR + uduR)A N (uR + dudR)A C u?A = (j, ).

3 Discriminants

Geometrically the discriminant locus of a reflection group G acting on k[V] is the image
of reflecting hyperplanes in the corresponding affine quotient space [40, Proposition
6.106]. Algebraically, the discriminant of G is the product of Jacobian and reflection
arrangement (as an element in the fixed subring k[V]°). In the noncommutative case,
we can define the discriminant as the product of the Jacobian and the reflection
arrangement. However, the product of two elements in a noncommutative ring is

dependent on the order of these elements. Therefore, we make the following definitions.

Definition 3.1. Suppose that both the Jacobian j, ; and the reflection arrangement
a, y exist, namely, 4, .1 = jagR = Rj,y and that Ay, = a4, yR = Ra, y where
R=AH
(1) The left discriminant of the H-action on A, or the left H-discriminant of A,
is defined to be

I i
Sam =K< 8amlan € R

(2) The right discriminant of the H-action on A, or the right H-discriminant of
A, is defined to be

r . H
Sam =K< lamdam €R.

(3) If 3114,H =] SZ,H, then SZ’H is called discriminant of the H-action on A4, or the
H-discriminant of A, and denoted by 4, 5.
(4) Theidealt, y N R of R is called the H-dis-radical, and denoted by A, .

We consider the following list of hypotheses that are weaker than

Hypotheses 0.1.
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Hypothesis 3.2. Assume the following hypotheses:

(a) A is anoetherian connected graded AS Gorenstein algebra.

(b) Hypotheses 0.1(b,c).

(c) A is afree module over R on both sides.

(d) Gy:={geG] Ay #0} is a subgroup of G(K) and each Ag, for g € Gy, is a free

R-module of rank one on both sides.

Continuing Example 2.2, up to scalars, in Definition 3.1 (1) 4 = 1,in (2) 8, 7 =
z2x%y?, and in (3) §, y = u*. Note that in part (3) §, 5 exists although Hypothesis 3.2(c)
above is not satisfied. It is possible that Hypothesis 3.2(c) can be weakened in part (2)

of the following lemma.

Lemma 3.3.
(1) Assume Hypotheses 0.1. Then Hypotheses 3.2 holds.
(2) Assume Hypotheses 3.2. Then R is AS Gorenstein and both j, ; and a, 4

exist.

Proof. (1) Nothing needs to be proved for Hypotheses 3.2(a,b). Part (c) is [33, Lemma
3.3.(2)]. Part (d) is Lemma 1.5(4,6). (2) By [45, Theorem 11.65], there is a standard spectral

sequence for change of rings
Ext? (Torg(A,M),A) = Ext2 (M, A)

for all left R-modules M. Since A is finitely generated and free over R on both sides, the

above spectral sequence collapses to
Extl (A ®z M, A) = Exth (M, A).

This implies that R has finite injective dimension and Extg (k, R) is finite dimensional.
By [52, Theorem 0.3], R is AS Gorenstein. By Theorem 2.4, jA,H is defined, or equivalently,
hdet™! € G,. Since G is a group and hdet € G, Apq4e; is free of rank one on both sides
by Hypothesis 3.2(d). Then a, ; is defined. |

The following lemma shows the existence of the discriminant under

Hypotheses 3.2.
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Lemma 3.4. Assume Hypotheses 3.2. Let g € G; then Aj and A1 are free of rank one
over R on both sides. Let f; and f; -1 be the generators of A; and A -1, respectively, over

R; then the following properties hold.

(1) Every fg—lfg is a normal element in R. In particular, both 5,14,}1 and §) 5 are
normal elements in R.
As a consequence, if f, is a normal element in A; and f;, divides f, from the
left and the right, then fif, 1o =y« fy4-1/,. In particular, if f; is a normal
element in A, then fif, 1 =1« fo1fy.

() R84y =RNAgjyyand sy zR=RNj, yAc.

(4) Ifj, z is a normal element in A, then §4 ; is well defined.

Proof. Since g € Gy, g € G(K) such that Aj # 0. Since G is a group [Hypothesis 3.2(d)],
Ag1 is nonzero. By Hypothesis 3.2(d), A; and Aj-1 are free of rank one over R on both
sides.

(1) Clearlyfgflfg is an element in R for every g € G. It follows from (E1.6.2) that

fg*lng zfg*1¢g(X)fg = (¢g*1 o ¢g) (X)fgflfg'

Hence, f;-1f, is a normal element in R.

(2) We will use Lemma 1.7. For g,g’ € G,, we compute

Ay NAgfy=Rfy | D Ag,f,

d=1,

:ng’ m(Z:IQ.](}'lfg)

heG

:ng/ﬂ ng’g—lfg@ Z thfg

h#g'g!

= ng/ N ng/g— lfg

Similarly, we have Ay N ngG = fg,R N ngG = fg,R n fgfg,l gRIf fg is a normal element
in Ag, then Agf, = f,A¢. Since fyR = Rf, and since f, divides f, from the left and the
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right, we have
fofgrgR =fgRNfofg14R
=fyRNf A
= Ay NAgf,
=AyNfAq
= Rfy NRfgg-1fg

= ng/g—lfg.

Then f, o194 =wx fyg-1fy- Let g’ = 1; we obtain that fof, 1 =y fy-1fy.

(3) The assertion follows from part (2) by taking g = 1 and g = hdet™!.

(4) The assertion follows from parts (2,3) and the fact that fj = 1 divides f} 3,1
trivially. ]

The following is Theorem 0.2(3) in a special case.

Theorem 3.5. Assume Hypotheses 0.1. Suppose that char k = 0 and that H is

commutative, namely, H = (kG)*.

(1) The discriminant §, 5 is defined, namely,

1 __or _
SA,H - SA,H - SA,H'

(2) A, g is the principal ideal of R generated by 4, -

Proof. (1) By [33, Theorem 0.5(1)], j4 y = fiqet-! 1S @ normal element in A. Now the
assertion follows from Theorem 2.12(1) and Lemma 3.4(4).
(2) The assertion follows from Theorem 2.12(1) and Lemma 3.4(3). | |

Remark 3.6. Here we make some remarks and ask some questions before we prove

one of the main results in this section, namely, Theorem 3.8.

(1) Assuming Hypotheses 0.1 or 3.2, is §,  always defined? The answer is YES,
see Theorem 3.8. We might further ask: is A, i = (3, )? This is not true, see
Example 4.2.

(2) Note that in the commutative case, R/(8, ;) is always reduced. So we ask the
following questions in the noncommutative case: assuming Hypotheses 0.1.

is the factor ring R/(8, i) semiprime?
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(2) In Example 2.2(2), 8,4 =y« x?y?z® = t,t,t; and R/(8, ) is semiprime and
reduced.

(3) In the commutative case, 8,y is reduced in A. When a, 5 is normal in
A (which is not always true by Example 4.2), we can ask if A/(a,y) is
semiprime.

(3) In Example 2.2(2), ay y =y~ xyx and A/(a, ) is semiprime, but contains
nonzero nilpotent elements.

(4) Suppose that A is generated in degree 1. We ask if
Ray ) = Riapg) = Wap) = (Kf, | g € 6)?
A similar question can be asked for R".

To prove the existence of §, ;;, we need to recall some terminology introduced in

Section 1. For every left A-module,
Hi, (M) = lim Exty(A/A.,,M).

The local cohomology functors are defined similar for right A-modules M. When M is
an A-bimodule that is finitely generated on both sides, then an(M) can be computed
as a left A-module or a right A-module (the result is the same). If R is a subring of A
such that A is finitely generated over R on both sides, then Hfu (M) can be computed by
considering M as a module over R. In the next lemma, we might calculate H%(M) in the

category of graded right R-modules.

Lemma 3.7. Assume Hypotheses 3.2. Let d be the injective dimension of A. Suppose
g € Gy.
(1) Then the left action p, : A — A is a right R-module map such that it
decomposes into

-1

p p
py AL f,R I A (E3.7.1)

(2) Applying Hﬁ(—) to (£3.7.1), HE (pg) is the left action of p -1 on the module

m

Hf]l.‘ (A), which decomposes into

Hi(pg ) H{ (By)
HE (A) = HL(f,R) — HL(A).
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(3) Let lfg be the left multiplication of element f; on 4, then HZ (lfg) is the right
multiplication by f; on HZ (A).

(4) The composition

L
®:=pyo,op; AT A4 A (E3.7.2)

maps R, as a component of A (E1.3.6), to f,R = Rf; and other component of A
to zero. The restriction of the map ® on R with image ng is an isomorphism
of right R-modules.

(5) After applying HY (—) to (E3.7.2),

HY (@) = Hd(pgof op,) : HY (A) Hd(A) ue 4) 2 1 (4)

maps Hffi( ng) to Hgﬁ(R) and other component of Hffi(A) to zero where %, is
the right multiplication by f,.

6) HEL(fR) = {x € HL(A) | h-x = g(h)x} = ¢ ® frder-1g-1 R and HIR) = (x €
H%(A) |h-x=e(W)x} = ¢ ® fi 40,1 R-

7 frder ! =k~ f(hdet—1 fl)fg'

8)  Sfhdet! =k~ fhf(hflhderl) and degf} 40,1 > degfy, forall h € Gy,

(9 figer-! is @ normal element in A.

(100 Ag/(R.;) is Frobenius.

Proof. (1) In this case Ag = ng, which is free of rank one over R on both sides. Since
the left action of p, is a right R-module map, we obtain a right R-module decomposition
of the map p,.

(2) Note that H%(A) is an H-equivariant A-bimodule where the left H-action
comes from the natural right H-action on H%(A) [43, Lemma 3.2(a)]. By definition [43,
(E2.4.1)] for i = 0, HE m(Dg) is pg-1. The decomposition follows from (E3.7.1).

(3) Again this follows from [43, Lemma 3.2(a)] and its proof.

(4) This follows from the decomposition of A and Lemma 1.7(2).

(5) Note that HZ (A) is an H-equivariant A-bimodule. By the proof of [43, Lemma
3.2(a)l, Hﬁl(pl), Hﬁl(lfg), and Hﬁl(pg) are py, 1y, and Pg (by part (2)). The assertion

follows.
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(6) Note that g,hdet € G,, which is a finite group. By part (5), Hi(ng) is the

image of the idempotent p .. Hence,

HY (f,R) = [x cHL(A) |py1-x= x]
= {X € H%(A) |h-x=g Y (g)x; Vh e H}
= (k) ® thet_lg—1
= (]ke) ®fhdet_1g_1R'
This proves the 1st equation. The 2nd equation is a consequence by taking g = 1.

(7) By part (5), Hgl(d)), considered as a map from H%(ng) to Hﬁl(R), is the right
multiplication by f,. By part (6), this map agrees with

re, (ko) ® f(h get-1g-1) R = (ko) ® foder1 R-

Since Hﬁl(cb) is an isomorphism, we obtain that f(hdet_lg_l)ng = fhaer-1 R- Hence, the
assertion follows.
(8) The 1st assertion follows by taking g = h~'hdet™!. The 2nd assertion is clear.
(9) Every element in A is a linear combination of f,r for some g € Gy and r € R.
Then, by part (8),

Jhder1 (Fg") =1x Finger ! g hdety (hdet! g*1>fgr
=1x Sihdet1 g hdetyhdet17
=K (f (hdet~1g hdet)Phdet ! (’”)) Tnder -
The assertion follows.
(10) Let F := Ag/(R-). Then F = @geco kfy with multiplication satisfying part

(7) or (8). For every element x € F, write x = > ¢,f, with ¢, # 0. Pick g so that degf, is
smallest among all g such that ¢, # 0. Then

S (naer1g1)X = %97 (naer-1g-1) g =10 Fnaer1/

which implies that F is Frobenius. |
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Now we are ready to prove Theorems 0.2(3) and 0.6. Following (E2.11.1), we

define
Rl p) = {kag | g € Gy, degf, = 1}. (E3.7.3)

Theorem 3.8. Assume Hypotheses 3.2.

(1) jag @sm =kx @apg Japg- As a consequence, the discriminant §, z of the
H-action is defined.

(2) ay y divides ju 4.

(3) 9R(j, ) is a subset of both ERI(jA,H) and R’ (j4 7).

(4) Assuming the hypotheses of Theorem 0.5, then Rag) = {kag | fg e &}
where & is defined in (E2.11.1).

Proof. (1) By Lemma 3.7(9), j4 z = fLqet-! 1S @ normal element in A;. The assertions
follow from Lemma 3.4(2,4) by setting g = hdet™?.

(2) This is Lemma 3.7(7,8).

(3) This follows from Lemma 3.7(7,8).

(4) This is clear. u

Now we are to prove Theorems 0.2, 0.6 and 0.8.

Proof. of Theorem 0.2 (1,2) This is Corollary 2.5(1).
(3) This is Theorem 3.8(1). [ |

Theorem 0.6 is a consequence of Lemma 3.3(1) and Theorem 3.8(2). The next

theorem is Theorem 0.8.

Theorem 3.9. Assume Hypotheses 0.1. Suppose R is Auslander regular. Then A, is AS

Gorenstein and j, g =y« Ja,, ke 10 Ag-

Proof. By Hypotheses 0.1, A is a domain, and hence so is A.

Since R is AS regular, it is trivially AS Cohen-Macaulay in the sense of [27,
Definition 0.1]. Since A is a finitely generated free module over R, it also is AS Cohen-
Macaulay. Therefore, the hypotheses of [27, Theorem 6.1(1°)] hold, and the hypotheses
of [27, Theorem 6.1(3°)] hold because R is AS regular, see [27, Proposition 5.5]. By the
proof of [27, Proposition 5.7], using the fact that R is Auslander regular, we see that the
hypotheses of [27, Theorem 6.1(2°)] hold. Combining the facts that R is AS regular and
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A;/(Rs1) is Frobenius [Lemma 3.7(10)], we obtain that the Hilbert series of A satisfies
hy, () = £t™h, (7).

Now the 1st assertion follows from [27, Theorem 6.1].

For the 2nd assertion, note that B := A satisfies Hypotheses 3.2. It is clear that
B&O" = AH — R. Let fg be the generator of B, as defined in (E1.6.1). Then fj = f, for all
g € G. By Lemma 3.7(7), both f}/lderl and f} 4.1 (with different meanings of hdet™!) have
the highest degree among {f; | g € G} and {f; | g € G}. Thus,f}/ldet,1 = fhdet-1- This is

equivalent to j, ., kg = Ja,g bY definition. u

Next we prove Theorem 0.7. The discriminant has been an important tool in
number theory and algebraic geometry for many years. The discriminant of a reflection
group is a fundamental invariant of reflection group actions. Next we will compare the
H-discriminant in the noncommutative case [Definition 3.1(3)] to the noncommutative
discriminant over a central subalgebra, which was used in recent studies of automor-
phism groups and locally nilpotent derivations [8, 12, 13].

If I is an ideal of a commutative ring, let /T denote the prime radical ideal of I.

Theorem 3.10. Assume Hypotheses 0.1. Further, assume that
(a) chark =0,
(b) H= kG)*, and
(c) R := A is central in A.
Let dis(A/R) be the discriminant defined in [12, Definition 1.3(3)]. Then

(1) dlS(A/R) kX HggG(fg_lfg)-
(2)

(disA/R) = /(A gm) = [/Gam)

as ideals of R.

Proof. (1) Since A = @4f R, A can be embedded into the matrix algebra M,(R) by the
left multiplication, where r = |G|. For each g, the left multiplication by f, is

Ly, fo > fofin = cqpfgn for ey, € R (see ((E1.6.2))).
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If g # e, gh # g, then the regular trace of f; [12, Example 1.2(3)], denoted by ¢r(f,), is

zero. As a consequence, we have

0 gh # e,
tr(fgfh) = tr(cg,hfgh) = . (ESlOl)
Ch-1p =fh—1fh g=h".

By [12, Definition 1.3(3)], the discriminant dis(4/R) is the determinant of the matrix

rf)
( (o) GxG

Using (E3.10.1), every row (and every column) contains only one nonzero entry, namely,
Sfu-1fy,- Hence, we have

dis(A/R) =y [ | fu-rfa-

heG
(As an example, note that in Example 2.2(2)

[ [ i fi = GHFP @) (xyzy) (xzx2) (2yxy) (x2yxzy) = 2°x°y®.)
heG

(2) By Theorem 3.5, A, 5 is the principal ideal of R generated by d, ;. Hence,
Ay y = (84 ), and it remains to show that /(dis(A/R)) = /(8 o).

Since 8, gy = fiu-1fm, by part (1), 8,  divides dis(A/R). By the proof of Lemma
2.11, every f, divides f;, from the left and the right. Hence, there are a,b € A such
that af,f,b = f2. Since fg-1f4 is in the central subring R, we have f-.f,ab = f2. This
implies that f-.f, divides f;;, € R. (Note that f2 ¢ R in general) As a consequence,
dis(A/R) divides (f7,)". Finally (f},)" divides SZZ,H. Therefore,

J6am = Vdis@a/R) = [fp,
as desired. [ |

Theorem 0.7 is Theorem 3.10(2). Note that there are many examples where R is
not central in A, even when R is a commutative polynomial ring [Example 4.2]. Without

the hypothesis of H = (kG)*, it is easy to construct examples where

J@am) # ./ Gam,

see (E4.2.14).
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Remark 3.11. Suppose H is a semisimple Hopf algebra.

(1) Let G(K) be the group of all grouplike elements in K. In general, kG(K) is
NOT a normal Hopf subalgebra [35].

(2) One could ask if kG(K) is a normal Hopf subalgebra under Hypothesis 0.1.
This is related to Question 0.9.

(3) If kG(K) is a normal Hopf subalgebra, then there is a short exact sequence

of Hopf algebras
1> kGK)—>K—Ky;—1, (E3.11.1)

where K = K/(kG(K)),.. There is a dual short exact sequence

1 - Hy — H— (kGK))* — 1, (E3.11.2)

where Hy = (Ky)*. If we further assume Hypotheses 0.1, then A; = Af0 and

Question 0.9 has a positive answer under these extra hypotheses.

We end this section by providing some results that can be used to compute the

radical ideal of the H-action, particularly when A has dimension 2.

Definition 3.12. Let H be a semisimple Hopf algebra acting on A.
(1) If

A(f) = A1) = Zpecr) Pr ® Pr1 + X7,

where X, € I,,, ® I, see (E1.3.5), then H is called rife.
(2) Assume Hypotheses 0.1. We say the H-action is rife if

(a) H is rife.

(b) 4 g is normal in A.

(c) the radical ideal of the H-action v, y is generated by j, 5.

By Theorem 2.12(1), when H is (kG)*, then the H-action is rife. Otherwise, the

H-action may not be rife, even when H is rife [Example 4.2].

Lemma 3.13. Assume Hypotheses 0.1. If H is rife, then v, 5 is a subspace of Aj, .
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Proof. For each g € G(K), since H is rife, we have

(A# [)(A#pg) = (A#1) [ D pp-1A#pup, + X, - (A#py)
heG(K)

= (A#1)(Ag1#p,)
= AA 14D,

= Afg_1#pg.

If x € vy, then x#1 ¢ (A#H)(A# [)(A#H). Multiplying 1#p, from the right, x#p, €
(A#H)(A# [ )(A#p,). By computation,

(A#H)(A# [)(A#py) = (A# [)(A#p,) = Af, 1#p,,

which implies that x € Af, 1 forall g € G(K). Hence, x € (k) Afy, which is a subspace
of Aff qet-1 = AjA,H' ]

For every (left) ideal I in a noetherian algebra A, let I denote the largest ideal

containing I such that I/I is finite dimensional. The following lemma is well known.

Lemma 3.14. Let A be AS regular of global dimension 2. (So A is noetherian). Let I be a
nonzero graded two-sided ideal. If T = I, then I is a principal ideal generated by a normal

element. In particular, I is always a principal ideal generated by a normal element.

Proof. Sincel =1, A/I is m-torsionfree, so Hom(M) = 0, see definition in Section 1. By
Auslander-Buchsbaum formula [26, Theorem 3.2], the left A-module A/I has projective
dimension at most 1. Since A/I is not projective, it has projective dimension one.
Consequently, the left A-module I is projective. Since A is connected graded, I is free
(of rank one). Thus, I = Ax for some homogeneous element x € A. By symmetry, I = yA
for some homogeneous element y. Then Ax = yA implies that x =)« y. Thus, x is normal

and the assertion follows. [ |

We use Lemma 3.14 to make the following definitions in the case that A has

global dimension 2.

Definition 3.15. Assume Hypotheses 0.1. Further, assume that A has global dimension

2 and that the radical ideal of the H-action t, 5 is nonzero.
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(1) Any element that generates the principal ideal t, ; in A is called a principal
radical of the H-action on A, and is denoted by t, .
(2) Any element that generates the principal ideal A, ;; in R is called a principal

dis-radical of the H-action on A4, and is denoted by ZA'H.

Note that the principal radical t, ;; is always defined for any Hopf algebra
H acting on an AS regular algebra A of global dimension 2, while the principal dis-

radical ZA,H is defined only when, in addition, H is a reflection Hopf algebra.

4 Examples

When a Hopf algebra H acts on a noetherian AS regular algebra A, there is a list of impor-

tant invariants that can be studied. Starting from A, we can consider the following data:

(e) the Nakayama automorphism of A, denoted by w [Definition 1.2].
(o) the AS index of A, denoted by [ [Definition 1.1].
(e) the twisted superpotential associated to A [20, Definition 1] or [10, p.1502].

For H, since we assume that H is semisimple, it is Calabi-Yau with trivial Nakayama

automorphism. When H acts on A, we can consider the following:

(e) the pertinency p(A4, H) [Definition 2.8(3)].

(e) the pertinency ideal P(4, H) [Definition 2.8(1)].

(o) the radical ideal v, y [Definition 2.8(1)]. In global dimension 2 case, we can
ask for the principal radical t, g [Definition 3.15(1)].

(o) H-dis-radical ideal A4 g [Definition 3.1(4)]. In global dimension 2 case, we
can ask for the principal dis-radical ZA'H [Definition 3.15(2)].

(e) the homological determinant hdet of the H-action on A [31, Definition 3.3].

(e) the fusion rules for H, or the McKay quiver for representations of H.

When the fixed subring A" is AS Gorenstein (or AS regular), we can further consider the

following:

o) the Jacobian j, g [Definition 2.1(1)].
o) the reflection arrangement a, y [Definition 2.1(2)].
SRl(jAIH) and S)%l(aA,H), see (E0.9.1).

o) the discriminant §, 5 [Definition 3.1(3)].

(
(
(
(

There are several algebras associated to (4, H): the fixed subring A, the covariant ring

AV H the G-component Ag, A/(a, y) if a, g is normal, R/(8, ) when §, 4 is defined. If
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any of the these algebras is AS Gorenstein, we can compute the corresponding data in
the first two es.

First we compute the Jacobian when A = k_,[x,y] and H is a group algebra kG
for some finite group G. Let us recall some facts from [32]. We consider two different

kinds of automorphisms of k_,[x, y]. The 1st is of the form
0, X ax,y—y, or T, !X > X,y — ay. (E4.0.1)
and the 2nd one is of the form
Tio i XAV, ¥ — -1 1x. (E4.0.2)

Let o and 8 be two positive integers such that g is divisible by both 2 and «. Let M(2, «, 8)
be the subgroup of Aut,, (k_,[x, y]) generated by

{ogla® =1}U{ty 5, | Af =1}

(see [32] in discussion before [32, Lemma 5.3]). By [32, Lemma 5.3], if G is not generated
only by a single o, or 7, ,, in (E4.0.1) and (E4.0.2) and k_,[x,yI® is AS regular, then
G = M(2,«,B). As one example, the groups M(2,1,2¢) are the binary dihedral groups
of order 4¢ generated by 7, ,; and 7 5, for A a primitive 2¢th root of unity, that is, the

representation generated by the two mystic reflections:

o 1\ . 0 X
= an = .
7\ o) T L o

Lemma 4.1. Suppose that A = k[x, y] where 1 # g € k* and that H = kG for a finite
group G. Assume Hypotheses 0.1. Then one of the following holds.

(1) G = (o) x(r) =C, xC,, where o and t are of the form given in (E4.0.1) and

n-lym-1, A g =kx XY

of order n and m, respectively. In this case j, z =y« X

and
ml(jA,H) = ml(aA,H) =R (am) =N @y = {kx, ky}.

(2) g=-1and G=M(2,«,p) for ¢ > 2. Then

Y= xy(xP —yP) and jag = x* 7y lxP —yh).
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Further,
Ram) =R (o) =R @y ) =N (@, p) = (kx, ky} U (k(x + &y) | £# = 1).
(3) g=-1and G=M(2,1,p) (for) « = 1. Then
arg =lag= xF —yP).
Further,

Ram) =R (ap) =Ry =R (@, = kx+£p) | £ =1}

Proof. By [32, Theorem 1.1], G is generated by quasi-reflections in the sense of [32, p.
131]. When q # +1, Autgy,(A) = (k*)? and every quasi-reflection is a reflection in the
sense of [32, Definition 2.3(1)], namely, of the form in (E4.0.1). One can check easily from
this observation that G = C,, x C,,,. The statements in part (1) are easy to check now.

When g = —1, one extra possibility is that G is generated by mystic reflections
in the sense of [32, Definition 2.3(1)]. In this case, by [32, Lemma 5.3], G is the group
M(2,a,p), and A® is the commutative polynomial ring kix*y*, x# 4 y#] [32, Proposition
5.4].

(2) When o > 2 one can check directly that nonzero elements of the minimal

degree in Ay 4., and A, 4,1 are
ague =xy(x’ —yP) and e =x*""y & — ),
respectively. From this we obtain, after an easy calculation, that
Ria ke) = R (axe) = R @) = R (@4 xe) = (kx, ky) U (k(x +§p) | §# = 1).

The assertion follows.

(3) When « = 1, the computation is similar to the one in part (2). |

By Lemma 4.1(2,3), kM(2,«,8) is a true reflection Hopf algebra acting on
k_;[x,y] if and only if « = 1 or 2. When « = 1, M(2,1,8) is isomorphic to a binary

dihedral group. Note in this case that the number of mystic reflections is the degree
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of j, kg, also equals to |9f{l(jA’]kG)|. Further that the Jacobian (and hence the reflection
arrangement) is central, but AG is not central in A.

For the rest of this section we give an example where H is neither commutative
or cocommutative. This example is the smallest possible in terms of dimensions, H
having k-dimension 8 and A having global dimension 2. Even in this “small” example,
computations are still quite complicated, unfortunately. To save some space, some non-
essential details are omitted, especially toward the end of the example. Some additional

information concerning this example is given in [21] and [31, Example 7.4].

Example 4.2. Assume that char k = 0. Let H be the Kac-Palyutkin Hopf algebra Hg. By
[9, p. 341], H is self-dual and it has no nontrivial dual cocycle twist in the sense of [36,

39]. Recall that H is generated by x, y, z and subject to the following relations:

X2=y2=1, Xy = VX, ZX =Yz,

1
zy =xz, z° = S +x+y—xp).

The comultiplication of H is determined by

Alx) =x R X,
Aly) =y®vy,

1
A(z) = §(1®1+1®X+y®1—y®x)(z®z).

The group of grouplike elements in H is G(H) = {1,x,y,xy}, the Klein four-group. Let

k;[u, vl be the skew polynomial algebra generated by u, v and subject to the relation
vu = iuv, (E4.2.1)
where i? = —1. By [43, Example 5.5], the Nakayama automorphism of A is determined by
n:iur —iu, Vi iv
and, in dimension 2, the twisted superpotential is trivially the single relation, namely,

w=vu—iuv.
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By [31, Example 7.4], H acts on A := k;[u, v] inner faithfully with commutative (but not
central) regular fixed subring A¥ = k[u? + v?, u?v?]. Thus, Hypotheses 0.1 (and hence
Hypotheses 3.2) holds.

It is easy to check that AR.; # R.,A. So the H-action on A is not tepid, see
Definition 1.11(4). It is routine to check that the covariant algebra A" H := A/(Rs;) is
isomorphic to A/ (k(u?+v?)®A. 3), which has Hilbert series 1+2t+2t2. As a consequence,
AV H ig not Frobenius, which is different from the classical (commutative) case and the
case of the dual reflection groups in [33, Theorem 0.4].

Recall from [31, Example 7.4] that there is a unique 2D H-representation V =

ku & kv given by the assignment:

-1 0 1 0 0 1
X — , V= , Z— ,
0 1 0 -1 1 0
which uniquely determines the H-action on A = k;[u, v].
Our 1st goal is to calculate the Jacobian, the reflection arrangement, and the

discriminant of this H-action on A. Note that x 4+ y,xy, and 72 are all central in H.

Consider the central idempotents in H:
fi=Q+x+y+xy)/4, and f,=01-x—-y+xy)/4

It is easy to check that f;z? = z%f] = f; and f,z?> = z?f, = —f,. In addition we have the

following two idempotents in H that are not central:
fa=01-x+y—xy)/4, and f,=01+x-y—xy)/4

These idempotents satisfy fif; = 0 for all i # j. Using the above information, we define
the following central idempotents of H, which correspond to the group of grouplike

elements G(K)(= {1,9,9',99'}), where K is the dual Hopf algebra of H,

p=)=i+zf)/2=Q+x+y+xy+z+xz+yz+xyz)/8
pg=(fi—2f)/2=(0+x+y+xy—z—xz—yz—xyz)/8
pg =(fo+izfy)/2=(1—-x—y+xy+iz—ixz—iyz + ixyz)/8

Pgg = (f2—iz2f3)/2= (1 —x—y +xy — iz +ixz + iyz — ixyz)/8.
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2 2

Using the fact that zu? = v?, zv? = u?, z(uv) = —iuv, z(u®v) = iuv?, etc., we obtain

P1A = AH — R = Kk[u? + v?, u?v?
pgA = (u2 — VZ)R
pg/A = (uv)R

PggA = Wv +uv®)R = (uv(u® - v*))R.

As a consequence, we have the decomposition of A, into graded pieces (as in
Lemma 1.5(3))

Ag=pAGPA®D APy A=A2,

where A® is the 2nd Veronese subring of A. It is clear that (u? + v®)u = u(u?® — v?),
which is not in AR_ . Hence, R.;A # AR.,, and consequently, the H-action on A is not

tepid in the sense of Definition 1.11(4). By an easy calculation,
EM) = hy)(hg@) ™' = L+ (L + ¢+ 1% +1%),

which has degree 4. It follows from Corollary 2.5(2) then degj, y = 4. Hence,

jam =1 uv(u® —v?) (E4.2.2)
and
hdet™! = gg'. (E4.2.3)
Since hdet? = 1, we obtain that
g =g =1 uvu? —v? (E4.2.4)
and
Sa g =1« U VEU? —vH? = u*vi(u? + vH)? - 4u*v’l e R. (E4.2.5)

As a consequence of (E4.2.4), H is a true reflection Hopf algebra. Using the fact that
u? —v? = (u+ e%(Zni)V) ((u+ eg(zm)v) _ (u+ eg(zni)v) ((u+eg(2m)v)
and that u and v are normal, we can calculate

Ry ) = Riiam) = {ku, kv, k(u + e8@v), k(u + e5 @)} (E4.2.6)
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and
W@y ) =R (am) = {ku, kv, k(u + e5@™v), k(u + e8@™y)}. (E4.2.7)

Since ], i is not normal (easy to check), Aj, ; is not a 2-sided ideal. So vty g #
Aj, - By Lemma 3.13 (after verifying the hypotheses in Lemma 3.13), v, 5 is a subspace
of Ajg -

Our 2nd goal is to calculate the radical ideal of this H-action. Let
E = (1 —XY)/Z =1- (pl +pg +pg/ +pgg/),
a central idempotent of H so
H=kp, @ kp, ® kpy & kp,,, ® EH.
We have the relations:
Efs =f3, Efy=fo fifa=Ffifs =0, 2fs =fyz, 2fy =fiz.
Further,
, 1 1
faz = §(1 —x+y—xy)1+x+y—xy)= §(2—2X+2y—2Xy) =f3
and similarly
, 1 1
faz® = §(1 +x—-y—xy)Q1+x+y—xy) = §(2+2X—2y—2Xy) =fs
Hence, let m,, = f32f, = f3z = zf, and my, = f,2f; = 4z = zf;. Then

myymy, = (f32)(2f3) = foa2fs = fafa = fa,

My My, = (f22)(2fy) = fa,

and

m2, = (fy2fy)(fazfs) =0,
m%l = (fazf3) (fuzfs) = 0.
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So the subspace EH is isomorphic to 2 x 2-matrix, and for convenience, we write

m m m
EH%(J% 12):( 11 12)‘
my  fa My Moy

Next we find x; so that

ijYij

A(f) = A(pl) =D ®p1 +pg ®pg +pg’ ®pg/ +pgg/ ®pgg/

+ D my®x+ D y;@my

1<i,j<2 1<i,j<2

First compute

AN =A(A+x+y+xp)(1+2)/8) =A1+x+y+xy)A(l +2)/8

1
= g(1®1+x®x+y®y+xy<§z>xy)(1®1

ZQRQZ+ZQXZ+yZQRZ—yZQXZ
+ 2
1Q1+x3x+yQy +XxyQXy)

- 8

n 2ZQ®z+xz2Qxz2+yzQyzZ+ XyzZQ XyZ)
16

n ZQRxZ2+%xZ2Q2z+yZQXyZ+XyZQ yZ)
16

n YzQ@z+xyzQ@x2+2zQyzZ+ Xz Q XyZ)
16

_ YzQRxZ2+XyZQz+2ZQXyZ+XZQ yZ)
16

)

After some tedious computation, we obtain that

A(f) = A(pl) =p1 ®p1 +pg ®pg +pg/ ®pg/ +pgg’ ®pgg’

+ (3 ®f3) + (4 ®fy + (M, @ myy) + (My) @ Myy))/2.

Let L be the left ideal of A generated by elements w satisfying

W= Z bi(fs-ap) + Z dij(my; - ¢;) (E4.2.8)
t J
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0= bimy -a)+ > di(fy-c) (E4.2.9)
i J
for some a;, b;, ¢;, d; in A. Let L’ be the left ideal of A generated by elements w satisfying
w= Zbi(f4-ai)+2dj(m21 - Cj) (E4.2.10)
i J
0= bimy,-a)+ > di(fs-c) (E4.2.11)
i J

for some a;, b;, Cj, dJ- in A.

It follows from the definition of the radical ideal [Definition 2.8(2)] that we have
Lemma 4.3. Retain the above notation. The radical ideal is
(tH,A) = AJA,H ﬁ L ﬂ L/.

Proof. The main idea here is to do finer computations than ones in the proof of Lemma

3.13. To save space, details are omitted. [ |

As a consequence, one can calculate the radical ideal in this example:

tag=%an = Fap) (E4.2.12)
where
o g =px WUt — v =i ju g W +v7). (E4.2.13)
Further,
Apg=D0ap= (ii,H w® + V2)) = (SA,H W? + vz)) : (E4.2.14)

This is the end of the example.

Complex reflection groups are important in many areas of current research,
for example, in defining rational Cherednik algebras. In this paper we have presented
generalizations of the various invariants that are used in studying complex reflection
groups, their geometry, and their actions on polynomial rings (see, e.g., [11]). The tools
developed here, the Jacobian, the reflection arrangement, and the discriminant, as well
as the pertinency ideal, the radical of the H-action, the homological determinant, and

the Nakayama automorphism should further the understanding of Hopf actions on AS
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regular algebras. If there is ever a version of rational Cherednik algebras for Artin—

Schelter regular algebras, then one should understand better reflection Hopf algebras,

and whence, the invariants introduced in this paper.
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