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ABSTRACT

We study both Morita cancellative and skew cancellative properties of

noncommutative algebras as initiated recently in several papers and ex-

plore which classes of noncommutative algebras are Morita cancellative

(respectively, skew cancellative). Several new results concerning these two

types of cancellations, as well as the classical cancellation, are proved.
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0. Introduction

Let k denote a base field. A k-algebra A is said to be cancellative in the

category of k-algebras if any k-algebra isomorphism φ : A[x] ∼= B[x] (where B is

another k-algebra) implies that A is isomorphic to B as a k-algebra. Geometri-

cally, a k-variety V is called cancellative if any isomorphism V ×A1 ∼= W ×A1

for another k-variety W implies that V ∼= W . Cancellative properties have

been extensively investigated for commutative domains, especially for the com-

mutative polynomial rings, in the literature [AEH, Cr, CM, Fu, Ma1, MS, Ru].

Note that not every commutative domain is cancellative [Da, Fi, Ho]. In the

commutative case, we sometimes call this kind of question the “Zariski cancel-

lation problem”, as the cancellation problem of fields was first raised by Zariski

in 1949 [Se]. In the noncommutative case, the study of cancellative properties

dates back to the early 1970s [AEH, As, BR, CE, EH, EK]. Despite great suc-

cess achieved in the work of Gupta [Gu1, Gu2], the Zariski cancellation problem

still remains open for the commutative polynomial ring k[t1, . . . , tn] with n ≥ 3

in the characteristic zero case; see [Kr, Gu3] for a history of this open problem.

Recently, the study of cancellation problems has been revitalized for noncom-

mutative algebras thanks to [BZ1], which mainly employs the famous Makar-

Limanov invariants [Ma1, Ma2] and the noncommutative discriminants as in-

vestigated in [CPWZ1, CPWZ2]. It is usually very difficult to describe the dis-

criminant for a given algebra; fortunately, many useful results on discriminants

have been further established in [BY, CYZ1, CYZ2, GKM, GWY, NTY, WZ].

Ever since [BZ1], there has been much progress made in the study of cancella-

tion problems for noncommutative algebras [BZ2, CYZ1, Ga, LR, LY, LeWZ,

LuWZ, LMZ, Ta1, Ta2, TRZ]. In particular, the cancellative property was

established in [LeWZ] for many classes of algebras which are not necessarily

domains; and the Morita cancellation and derived cancellation were introduced

and studied for algebras in [LuWZ]. The cancellative properties for Poisson

algebras were most recently examined in [GaW].

The problem of skew cancellations was early considered in [AKP] and revisited

in recent papers [Be, BHHV]. One of the main motivations of this paper is

to introduce the multi-variable version of the skew cancellative property. In

particular, we study the following two closely related topics:

(1) Strong Morita cancellation as initiated in [LuWZ].

(2) Multi-variable version of the skew cancellation as initiated in [AKP, Be,

BHHV].
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Although we are mainly interested in the Morita cancellation as introduced in

[LuWZ], we also make some comments on the derived cancellation in Section 5.

Our ideas and methods are inspired by the ones in [AEH, BR, CE, BZ1, CYZ1,

CYZ2, LeWZ, LuWZ].

Before we state our results, we need to recall a list of basic definitions

about the Morita cancellation from [BZ1, LeWZ, LuWZ]. Later we will re-

call another list of definitions concerning the skew cancellation. We denote

by A[t1, . . . , tn] the polynomial extension of an algebra A with commuting

multi-variables t1, . . . , tn and by M(A) the category of all right A-modules.

All algebraic objects are defined over the base field k.

Definition 0.1: Let A be an algebra.

(1) We say A is strongly cancellative if any k-algebra isomorphism

A[s1, . . . , sn] ∼= B[t1, . . . , tn],

for any n ≥ 1 and any algebra B, implies that A is isomorphic to B as

a k-algebra.

(2) We say A is universally cancellative if, for every finitely generated

commutative domain R with an ideal I ⊂ R such that k −→ R −→ R/I

is an isomorphism and every algebra B, any k-algebra isomorphism

A⊗k R ∼= B ⊗k R

implies that A ∼= B as k-algebras.

Definition 0.2: Let A be an algebra.

(1) We say A is Morita cancellative if any equivalence of abelian cate-

gories

M(A[s]) ∼= M(B[t]),

for any algebra B, implies an equivalence of abelian categories

M(A) ∼= M(B).

(2) We sayA is strongly Morita cancellative if any equivalence of abelian

categories

M(A[s1, . . . , sn]) ∼= M(B[t1, . . . , tn]),

for any n ≥ 1 and any algebra B, implies an equivalence of abelian

categories

M(A) ∼= M(B).
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The above (strong) Morita cancellation of noncommutative algebras is a nat-

ural generalization of the classical cancellation in the category of commutative

algebras. The following universal version of the Morita cancellation is similar

to those in Definition 0.1.

Definition 0.3: Let A be an algebra. We say A is universally Morita can-

cellative if, for every finitely generated commutative domain R with an ideal

I ⊂ R such that k −→ R −→ R/I is an isomorphism and every algebra B, any

equivalence of abelian categories

M(A⊗k R) ∼= M(B ⊗k R)

implies an equivalence of abelian categories

M(A) ∼= M(B).

We refer the reader to [BZ1, LeWZ, LuWZ] and Section 1 for other basic

definitions. Now we can state our results about the Morita cancellation. The

first one is a Morita version of [BZ1, Proposition 1.3].

Theorem 0.4: Let A be an algebra with center being the base field k. Then A

is universally Morita cancellative.

The next result can be viewed as both a Morita version and a strengthened

version of a partial combination of [LeWZ, Theorem 4.1] with [LeWZ, Theo-

rem 4.2]. We denote the nilradical of an algebra A by N(A). The definition

of the strongly retractable property is given in Definition 1.1 (see also [LeWZ,

Definition 2.1]).

Theorem 0.5: Let A be an algebra with center Z such that either Z or Z/N(Z)

is strongly retractable (respectively, strongly detectable). Then A is strongly

cancellative and strongly Morita cancellative.

This theorem has several consequences. For example, by using Theorem

0.5 (and combining with Lemma 1.2(2)), the hypotheses of being “strongly

Hopfian” in [LuWZ, Theorem 0.3, Lemma 3.6, Theorem 4.2(2), Corollary 4.3,

Corollary 7.3] and [LeWZ, Theorem 0.2, Theorem 4.2] are superfluous. Next we

give an explicit application. Recall that a commutative algebra is called von

Neumann regular if it is reduced and has Krull dimension zero.
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Corollary 0.6: Let A be an algebra with center Z.

(1) If Z/N(Z) is generated by a set of units of Z/N(Z), then Z and A are

strongly cancellative and strongly Morita cancellative.

(2) If Z/N(Z) is a von Neumann regular algebra, then Z and A are strongly

cancellative and strongly Morita cancellative.

(3) If Z is a finite direct sum of local algebras, then Z and A are strongly

cancellative and strongly Morita cancellative.

Note that Corollary 0.6(2) answers [LeWZ, Question 0.1] positively. All state-

ments concerning the Morita cancellation in Corollary 0.6 are new. The above

corollary also has many applications in practice.

The second part of the paper deals with the skew cancellation which is another

natural generalization of the classical cancellation. Here we replace the poly-

nomial extensions by the Ore extensions. Let A be an algebra. Let σ be an

algebra automorphism of A and δ be a σ-derivation of A. Then one can form the

Ore extension, denoted by A[t;σ, δ], which shares many nice properties with the

polynomial extension A[t]. The reader is referred to [MR, Chapter 1] for more

details. We say σ is locally algebraic if every finite dimensional subspace of A

is contained in a σ-stable finite-dimensional subspace of A. It is obvious that the

identity map is locally algebraic. An iterated Ore extension of A is of the form

A[t1;σ1, δ1][t2;σ2, δ] · · · [tn;σn, δn]

where σi is an algebra automorphism of

Ai−1 := A[t1;σ1, δ1] · · · [ti−1;σi−1, δi−1]

and δi is a σi-derivation of Ai−1.

Definition 0.7: Let A be an algebra.

(1) We say A is skew cancellative if any isomorphism of algebras

A[t;σ, δ] ∼= A′[t′;σ′, δ′]

for another algebra A′, implies an isomorphism of algebras

A ∼= A′.

(2) We sayA is strongly skew cancellative if any isomorphism of algebras

A[t1;σ1, δ1] · · · [tn;σn, δn] ∼= A′[t′1;σ
′
1, δ

′
1] · · · [t′n;σ′

n, δ
′
n]

for any n ≥ 1 and any algebra A′, implies an isomorphism of algebras

A ∼= A′.
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Occasionally, we will restrict our attention to special types of Ore extensions

and/or special classes of base algebras. For example, we make the following

definition.

Definition 0.8: Let A be an algebra.

(1) We say A is σ-cancellative if in Definition 0.7(1), only Ore exten-

sions with δ = 0 and δ′ = 0 are considered. We say A is strongly

σ-cancellative if in Definition 0.7(2), only Ore extensions with δi = 0

and δ′i = 0, for all i, are considered.

(2) We say A is δ-cancellative if in Definition 0.7(1), only Ore extensions

with σ = IdA and σ′ = IdA′ are considered. We say A is strongly

δ-cancellative if in Definition 0.7(2), only Ore extensions with σi = Id

and σ′
i = Id, for all i, are considered.

(3) We say A is σ-algebraically cancellative if in Definition 0.7(1), only

Ore extensions with locally algebraic σ and σ′ are considered. We say A

is strongly σ-algebraically cancellative if in Definition 0.7(2), only

Ore extensions with locally algebraic σi and σ′
i are considered.

A classical cancellation problem is equivalent to a skew cancellation prob-

lem with (σ, δ) = (Id, 0). Therefore, the skew (or σ-, or δ-)cancellation is a

natural extension and a strictly stronger version of the classical cancellation.

It follows from the definition that the σ-algebraically cancellative property is

stronger than the δ-cancellative property. See Figure 1 after Example 5.5. The

δ-cancellation was first considered in [AKP], and then in [Be]. In [BHHV,

Theorem 1.2], a very nice result concerning both σ- and δ-cancellations was

proved, however, the skew cancellative property remains open. As remarked

in [BHHV], “[it] would be interesting to give a ‘unification’ of the two results

occurring in [BHHV, Theorem 1.2] and prove that skew cancellation holds for

general skew polynomial extensions, although this appears to be considerably

more subtle than the cases we consider.” One of our main goals in the second

half of the paper is to introduce a unified approach to the skew cancellation

problem (including both σ- and δ-cancellation).

To state our main results, we need to recall the definition of a divisor subal-

gebra as introduced in [CYZ1]. Let A be a domain. Let F be a subset of A.

Let Sw(F ) denote the set of g ∈ A such that f = agb for some a, b ∈ A and

0 �= f ∈ F . That is, Sw(F ) consists of all the subwords of the elements in F .

We set D0(F ) = F and inductively define Dn(F ) for n ≥ 1 as the k-subalgebra
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of A generated by Sw(Dn−1(F )). The subalgebra

D(F ) =
⋃

n≥0

Dn(F )

is called the divisor subalgebra of A generated by F . If F is the singleton {f},
we simply write D({f}) as D(f). See Section 5 for more details.

Theorem 0.9: Let A be an affine domain of finite GK dimension. Suppose

that D(1) = A. Then A is strongly σ-algebraically cancellative. As a conse-

quence, it is strongly δ-cancellative.

To prove several classes of algebras are skew cancellative, we need to use a

structure result of division algebras. Recall from [Sc] that a simple artinian

ring S is stratiform over k if there is a chain of simple artinian rings

S = Sn ⊇ Sn−1 ⊇ · · · ⊇ S1 ⊇ S0 = k

where, for every i, either

(i) Si+1 is finite over Si on both sides; or

(ii) Si+1 is equal to the quotient ring of the Ore extension Si[ti;σi, δi] for

an automorphism σi of Si and σi-derivation δi of Si.

Such a chain of simple artinian rings is called a stratification of S. The strati-

form length of S is the number of steps in the chain that are of type (ii). An

important fact established in [Sc] is that the stratiform length is an invariant

of S. A Goldie prime ring A is called stratiform if the quotient division ring

of A, denoted by Q(A), is stratiform.

Theorem 0.10: Let A be a noetherian domain that is stratiform. Suppose

that D(1) = A. Then A is strongly skew cancellative in the category of noe-

therian stratiform domains.

The following algebras are stratiform with D(1) = A. As a result, they are

skew cancellative.

(a) Quantum torus or quantum Laurent polynomial algebras given in Ex-

ample 4.3(5),

(b) Localized quantum Weyl algebras Bq
1(k) in Example 4.3(2).

(c) Affine commutative domain A of GK dimension one satisfying A× � k×

[Lemma 4.4(9)].
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(d) Any noetherian domain that can be written as a finite tensor product

(resp. some version of a twisted tensor product) of the algebras in parts

(a,b,c).

We further prove a few results concerning the strong cancellation, the strong

Morita cancellation, and the skew cancellation of noncommutative algebras; see

Theorems 4.6 and 5.4, and Proposition 5.8.

The paper is organized as follows. Section 1 reviews some basic materials. In

Section 2 we recall some basic properties about the Gelfand–Kirillov dimension

and homological transcendence degree of noncommutative algebras. Section 3

concerns the Morita cancellative property where Theorem 0.5 and Corollary 0.6

are proven. Then we review the definition of a divisor subalgebra and study

the skew cancellative property in Section 4. We also prove our main results,

namely, Theorems 0.9 and 0.10, in Section 4. The final section contains some

comments, examples, remarks and questions.

1. Preliminaries

Throughout k denotes a base field. All algebras are k-algebras and all alge-

bra homomorphisms are k-linear algebra homomorphisms. As needed, we will

continue to use the notation and convention introduced in [BZ1, LeWZ, LuWZ].

We only recall a small selected set of definitions.

Definition 1.1 ([LeWZ, Definition 2.1]): Let A be an algebra.

(1) We say A is retractable if, for any algebra B, any algebra isomorphism

φ : A[s] ∼= B[t]

implies that φ(A) = B.

(2) [AEH, p. 311] We say A is strongly retractable if, for any algebra B

and integer n ≥ 1, any algebra isomorphism

φ : A[s1, . . . , sn] ∼= B[t1, . . . , tn]

implies that φ(A) = B.

The following lemma of Brewer–Rutter [BR] is useful. Suppose A is a subring

of a ring B and f1, . . . , fn are elements in B, then the subring generated by A

and f1, . . . , fn is denoted by A{f1, . . . , fn}.
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Lemma 1.2 ([BR, Lemma 1]): Let A be an algebra with center Z.

(1) If f1, . . . , fn are Z-generators of the polynomial ring Z[Y1, . . . , Yn], then

the A-endomorphism τ of A[Y1, . . . , Yn] defined by τ(Yi) = fi for each

1 ≤ i ≤ n is an isomorphism.

(2) As a special case, if A is commutative, and if f1, . . . , fn are A-generators

of the polynomial ringA[Y1, . . . , Yn], then A{f1, . . . , fn} = A[f1, . . . , fn].

For any algebra A, let Z(A) or simply Z denote the center of A and let N(A)

denote the nilpotent radical of A. Suppose two algebras R and S are Morita

equivalent. Let

(E1.2.1) ω : Z(R) → Z(S)

be the isomorphism of the centers given in [LuWZ, Lemma 1.2(3)]. Note that

we can use all facts listed in [LuWZ, Lemma 1.2(3)].

In the following two definitions, we have the following abbreviations.

S =strongly, M =Morita, and R =reduced.

Definition 1.3: Let A be an algebra.

(1) We say A is Morita Z-detectable or simply MZ-detectable if, for

any algebra B and any equivalence of abelian categories

E : M(A[s]) −→ M(B[t]),

with the induced isomorphism, see (E1.2.1),

ω : Z(A[s])(= Z(A)[s]) −→ Z(B[t])(= Z(B)[t])

implies that

Z(B)[t] = Z(B){ω(s)}.
By Lemma 1.2, we actually have that

Z(B)[t] = Z(B)[ω(s)].

(2) We say A is strongly Morita Z-detectable or simply SMZ-de-

tectable if, for each n ≥ 1 and any algebra B, any equivalence of

abelian categories

E : M(A[s1, . . . , sn]) −→ M(B[t1, . . . , tn])
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implies that, with ω given in (E1.2.1) for algebras R = A[s1, . . . , sn]

and S = B[t1, . . . , tn],

Z(B)[t1, . . . , tn] = Z(B){ω(s1), . . . , ω(sn)}.
Once again, by Lemma 1.2, we actually have that

Z(B)[t1, . . . , tn] = Z(B)[ω(s1), . . . , ω(sn)].

In the next definition, ω is given as in (E1.2.1) for appropriate R and S and ω

is an induced isomorphism in appropriate setting.

Definition 1.4: Let A be an algebra.

(1) We say A is reduced Morita Z-detectable or RMZ-detectable if,

for any algebra B, any equivalence of abelian categories

E : M(A[s]) −→ M(B[t])

with the induced isomorphism (modulo prime radicals)

ω : Z(A)/N(Z(A))[s] −→ Z(B)/N(Z(B))[t]

implies that

Z(B)/N(Z(B))[t] = Z(B)/N(Z(B))[ω(s)].

(2) We say A is strongly reduced Morita Z-detectable or simply

SRMZ-detectable if, for each n ≥ 1 and any algebra B, any equiva-

lence of abelian categories

E : M(A[s1, . . . , sn]) −→ M(B[t1, . . . , tn])

implies that

Z(B)/N(Z(B))[t1, . . . , tn] = Z(B)/N(Z(B))[ω(s1), . . . , ω(sn)].

Several retractabilities are defined in [LeWZ, LuWZ]. It has been observed in

[BR, LeWZ, LuWZ] that the cancellative property of an algebra A is controlled

by its center Z(A) to a large degree. In the rest of this section, we establish

or recall some basic facts. In Section 2, we will show that there is a Morita

analogue of [BR, Theorem 1] and [LeWZ, Theorem 4.2] can be strengthened.

The following result is essentially verified in the proof of [BR, Theorem 1],

see [BR, pp. 485–486], and in the proof of [EK, Statement #4, pp. 334–335].

For the reader’s convenience, we recall it as a lemma and reproduce its proof

as follows.



Vol. 244, 2021 CANCELLATION OF MORITA AND SKEW TYPES 477

Lemma 1.5 ([BR, Theorem 1]): Suppose that A and B are commutative alge-

bras. Let

σ : A[s1, . . . , sn] −→ B[t1, . . . , tn]

be an isomorphism of algebras such that the induced isomorphism modulo prime

radicals, denoted by

σ : A/N(A)[s1, . . . , sn] −→ B/N(B)[t1, . . . , tn],

has the property that

B/N(B)[t1, . . . , tn] = B/N(B){f1, . . . , fn}
where fi = σ(si) for i = 1, . . . , n. Then

B[t1, . . . , tn] = B{f1, . . . , fn} = B[f1, . . . , fn]

where f1, . . . , fn are considered as commutative indeterminates over B.

In essence, Lemma 1.5 implies that a certain detectability lifts from A/N(A)

to A.

Proof of Lemma 1.5. Since B/N(B))[t1, . . . , tn] = B/N(B){f1, . . . , fn}, there
are polynomials in B, say g1, . . . , gn, such that

ti = gi(f1, . . . , fn).

As a result, for i = 1, . . . , n, we have the following:

ti = gi(f1, . . . , fn) + hi(t1, . . . , tn)

where hi ∈ N(B[t1, . . . , tn]) = N(B)[t1, . . . , tn]. Denote by N0 the ideal of B

generated by the coefficients of h1, . . . , hn. Then, by induction, we have that

B[t1, . . . , tn] = B{f1, . . . , fn}+Nm
0 B[t1, . . . , tn]

for each m ≥ 1. Since N0 is a finitely generated ideal of B and N0 is contained

in N(B), the prime radical of B, we have that N0 is nilpotent. As a result, we

have that

B[t1, . . . , tn] = B{f1, . . . , fn}.
Using Lemma 1.2(2), we conclude that

B[t1, . . . , tn] = B[f1, . . . , fn]

where the elements f1, . . . , fn are regarded as commutative indeterminates

over B.
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We now state a couple of easy facts about detectability.

Lemma 1.6: Let Z be the center of an algebra A.

(1) If Z is strongly retractable, then A is strongly Morita Z-retractable,

and consequently, SMZ-detectable.

(2) Suppose that Z/N(Z) is strongly retractable. Then A is strongly re-

duced Morita Z-retractable. As a consequence, A is SMZ-detectable.

Proof. (1) The first assertion follows from [LeWZ, Definition 2.6(4)]. For the

second assertion, see the proof of [LeWZ, Lemma 3.4].

(2) The first statement is part (1). By part (1), A is strongly reduced

Morita detectable. By Lemma 1.5, A is strongly Morita Z-detectable, or SMZ-

detectable.

Lemma 1.7: Let Z be the center of an algebra A.

(1) Suppose that A is either strongly Morita Z-retractable or strongly re-

duced Morita Z-retractable. Then A is SMZ-detectable.

(2) [As, Theorem 1.2] If A is reduced, then A is SMZ-detectable if and only

if A is strongly Morita Z-retractable.

Proof. (1) It follows from Lemma 1.6.

(2) If A is strongly Morita Z-retractable, by the proof of [LeWZ, Lemma 3.4],

A is SMZ-detectable. The converse statement follows from the proof of [As,

Theorem 1.2] which we repeat next.

Suppose B is another algebra such that

E : M(A[s1, . . . , sn]) −→ M(B[t1, . . . , tn])

is an equivalence of abelian categories. Let

ω : Z(A)[s1, . . . , sn] −→ Z(B)[t1, . . . , tn]

be the corresponding induced isomorphism given in (E1.2.1). Denote by fi the

element ω(si) ∈ Z(B)[t1, . . . , tn] for i = 1, . . . , n. Since A is SMZ-detectable,

by definition,

Z(B)[t1, . . . , tn] = Z(B)[f1, . . . , fn].

As a consequence, we have that

ω(Z(A))[f1, . . . , fn]=ω(Z(A)[s1, . . . , sn])=Z(B)[t1, . . . , tn]=Z(B)[f1, . . . , fn].
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Now we need to show that ω(Z(A)) = Z(B). To simplify the notation, we will

denote ω(Z(A)) by R and Z(B) by S respectively, and fi by Xi instead. Set

Sk = S[X1, . . . , Xk−1, Xk+1, . . . , Xn]

for k = 1, . . . , n. Then S[X1, . . . , Xn] = Sk[Xk] is a polynomial algebra in a

single indeterminate Xk over Sk. Note that any element α of R = ω(Z(A)) can

be written in the following form:

α = β0 + β1Xk + · · ·+ βmXm
k

where βi ∈ Sk. Suppose that f(Xk) = γ0 + γ1Xk + · · · γlX l
k is a polynomial

in Sk[Xk] such that Sk[Xk] = Sk[f(Xk)]. Then it is true that γ1 is a unit

and γ2, . . . , γl are nilpotent elements of Sk. Since A is reduced, its center Z(A)

is reduced. Then R = ω(Z(A)) is reduced as well. As a result, S = Z(B) is

reduced. Thus, Sk is reduced too. We have that γ2 = · · · = γl = 0. Note that

R[X1, . . . , Xn] = R[X1, . . . , Xk−1, Xk + α,Xk+1, . . . , Xn]

= R[X1, . . . , Xk−1, Xk + α2, Xk+1, . . . , Xn].

As a result, we have that

Sk[Xk] = Sk[Xk + α] = Sk[Xk + α2]

which implies that β1, . . . , βm are nilpotent elements of Sk and thus equal to zero.

So we have that α∈Sk for k=1, . . . , n. Note that
⋂n

k=1Sk=S. So we have proved

that α ∈ S as desired. Note that R ⊆ S and R[X1, . . . , Xn] = S[X1, . . . , Xn]

can imply that R = S by [BR, Lemma 2].

Lemma 1.8: An algebra A is SMZ-detectable if and only if it is SRMZ-de-

tectable.

Proof. Suppose that the algebra A is SMZ-detectable and let

E : M(A[s1, . . . , sn]) −→ M(B[t1, . . . , tn])

be an equivalence of abelian categories where B is another algebra. Note that

the equivalence E induces an algebra isomorphism

ω : Z(A)[s1, . . . , sn] −→ Z(B)[t1, . . . , tn],

as in (E1.2.1). Since A is SMZ-detectable, we have that

Z(B)[t1, . . . , tn] = Z(B)[f1, . . . , fn]
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where fi = ω(si) for i = 1, . . . , n. Modulo both sides by the nil-radical, we

obtain that

Z(B)/N(Z(B))[t1, . . . , tn] = Z(B)/N(Z(B))[f1, . . . , fn].

By definition, A is SRMZ-detectable. The other implication follows from the

reversed argument and Lemma 1.5.

However, there exists a commutative algebra which is SRMZ-retractable, but

not SMZ-retractable. The following example is borrowed from [As, Example 1]:

see also [LeWZ, Example 3.3].

Example 1.9: Let A = k[x, y]/(x2, y2, xy). Then A is SRMZ-retractable. Fur-

thermore, it is SMZ-detectable and SRMZ-detectable, but neither strongly re-

tractable nor SMZ-retractable.

2. GK dimension and Homological transcendence degree

2.1. GK dimension. Let A be an algebra over k. The Gelfand–Kirillov

dimension (or GK dimension for short) of A is defined to be

GKdimA := sup
V

lim sup
n→∞

(logn(dimk V
n))

where V runs over all finite-dimensional subspaces of A. We refer the reader

to [KL] for more details. Next we prove or review some preliminary results

concerning the GK dimension of Ore extensions.

Let σ be an automorphism of A. Recall that σ is called locally alge-

braic if every finite-dimensional subspace of A is contained in a σ-stable finite-

dimensional subspace of A. If A is affine, then σ is locally algebraic if and only

if there is a σ-stable finite-dimensional generating subspace.

Lemma 2.1: Let A be an affine algebra over k.

(1) Let B := A[t;σ, δ] be an Ore extension of A. If σ is locally algebraic,

then GKdimB = GKdimA+ 1.

(2) Let B be an iterated Ore extension A[t1;σ1, δ1] · · · [tn;σn, δn] where

each σi is locally algebraic. Then GKdimB = GKdimA+ n.

(3) Let B be an iterated Ore extension A[t1; δ1] · · · [tn; δn]. Then

GKdimB = GKdimA+ n.



Vol. 244, 2021 CANCELLATION OF MORITA AND SKEW TYPES 481

Proof. (1) We may assume that 1 ∈ V . Let W be any finite-dimensional gen-

erating subspace of A with 1 ∈ W . Since V generates A, W ⊆ V n for some n.

Without loss of generality, we can assume thatW = V . Since V generates A, we

have δ(V ) ⊆ V m for some m. Now the assertion follows from [Zh, Lemma 4.1].

(2) This follows from induction and part (1).

(3) This is a special case of part (2) by setting σi to be the identity.

The reader is referred to [KL, p. 64] for the definition of a filtered algebra.

The following lemma is similar to [BZ1, Lemma 3.2].

Lemma 2.2: Let Y be a filtered algebra with an N-filtration {FiY }i≥0. Assume

that the associated graded algebra grY is an N-graded domain. Suppose Z is

a subalgebra of Y and let Z0 = Z ∩ F0Y . If

GKdimZ = GKdimZ0 < ∞,

then

Z = Z0.

Proof. Suppose Z strictly contains the subalgebra Z0. There is a natural fil-

tration on Z induced from Y by taking FiZ := Z ∩ FiY . As a result, grZ is a

subalgebra of grY . By [KL, Lemma 6.5],

GKdimZ ≥ GKdimgrZ ≥ GKdimF0Z = GKdimZ0 = GKdimZ.

Since grZ is anN-graded subalgebra of grY that strictly contains Z0=F0Z, there

is an element a∈grZ of positive degree. Considering the grading, we see that

Z0 + Z0a+ Z0a
2 + · · ·

is a direct sum contained in grZ. As a result, we obtain that

GKdimgrZ ≥ GKdim(grZ)0 + 1 = GKdimZ0 + 1,

which yields a contradiction. Therefore Z = Z0.

The above lemma has an immediate consequence.

Proposition 2.3: Let Y be an iterated Ore extensionA[t1;σ1, δ1] · · · [tn;σn, δn]

of a domain A. Let B be a subalgebra of Y containing A. If

GKdimA = GKdimB < ∞,

then

A = B.
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Proof. Let m ≤ n be the minimal integer such that

B ⊆ A[t1;σ1, δ1] · · · [tm;σm, δm].

It remains to show that m = 0. Suppose on the contrary that m ≥ 1. Let

Y =A[t1;σ1, δ1] · · · [tm;σm, δm]

and

Y0 =A[t1;σ1, δ1] · · · [tm−1;σm−1, δm−1].

Define an N-filtration on Y by

FiY =

i∑

s=0

Y0t
s
m.

Let Z = B and Z0 = Z ∩ Y0. By the choice of m, we have Z �= Z0. By the

hypothesis on the GK dimension, we have

GKdimZ0 ≥ GKdimA = GKdimB = GKdimZ ≥ GKdimZ0.

By Lemma 2.2, we have Z = Z0, a contradiction. Therefore the assertion

follows.

2.2. Homological transcendence degree. Another useful invariant is the

Homological transcendence degree introduced in [YZ]. Recall from [YZ, Defini-

tion 1.1] that theHomological transcendence degree of a division algebraD

is defined to be

HtrD := injdimD ⊗Dop

where Dop is the opposite algebra of D. One result of [YZ, Proposition 1.8] is

that HtrD = n if D is a stratiform division algebra of stratiform length n. We

say A is stratiform if A is Goldie prime and the ring of its fractions, denoted

by Q(A), is stratiform. As an immediate consequence, we have

Lemma 2.4: Let A be a noetherian domain that is stratiform. If B is an n-step

iterated Ore extension of A, then

HtrQ(B) = HtrQ(A) + n.

There is a variety of examples which are stratiform algebras; and the following

are some typical examples (details are omitted).
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Example 2.5: The following algebras are stratiform.

(1) Affine commutative domains.

(2) PI prime algebras that are finitely generated over their affine centers.

(3) Skew polynomial algebras and their localizations [YZ, Example 1.9(g)].

(4) Quantum Weyl algebras as defined next or their localizations. Let q �= 0

be a scalar in k. Let Aq
1(k) denote the first quantumWeyl algebra, which

is a k-algebra generated by x, y subject to the relation xy − qyx = 1.

(5) Prime algebras that can be written as a tensor product of algebras listed

as above.

Here is a version of Proposition 2.3 with the GK dimension replaced by the

Homological transcendence degree.

Proposition 2.6: Let A be a noetherian stratiform domain. Let Y be an

iterated Ore extension A[t1;σ1, δ1] · · · [tn;σn, δn]. Let B be a subalgebra of Y

containing A such that it is stratiform. If

HtrQ(A) = HtrQ(B),

then

A = B.

Proof. Suppose on the contrary that A �= B. By the proof of Lemma 2.2,

there is an element a ∈ B such that Q(A) + Q(A)a + Q(A)a2 + · · · is a di-

rect sum. This implies that dimQ(A) Q(B) is infinite. Note that Q(B) is

a (Q(A), Q(B))-bimodule that is finitely generated as a right Q(B)-module.

Since Q(A) and Q(B) have the same stratiform length by [YZ, Proposition

1.8], Q(B) is finitely generated as left Q(A)-module by [Sc, Theorem 24].

This contradicts the fact that dimQ(A) Q(B) is infinite. Therefore, we have

that A = B.

3. Morita cancellation

This section concerns Morita cancellative properties. We also prove some of

the results stated in the introduction. The first result, namely, Theorem 0.4, is

about universally Morita cancellation whose proof is essentially adopted from

[BZ1]. Let GKdimA denote the Gelfand–Kirillov dimension of an algebra A.

We refer the reader to [KL] and Section 2 for the basic definitions and properties

of Gelfand–Kirillov dimension.
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Proof of Theorem 0.4. Let B be another algebra. Let R be an affine commuta-

tive domain with an ideal I ⊂ R such that R/I = k. Suppose that

E : M(A⊗k R) −→ M(B ⊗k R)

is an equivalence of abelian categories. By (E1.2.1), E induces an isomorphism

ω : Z(A⊗k R) ∼= Z(B ⊗k R)

between the centers. Since Z(A) = k, we obtain that

R = Z(A)⊗k R = Z(A⊗k R) ∼= Z(B ⊗k R) = Z(B)⊗k R.

As a result, we have that R ∼= Z(B) ⊗k R. In particular, Z(B) is a com-

mutative domain. Due to a consideration of the GK dimension, we see that

GKdimZ(B) = 0, regarded as a k-algebra. Thus Z(B) is indeed a field.

We have that Z(B) = k due to the fact that there is an ideal I ⊂ R such

that R/I = k. Consequently, we have that Z(B ⊗k R) = R. As a re-

sult, ω is an isomorphism from R−→R which implies that R/ω(I)= k. Note

that A∼=(A⊗kR)/I is Morita equivalent to (B⊗kR)/(ω(I))∼=B [LuWZ, Lemma

2.1(5)]. Thus, we have proved that A is universally Morita cancellative.

The following result is a re-statement of Theorem 0.5. It is an analogue

of [BR, Theorem 1] and serves as an improvement of [LeWZ, Theorem 4.2].

Note that our result does not require the strongly Hopfian assumption. We

should mention that [BR, Theorem 1] deals with the cancellation problem in

the category of rings; but the idea of its proof carries over word for word for

k-algebras.

Theorem 3.1: Let A be an algebra with center Z. Suppose either

(1) Z or Z/N(Z) is strongly retractable, or

(2) Z or Z/N(Z) is strongly detectable.

Then Z and A are strongly cancellative and strongly Morita cancellative.

Proof. For the assertions concern Z, it suffices to take A = Z. So it is enough to

prove the assertions for A. We only prove that A is strongly Morita cancellative.

The proof of strongly cancellative property is similar, and therefore is omitted.

Under the hypothesis of (1), by Lemma 1.6, A is SMZ-detectable. If Z is

strongly detectable (part of the hypothesis in (2)), it is clear that A is SMZ-

detectable. If Z/N(Z) is strongly detectable, by Lemma 1.5, Z is strongly

detectable. Therefore in all cases, we conclude that A is SMZ-detectable.
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Let

E : M(A[s1, . . . , sn]) −→ M(B[t1, . . . , tn])

be an equivalence of abelian categories. Then E induces an algebra isomorphism

(E1.2.1) that is, in the current setting,

ω : Z(A)[s1, . . . , sn]
∼=−−→ Z(B)[t1, . . . , tn].

Since A is SMZ-detectable,

Z(B)[t1, . . . , tn] = Z(B)[f1, . . . , fn]

where fi = ω(si) for i = 1, . . . , n. Let I be the ideal of A[s1, . . . , sn] generated

by s1, . . . , sn. Then ω(I) = B[t1, . . . , tn](f1, . . . , fn) = B[f1, . . . , fn](f1, . . . , fn).

As a result, we have that A ∼= A[s1, . . . , sn]/(A[s1, . . . , sn]I) which is Morita

equivalent to B[f1, . . . , fn]/(B[f1, . . . , fn]ω(I)) ∼= B. That is, A is Morita equiv-

alent to B. Therefore, B is strongly Morita cancellative.

Next we mention some easy consequences.

Corollary 3.2: Let A be an algebra with a center Z. Suppose one of the

following holds:

(1) Either Z or Z/N(Z) is an integral domain of transcendence degree one

over a subfield of Z and is not isomorphic to k′[x] for any field extension

k ⊆ k′ ⊆ Z.

(2) Z is an integral domain with nonzero Jacobson radical.

Then Z or Z/N(Z) is strongly retractable. As a consequence, A is strongly

cancellative and strongly Morita cancellative.

Proof. The consequence follows from Theorem 3.1. It remains to show that Z

or Z/N(Z) is strongly retractable.

(1) This is [LeWZ, Example 2.2].

(2) It follows from [AEH, Statement 1.10 on page 317].

Now we prove Corollary 0.6 below.

Proof of Corollary 0.6. (1) It follows from the proof of [LeWZ, Lemma 2.3]

that Z is strongly retractable. The assertion follows from Theorem 3.1.

(2) By [BR, Theorem 2], a von Neumann regular algebra Z/N(Z) is strongly

retractable. The assertion follows from Theorem 3.1.

(3) By [BR, Theorem 3], Z is strongly retractable. The assertion follows from

Theorem 3.1.
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Remark 3.3: Theorem 3.1 and Corollary 0.6 have many applications. Here is a

partial list.

(1) In view of Corollary 0.6(2), if A is von Neumann regular, then the

center Z will also be von Neumann regular. By Corollary 0.6(2), A is

strongly cancellative and strongly Morita cancellative.

(2) If Z is of Krull dimension zero, then Z/N(Z) is von Neumann regular.

By Corollary 0.6(2) again, A is strongly cancellative and strongly Morita

cancellative.

(3) If A is a finite direct product of simple algebras, then Z is a finite product

of fields. Thus Z has Krull dimension zero. By the above comment, A

is strongly cancellative and strongly Morita cancellative.

(4) By the proof of [LeWZ, Lemma 2.3] or [AEH, Statement 2.1, p. 320], the

Laurent polynomial algebra k[x±1
1 , . . . , x±

m] is strongly retractable. If Z

or Z/N(Z) is isomorphic to the Laurent polynomial algebra, then A is

strongly cancellative and strongly Morita cancellative by Theorem 3.1.

We will explore some skew cancellative properties [Definitions 0.7 and 0.8]

when the algebra A has “enough” invertible elements in Section 4.

4. Divisor subalgebras and skew cancellations

Recall from [BZ1, LeWZ, LuWZ] that the (strong) retractability implies the

(strong) cancellation. It is clear that the (strong) retractability implies the

(strong) Z-retractability, which in turn implies (strong) Morita cancellation,

also see Section 3 and Theorem 0.5. In this section we continue our investigation

on the (strong) retractability with a twist.

As asked in [LeWZ], one would like to know how localizations affect can-

cellative properties. Indeed, cancellative and Morita cancellative properties are

preserved under localizations for many families of algebras. We add some re-

sults along this line; and we will address the problem in a forthcoming paper

later on.

Note that even if the discriminant d of an algebra A is dominating or effective,

the discriminant of Ad becomes invertible, where Ad is the localization of A

with respect to the Ore set {di | i ≥ 0}. As a result, the discriminant of Ad

is neither dominating nor effective. However, since the element d is invertible

in Ad, it will be sent to an invertible element by any k-algebra isomorphism

φ : Ad[s1, . . . , sn] −→ B[t1, . . . , tn]. So we may still be able to prove that the

algebra Ad is strongly retractable in many situations.
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The point of this section is that we can do more. Namely, we can prove a

version of the strong retractability even in the Ore extension setting. The main

idea is to utilize the notion of divisor subalgebras introduced in [CYZ1].

We first recall the definition of a divisor subalgebra. Let A be a domain.

Let F be a subset of A. Let Sw(F ) denote the set of g ∈ A such that f = agb

for some a, b ∈ A and 0 �= f ∈ F . That is, Sw(F ) consists of all the subwords

of the elements in F . The following definition is quoted from [CYZ1].

Definition 4.1: Let F be a set of elements in a domain A.

(1) We set D0(F ) = F and inductively define Dn(F ) for n ≥ 1 as the

k-subalgebra of A generated by Sw(Dn−1(F )). The subalgebra

D(F ) =
⋃

n≥0

Dn(F )

is called the divisor subalgebra of A generated by F . If F is the

singleton {f}, we simply write D({f}) as D(f). If we need to indicate

the ambient algebra A, we write D(F ) as DA(F ).

(2) If f = d(A/Z) (if the discriminant d(A/Z) indeed exists), we call D(f)

the discriminant-divisor subalgebra of A or DDS of A, and write

it as D(A).

We now define some elements which play the same role as the dominating or

effective elements in the study of cancellative properties.

Definition 4.2: Let F be a set of elements in an algebra A which is a domain.

(1) We say F is a controlling set if D(F ) = A.

(2) An element 0 �= f ∈ A is called controlling if D(f) = A.

Next we give some examples of controlling elements. For an algebra A, let A×

denote the set of invertible elements in A.

Example 4.3: Let q �= 0, 1 be a scalar in k.

(1) Let Aq
1(k) be the first quantum Weyl algebra defined as in Example

2.5(4). Set z = xy − yx, then

xy =
qz − 1

q − 1
and yx =

z − 1

q − 1
.

It is obvious that z is controlling, dominating, and effective in Aq
1(k).
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(2) We can localize Aq
1(k) with respect to the Ore set generated by z and de-

note the localization by Bq
1(k). Since z is a controlling element in Aq

1(k),

we have DBq
1(k)

(1) = Bq
1(k). Note that the center of Bq

1(k) is k if q is

not a root of unity. If q is a root of unity of order l, then the center

of Bq
1(k) is isomorphic to Z := k[xl, yl, zl]/I where

I = (zl[1− (1 − q)lxlyl]− 1)

by [LY, Proposition 3.2]. It is also clear that DZ(1) = Z.

(3) The above example can be extended to higher ranks with multiparam-

eters in both root of unity and non-root of unity cases.

(4) Let D = k[h±1] with a k-algebra automorphism σ defined by σ(h) = qh

for some q ∈ k×. Let 0 �= a ∈ D and denote the generalized Weyl

algebra by A = D(a, σ), which is the k-algebra generated by x, y, h±1

subject to the relations

xy = a(qh), yx = a(h), xh = qhx, yh = q−1hy.

Then DA(1) = A.

(5) Fix a positive integer n ≥ 2, let q be a set of nonzero scalars

{qij | 1 ≤ i < j ≤ n}.
A quantum torus (or quantum Laurent polynomial algebra) T q

n(k) is

generated by generators {x±1
1 , . . . , x±1

n } and subject to the relations

xjxi = qijxixj

for all i < j. Note that T q
n(k) is PI if and only if all qij are roots of

unity. It is clear that DT q
n(k)(1) = T q

n(k). It is well-known that the center

of T q
n(k) is isomorphic to a commutative Laurent polynomial algebra of

possibly lower rank. Note that the quantum torus is a localization of a

skew polynomial ring given in Example 2.5(3).

(6) The tensor products or twisted tensor products A of these examples also

satisfy DA(1) = A.

The proof of the following lemma is easy and omitted.

Lemma 4.4: Let A be a domain and F be a subset of A. We have the following

(1) D(D(F )) = D(F ).

(2) DD(F )(F ) = DA(F ).

(3) Suppose B is a subalgebra of A containing F . Then DB(F ) ⊆ DA(F ).
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(4) Let C be the Ore extension A[t;σ, δ]. Then DC(F ) ⊆ A. As a conse-

quence, DC(F ) = DA(F ).

(5) Let C be an iterated Ore extension of A. Then DC(F ) = DA(F ).

(6) Let φ : A → B be an injective algebra homomorphism. Then

DA(F ) ⊆ DB(φ(F )).

If φ is an isomorphism, then DA(F ) = DB(φ(F )).

(7) Let A be an iterated Ore extension A[t1, σ1, δ1][t2, σ2, δ2] · · · [tn, σn, δn]

and B be an iterated Ore extension B[t′1, σ′
1, δ

′
1][t

′
2, σ

′
2, δ

′
2] · · · [t′n, σ′

n, δ
′
n].

Suppose

φ : A → B

is an isomorphism. Then φ(DA(1)) = DB(1) ⊆ B.

(8) Suppose A and B are algebras such that A⊗kB is a domain. If DA(1)=A

and DB(1) = B, then DA⊗kB(1) = A⊗k B.

(9) If A is a finitely generated left (or right) module over DA(1), then

DA(1) = A.

Now we are ready to prove Theorems 0.9 and 0.10.

Proof of Theorem 0.9. Let A be an affine domain of finite GK dimension. Let A

be an iterated Ore extension A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn] where each σi is

locally algebraic. By Lemma 2.1(2), GKdimA = GKdimA+n. Now let B be an

algebra and B be an iterated Ore extension B[t′1;σ
′
1, δ

′
1][t

′
2;σ

′
2, δ

′
2] · · · [t′n;σ′

n, δ
′
n].

Suppose φ : A → B is an algebra isomorphism. It remains to show that A ∼= B.

By the hypothesis and Lemma 4.4(7),

φ(A) = φ(DA(1)) = DB(1) ⊆ B.

Let B′ denote φ−1(B). Then A ⊆ B′ and GKdimB′ = GKdimB. By the

definition of B, we have

GKdimB′ = GKdimB ≤ GKdimB − n

= GKdimA− n = GKdimA

≤ GKdimB.

Therefore, GKdimA = GKdimB′ < ∞. By Proposition 2.3, we have A = B′.
This implies that φ : A → B is an isomorphism.
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Proof of Theorem 0.10. Let A be a noetherian domain that is stratiform. Let A

be an iterated Ore extension A[t1;σ1, δ1][t2;σ2, δ2] · · · [tn;σn, δn]. By Lemma

2.4, HtrA = HtrA+ n. Now let B be another noetherian domain that is strat-

iform and B be an iterated Ore extension B[t′1;σ
′
1, δ

′
1][t

′
2;σ

′
2, δ

′
2] · · · [t′n;σ′

n, δ
′
n].

Suppose φ : A → B is an algebra isomorphism. We need to show that A ∼= B.

By the hypothesis and Lemma 4.4(7), φ(A) = φ(DA(1)) = DB(1) ⊆ B. Let B′

denote φ−1(B). Then A ⊆ B′ and HtrQ(B′) = HtrQ(B). By the definition

of B, we have

HtrQ(B′) = HtrQ(B) = HtrQ(B)− n by Lemma 2.4

= HtrQ(A)− n = HtrQ(A) by Lemma 2.4

≤ HtrQ(B).

Therefore, HtrQ(A) = HtrQ(B′) < ∞. According to Proposition 2.6, we have

that A = B′. That is, φ : A → B is indeed an isomorphism.

In the rest of this section, we will prove that a class of simple algebras is

strongly σ-cancellative, but might not be δ-cancellative; see [Example 5.5(1)].

First of all, we need a lemma.

Lemma 4.5: Let B be an iterated Ore extension B[t1;σ1] · · · [tn;σn] of an al-

gebra B. If A is a simple factor ring of B such that A× = k× with the quotient

map denoted by π : B −→ A, then the image π(ti) of each ti in A is a scalar

and π(B) = A. Furthermore, if B is a simple algebra, then A ∼= B.

Proof. We use an induction argument. If n = 0, it is trivial. Now we assume

that n > 0. Let π denote the quotient map from B onto A. Since tn is normal

in B, so is π(tn) in A. Since A is simple, π(tn) is either zero or invertible in A.

Since A× = k×, π(tn) is a scalar in k. As a result, we have that

π(B[t1;σ1] · · · [tn−1;σn−1]) = A.

By induction, we have that π(ti) is a scalar in A for 1 ≤ i ≤ n and π(B) = A.

If B is simple, then B ∼= A.

The next result establishes the strongly σ-cancellative property for many

simple algebras such as the first Weyl algebra, which is the k-algebra generated

by x, y subject to the relation xy − yx = 1.
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Theorem 4.6: Let A be a right (resp. left) noetherian simple domain such that

A× = k×. Then A is strongly σ-cancellative.

Proof. Suppose

φ : A := A[s1;σ1] · · · [sn;σn] → B[t1; τ1] · · · [tn; τn] =: B

is an isomorphism for another algebra B. Here σi and τi are automorphisms

of appropriate algebras. Then B is a noetherian domain, and consequently B

is a noetherian domain. By [GoW, Theorem 15.19], A and B have the same

Krull dimension. Let I be the ideal of A generated by {si}ni=1. Then A ∼= A/I.

Let J = φ(I). Then B/J(∼= A) is simple and every invertible element in B/J

is a scalar by hypothesis. Let φ also denote the induced isomorphism

A → B/J.

Let π be the map from B onto B/J . By Lemma 4.5, π(ti) is a scalar in k for

each i. Then

π(B) = π(B) = B/J.

Therefore,

φ−1 ◦ π|B : B −→ B/J
φ−1

−−→ A

is a surjective algebra homomorphism. Since B is a domain with

KdimB = KdimA,

we obtain that φ−1 ◦ π|B is an isomorphism and that

B ∼= B/J ∼= A

as desired.

5. Comments, examples, remarks and questions

In this section we give some isolated results, comments, examples, remarks and

open questions.

5.1. Cancellative property of some infinitely generated algebras.

In most of the results proved in [LeWZ, LuWZ], we have assumed the algebras

are either affine or noetherian or having finite GK dimension. In this subsection

we make some comments on the cancellation property for some algebras of

infinite GK dimension. The following lemma generalizes [BR, Lemma 2] and

[CE, Corollary 1].
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Lemma 5.1: Let A and B be k-algebras and

φ : A[s1, . . . , sn] −→ B[t1, . . . , tn]

be an algebra isomorphism.

(1) If φ(A) ⊆ B, then φ(A) = B.

(2) If φ(Z(A)) ⊆ B, then A ∼= B.

Proof. (1) We have the following restriction of the isomorphism φ to the re-

spective centers of A[s1, . . . , sn] and B[t1, . . . , tn]:

φ : Z(A)[s1, . . . , sn]
∼=−→ Z(B)[t1, . . . , tn].

Note that Z(B) = B ∩Z(B)[t1, . . . , tn]. Since φ is an isomorphism and, by the

hypothesis φ(A) ⊆ B, we obtain that φ(Z(A)) ⊆ Z(B). By [BR, Lemma 2], we

have that φ(Z(A)) = Z(B). Let fi := φ(si) for 1 ≤ i ≤ n. We have that

Z(B)[t1, . . . , tn] = Z(B){f1, . . . , fn}.
According to Lemma 1.2(2), we have Z(B)[t1, . . . , tn] = Z(B)[f1, . . . , fn]. Us-

ing Lemma 1.2(1), we can further conclude that B[t1, . . . , tn] = B[f1, . . . , fn],

where f1, . . . , fn are considered as central indeterminates. Denote by τ the B-

automorphism of B[t1, . . . , tn], which is defined by setting τ(fi) = ti. Then we

have an isomorphism

τ ◦ φ : A[s1, . . . , sn] −→ B[t1, . . . , tn]

with τ ◦ φ(si) = ti for all i and (τ ◦ φ)(A) ⊆ B. As a result, we have

that φ(A) = B.

(2) Similar to the proof of part (1), we have the following induced isomor-

phism:

φ : Z(A)[s1, . . . , sn] −→ Z(B)[t1, . . . , tn].

Since Z(B) = B ∩ Z(B)[t1, . . . , tn], the hypothesis φ(Z(A)) ⊆ B implies

that φ(Z(A)) ⊆ Z(B). By [BR, Lemma 2], we have that φ(Z(A)) = Z(B).

Let fi := φ(si) for 1 ≤ i ≤ n. Similar to the proof of part (1), we have that

B[t1, . . . , tn] = B[f1, . . . , fn]

where f1, . . . , fn are considered as central indeterminates. Going back to the

isomorphism

φ : A := A[s1, . . . , sn] −→ B[t1, . . . , tn] = B[f1, . . . , fn] =: B,
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one sees that φ maps the ideal of A generated by {si}wi=1 to the ideal of B

generated by {fi}ni=1. Therefore, we have that

A ∼= A/(si : i = 1, . . . , n) ∼= B/(fi : i = 1, . . . , n) ∼= B.

Combining some ideas in the previous section, we can further have the fol-

lowing result.

Proposition 5.2: Let A be an algebra such that D(1) ⊇ Z(A).

(1) Then A is strongly cancellative.

(2) If A is commutative, then A is strongly retractable.

Proof. (1) Let φ : A = A[s1, . . . , sn] → B = B[t1, . . . , tn] be an isomorphism.

By Lemma 4.4(7), we have that

φ(D(1)) = φ(DA(1)) ⊆ DB(1) ⊆ B.

Since Z(A) ⊆ D(1), we have φ(Z(A)) ⊆ B. Now the assertion follows from

Lemma 5.1(2).

(2) To prove the second assertion, we repeat the above proof and apply

Lemma 5.1(1).

By Proposition 5.2(2), any commutative algebra A with D(1) = A is strongly

retractable. For example, the Laurent polynomial algebra with infinitely many

variables k[x±1
i : i = 1, 2, 3, · · · ] is strongly retractable. As a consequence of

Theorem 0.5, any algebra with a center equal to a finite direct sum of (infinite)

Laurent polynomial algebras is strongly cancellative and Morita cancellative.

It is obvious that the infinite quantum Laurent polynomial algebra T q
∞(k) has

this kind of property. Below is a similar example.

Example 5.3: Let q be a sequence of scalars {qi}i≥1 and let Aq∞(k) be the k-

algebra generated by an infinite set {xi, yi}i≥1 subject to the relations

xixj = xjxi, yiyj = yjyi,

xiyj = yjxi (i �= j), xiyi − qiyixi = 1

for i, j ∈ {1, 2, 3, . . .}. It is clear that Aq
∞(k) is an infinite tensor product of

the quantum Weyl algebras defined in Example 4.3(1). We call this algebra an

infinite quantum Weyl algebra. It is obvious that GKdimAq
∞(k) = ∞.

Set zi = xiyi − yixi and let S be the Ore set generated by the products

of zi. Let B be the localization of Aq
∞(k) with respect to S. It is easy to
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see that DB(1) = B and DZ(B)(1) = Z(B) (some details are omitted). As a

consequence of Proposition 5.2 and Theorem 0.5, B is strongly cancellative and

strongly Morita cancellative. However, it is not known to us whether or not it

is (strongly) skew cancellative.

5.2. δ-cancellative property of LND-rigid algebras. In this subsec-

tion we use some ideas in [BHHV] to show that every LND-rigid algebra is

δ-cancellative. To save some space, we refer the reader to [BHHV, Defini-

tion 2.1] for the definitions concerning LND-rigidity and Makar-Limanov in-

variants ML(A).

Theorem 5.4: Suppose that k is a field of characteristic zero. Let A be an

affine k-domain of finite GK dimension. Suppose that ML(A) = A. Then A is

δ-cancellative.

Proof. We follow the proof of [BHHV, Proposition 5.6].

Suppose that φ : A[s; δ] −→ B[t; δ′] is an isomorphism for another algebra B.

Here δ is a derivation of A and δ′ is a derivation of B. By Lemma 2.1(1), we

have that

GKdimA[s; δ] = GKdimA+ 1 < ∞.

A similar statement holds true for B. Thus we have that GKdimB = GKdimA.

Since A is an affine domain of finite GK dimension, it is an Ore domain. Also

note that

ML(A) = A.

By [BHHV, Lemma 5.3], we have that ML(A[s; δ]) = ML(A), which is further

equal to A. As a result, we have the following:

A = ML(A) = ML(A[s; δ])
φ
∼−→ ML(B[t; δ′]) ⊆ B.

Equivalently, we have that φ(A) ⊆ B. Set B′ = φ−1(B). By Proposition 2.3, we

have that A = B′ or equivalently, A ∼= B. Therefore, A is δ-cancellative.

However, not every algebra satisfying the hypotheses in Theorem 5.4 is σ-

cancellative. The following is an example along this line; see Example 5.5(2).

Example 5.5: Here we consider two affine domains of GK dimension two.

(1) Let A be the first Weyl algebra over a field k of characteristic zero.

Then A is simple with a trivial center k. By [BZ1, Proposition 1.3]

and Theorem 0.4, A is universally cancellative and universally Morita
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cancellative. By Theorem 4.6, A is strongly σ-cancellative. Now we

claim that A is not δ-cancellative. Note that the first Weyl algebra A

can be written as k〈x, y〉/(xy − yx − 1). Let B = k[y, z] and let δ′ be
the derivation of B defined by δ′(y) = 1 and δ′(z) = 0. Then

A[z; δ = 0] ∼= B[x; δ′].

It is clear that A �∼= B. Therefore, A is not δ-cancellative.

(2) Let A be a different algebra k−1[x, y]=k〈x, y〉/(xy+yx) which is an affine

noetherian PI domain of GK dimension two with center Z = k[x2, y2].

By [BZ1, Theorem 4.7 and Example 4.8], A is strongly LND-rigid and

strongly cancellative. By Theorem 5.4, A is δ-cancellative. But A is not

σ-cancellative as

A[z; IdA] ∼= k[y, z][x;σ]

for some automorphism σ of the commutative polynomial algebra k[y, z].

Figure 1 summarizes the implication relations among several types of skew

cancellations, where an arrow (resp. dotted arrow) means “implies” (resp. “does

not imply”). All the implications follow directly from the definitions.

σ-cancellative

cancellative skew cancellative

δ-cancellative σ-alg cancellative

Example 5.5(2) Example 5.5(1)

Example 5.5(1)

Example 5.5(2)

Example 5.5(2)Example 5.5(1)

Figure 1. Relations among different types of skew cancellations.
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Now a natural question to consider is

Question 5.6: Let A be an algebra as in Theorem 5.4, or specifically, the algebra

in Example 5.5(2). Or suppose that A is strongly LND-rigid in the sense of [BZ1,

Definition 2.3]. Is then A strongly δ-cancellative?

5.3.Derived cancellative property.First we recall the definition of derived

cancellation. Let M(A) denote the category of all right A-modules and D(A)

be the corresponding derived category of M(A).

Definition 5.7: Let A be an algebra.

(1) The derived cancellative property of A is defined in the same way as

in Definition 0.2(1) by replacing the abelian categories M(−) with the

triangulated categories D(−).

(2) The strongly derived cancellative property of A is defined in the

same way as in Definition 0.2(2) by replacing the abelian categoriesM(−)

with the triangulated categories D(−).

The following is a version of [LuWZ, Corollary 7.3] without the strongly

Hopfian condition. Its proof is omitted (see the proof of [LuWZ, Corollary 7.3]).

Proposition 5.8: Let A be an Azumaya algebra over its center Z which has a

connected spectrum. Suppose that Z is either (strongly) detectable or (strongly)

retractible. Then A is (strongly) cancellative, (strongly) Morita cancellative and

(strongly) derived cancellative.

Corollary 5.9: Let A be a domain. If A is Azumaya and DZ(A)(1) = Z(A),

then A is strongly cancellative, strongly Morita cancellative and strongly derived

cancellative.

Proof. By Proposition 5.2, Z is strongly retractable. The assertion follows from

Proposition 5.8.

The following is also known due to [LuWZ, Corollary 7.3]. Note that all the

algebras involved in the example below are Azumaya algebras.

Example 5.10: As an immediate consequence of Corollary 5.9, the following

algebras are strongly derived cancellative:

(1) Localized quantum Weyl algebra Bq
1(k) as in Example 4.3(2) where q is

a root of unity.
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(2) Quantum Laurent polynomial algebras as in Example 4.3(5) where all qij

are roots of unity.

(3) Any finite tensor product of algebras in parts (1) and (2).
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