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Abstract
The Frobenius–Perron theory of an endofunctor of a category was introduced in recent years
(Chen et al. in Algebra Number Theory 13(9):2005–2055, 2019; Chen et al. in Frobenius–
Perron theory for projective schemes. Preprint. arXiv:1907.02221, 2019). We apply this
theory to monoidal (or tensor) triangulated structures of quiver representations.
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0 Introduction

Throughout let k be a base field that is algebraically closed. Algebraic objects are defined
over k.

The Frobenius–Perron dimension of an object in a semisimple finite tensor (or fusion) cat-
egory was introduced by Etingof–Nikshych–Ostrik in 2005 [19]. Since then it has become an
extremely useful invariant in the study of fusion categories and representations of semisim-
ple (weak and/or quasi-)Hopf algebras. By examining the Frobenius–Perron dimension of
all objects in a finite tensor category one can determine whether the category is equivalent
to the representation category of a finite-dimensional quasi-Hopf algebra [20, Proposition
2.6]. The Frobenius–Perron dimension of a fusion category is also a crucial invariant in the
classification of fusion categories as well as that of semisimple Hopf algebras. An important
project is to develop the Frobenius–Perron theory for not-necessarily semisimple tensor (or
monoidal) categories. A step departing from semisimple categories, or abelian categories of
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global dimension 0, is to study the hereditary ones (of global dimension one). Ultimately
Frobenius–Perron theory should provide powerful tools and useful invariants for projects like

Project 0.1 Describe and understand weak bialgebras [Definition 1.7] and weak Hopf alge-
bras [11, Definition 2.1] that are hereditary as associative algebras.

Note that an analogous classification project of hereditary prime Hopf algebras was fin-
ished in a remarkable paper by Wu–Liu–Ding [63] a few years ago. Some recent efforts
pertaining on homological aspects of noetherian weak Hopf algebras were presented in
[57]. Recall from [51] that a monoidal triangulated category is a monoidal category T
in the sense of [18, Definition 2.2.1] that is triangulated and, for which, the tensor prod-
uct ⊗T : T × T → T is an exact bifunctor. Given a Hopf algebra (respectively, weak
and/or quasi- Hopf algebra/bialgebra) H , its comultiplication induces a monoidal structure
on the category of representations of H . The corresponding derived category has a canonical
monoidal triangulated structure. Monoidal triangulated structures appear naturally in several
other subjects.

Algebraic geometry. A classical theorem of Gabriel [21] states that a noetherian scheme
X can be reconstructed from the abelian category of coherent sheaves over X, denoted by
coh(X). Hence the abelian category coh(X) captures all information about the space X.
Recent development in derived algebraic geometry suggests that the bounded derived cat-
egory of coherent sheaves over X, denoted by Db(coh(X)), is sometimes a better category
to work with when we are considering many geometric problems such as moduli problems.
When X is smooth, Db(coh(X)) is equipped with a natural tensor (= symmetric monoidal)
triangulated structure in the sense of [5, Definition 1.1].

Tensor triangulated geometry. Tensor triangulated categories have been studied byBalmer
[5] and many others, where the study of tensor triangulated categories has been sometimes
referred to as tensor triangulated geometry. Balmer defined the prime spectrum, denoted
by Spc(T ), of a small tensor triangulated category T by using the thick subcategories
which behave like prime ideals under the tensor product. Note that Spc(T ) is a locally
ringed space [5, Remark 6.4]. This idea has been shown to be widely applicable to alge-
braic geometry, homotopy theory and representation theory. Recently Vashaw–Yakimov and
Nakano–Vashaw–Yakimov [51,62] developed a noncommutative version of the Balmer spec-
trum, or noncommutative tensor triangulated geometry (in the words of the authors of [51]).

Noncommutative algebraic geometry. Following Grothendieck, to do geometry you really
don’t need a space, all you need is a category of sheaves on this would-be space [48, p. 78].
Following [51,62], we would like to consider or view monoidal triangulated categories as
appropriate categories for doing a new kind of noncommutative geometry. For example, if T
is a noetherian Koszul Artin–Schelter regular algebra, then the bounded derived category of
the noncommutative projective scheme associated to T , denoted by T := Db(proj T ), has at
least two different monoidal triangulated structures [Example 7.9]. In this situation, it would
be very interesting to understand how the “geometry” of proj T interacts with “monoidal
triangulated structures” on T . Fix a general triangulated category, still denoted by T , it is
common that there are many different monoidal triangulated structures on T (with the same
underlying triangulated structure) that reflect on different hidden properties of T . So it is
worth distinguishing different types of monoidal triangulated structures on T and finding a
definition of the “size” of these structures.

Quiver representations. A related subject is the representation theory of quivers that has
become a popular topic since Gabriel’s work in the 1970s [22–24]. For a given quiver, it is
naturally equipped with a monoidal structure in the category of its representations, induced
by the vertex-wise tensor product of vector spaces (E2.1.1). The monoidal structure of quiver
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representations has been studied by Strassen [60] in relation with orbit-closure degeneration
in 2000, and later by Herschend [29–33] in the relation with the bialgebra structure on the
path algebra during 2005–2012. Herschend solved the Clebsch-Gordan problem for quivers
of type An , Dn and E6,7,8 in [31,32]. As for tame type, Herschend also gave solutions for
type Ãn in [29] and the quivers with relations that correspond to string algebras in [33].
One of our basic objects in this paper is the bounded derived category Db(A − mod) for a
finite dimensional weak bialgebra A. (We usually consider hereditary, but not semisimple,
algebras.) Since A is a weak bialgebra, A−mod has an induced monoidal abelian structure;
and hence, Db(A−mod) is a monoidal triangulated category in the sense of [51]. Note that,
even for a finite quiver Q, [30, Proposition 4] and [35, Theorem 3.2] give different weak
bialgebra structures on A := kQ which produce different monoidal triangulated structures
on Db(A −mod).

Connections between geometry, quiver representations, and weak bialgebras. Going back
to classical geometry, let X be a smooth projective scheme. If X is equipped with a full
strongly exceptional sequence (also called strong full exceptional sequence by some authors)
{E1, . . . , En} [Definition 7.8], then there is a triangulated equivalence

Db(coh(X)) ∼= Db(A −mod) (E0.1.1)

where A is the finite dimensional algebra [EndDb(coh(X))(⊕n
i=1Ei )]op (some details can be

found at the end of Sect. 7). Since A is finite dimensional (and of finite global dimension),
it seems easier to study A than to study X in some aspects. Equivalence (E0.1.1) induces a
monoidal structure on Db(A−mod) which usually does not come from any weak bialgebra
structures of A [Example 7.9]; or in some extreme cases, there is no weak bialgebra structure
on A at all. For such an algebra A, it is imperative to understand and even to classify all
possible monoidal triangulated structures of Db(A − mod) (though A may not be a weak
bialgebra).

Anotherwell-known example of such a connection is from the study ofweighted projective
lines, introduced byGeigle-Lenzing [26] in 1985 (see Sect. 6). Since thenweighted projective
lines have been studied extensively by many researchers. Let coh(X) denote the category
of coherent sheaves over a weighted projective line X. When X is domestic, a version of
(E0.1.1) holds and the representation type of A (appeared in the right-hand side of (E0.1.1))
is tame, see Lemma 6.1(2). This is one of the key facts that we will use in this paper.

Recently, a new definition of Frobenius–Perron dimension was introduced in [14,15]
where the authors extended its original definition from an object in a semisimple finite tensor
category to an endofunctor of any k-linear category. (We refer to Definition 1.3 for some rel-
evant definitions.) It turns out that new Frobenius–Perron invariants are sensitive to monoidal
structures; as a consequence, these are crucial to distinguish different monoidal triangulated
structures. One general goal of this paper is to provide evidence that the Frobenius–Perron
invariants are effective to study monoidal triangulated structures. Some basic properties and
interesting applications of Frobenius–Perron-type invariants can be found in [14,15].

In this paper, we focus on different weak bialgebra structures on the path algebras of finite
quivers and the Frobenius–Perron theory for finite dimensional hereditary weak bialgebras.
As mentioned above, this is one step beyond the semisimple case.

Definition 0.2 Let T be a monoidal category and let P be a function

{endofunctors of T } −→ R≥0.
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Note that P could be Frobenius–Perron dimension or Frobenius–Perron curvature as given
in Definition 1.3(6,7). For every object M in T , let P(M) denote the P-value of the tensor
functor M ⊗T − : T → T .

(1) We say T is P-finite if P(M) < ∞ for all objects M . Otherwise, T is called P-infinite.
(2) If T is P-infinite and if P(M) < ∞ for all indecomposable objects M , then T is called

P-tame.
(3) If T is neither P-finite nor P-tame, then it is called P-wild.

Our first main result concerns the trichotomy of fpd-finite/tame/wild property. Let rep(Q)

be the category of finite dimensional representations of a quiver Q.

Theorem 0.3 Let Q be a finite acyclic quiver and let T be the triangulated category
Db(rep(Q)).

(1) Q is of finite type if and only if T is fpd-finite for every monoidal triangulated structure
on T , and if and only if there is one monoidal triangulated structure on T such that T
is fpd-finite.

(2) Q is of tame type if and only if there is a monoidal triangulated structure on T such that
T is fpd-tame. In this case, there must be another monoidal triangulated structure on T
such that T is fpd-wild.

(3) Q is of wild type if and only if T is fpd-wild for every monoidal triangulated structure
on T .

(4) If Q is tame or wild, then every monoidal triangulated structure on T is fpd-infinite.

Note that in part (2) of the above theorem, there are two different monoidal triangulated
structures on T , one of which is fpd-tame and the other is not. We refer to Definition 3.1
for the definition of a discrete monoidal structure. By the above theorem, it is rare to have
fpd-finite monoidal triangulated structures on T . When it exists, we can say a bit more. The
canonical weak bialgebra structure on the path algebra kQ is given in Lemma 2.1(1).

Theorem 0.4 Let A be a finite dimensional hereditary weak bialgebra such that the induced
monoidal structure on A −mod is discrete. Then the following are equivalent:

(a) A is of finite representation type,
(b) fpd(M) < ∞ for every irreducible representation M ∈ A −mod,
(c) fpd(M) < ∞ for every indecomposable representation M ∈ A −mod,
(d) fpd(M) < ∞ for every representation M ∈ A −mod,
(e) fpd(X) < ∞ for every indecomposable object X ∈ Db(A −mod),
(f) The induced monoidal triangulated structure on Db(A −mod) is fpd-finite.

Suppose further that A is the path algebra kQ with canonical weak bialgebra structure. It
follows from Gabriel’s theorem that any of conditions (a) to (e) is equivalent to

(g) Q is a finite union of quivers of type ADE.

Since condition (a) in the above theorem is an algebra property, the fpd-finiteness of
Db(A − mod) only depends on the algebra structure of A, though the definition of fpd(X)

uses the coalgebra structure of A. Note that condition (a) is not equivalent to condition (b) if
we remove the hereditary hypothesis in the above theorem [Remark 7.3(3)].

Following BGP-reflection functors [8], Happel showed that, for Dynkin quivers with the
same underlying Dynkin diagram, their derived categories are triangulated equivalent [28].
This remarkable theorem is one of most beautiful results in representation theory of finite
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dimensional algebras. In contrast, the story is very different when we are working with
monoidal triangulated structures of the derived category of Dynkin quivers, see Theorem 0.5
below. As indicated in [14,15], Frobenius–Perron-type invariants are extremely useful to
study derived (or triangulated) categories. Using the Frobenius–Perron curvature, denoted
by fpv, of objects in Db(A −mod) we can prove the following.

Theorem 0.5 Let A and B be finite dimensional hereditary weak bialgebras. Assume either
A is a bialgebra or A −mod is discrete. Suppose that the monoidal triangulated categories
Db(A−mod) and Db(B−mod) are equivalent. Then A−mod and B−mod are equivalent
as monoidal abelian categories.

As a consequence, we have

Corollary 0.6 Suppose that the bounded derived categories of representations of two finite
acyclic quivers are equivalent as monoidal triangulated categories. Then the quivers are
isomorphic.

There is also a result concerning an analogue of a t-structure in the monoidal triangulated
setting, see Theorem 0.7 below. We introduce the notion of an mtt-structure on a monoidal
triangulated category in Sect. 5. Undefined terminologies can be found in Sects. 4 and 5.

Theorem 0.7 Let A be a finite dimensional weak bialgebra that is hereditary as an algebra.
Suppose that the induced monoidal structure on A −mod is discrete. Then there is a unique
hereditary mtt-structure with deviation zero on the monoidal triangulated category Db(A−
mod).

It is clear that Theorem 0.7 applies to Db(rep(Q)) where Q is a finite acyclic quiver. A
t-structure on a triangulated category has been studied extensively since it was introduced
by Beilinson–Bernstein–Deligne in [7]. It is natural to study all mtt-structures of a monoidal
triangulated category. In fact, mtt-structures service as a compelling system of a monoidal
triangulated category. It is well-known that (hereditary) t-structures on Db(rep(Q)) are not
unique even for quivers of type An , defined below, for n ≥ 3. Therefore it is surprising that
certainmtt-structures (see Theorem 0.7) are unique. This uniqueness result would have other
significant consequences than Theorem 0.5 and Corollary 0.6. It is also interesting to search
for other classes of monoidal triangulated categories such that the uniqueness property holds
for certain mtt-structures.

Though there are more than one tensor structures on the path algebra kQ for a quiver
Q, one of these structures is from the natural coalgebra structure on kQ, similar to group
algebras [Lemma 2.1(1)]. We will present more results concerning the Frobenius–Perron
dimensions of indecomposable representations under such tensor structure. Before that we
need to introduce some notation. By definition, a type A quiver (or more precisely, type An

quiver) is a quiver of the following form

1
α1

2
α2 · · · αi−1

i
αi · · · αn−1

n (E0.7.1)

where each arrow αi is either−→ or←−. For each quiver of type An , the arrows αi will be
specified. It is easy to see that, for each n ≥ 3, there are more than one quivers of type An

up to isomorphisms. Let us fix a quiver of type An , say Q, as above. For 1 ≤ i ≤ j ≤ n, we
define a thin representation of Q, denoted by M{i, j}, by

(M{i, j})s =
{

k i ≤ s ≤ j,

0 otherwise
(E0.7.2)
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and

(M{i, j})αs =
{

I dk i ≤ s < j,

0 otherwise.
(E0.7.3)

(This thin representation is sometimes called an interval module by other researchers.) Then
by [25, p. 63], all such M{i, j} form the complete list of indecomposable representations of
Q [Lemma 1.10]. For all i ≤ j , we say

M{i, j} is

⎧⎪⎨
⎪⎩
a sink if αi−1 =−→ ( or i = 1) and α j =←− ( or j = n),

a source if αi−1 =←− ( or i = 1) and α j =−→ ( or j = n),

a f low if αi−1 = α j , and it is either −→ or ←− .

Since rep(Q) is hereditary, every indecomposable object in the bounded derived category
Db(rep(Q)) is of the form M{i, j}[m] for some m ∈ Z. We have the following result for
type An . Some computation in the case of type Dn quivers is given in [64].

Theorem 0.8 Let Q be a quiver of type An for some positive integer n. Then the following
hold in the bounded derived category Db(rep(Q)) with tensor defined as in (E2.1.1).

(1) fpd(M{i, j}[m]) = 0 for all m < 0 and m > 1.

(2) fpd(M{i, j}[0]) =

⎧⎪⎨
⎪⎩
1 if M{i, j} is a sink,

min{i, n − j + 1} if M{i, j} is a source,

1 if M{i, j} is a flow.

(3) fpd(M{i, j}[1]) =

⎧⎪⎨
⎪⎩
min{i − 1, n − j} if M{i, j} is a sink,

0 if M{i, j} is a source,

0 if M{i, j} is a flow.

Related to Project 0.1 we are also very much interested in the following questions.

Question Let A be a finite dimensional weak bialgebra or just an algebra, or kQ where Q
is a finite acyclic quiver.

(1) How to determine all monoidal abelian structures on the abelian category A −mod?
(2) How to determine all monoidal triangulated structures on the derived category Db(A −

mod)?

The paper is organized as follows. Section 1 contains some basic definitions. In particular,
we recall the definition of the Frobenius–Perron dimension of an endofunctor. In Sect. 2
we review some preliminaries on quiver representations. The notion of a discrete monoidal
abelian category is introduced in Sect. 3. A natural example of a discretemonoidal structure is
rep(Q)which is the main object in this paper. Theorem 0.4 is proved in Sect. 4. In Sect. 5, we
introduce the notion of anmtt-structure of amonoidal triangulated category that is amonoidal
version of the t-structure of a triangulated category. Theorems 0.5 and 0.7, and Corollary 0.6
are proved near the end of Sect. 5. Section 6 focuses on the proof of Theorem 0.3 which
uses some detailed information about weighted projective lines. Section 7 contains various
examples which indicate the richness of monoidal triangulated structures from different
subjects. Section 8 consists of the proof of Theorem 0.8 with some non-essential details left
out.

123



Frobenius–Perron theory of representations of quivers 3177

1 Some basic definitions

This section contains several basic definitions which will be used in later sections.
Recall from [18, Definition 2.1.1] that a monoidal category C consists of the following

data:

(•) a category C,
(•) a bifunctor ⊗ : C × C → C, called tensor functor,
(•) for each triple (X , Y , Z) in C, a natural isomorphism

αX ,Y ,Z : (X ⊗ Y ) ⊗ Z
∼=−→ X ⊗ (Y ⊗ Z),

(•) an object 1 ∈ C, called unit object,

(•) natural isomorphisms lX : 1⊗ X
∼=−→ X and rX : X ⊗ ∼=−→ X for each X in C,

such that the pentagon axiom [18, (2.2)] and the triangle axiom [18, (2.10)] hold. The defini-
tions of a braiding {cX ,Y }X ,Y∈C on amonoidal category C and of a braided monoidal category
are given in [18, Definitions 8.1.1 and 8.1.2] respectively.

By [18, Definition 8.1.12], a braided monoidal category C is called symmetric if

cY ,X ◦ cX ,Y = idX⊗Y

for all objects X , Y ∈ C.
We are usually considering k-linear categories. Now we recall some definitions.

Definition 1.1 Let C be a monoidal category.

(1) We say C is monoidal k-linear if

(1a) C is k-linear,
(1b) morphisms and functors involving in the definition of monoidal category are all

k-linear, and
(1c) the tensor functor preserves direct sums in each argument.

(2) We say C is monoidal abelian if

(2a) C is a k-linear abelian category,
(2b) C is monoidal k-linear in the sense of part (1),
(2c) the tensor functor preserves exact sequences in each argument.

(3) [51] We say C is monoidal triangulated if

(3a) C is k-linear triangulated category,
(3b) C is monoidal k-linear in the sense of part (1),
(3c) the tensor functor preserves exact triangles and commutes with the suspension in

each argument.
(3d) the suspension satisfies the anti-commuting diagramgiven at the endof the definition

of a suspended monoidal category [61, Definition 1.4].

By the way, we will not be using the axiom (3d) in the above definition in this paper. A
tensor triangulated category in the sense of [5, Definition 1.1] is just a symmetric monoidal
triangulated category. We refer the reader to [18] for other details.

Let (C,⊗, 1) be a monoidal category and A be another category. Following [37, p. 62],
by an action of C on A we mean a strong monoidal functor

F = ( f , f̃ , f ◦) : C −→ [A,A],
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where [A,A] is the category of endofunctors of A, provided with a monoidal structure
([A,A], ◦, I dA) which is strict, wherein ◦ denotes composition and I dA is the identity
endofunctor. Here, to give the functor f : C → [A,A] is equally to give a functor � :
C × A → A where X � A = ( f X)A for all X ∈ C and A ∈ A; to give the invertible and
natural f̃ X ,Y : ( f X)◦( f Y ) → f (X ⊗Y ) (or rather their inverses) is equally to give a natural
isomorphism with components

αX ,Y ,A : (X ⊗ Y ) � A → X � (Y � A);
to give the invertible f ◦ : I dA → f 1 (or rather its inverse) is equally to give a natural
isomorphism with components λA : 1 � A → A; and the coherence conditions for F
become the commutativity of the three diagrams [37, (1.1), (1.2) and (1.3)] which are the
pentagon axiom involving the associator of C and the triangle axioms for the action of the
unit object 1 onA compatible with the left unitor of C respectively. It is clear that a monoidal
category C acts on itself by defining � = ⊗. We refer to [37] for more details.

Convention 1.2 Let C be a monoidal category acting on another category A.

(1) If both C and A are k-linear, we automatically assume that

(1a) morphisms and functors involving in the definition of action are all k-linear, and
(1b) � preserves direct sums in each argument.

(2) If both C and A are abelian, we automatically assume that

(2a) morphisms and functors involving in the definition of action are all k-linear,
(2b) C is monoidal abelian in the sense of Definition 1.1(2),
(2c) � preserves exact sequences in each argument.

(3) If both C and A are triangulated, we automatically assume that

(3a) morphisms and functors involving in the definition of action are all k-linear,
(3b) C is monoidal triangulated in the sense of Definition 1.1(3),
(3c) � preserves exact triangles and commutes with the suspension in each argument.

Next we recall some definitions concerning the Frobenius–Perron dimension of an endo-
functor. We refer to [14] for other related definitions. Let dim be dimk.

Definition 1.3 [14] Let C be a k-linear category.

(1) An object X in C is called a brick if

HomC(X , X) = k.

(2) Let φ := {X1, . . . , Xn} be a finite subset of nonzero objects in C. We say that φ is a
brick set if each Xi ∈ φ is a brick and

HomC(Xi , X j ) = 0,∀ i �= j .

(3) Let φ := {X1, . . . , Xn} and let σ be an endofunctor of C. The adjacency matrix of (φ, σ )

is defined to be

A(φ, σ ) = (ai j )n×n, where ai j = dimHomC(Xi , σ (X j )) ∀ i, j .

(4) Let �b be the collection of all finite brick sets in C. The Frobenius–Perron dimension of
an endofunctor σ is defined to be

fpd(σ ) := sup
φ∈�b

{ρ(A(φ, σ ))}
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where ρ(A) is the spectral radius of a square matrix A [14, Section 1], i.e. the largest
absolute value of A.

(5) The Frobenius–Perron curvature of σ is defined to be

fpv(σ ) := sup
φ∈�b

{
lim sup

n→∞
(ρ(A(φ, σ n)))1/n

}
.

(6) If C is a monoidal k-linear category acting on a k-linear category A and M is an object
in C, the Frobenius–Perron dimension of M is defined to be

fpd(M) := fpd(M �−)

where M �− is considered as an endofunctor of A and fpd(M �−) is defined in part
(4). Similarly, the Frobenius–Perron curvature of M ∈ C is defined to be

fpv(M) := fpv(M �−)

where M �− is considered as an endofunctor of A and fpd(M �−) is defined in part
(5).

(7) As a special case of (6), if C is a monoidal k-linear category and M is an object in C, the
Frobenius–Perron dimension of M is defined to be

fpd(M) := fpd(M ⊗−)

where fpd(M ⊗−) is defined in part (4). Similarly, the Frobenius–Perron curvature of
M is defined to be

fpv(M) := fpv(M ⊗−)

where fpv(M ⊗−) is defined in part (5).

When C is R − mod for an algebra R, a brick set is also called a semibrick [3]. If both
“full” and “exceptional” conditions [Definition 7.8(2, 3)] are satisfied, this is also known as
a simple-minded collection, see [42, Definition 3.2].

Now we recall the definition of representation types.

Definition 1.4 Let A be a finite dimensional algebra over k.

(1) We say A is of finite type or finite representation type if there are only finitely many
isomorphism classes of finite dimensional indecomposable left A-modules.

(2) We say A is tame or of tame representation type if it is not of finite representation
type, and for every n ∈ N, all but finitely many isomorphism classes of n-dimensional
indecomposables occur in a finite number of one-parameter families.

(3) We say A is wild or of wild representation type if, for every finite dimensional k-algebra
B, the representation theory of B can be representation embedded into that of A.

We always assume that the base field k is algebraically closed. A famous trichotomy result
due to Drozd [17] states that every finite dimensional algebra is either of finite, tame, or wild
representation type. By classical theorems of Gabriel [22] and Nazarova [52], the quivers of
finite and tame representation types correspond to the ADE and ÃD̃Ẽ diagrams respectively.
By [14, Theorem 0.3], the representation type of a quiver Q is indicated by the value of the
Frobenius–Perron dimension of the suspension functor of the derived category Db(rep(Q)).

To show somemonoidal structure is fpd-infinite [Definition 0.2(1)], we need the following
concepts.
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Definition 1.5 Let C be a k-linear category.

(1) Let φ be an infinite set of objects in C. We say φ is an infinite brick set if

HomC(X , Y ) =
{

k if X = Y in φ,

0 if X �= Y in φ.

(2) Suppose C is abelian or triangulated. A brick set φ (either finite or infinite) is called a
connected brick set if Ext1C(X , Y ) �= 0 for all X , Y ∈ φ.

The next is about the definition of a weak bialgebra.

Definition 1.6 Let A be an algebra with a k-linear morphism � : A → A ⊗ A. We say � is
a prealgebra morphism if

�(ab) = �(a)�(b)

for all a, b ∈ A.

A prealgebra morphism is an algebra morphism if and only if �(1) = 1 ⊗ 1 where 1 is
the identity (or unit) element of A.

Definition 1.7 [11, Definition 2.1] A weak bialgebra is a vector space B over the base field
k with the structures of

(a) an associative algebra (B, m, 1) with multiplication m : B ⊗ B → B and unit 1 ∈ B,
and

(b) a coassociative coalgebra (B,�, ε) with comultiplication � : B → B ⊗ B and couint
ε : B → k

satisfying the following conditions.

(i) The comultiplication � : B → B ⊗ B is a prealgebra morphism.
(ii) The unit and counit satisfy

(�(1) ⊗ 1)(1⊗�(1)) = (�⊗ I d)�(1) = (1⊗�(1))(�(1) ⊗ 1) (E1.7.1)

and

ε(xyz) =
∑

ε(xy(1))ε(y(2)z) =
∑

ε(xy(2))ε(y(1)z), (E1.7.2)

where �(y) =
∑

y(1) ⊗ y(2) is the Sweedler notation.

We refer to [10,11,53,54] for many other basic definitions related to weak bialgebras
and weak Hopf algebras. The tensor structure of left modules over a weak bialgebra [53,
Proposition 2] is given below.

Definition 1.8 Let A be a weak bialgebra over k. For two left A-modules M and N , define
M ⊗l N = �(1)(M ⊗k N ) where ⊗k is the tensor product over k.

The following lemma is clear.

Lemma 1.9 Let A be a weak bialgebra.

(1) With the tensor product − ⊗l − given in Definition 1.8, both A − mod and A −Mod
are monoidal abelian categories.
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(2) Both Db(A −mod) and Db(A −Mod) are monoidal triangulated.

Finally we mention a fact in quiver representations.

Lemma 1.10 [25, p. 63] Let Q be a quiver of type An. Then M{i, j}, for 1 ≤ i < j ≤ n,
defined as in (E0.7.2)–(E0.7.3), form the complete list of indecomposable representations of
Q, up to isomorphisms.

Convention 1.11 For the rest of the paper, we will use A for an algebra over k. It could have
a bialgebra or weak bialgebra structure. We will use A for the abelian category of finite
dimensional left A-modules, also denoted by A − mod. Let T be a triangulated category
that could have extra monoidal triangulated structure. Sometimes T denotes the bounded
derived category Db(A). A general k-linear or monoidal category is denoted by C.

2 Preliminaries on quiver representations

We refer to [4] for some basic concepts in quiver representation theory. Here we fix some
convention. Let Q = (Q0, Q1, s, t) be a quiver where Q0 is the set of vertices of Q, Q1 is
the set of arrows of Q, and s, t : Q1 → Q0 are source and target maps of Q respectively.
Let M be a representation of Q. For each vertex i ∈ Q0, let (M)i denote the vector space
at i . For each arrow α ∈ Q1 from vertex i := s(α) to vertex j := t(α), let (M)α denote
the k-linear map from (M)i to (M) j corresponding to α. Let Rep(Q) be the category of
all representations of Q and rep(Q) be the full subcategory of Rep(Q) consisting of finite
dimensional representations. By [4, Theorem 1.7 in Chapter VII], every finite dimensional
hereditary algebra A is Morita equivalent to the path algebra kQ of a finite acyclic quiver Q.

The definition of a weak bialgebra is given in Definition 1.7. The path algebra kQ is
naturally equippedwith a coalgebra structure thatmakes it aweak bialgebra, see [54, Example
2.5] and [30, Section 3]. We state this known fact as follows.

Lemma 2.1 Let Q be a finite quiver.

(1) Its path algebra kQ is a cocommutative weak bialgebra whose coalgebra structure is
determined by

�(p) = p ⊗ p and ε(p) = 1

for any path p = α1α2 · · ·αm of length m ≥ 0.
(2) The weak bialgebra structure in part (1) is a bialgebra if and only if |Q0| = 1.

Since kQ is a cocommutative weak bialgebra, rep(Q)(∼= kQ − mod) is a symmetric
monoidal abelian category where the tensor product is given in Definition 1.8. For two
representations M = ((M)i , (M)α) and N = ((N )i , (N )α) of Q where i ∈ Q0 and α ∈ Q1,
we can define the vertex-wise tensor product M ⊗v N by

(M ⊗v N )i = (M)i ⊗k (N )i , and (M ⊗v N )α = (M)α ⊗k (N )α, (E2.1.1)

for all i ∈ Q0 and α ∈ Q1. Then the tensor product M ⊗l N given in Definition 1.8 is
exactly equal to the vertex-wise tensor product M ⊗v N give in (E2.1.1). Therefore, we do
not distinguish these two tensors and denote them by M ⊗ N . The tensor structure of quiver
representations has been studied by many researchers, see, for example, [29–32,40,41]. Note
that the bounded derived category Db(rep(Q)) is a tensor triangulated category in the sense
of [5, Definition 1.1]; consequently, it is a monoidal triangulated category.
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In this paper we study more than one tensor structures of the quiver representations. But,
in this section, we are only working on the tensor structure defined by (E2.1.1). We start with
some details about quiver representations.

We have defined the Frobenius–Perron dimension, denoted by fpd, of an object in a
monoidal category C in Definition 1.3(4). A nice property of fpd is a duality property when
applied to objects in rep(Q).

Definition 2.2 Let Q = (Q0, Q1, sQ, tQ) be a quiver and M be a finite-dimensional repre-
sentation of Q.

(1) Define the opposite quiver of Q, denoted by Qop , to be the quiver which reverses all
arrows in Q1, that is

Qop
0 = Q0, Qop

1 = Q1, sQop = tQ, tQop = sQ .

(2) Define the dual of M , denoted by M∗, to be the representation of Qop that is determined
by

(M∗)i = ((M)i )
∗, (M∗)α = ((M)α)∗,

for all vertices i and arrows α.

We give an easy example.

Example 2.3 Let Q be 1 2 and M be k
(1,0)T

k
2 . Then we have

Qop : 1 2 and M∗ = k k
2(1,0)

.

For two finite dimensional k-vector spaces U , V , we have

(V ⊗ U )∗ = U∗ ⊗ V ∗ ∼= V ∗ ⊗ U∗.

Furthermore, if we have linear maps between finite dimensional k-vector spaces, say f :
V → V ′ and g : U → U ′, then we have the commutative diagram

(V ⊗ U )∗

�

(V ′ ⊗ U ′)∗

�

( f ⊗g)∗

V ∗ ⊗ U∗ V ′∗ ⊗ U ′∗.
f ∗⊗g∗

The above commutative diagram holds for objects in rep(Q) since kQ is a commutative weak
bialgebra [Lemma 2.1(1)]. It is clear that thek-linear dual induces a contravariant equivalence
between the abelian categories rep(Q) and rep(Qop). Combining these two facts, we have

Hom(rep(Q))op (X , M ⊗ N ) ∼= Homrep(Q)(M ⊗ N , X) (E2.3.1)
∼= Homrep(Qop)(X∗, M∗ ⊗ N∗)

for M, N , X ∈ rep(Q). Now the following lemma follows from (E2.3.1).

Lemma 2.4 Let Q be a finite quiver and M be a finite representation of Q. Then

fpd(M ⊗rep(Q)op −) = fpd(M∗ ⊗rep(Qop) −)

where M is considered as an object in the tensor category rep(Q)op and M∗ an object in
rep(Qop).

The same statement holds for other Frobenius–Perron invariants such as fpv.
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Next we study some brick sets of quiver representations. Let S(i) denote the simple
representation (of Q) at vertex i where

S(i) j =
{

k j = i

0 j �= i
and S(i)α = 0, ∀ α ∈ Q1, (E2.4.1)

and ei denote the trivial path at vertex i . By the tensor structure of rep(Q) (E2.1.1), we have
the following.

Lemma 2.5 Let S(i) be the simple left kQ-module defined as above and M in rep(Q). Then
S(i) ⊗ M is isomorphic to a direct sum of finitely many copies of S(i).

In the above lemma, S(i) ⊗ M could be 0.

Proposition 2.6 Let M be in rep(Q). Then

fpd(M) ≥ d,

where d = max
v∈Q0

{dim((M)v)}.

Proof Let a = dim(M)v and let φ0 = {S(v)} for v ∈ Q0. Then

Homrep(Q)(S(v), M ⊗ S(v)) = Homrep(Q)(S(v), S(v)⊕a) = k
⊕a

which implies that A(φ0, M ⊗−) = (a)1×1. Therefore fpd(M) ≥ a for all a. The assertion
follows. ��

Note that fpd(M) may be infinite as the next example shows (and as predicted by
Lemma 6.4).

Example 2.7 Let Q be the Kronecker quiver 1
α

β
2 . Let S(1) be defined as in (E2.4.1).

For every c ∈ k, we define an object in rep(Q):

Mc := k

α=I d

β=cI d
k . (E2.7.1)

Then Mc is a brick object (and such an object is also called a band module of Q [13, pp.
160–161]). It is easy to see that Hom(Mc, S(1)) ∼= k and that {Mc, Mc′ } is a brick set if
c �= c′. As a consequence, {Mc, | c ∈ k} is an infinite brick set.

Let T be any finite subset of k and let φ := {Mc | c ∈ T }. The A(φ, S(1) ⊗ −) is a
|T | × |T | matrix in which all entries are 1. Then ρ(A(φ, S(1) ⊗ −)) = |T |. Since k is
infinite, we obtain that fpd(S(1)) = ∞.

Let us consider a slightly more general situation.

Example 2.8 Suppose Q is another quiver and p1 and p2 are two paths from vertex i to vertex
j that do not intersect except at the two endpoints. Thenwe can consider a similar brick object
Mc so that

(Mc)v =
{

k if v is in either p1 or p2,

0 otherwise,

(Mc)α =

⎧⎪⎨
⎪⎩

I d if α is in either p1 or p2, but not the first arrow in p2,

cI d if α is the first arrow in p2,

0 otherwise,
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or, similar to (E2.7.1), we can write it as

Mc := k

p1=I d

p2=cI d
k .

Then {Mc, | c ∈ k} is an infinite brick set.

We will use this example later.

3 Discrete categories

In this section we will prove some basic lemmas for monoidal abelian categories that are
needed in the proof of Theorem 0.4. We start with a definition.

Definition 3.1 Let C be a monoidal abelian category. We say C is discrete if

(a) C is Hom-finite, namely HomC(M, N ) is finite dimensional over k for objects M, N in
C,

(b) every object in C has finite length,
(c) C has finitely many simple objects, say {S1, . . . , Sn}, up to isomorphisms, and
(d) for all simple objects Si and S j in C,

Si ⊗ S j ∼=
{

Si if i = j

0 if i �= j .
(E3.1.1)

Note that an essentially small category C satisfying condition (b) is called a length category
[24,43].

Let Q be a finite quiver. Then there is a canonical monoidal abelian structure on rep(Q)

induced by the weak bialgebra structure defined in Lemma 2.1. The following lemma follows
immediately from the definition, see (E2.1.1).

Lemma 3.2 Let Q be a finite acyclic quiver. Then the canonical monoidal abelian structure
on rep(Q) is discrete.

For the rest of this section we assume that C is discrete. As a consequence, C is a Krull-
Schmidt category. For M ∈ C, let �(M) denote the length of C. Let I C(M) denote the
isomorphism class of all (possibly repeated) simple subquotients of M . This can be obtained
by considering any composition series of M . Even though composition series of M is not
unique, I C(M) is unique, so well-defined.

Lemma 3.3 Let C be a Hom-finite monoidal abelian category with finitely many simple
objects. Let 1 be the unit object.

(1) �(−) is additive.
(2) For every nonzero object M there is a simple object S ∈ I C(1) such that S ⊗ M �= 0.

By symmetry, there is a simple object T ∈ I C(1) such that M ⊗ T �= 0.
(3) If S ∈ I C(1) and T is a simple object in C, then S ⊗ T is either 0 or a simple object.

For each T , there is only one S ∈ I C(1) such that S ⊗ T �= 0.
(4) The multiplicity of any simple object S in I C(1) is 1.
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(5) If S, T ∈ I C(1), then

S ⊗ T ∼=
{

S if S = T

0 if S �= T .

(6) C is discrete if and only if S ∈ I C(1) for all simple objects S.

Proof (1) Clear from the definition.
(2) By part (1), we have

�(M) = �(1⊗ M) =
∑

S∈I C(1)

�(S ⊗ M). (E3.3.1)

Therefore there is an S ∈ I C(1) such that S ⊗ M �= 0.
(3) If S ⊗ T �= 0, then, by (E3.3.1), we have

1 = �(T ) = �(1⊗ T ) =
∑

S′∈I C(1)

�(S′ ⊗ T ) ≥ �(S ⊗ T ) ≥ 1.

Therefore �(S ⊗ T ) = 1 and �(S′ ⊗ T ) = 0 for all other S′ ∈ I C(1).
(4) This follows from (E3.3.1) by taking a simple object M with S ⊗ M �= 0.
(5) It remains to show that S⊗T = 0 if S and T are distinct elements in I C(1). Suppose on

the contrary that U := S ⊗ T �= 0. By part (3), it is a simple object. Since U = S ⊗ T is
a subquotient of 1⊗ 1, U is in I C(1). Since S �= T , we have either U �= S or U �= T .
By symmetry, we assume that U �= S. By part (3), there is only one W ∈ I C(1) such
that W ⊗ U �= 0. This implies that W ⊗ S �= 0 as U = S ⊗ T . There are two different
objects, namely, S, U ∈ I C(1) such that W ⊗S �= 0 and W ⊗U �= 0. By the left-version
of part (3) this is impossible. The assertion follows.

(6) If I C(1) contains all simple objects, then by part (5), C is discrete. Conversely, suppose
C is discrete. For every simple object T , by part (2), there is an S ∈ I C(1) such that
S ⊗ T �= 0. By the definition of discreteness, T = S. So T ∈ I C(1). ��

Proposition 3.4 Let A be a finite dimensional algebra of finite global dimension. Suppose that
(A − mod,⊗) is a discrete monoidal abelian category. Then, for any simple left A-module
S and any M ∈ A −mod,

M ⊗ S ∼= S⊕n

where n is the number of copies of S in the the composition series of M.

Proof By the ’no loops conjecture’, which was proved by Igusa [36],

Ext1A(S, S) = 0. (E3.4.1)

By definition, − ⊗ − is biexact. Hence M ⊗ S has a composition series that is induced
by the composition series of M . Let T be a simple subquotient of M . Then T ⊗ S is either
S when T ∼= S or 0 if T � S. Thus M ⊗ S has a composition series with each simple
subquotient being S. The assertion follows from (E3.4.1). ��

Recall that ⊗v is the canonical tensor given in (E2.1.1). We have an immediate conse-
quence.
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Corollary 3.5 Let Q be a finite acyclic quiver. If (rep(Q),⊗) is another discrete monoidal
abelian structure on rep(Q), then for any M ∈ rep(Q) and any simple representation S over
Q,

M ⊗ S ∼= M ⊗v S

where ⊗v is defined as in (E2.1.1).

There are a lot of monoidal categories that are not discrete. For example, for a finite
quiver Q, if rep(Q) is equipped with other bialgebra structure, it may not be discrete, see
Proposition 7.7(a-d). We conclude this section with the definition of a discrete action.

Definition 3.6 Let C be amonoidal abelian category acting on an abelian categoryA. Assume
that both C andA satisfy Definition 3.1(a,b,c). Let {T1, . . . , Tn} (respectively, {S1, . . . , Sm})
be the complete list of simple objects in C (respectively, A), where m ≥ n. The action of C
on A is called discrete if

(d)’ there is a permutation σ ∈ Sn such that

Ti � S j ∼=
{

S j if j = σ(i)

0 if j �= σ(i).
(E3.6.1)

4 Proof of Theorem 0.4

The aim of this section is to prove Theorem 0.4. We need first recall some facts from repre-
sentation theory of quivers.

Proposition 4.1 [4, Proposition 2.5 in Chapter VII] Let Q be a finite, connected, and acyclic
quiver and M be a brick such that there exists a ∈ Q0 with dim(M)a > 1. Let Q′ be the
quiver defined as follows: Q′ = (Q′

0, Q′
1), where Q′

0 = Q0 ∪ {b}; Q′
1 = Q1 ∪ {α}; and

α : b → a. Then kQ′ is of infinite representation type.

By duality and Proposition 4.1, if α is an arrow of the form a → b, then kQ′ is also of
infinite representation type.

Lemma 4.2 [4, Corollary 5.14 in Chapter VII] If Q is a quiver of type ADE, see [4, p. 252],
then every indecomposable representation of Q is a brick.

Recall from Definition 1.4(3) that an algebra A is wild or of wild representation type if
there is a faithful exact embedding of abelian categories

Emb : k〈x1, x2〉 −mod −→ A := A −mod (E4.2.1)

that preserves indecomposables and respects isomorphism classes (namely, for all objects
M1, M2 in k〈x1, x2〉 − mod, Emb(M1) ∼= Emb(M2) if and only if M1 ∼= M2). A stronger
notion of wildness is the following. An algebra A is called strictly wild, or fully wild, if Emb
in (E4.2.1) is a fully faithful embedding [1, Proposition 5]. By definition, strictly wild is wild,
but the converse is not true. It is well-known that a wild path algebra kQ is always strictly
wild, see a comment of Gabriel [23, p. 140] or [1, Proposition 7].

Lemma 4.3 Let A be a finite dimensional algebra that is strictly wild. Let C be an abelian
category containing A as a full subcategory. Then C contains an infinite connected brick set.
As a consequence, if Q is a finite acyclic quiver that is wild, then rep(Q) contains an infinite
connected brick set.

123



Frobenius–Perron theory of representations of quivers 3187

Proof The consequence follows from the fact that a wild quiver is strictly wild. So we only
prove the main assertion.

Let A be strictly wild. By definition, there is a fully faithful embedding

Emb : k〈x1, x2〉 −mod −→ A −→ C.

For each c ∈ k, let M(c) denote the 1-dimensional simple module k〈x1, x2〉/(x1 −
c, x2) and let Nc be Emb(Mc). By taking a free resolution M(c), one can check that
Ext1

k〈x1,x2〉(M(c), M(c′)) �= 0 for all c, c′. Hence {M(c) | c ∈ k} is an infinite connected
brick set in k〈x1, x2〉 − mod. Since Emb a fully faithful embedding, {Nc | c ∈ k} is an
infinite connected brick set of C. ��
Lemma 4.4 Let C be an abelian category of finite global dimension and let T be the bounded
derived category Db(C). Suppose that

(1) T is triangulated equivalent to Db(B−mod) for a finite dimensional hereditary algebra
B via tilting object X, namely,

RHomT (X ,−) : T → Db(B −mod)

is a triangulated equivalence where B ∼= RHomT (X , X), and
(2) C contains an infinite (respectively, infinite connected) brick set.

Then B −mod contains an infinite (respectively, infinite connected) brick set.

Note that, if C = A −mod for some finite dimensional algebra A and if T is triangulated
equivalent to Db(B −mod), then, by tilting theory, the existence of X is automatic.

Proof of Lemma 4.4 Weonly prove the assertion for “infinite brick set”. The proof for “infinite
connected brick set” is similar.

Let

F := RHomT (X ,−) : T −→ Db(B −mod)

be an equivalence of triangulated categories. Let {N (c) | c ∈ U } be an infinite brick set of C
by hypothesis. Then

{F(N (c)) | c ∈ U }
is an infinite brick set of Db(B −mod). Since X has finite projective dimension, there is an
integer n independent of c ∈ U such that

Hi (F(N (c))) = 0 for all |i | > n. (E4.4.1)

Note that B−mod is hereditary, which implies that every indecomposable object in Db(B−
mod) is of the form M[i] for some indecomposable object M ∈ B−mod and for some i [38,
Section 2.5]. By (E4.4.1), F(N (c)) = Mc[ic] for some indecomposable object Mc ∈ B−mod
and some integer |ic| ≤ n. Since U is infinite, there is an infinite subset U ′ ⊆ U such that
ic is a constant for all c ∈ U ′. Let i0 denote such ic. Thus {Mc[i0] | c ∈ U ′} is an infinite
brick set in Db(B − mod). Since the suspension [1] is an isomorphism of Db(B − mod),
{Mc | c ∈ U ′} is an infinite brick set in Db(B −mod). Finally, using the fact that B −mod
is a full subcategory of Db(B − mod), we obtain that {Mc | c ∈ U ′} is an infinite brick set
in B −mod. ��
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Lemma 4.5 Let A be a finite dimensional hereditary algebra that is not of finite representation
type. Then the abelian category A −mod contains an infinite brick set. As a consequence, if
Q is a finite acyclic quiver not of type ADE, then rep(Q) contains an infinite brick set.

Proof By [4, Theorem 1.7 in Chapter VII] every such A is Morita equivalent to a path algebra
kQ for some finite acyclic quiver Q. By Lemma 4.4, we may assume that A is kQ.

Since A is not of finite type, Q is not of finite type. Lemma 4.3 settles the case where Q
is of wild representation type.

Case 1: Q is of type Ã. Since Q is acyclic, there exist two different paths p1 and p2 from
v to u, where v �= u ∈ Q0. We can further assume that the length p1 is smallest among all
such choices. In this case, rep(Q) contains an infinite brick set by Example 2.8.

Case 2: Q is of type D̃Ẽ. We consider a slightly more general situation and then apply the
assertion to the special case (see quivers in [4, Corollary 2.7 in Chapter VII]). If there exists
a subquiver Q′ of Q and an indecomposable representation M of Q′ satisfying:
(a) Q′ is a quiver of type D or E,
(b) there exists x ∈ Q′

0, dim(M)x > 1,
(c) {y} ∈ Q0\Q′

0,
(d) there exists an arrow α ∈ Q1 such that α : y → x ,

then we construct a new representation M(λ) as follows:

(M(λ))v =

⎧⎪⎨
⎪⎩

(M)v if v ∈ Q′
0

k if v = y

0 otherwise,

(M(λ))β =

⎧⎪⎨
⎪⎩

(M)β if β ∈ Q′
1

λ if β = α

0 otherwise,

where λ : k → (M)x is a k-linear map.
Then by the proof of [4, Proposition 2.5 in Chapter VII], each M(λ) is a brick and there

exists infinitely many pairwise non-isomorphic bricks of the form M(λ). In fact, the proof of
[4, Proposition 2.5 in Chapter VII] shows that there is an infinite set of U := {λ : k → Mx }
such that Homrep(Q)(M(λ), M(λ′)) = 0 for all λ, λ′ ∈ U . This means that rep(Q) contains
an infinite brick set. Dually, If we change the condition (d) into (d)’:

(d)’ there exists an arrow α ∈ Q1 such that α : x → y,

we can still construct an infinite brick set as above.
Now we go back to a quiver of type D̃Ẽ. By Lemma 4.4, we can assume that

(e) Q′ is one of the quivers in [4, Corollary 2.6 in Chapter VII.2], and that
(f) (c) and (d) hold.

Note that (e) implies that (a) holds. By [4, Corollary 2.6 inChapterVII.2], (b) holds. Therefore
we proved that rep(Q) contains an infinite brick set. ��
Lemma 4.6 Let C be a monoidal abelian category acting on an abelian category A. Assume
that both C and A satisfy Definition 3.1(a,b,c). Suppose that

(a) A contains an infinite brick set, and that
(b) the action of C on A is discrete.

Then there is a simple T ∈ C such that fpd(T ) = ∞.

Lemma 4.6 may fail if the action is not discrete. Let Q be the Kronecker quiver in
Example 2.7 and A be its path algebra equipped with the cocommutative bialgebra structure
in Proposition 7.7(a). Then S(1) is the unit object in A and S(2) ⊗ M = S(2)⊕ dim(M) for
any M ∈ A. Since all indecomposables in rep(Q) are well-understood, one can check that
fpd(S(1)) = fpd(S(2)) = 1 (details are omitted).
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Proof of Lemma 4.6 Let {N (c) | c ∈ U } is an infinite brick set of A and let {S1, . . . , Sn} be
the complete list of simple objects in A up to isomorphism. For each 1 ≤ i ≤ n, define

Ui := {c ∈ U | HomA(N (c), Si ) �= 0}.
For each c ∈ U , there is an i such that HomA(N (c), Si ) �= 0. This implies thatU = ⋃n

i=1 Ui .
Therefore there is an i such that Ui is infinite. Without loss of generality, we may assume
that U = U1 is infinite.

Since the action is discrete, there is a simple object T ∈ C such that T � S1 ∼= S1. Now
HomA(N (c), S1) �= 0 implies that every simple subquotient of T � N (c) is isomorphic to
S1. In particular, T � N (c) contains a copy of S1 for all c.

Let W be any finite subset of U and let φ = {N (c) | c ∈ W }. Using the above paragraph,
HomA(N (c), T � N (c′)) �= 0

for all c, c′ ∈ W . This implies that ρ(A(φ, T � −)) ≥ |W | and fpd(T ) ≥ |W |. Since |W |
can be arbitrarily larger, fpd(T ) = ∞. ��

The following is a part of Theorem 0.4.

Theorem 4.7 Let A be a finite dimensional hereditary algebra and let A = A − mod. Let
C be a monoidal abelian category satisfying Definition 3.1(a,b,c). Suppose that there is an
action of C on A that is discrete. Then the following are equivalent:

(a) A is of finite representation type,
(b) fpd(M) < ∞ for every irreducible object M ∈ C,
(c) fpd(M) < ∞ for every indecomposable object M ∈ C,
(d) fpd(M) < ∞ for every object M ∈ C

Proof (a)�⇒ (d): If A is of finite representation type, thenA has only finitelymany indecom-
posable objects. This means that there are only finitely many brick sets. Then, by definition,
fpd(σ ) is finite for every endofunctor σ of A. In particular, fpd(M) is finite for every repre-
sentation M ∈ C.

(d) �⇒ (c) �⇒ (b): Clear.
(b)�⇒ (a): It suffices to show that if A is not of finite representation type, then fpd(M) =

∞ for some irreducible representation M ∈ C. The assertion follows from Lemmas 4.5 and
4.6 . ��

We will use the following lemma concerning a bound of spectral radius of a matrix.

Lemma 4.8 (Gershgorin Circle Theorem [27]) Let A be a complex n×n matrix, with entries
ai j . For i ∈ {1, . . . , n}, let Ri = ∑

j �=i

∣∣ai j
∣∣ be the sum of the absolute values of the

non-diagonal entries in the i-th row. Let D(aii , Ri ) ⊆ C be a closed disc centered at aii

with radius Ri . Then every eigenvalue of A lies within at least one of the Gershgorin discs
D(aii , Ri ). As a consequence, ρ(A) ≤ maxi {|aii | + Ri }.
Proposition 4.9 Suppose T is a triangulated category satisfying

(a) T is Hom-finite and hence Krull-Schmidt,
(b) there are objects {X1, . . . , X N } such that every indecomposable object in T is of the

form Xi [m] for some 1 ≤ i ≤ N and m ∈ Z, and
(c) for every two indecomposable objects X , Y in T , HomT (X , Y [m]) = 0 for |m| � 0.

Then the following hold.
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(1) fpd(σ ) < ∞ for every endofunctor σ of T .
(2) If C is a monoidal triangulated category acting on T , then fpd(M) < ∞ for every object

M ∈ C.

Proof Let σ be an endofunctor of T . Since there are only finitely many Xi in hypothesis (b),
we can assume that every σ(Xi ) is a direct summand of

X =
⎛
⎝ N⊕

i=1

δ−1⊕
j=−δ

Xi [ j]
⎞
⎠
⊕ξ

(E4.9.1)

for some fixed δ and ξ .
We make some definitions. Let

α = max{dimHomT (Xi [s], X) | ∀ s, i},
γ = max{|s| | HomT (Xi [s], X) �= 0 for some i}.

For any given finite brick set φ, it is always is a subset of

� :=
D−1⋃

j=−D

{X1[ j], . . . , X N [ j]}

for some large D � 0. Since φ is a subset of �, we have

ρ(A(φ, σ )) ≤ ρ(A(�, σ )).

By Definition 1.3(4), it is enough to show that ρ(A(�, σ )) is uniformly bounded on � (for
each fixed X as given in (E4.9.1)). For the next calculation we make a linear order on the
objects in � as

� = {X1[−D], . . . , X N [−D]} ∪ {X1[−D + 1], . . . , X N [−D + 1]}∪ (E4.9.2)

· · · ∪ {X1[D − 2], . . . , X N [D − 2]} ∪ {X1[D − 1], . . . , X N [D − 1]}
and write is as � = {Y1, . . . , Y2N D}. Write the adjacency matrix A(�, σ ) as (ai j ). For each
pair (i, j), by definition,

ai j = dimHomT (Xsi [wi ], σ (Xs j [w j ])) ≤ dimHomT (Xsi [wi ], X [w j ]) ≤ α,

for some si , s j , wi , w j ; and by the ordering in (E4.9.2), we obtain

ai j = 0 if |i − j | > 2Nδ + γ + 2.

Then each Ri in the Lemma 4.8 is bounded by (2Nδ+ γ + 2)α. By Lemma 4.8 (Gershgorin
Circle Theorem), there is a bound of ρ(A(�, σ )) which is independent of D. Since every
finite brick setφ is a subset of� for some large D, ρ(A(φ, σ )) has a bound that is independent
of φ. Therefore fpd(σ ) is finite as desired. ��

We will use the following special case. Recall that A = A −mod and that T = Db(A).

Corollary 4.10 Let A be a finite dimensional hereditary algebra that is of finite representation
type. Then every monoidal triangulated structure on T is fpd-finite.

Proof Since A is of finite type, we can list all indecomposable left A-modules {X1, . . . , X N }.
Since A is hereditary, every indecomposable object in T is of the form Xi [s] for some 1 ≤ i ≤
N and s ∈ Z [14, Lemma 3.3]. Finally, since A is hereditary, thenHomT (Xi , X j [m]) = 0 for
m �= 0, 1. Thus T satisfies hypotheses (a,b,c) in Proposition 4.9. Then the assertion follows
from Proposition 4.9(2) by setting C = T and � = ⊗. ��

123



Frobenius–Perron theory of representations of quivers 3191

Lemma 4.11 Let A be a finite dimensional hereditary algebra. Let C be a monoidal abelian
category satisfying Definition 3.1(a,b,c). Suppose that C acts on A via �. Let �D be the
induced action of Db(C) on T . Let M be an object in C, also viewed as an object in Db(C).

(1) If n �= 0, 1, then fpd(M[n] �D −) = 0.
(2) fpd(M �D −) = fpd(M �−).

Proof (1) Suppose n ≥ 2. Let φ be a (finite) brick set. Since A is hereditary, every inde-
composable object is of the form X [m]. Then we can write φ = ⋃

λ∈Z φλ where φλ is either
empty or {Xλ,1[λ], Xλ,2[λ], . . . , Xλ,tλ [λ]}. Since A is hereditary,

HomT (Xλ,s[λ], M[n] �D Xδ,s′ [δ]) = HomT (Xλ,s[λ], (M � Xδ,s′)[n + δ]) = 0

for all λ ≤ δ. Then A(φ, M[n]�D−) is strictly upper triangular. Therefore ρ(A(φ, M[n]�D

−)) = 0. As a consequence the assertion follows.
The proof for n < 0 is similar.
(2) Let φ be a brick set as in part (1). Similar to the proof of part (1), also see [14,

Lemma 6.1], we obtain that A(φ, M �D −) is a block lower triangular matrix. So we only
need to consider the case that φ = {X1[d], X2[d], . . . Xt [d]} for the same d . In this case,
A(φ, M �D −) = A(φ[−d], M �−). Therefore the assertion follows. ��

Now we are ready to prove Theorem 0.4. We will use the notation introduced in Theorem
4.7 and Lemma 4.11.

Theorem 4.12 Let A be a finite dimensional hereditary algebra and let A = A − mod. Let
C be a monoidal abelian category satisfying Definition 3.1(a,b,c). Suppose that there is an
action of C on A that is discrete. Then the following are equivalent:

(a) A is of finite representation type,
(b) fpd(M) < ∞ for every irreducible object M ∈ C,
(c) fpd(M) < ∞ for every indecomposable object M ∈ C,
(d) fpd(M) < ∞ for every object M ∈ C,
(e) fpd(M �D −) < ∞ for every indecomposable object M ∈ Db(C),
(f) fpd(M �D −) < ∞ for every object M ∈ Db(C).

Suppose A is the path algebra kQ for some finite quiver Q. Then any of conditions (a) to (f)
is equivalent to

(g) Q is a finite union of quivers of type ADE.

Proof By Theorem 4.7, the first four conditions are equivalent.
(a) �⇒ (f): This follows from Proposition 4.9 and the proof of Corollary 4.10.
(f) �⇒ (e): Clear.
(e) �⇒ (c): This follows from Lemma 4.11(2). ��
Clearly Theorem 0.4 is a special case of Theorem 4.12.

5 mtt-structures of a monoidal triangulated category

First we recall the definition on a t-structure on a triangulated category. The notion of a
t-structure was introduced by Beilinson–Bernstein–Deligne in [7]. We make a small change
in the definition below.
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Definition 5.1 Let T be a triangulated category.

(1) A t-structure on T is a pair of full subcategories (T ≤0, T ≥0) satisfying the following
conditions.

(1a) T ≤0 ⊆ T ≤1 and T ≥0 ⊇ T ≥1 where we use notation T ≤n = T ≤0[−n] and T ≥n =
T ≥0[−n].

(1b) If M ∈ T ≤0 and N ∈ T ≥1, then HomT (M, N ) = 0.
(1c) For any object X ∈ T , there is a distinguished (exact) triangle

M → X → N → M[1]
with M ∈ T ≤0 and N ∈ T ≥1.

(2) The heart of the t-structure is the full subcategory

T ≥0 ∩ T ≤0

which is denoted by H or H(T ).
(3) [16, p. 1427] A t-structure is called bounded if for each X ∈ T , there exist m ≤ n such

that X ∈ T ≤n ∩ T ≥m .
(4) [16, p. 1427] A bounded t-structure is called hereditary if HomT (X , Y [n]) = 0 for

n ≥ 2 and X , Y ∈ H.

As a classical example, if T is the derived category Db(A − mod), there is a natural
t-structure on T by setting T ≤0 to be the complexes concentrated in degrees less than or
equal to 0 (and similarly for T ≥0). In this case the heart of this t-structure is A −mod.

Note that hereditary t-structures are very special. Even for the path algebra of a quiver Q of
typeA3, there is a t-structure in Db(rep(Q)) that is not hereditary, see [39] for a classification
of t-structures of Db(rep(Q)) of a quiver of Dynkin type.

Wewould like to introduce a version of the t-structure in amonoidal triangulated category.
We use mtt for “monoidal triangulated t” in the next definition.

Definition 5.2 Let T be a monoidal triangulated category in parts (1,2,3) and a triangulated
category in part (4).

(1) A t-structure (T ≤0, T ≥0) on T is called an mtt-structure if the following conditions
hold.

(a) T ≤0 ⊗ T ≤0 ⊆ T ≤0 and T ≤0 ⊗ T ≤0
� T ≤−1.

(b) Both T ≤0 and T ≥0 are closed under taking direct summands.
(c) There is an integer D ≥ 0 such that T ≥D ⊗ T ≥D ⊆ T ≥D .

(2) The minimal integer D in condition (c) is called the deviation of the mtt-structure of T .
(3) The deviation of (T , 1,⊗) is defined to be

D⊗(T ) = inf{ deviations of all possible mtt-structures of (T , 1,⊗)}.
(4) Suppose T is a triangulated category. The upper deviation of T is defined to be

U D(T ) = sup{D⊗(T ) | all possible monoidal triangulated structures onT }.
The lower deviation of T is defined to be

L D(T ) = inf{D⊗(T ) | all possible monoidal triangulated structures onT }.

123



Frobenius–Perron theory of representations of quivers 3193

Example 5.3 We give two classical examples.

(1) If A is a finite dimensional weak Hopf algebra (or a weak bialgebra), then A − mod
has a natural monoidal abelian structure, and consequently, T := Db(A −mod) has an
induced monoidal triangulated structure. It is clear that T has a canonical mtt-structure
by setting T ≤0 (respectively, T ≥0) to be the complexes concentrated in degrees less
than or equal to 0 (respectively, greater than or equal to 0). In this case the deviation
of the mtt-structure is 0. If A is hereditary as an algebra, then the above t-structure is
hereditary.
By definition, D⊗(T ) = 0 when we consider the monoidal triangulated structure given
above. As a consequence, L D(T ) = 0 when T is considered as a triangulated category.
A special case is L D(Db(rep(Q))) = 0 for all finite acyclic quivers Q.

(2) If X is a smooth projective scheme of dimension d , then T := Db(coh(X)) has a canon-
ical mtt-structure by setting T ≤0 (respectively, T ≥0) to be the complexes concentrated
in degrees less than or equal to 0 (respectively, greater than or equal to 0). If X is of
dimension 1, then the above t-structure is hereditary.
Note that the deviation of the canonical mtt-structure of T is at most d . By defini-
tion, D⊗(T ) ≤ d with the natural monoidal triangulated structure. As a consequence,
L D(T ) ≤ d when T is considered as a triangulated category.

Lemma 5.4 Let T be a monoidal triangulated category with an mtt-structure (T ≤0, T ≥0)
of deviation zero. Suppose that (T ≤0, T ≥0) is a hereditary t-structure of T . Then the heart
of the mtt-structure is a monoidal abelian category.

Proof By [7, Theorem 1.3.6], the heart H is an abelian category.
Since T is a monoidal triangulated category, there is a unit object 1 ∈ T . First we claim

that 1 ∈ H. By definition, there is a distinguished triangle

M → 1 → N → M[1] (E5.4.1)

where M ∈ T ≤0 and N ∈ T ≥1. For any object X ∈ H, since X ⊗− is an exact functor,

X ⊗ M → X → X ⊗ N → X ⊗ M[1]
is a distinguished triangle.However, X⊗N ∈ T ≥1 as the deviation is zero. ThenHom(X , X⊗
N ) = 0 by the definition of t-structure, and

X ⊗ M[1] ∼= (X ⊗ N )⊕ X [1] = X ⊗ (N ⊕ 1[1]). (E5.4.2)

By hypothesis the mtt-structure is hereditary. By [16, Lemma 2.1], (E5.4.2) holds for all
X ∈ T . Take X = 1, then M[1] ∼= N ⊕ 1[1] and in (E5.4.1), the morphism from 1 to N is
zero. Hence 1 is isomorphic to a direct summand of M , which is in T ≤0.

Similarly, for Y ∈ T ≤0 and f : Y → 1[−1], there is a distinguished triangle:

Y
f−→ 1[−1] → Z → Y [1].

Apply the exact functor X⊗− on the above triangle for all X ∈ H, and thenwe obtain f = 0,
i.e. Hom(Y , 1[−1]) = 0 for all Y ∈ T ≤0. Therefore, 1 ∈ T ≥0. Finally, 1 ∈ T ≥0∩T ≤0 = H.
Thus we proved the claim.

As for the tensor product bifunctor ⊗, since the deviation is zero, H is closed under ⊗.
Hence H is a monoidal category with the induced tensor product ⊗. The exactness of ⊗ in
H follows from the exactness of ⊗ in T , see [16, p. 1426]. ��
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Lemma 5.5 Let X be a smooth projective curve and let T be the monoidal triangulated
category Db(coh(X)).

(1) The deviation of every hereditary mtt-structure on T is positive.
(2) For any finite dimensional weak bialgebra A, Db(A − mod) with canonical monoidal

structure is not isomorphic to T as monoidal triangulated categories.

Proof (1) Suppose on the contrary that there is a hereditarymtt-structure on T with deviation
zero.

Let H be its heart. By Lemma 5.4, H is a monoidal abelian category. Let Ox be the
skyscraper sheaf at a point x ∈ X. There is an integer n such that M := Ox [n] is inH. Then
M ⊗ M is in H. By an easy computation,

M ⊗ M ∼= Ox [2n] ⊕Ox [2n − 1] ∼= M[n] ⊕ M[n − 1]
which cannot be inH for any n. This yields a contradiction. Therefore the assertion follows.

(2) It is clear that the deviation of the canonical mtt-structure of D⊗(Db(A − mod)) is
zero [Example 5.3(1)]. This mtt-structure is also hereditary. Now the assertion follows from
part (1). ��

For the rest of this section, we will use Frobenius–Perron curvature, see Definition 1.3(5),
to study the uniqueness of mtt-structures with deviation zero, and then prove Theorems 0.5
and 0.7 .

Definition 5.6 Let C be a monoidal abelian category and M ∈ C. The curvature of M is
defined to be

v(M) = lim
n→∞(�(M⊗n))

1
n

where �(−) denotes the length of an object.

Lemma 5.7 Let C be a monoidal abelian category satisfying Definition 3.1(a,b,c). Let A be
a finite dimensional weak bialgebra and A be A −mod. Let M be an object in C or A.

(1) If M is in C, then

fpv(M) ≤ v(M) < ∞.

(2) If M is in A, then

fpv(M) ≤ v(M) ≤ dim M . (E5.7.1)

(3) If A = kQ for some finite acyclic quiver Q with the tensor defined as in (E2.1.1), then

fpv(M) = v(M) = max
i∈Q0

{dim(M)i }. (E5.7.2)

(4) If C is discrete, then, for every nonzero object M ∈ C, fpv(M) is positive.
(5) Suppose that C acts on a general abelian category A such that the action is discrete in

the sense of Definition 3.6. Then, for every object M in C,

1 ≤ fpv(M) < ∞.

Proof (1) Let Hom denote HomC . Let

α := max{�(Xi ⊗ X j ) | Xi and X j are simple},

123



Frobenius–Perron theory of representations of quivers 3195

and

β := max{dim End(Xi ) | Xi is simple}.
Then, for any objects X and Y in C, we have

�(X ⊗ Y ) ≤ α�(X)�(Y ), (E5.7.3)

and

dimHom(X , Y ) ≤ β�(X)�(Y ). (E5.7.4)

By induction, �(X⊗n) ≤ αn−1�(X)n which implies that v(X) ≤ α�(X) < ∞.
Given a brick set φ = {X1, . . . , Xr }, define �(φ) := max

X∈φ
{�(X)}. By Lemma 4.8,

ρ(A(φ, M⊗n ⊗C −)) ≤ max
i=1,...,r

⎧⎨
⎩

r∑
j=1

dim Hom(Xi , M⊗n ⊗ X j )

⎫⎬
⎭ .

By (E5.7.3) and (E5.7.4), we have

dimHom(Xi , M⊗n ⊗ X j ) ≤ αβ�(Xi )(�(M⊗n)�(X j ))

≤ αβ(�(φ))2(�(M⊗n))

≤ αβ(�(φ))2(v(M) + ε)n)

for arbitrary small ε > 0 and for n � 0. Therefore,

ρ(A(φ, M⊗n ⊗C −)) ≤ αβr(�(φ))2(v(M) + ε)n),

which implies that

ρ(A(φ, M⊗n ⊗C −))
1
n ≤ (αβr(dim φ)2)

1
n (v(M) + ε), (E5.7.5)

for n � 0. When n → ∞, the limit of right side of inequality (E5.7.5) is v(M) + ε, so
fpv(M) ≤ v(M) + ε for every small ε. The assertion follows.

(2) It follows from Definition 1.8 that

dim M ⊗ N ≤ (dim M)(dim N ) (E5.7.6)

for all M, N ∈ A. It is also clear that

dim HomA(M, N ) ≤ dimHomk(M, N ) = (dim M)(dim N ). (E5.7.7)

By (E5.7.6), dim M⊗n ≤ (dim M)n , which implies that v(M) ≤ dim M . Now the assertion
follows from part (1).

(3) Let φ = {S(i)}where i is a vertex of Q. Write dim(M)i = di . Then ρ(A(φ, M⊗n)) is

the integer dn
i and lim

n→∞ ρ(A(φ, M⊗n))
1
n = di . Hence fpv(M) ≥ di for all i . It is clear that

v(M) = max{di | i ∈ Q0}. Therefore part (1) implies that fpv(M) = v(M).

(4) Suppose A is discrete. Then there is a simple object S such that M ⊗ S �= 0 and
HomA(S, M ⊗ S) �= 0. By induction, one can show that HomA(S, M⊗n ⊗ S) �= 0 for all n.
Therefore fpv(M) ≥ 1.

(5) Using a similar proof of part (1), one sees that fpv(M) < ∞. Using the proof of part
(4), one can show that fpv(M) ≥ 1. Details are omitted. ��
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Remark 5.8 (1) Let C be a monoidal abelian category acting on an abelian category A.
Assume that C satisfies Definition 3.1(a,b,c). The action of C onA is called fpv-positive
if

(e) fpv(M) > 0 for every nonzero object M in C. We say C is fpv-positive if the natural
action of C on itself is fpv-positive.

(2) By Lemma 5.7(5) if an action of C on A is discrete, then it is fpv-positive.
(3) Suppose an action of C on A is fpv-positive. Let C′ be a monoidal abelian subcategory

C. Then the induced action of C′ on A is fpv-positive. In general, such an action is not
discrete.

(4) There are other natural examples that the action of C onA is not discrete, but fpv-positive,
see below.
If A is a finite-dimensional bialgebra and let C = A − mod, then C is fpv-positive.
Let 0 �= M ∈ C and let S0 be a simple submodule of M . Then M ⊗ S0 �= 0 as
dim M ⊗ S0 = dim M dim S0 (when A is a bialgebra). For each i ≥ 1, we define Si

inductively to be a simple module of M ⊗ Si−1. So Si ⊆ M ⊗ Si−1 for all i ≥ 1.
Continuing this process, we will obtain a set of simple object � = {S0, S1, S2, . . .}.
Since A has finite many simples, |�| < ∞. Hence, there exists m < n ∈ Z

+, such that
Sn ∼= Sm . For all i ≥ n, we redefine Si to be Si−k(n−m) where k is an integer such that
m ≤ i − k(m − n) < n.
By the construction, we have, for all i ≥ m and all s ≥ 0,

dim Hom(Si+1, M ⊗ Si ) ≥ 1 and dimHom(Si+s, M⊗s ⊗ Si ) ≥ 1.

Therefore, by taking the brick set φ = {Sm, Sm+1, . . . , Sn}, one sees that, for each
s, A(φ, M⊗s ⊗ −) is a non-negative matrix that contains a permutation matrix. As a
consequence, ρ(A(φ, M⊗s ⊗−)) ≥ 1 for all s ≥ 1, which implies that fpv(M) ≥ 1.

(5) In rep(Q) where the tensor defined as in (E2.1.1), fpv(M), unlike fpd(M), is an invari-
ant only dependent on the the dimension vector of M (which is independent of the
orientations of arrows in the quiver).

Next we investigate mtt-structures on Db(C).

Lemma 5.9 Suppose that a monoidal abelian categoryC acts on an arbitrary abelian category
A. Let T = Db(C). Assume that

(a) the above action is either discrete or fpv-positive,
(b) C is hereditary, and
(c) (T ≤0, T ≥0) is any hereditary mtt-structure of deviation zero on T .

Let H be the heart of the above mtt-structure. Then the following hold.

(1) [16, Lemma 2.1] If M is an indecomposable object in T , then M is in T ≤b ∩ T ≥b for
some integer b.

(2) If M ∈ C, then M is in the heart H.
(3) The mtt-structure (T ≤0, T ≥0) given in (c) is the canonical mtt-structure of T .

Proof (2,3)Weonly prove thiswhen the action is discrete. Firstwe claim that fpv(M�T −) >

0 if 0 �= M ∈ C. It is clear that

fpv(M �T −) ≥ fpv(M �C −).

Now the claim follows from Lemma 5.7(5).
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Let M be an indecomposable object in C. Then M ∈ T ≤b∩T ≥b for some b. If b �= 0, then
M⊗n ∈ T ≤nb ∩ T ≥nb by Definition 5.2(a,c). For any fixed brick set φ, A(φ, M⊗n �T −) is
zero for n � 0 by the hereditary property of Definition 5.1(4). Therefore fpv(M �T −) = 0.
By the first paragraph, fpv(M �T −) > 0, yielding a contradiction. Therefore b = 0, or
equivalently, M ∈ T ≤0 ∩ T ≥0 =: H. This implies that C ⊆ H. By [16, Lemma 2.1] and
[59, Lemma 3.6], C = H, and consequently, the mtt-structure (T ≤0, T ≥0) in hypothesis (c)
must be the canonical mtt-structure of T . ��

The following is basically Theorem 0.7.

Theorem 5.10 Let A be a finite dimensional hereditary weak bialgebra. Suppose that the
monoidal abelian category A is either discrete or fpv-positive.

(1) There is a unique hereditary mtt-structure with deviation zero on Db(A).
(2) The A is the heart of any hereditary mtt-structure with deviation zero on Db(A).
(3) The A is uniquely determined by the monoidal triangulated structure on Db(A).

Proof Let C = A. Then we can easily check all hypotheses in Lemma 5.9. Then part (1)
follows from Lemma 5.9(3).

(2, 3) Follow directly from part (1). ��
Proof of Theorem 0.5 If A is a bialgebra, by Remark 5.8(4), A is fpv-positive. Therefore the
hypothesis of Theorem 5.10 is satisfied. Now the assertion follows from the uniqueness of
hereditary mtt-structure with deviation zero in Theorem 5.10. ��
Proof of Corollary 0.6 Let Q and Q′ be two quivers such that Db(rep(Q)) and Db(rep(Q′))
are equivalent as monoidal triangulated categories. By Theorem 0.5, this equivalent induces
an equivalence between rep(Q) and rep(Q′).

Recall that Q and Q′ are acyclic. For each acyclic quiver there are finitely many simple
representations, say {Si }ni=1, that are associated to vertices {1, . . . , n} of the quiver. The
correspondence between those simple representations gives rise to a bijective map f : Q0 →
Q′

0. By [4, Lemma 2.12, p. 84], dim Ext1(Si , S j ) is the number of arrows from vertex i to
vertex j . Therefore the number of arrows from f (i) to f ( j) is the same as that from i to j .
Thus Q ∼= Q′. ��

6 Proof of Theorem 0.3

The proof of Theorem 0.3 uses several results about weighted projective lines and takes
several pages in total. The final step of the proof is given at the end of this section. First we
recall some basic definitions concerning weighted projective lines. Details can be found in
[26, Section 1].

For t ≥ 1, let p := (p0, p1, . . . , pt ) be a (t + 1)-tuple of positive integers, called the
weight or weight sequence. Let D := (λ0, λ1, . . . , λt ) be a sequence of distinct points of the
projective line P

1 over k. We normalize D so that λ0 = ∞, λ1 = 0 and λ2 = 1 (if t ≥ 2).
Let R denote the commutative algebra

k[X0, X1, . . . , Xt ]/(X pi
i − X p1

1 + λi X p0
0 , i = 2, . . . , t). (E6.0.1)

The image of Xi in R is denoted by xi for all i . LetL be the abelian group of rank 1 generated
by −→xi for i = 0, 1, . . . , t and subject to the relations

p0
−→x0 = · · · = pi

−→xi = · · · = pt
−→xt =: −→c .
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The algebra R is L-graded by setting deg xi = −→xi . The corresponding weighted projective
line, denoted byX(p,D) or simplyX, is a noncommutative space whose category of coherent
sheaves is given by the quotient category

coh(X) := grL−R

grLf .d. −R
,

see [45, p. 155].
The weighted projective lines are classified into the following three classes:

X is

⎧⎪⎨
⎪⎩

domestic if p is (p, q), (2, 2, n), (2, 3, 3), (2, 3, 4), (2, 3, 5);
tubular if p is (2, 3, 6), (3, 3, 3), (2, 4, 4), (2, 2, 2, 2);
wild otherwise.

(E6.0.2)

In [58, Section 4.4], domestic (respectively, tubular, wild) weighted projective lines are called
parabolic (respectively, elliptic, hyperbolic). Let X be a weighted projective line. A sheaf
F ∈ coh(X) is called torsion if it is of finite length in coh(X). Let T or(X) denote the full
subcategory of coh(X) consisting of all torsion objects. By [58, Lemma 4.16], the category
T or(X) decomposes as a direct product of orthogonal blocks

T or(X) =
∏

x∈P1\{λ0,λ1,...,λt }
T orx ×

t∏
i=0

T orλi (E6.0.3)

where T orx is equivalent to the category of nilpotent representations of the Jordan quiver
(with one vertex and one arrow) over the residue field kx and where T orλi is equivalent to
the category of nilpotent representations over k of the cyclic quiver of length pi . A simple
object in coh(X) is called ordinary simple (see [26]) if it is the skyscraper sheaf Ox of a
closed point x ∈ P

1\{λ0, λ1, . . . , λt }.
Let V ect(X) be the full subcategory of coh(X) consisting of all vector bundles. Similar to

the elliptic curve case [12, Section 4], one can define the concepts of degree, rank and slope
of a vector bundle on a weighted projective line X; details are given in [58, Section 4.7] and
[46, Section 2]. For each μ ∈ Q, let V ectμ(X) be the full subcategory of V ect(X) consisting
of all semistable vector bundles of slope μ. By convention, V ect∞(X) denotes T or(X). By
[58, Comments after Corollary 4.34], every indecomposable object in coh(X) is in⋃

μ∈Q∪{∞}
V ectμ(X).

The dualizing element of X is denoted by

ω0 := (t − 2)−→c −
n∑

i=1

−→x i ∈ L. (E6.0.4)

Below we collect some nice properties of weighted projective lines. The definition of a
stable tube (or simply tube) was introduced in [56].

Lemma 6.1 [14, Lemma 7.9] Let X = X(p,D) be a weighted projective line.

(1) coh(X) is noetherian and hereditary.
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(2)

Db(coh(X)) ∼=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Db(rep(Ãp,q)) if p = (p, q),

Db(rep(D̃n)) if p = (2, 2, n),

Db(rep(Ẽ6)) if p = (2, 3, 3),

Db(rep(Ẽ7)) if p = (2, 3, 4),

Db(rep(Ẽ8)) if p = (2, 3, 5).

(3) Let S be an ordinary simple object in coh(X). Then Ext1
X
(S,S) = k.

(4) If X is tubular or domestic, then Ext1
X
(X , Y ) = 0 for all X ∈ V ectμ′(X) and Y ∈

V ectμ(X) with μ′ < μ.
(5) If X is domestic, then Ext1

X
(X , Y ) = 0 for all X ∈ V ectμ′(X) and Y ∈ V ectμ(X) with

μ′ ≤ μ < ∞.
(6) Suppose X is tubular or domestic. Then every indecomposable vector bundle X is

semistable.
(7) Suppose X is tubular and let μ ∈ Q. Then each V ectμ(X) is a uniserial category.

Accordingly indecomposables in V ectμ(X) lies in Auslander–Reiten components, which
all are stable tubes of finite rank. In fact, for every μ ∈ Q,

V ectμ(X) ∼= V ect∞(X) = T or(X).

Lemma 6.2 Let X = X(p,D) be a weighted projective line.

(1) [45, Theorem 2.2(ii)] Let T be Db(coh(X)). Then T has Serre duality in the form of

HomT (X , Y )∗ ∼= HomT (Y , S(X)),

where the Serre functor S is −(ω0)[1] and where the dualizing element ω0 is in (E6.0.4).
(2) [47, Proposition 1.10] Each indecomposable vector bundle has a nonzero morphism to

T orx for every point x in P
1.

The following linear algebra lemma is needed to estimate the spectral radius of some
matrices.

Lemma 6.3 Let � be the n × n-matrix (ai j )n×n where

ai j =
{
1 if i = 1, or j = 1,

0 otherwise.
. (E6.3.1)

Then the spectral radius ρ(�) ≥ √
n.

Proof It is not hard to check that the characteristic polynomial of � is

f (x) = xn − xn−1 − (n − 1)xn−2 = xn−2(x2 − x − (n − 1)).

Then

ρ(�) = 1+√
4n − 3

2
≥ √

n.

��
Lemma 6.4 Suppose T be a triangulated category satisfying

(a) there is an infinite brick set φ,
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(b) there is a brick object B in T such that HomT (B, X) �= 0 for all X ∈ φ,
(c) there is an integer m such that HomT (B[s], X) = HomT (X , B[s]) = 0 for all X ∈ �

and for all |s| ≥ m,
(d) T has a Serre functor S, and
(e) there is an integer m0 such that HomT (B[m0], S(X)) �= 0 for all X ∈ φ.

Let C be a monoidal triangulated category acting on T . Then there is an object M ∈ C such
that fpd(M) = ∞.

Proof In the following proof let � denote the action of C on T and Hom denote HomT .
By condition (d), T has a Serre functor S : T → T such that

Hom(X , Y )∗ ∼= Hom(Y , S(X)) (E6.4.1)

for all X , Y in T .
Let 1 ∈ C be the unit object with respect to the monoidal tensor of C. Let m and m0 be the

integers given in conditions (c) and (e), and let M be the object 1[m] ⊕ 1⊕ 1[m0 −m] in C.
It is enough to show that fpd(M) = ∞. Let φn be a brick set consisting of (n − 1) objects in
φ and one extra special object, namely B[m], where m is in condition (c). Write

φn = {X1 := B[m], X2, X3, . . . , Xn}
where Xi ∈ φ for all i = 2, 3, . . . , n. Let A := (ai j ) denote the adjacency matrix A(φn, M�
−). We claim that a1i �= 0 and a j1 �= 0 for all i, j .

Case 1:

a11 = dimHom(B[m], M � B[m])
≥ dimHom(B[m], 1� B[m])
= dimHom(B, B)

= dim k = 1 by condition (b).

Case 2: for every i ≥ 2,

a1i = dimHom(B[m], M � Xi )

≥ dimHom(B[m], 1[m] � Xi )

= dimHom(B[m], Xi [m])
≥ dim k = 1 by condition (c).

Case 3: for every j ≥ 2,

a j1 = dimHom(X j , M � B[m])
≥ dimHom(X j , 1[m0 − m] � B[m])
= dimHom(X j , B[m0])
= dimHom(B[m0], S(X j )) by(E6.4.1)

≥ dim k = 1 by condition (e).

Therefore we proved the claim. This means that every entry in A is larger than or equal
to the corresponding entry in � as given in Lemma 6.3. By linear algebra,

ρ(A) ≥ ρ(�) ≥ √
n

where the last inequality is Lemma 6.3. Then, by definition, fpd(M) ≥ √
n for all n. Thus

fpd(M) = ∞ as desired. ��

123



Frobenius–Perron theory of representations of quivers 3201

Now we are ready to show that every monoidal structure on weighted projective line is
fpd-infinite.

Proposition 6.5 Let X be a weighted projective line and let T be Db(coh(X)).

(1) Let C be a monoidal triangulated category acting on T . Then there is an object M ∈ C
such that fpd(M) = ∞.

(2) Every monoidal structure on T is fpd-infinite.

Proof Since part (2) is a special case of part (1), it suffices to show part (1). We need to verify
hypotheses (a)–(e) in Lemma 6.4.

Let φ be the set {Ox | x ∈ P
1\{λ0, . . . , λt }} and let B be the trivial bundle OX. It is clear

thatφ is infinite, so (a) holds. ByLemma6.2(2), (b) holds. Since coh(X) has global dimension
1, (c) holds. By Lemma 6.2(1), Db(coh(X)) has a Serre functor S which isOX(ω0)[1]⊗X−.
Then S(Ox ) = Ox [1] for all x ∈ P

1\{λ0, . . . , λt }. Therefore (e) holds. Finally the assertion
follows from Lemma 6.4. ��

It is not hard to check that Proposition 6.5 also holds ifX is an irreducible smooth projective
scheme of dimension at least 1.

We still need quite a few lemmas before we can prove Theorem 0.3. Recall that the
definition of fpd-wild is given in Definition 0.2(3).

Lemma 6.6 Let T be a triangulated category. Suppose that, for each n, there is a connected
brick set φ with |φ| > n.

(1) Let C be a Hom-finite Krull–Schmidt monoidal triangulated category acting on T . Then
there is an indecomposable object M ∈ C such that fpd(M) = ∞.

(2) Suppose further that T is Hom-finite Krull–Schmidt. Then every monoidal triangulated
structure on T is fpd-wild.

Proof Since part (2) is a special case of part (1), it suffices to show part (1).
Let (C,⊗, 1) be a monoidal triangulated category acting on T where 1 is the unit object

of C. Write 1 as a direct sum of indecomposable objects

1 =
d⊕

i=1

Mi .

By hypothesis, for each n, there is a connected brick set φn with |φn | > dn. Define

φn
i := {X ∈ φn | Mi � X �= 0}.

Since X = 1�X = ⊕d
i=1(Mi �X) and X is indecomposable, there is exactly one i such that

Mi � X �= 0, and for that i , we have Mi � X = X . Hence, for each n, φn is a disjoint union of
φn

i for i = 1, . . . , d . By the pigeonhole principle, there is at least i such that |φn
i | > n. This

implies that there is at least one j such that, with this fixed j , there is an infinite sequence
n j such that |φn j

j | > n j . Using this sequence of brick sets, one sees that

HomT (M j [−1] � X , Y ) = HomT (X , Y [1]) �= 0

for all X , Y ∈ φ
n j
j . By definition, fpd(M j [−1]) ≥ n j as |φn j

j | ≥ n j . Since n j goes to infinity,
fpd(M j [−1]) = ∞ as desired. ��
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Next we recall more detailed structures concerning weighted projective lines. Let p be
the weight of X and B0 = gcd(pi ∈ p). Define ν to be the group homomorphism from L to
Z such that ν(

−→x i ) = ∏
s �=i ps . It is easy to see that the image of ν is B0Z. In fact, we can

assume that B0 = 1, so ν : L → Z is a surjective morphism. Since rank(ker(ν)) = 0, the
kernel of ν is finite.

Lemma 6.7 Let X be a weighted projective line and let T be Db(coh(X)).

(1) There is a positive integer B1, only dependent on X, such that, if ω1, ω2 are in L satisfying
ν(ω2 − ω1) ≥ B1, then HomX(OX(ω1),OX(ω2)) �= 0.

(2) For every N, there is a positive integer B3(N ), only dependent on X and N such that

dimHomX(O(ω1),O(ω2)) ≤ B3(N )

for all ω1, ω2 in L satisfying 0 ≤ ν(ω2 − ω1) ≤ N.

Proof (1) We may assume that ω1 = 0. Let B1 = (t − 1)
∏t

s=0 pi . For ω2 ∈ L with
ν(ω2) ≥ B1, write ω2 = ∑t−1

s=0 as
−→x s + at

−→x t where 0 ≤ as ≤ ps for all 0 ≤ s ≤ t − 1.
Since ν(ω2) ≥ B1, at ≥ 0. Then the ω2-degree component of R (see (E6.0.1)) is not zero
and hence HomX(OX,OX(ω2)) = Rω2 �= 0.

(2) Again we can assume that ω1 = 0. Since there are only finitely many ω2 such that
ν(ω2) is in between 0 and N . Let B3(N ) be the maximum of all possible

dimHomX(O,O(ω2))

where ω2 runs over all ω2 ∈ L such that 0 ≤ ν(ω2) ≤ N . Then the assertion follows. ��
The next lemma concerns domestic weighted projective lines. Some un-defined terms can

be found in [44]. Let ω0 be the dualizing element defined in (E6.0.4).

Lemma 6.8 Let X be a weighted projective line.

(1) [44, Proposition 5.1(ii)] Suppose that the weight p is either (2, 2, n), or (2, 3, 3), or
(2, 3, 4) or (2, 3, 5). Let � be the attached Dynkin diagram and �̃ its extended Dynkin
diagram. The Auslander-Reiten quiver �(V ect(X)) of V ect(X) consists of a single
standard component having the form Z�̃. Moreover, the category of indecomposable
vector bundles on X, denoted by ind(V ect(X)), is equivalent to the mesh category of
�(V ect(X)).

(2) Under the hypotheses of part (1), there is a finite set of indecomposable vector bundles
{Vi }i∈I such that every indecomposable vector bundle is of the form Vi (nω0) for some
n ∈ Z and some i ∈ I .

(3) [44, Sect. 5.1, page 217] If the weight p is of the form (p, q), then each indecomposable
vector bundle is a line bundle O(ω) for ω ∈ L.

(4) Under the hypotheses of part (3), there is a finite set of indecomposable vector bundles
{Vi }i∈I such that every indecomposable vector bundle is of the form Vi (nω0) for some
n ∈ Z.

Proof (2) There is a ([−1]-shifted) Serre functor F := −(ω0) which is also a functor from
ind(V ect(X)) to itself. It is easy to check that ν(ω0) < 0. Then F induces an automorphism
of the Auslander–Reiten quiver �(V ect(X)) by shifting forward a distance ν(ω0). Therefore
there is a finite set of indecomposable vector bundles {Vi }i∈I such that every indecomposable
vector bundle is of the form Vi (nω0) for some n ∈ Z and some i ∈ I .
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(4) Since the map ν : L → Z is a group homomorphism with finite kernel, there are
only finitely many ω such that ν(ω) = 0. Similarly, there are only finitely many ω ∈ L such
that ν(ω) = 0, 1, . . . ,−ν(ω0) − 1. Then the set {O(ω) | 0 ≤ ν(ω) ≤ −ν(ω0) − 1} has the
desired property. ��

We introduce some temporary notation. By Lemma 6.8(2,4), if X is domestic, then there
is a finite set of indecomposable vector bundles, say K := {K1, . . . K B4}, such that every
indecomposable vector bundle is of the form Ks(nω0) for some 1 ≤ s ≤ B4 and some n ∈ Z.
(Here ω0 ∈ L is the dualizing element given in (E6.0.4).) For each Ks we fix a sequence of
sub-bundles

0 =: Vs,0 ⊂ Vs,1 ⊂ Vs,2 ⊂ · · · ⊂ Vs,Ys := Ks (E6.8.1)

such that each subquotientVs,i/Vs,i−1 is a line bundle of the formOX(ωs,i ) for someωs,i ∈ L.
Let �(X) be the collection of all such ωs,i ’s. Hence �(X) is finite. Let

max(�) = max{ν(ω) | ω ∈ �(X)},
min(�) = min{ν(ω) | ω ∈ �(X)}.

For every vector bundle V , we write V = Ks(nω0) for some s and n. Then we fix a sequence
of sub-bundles of V := Ks(nω0) by applying −(nω0) to (E6.8.1). We have a series of
subquotients

Vs,i (nω0)/Vs,i−1(nω0) ∼= OX(ωs,i + nω0)

induced by (E6.8.1). Let ν(V ) denote the positive different between the largest of all ν(ωs,i +
nω0) and the smallest of all ν(ωs,i + nω0). Then it is clear that ν(V ) ≤ max(�)−min(�).
So we have proved part (1) of the follows proposition.

Proposition 6.9 Let X be a domestic weighted projective line.

(1) Let V be an indecomposable vector bundle on X. Then the ν(V ) is uniformly bounded
by B5 := max(�) −min(�).

(2) Let V be an indecomposable vector bundle on X. Then the rank V is uniformly bounded
by an integer B6 (only dependent on X).

(3) Suppose φ is a brick set consisting of vector bundles on X. Then the size of φ is uniformly
bounded by B7 (only dependent on X).

(4) Suppose φ is a brick set consisting of vector bundles on X. Then, up to a degree shift,
φ is a subset of

⋃N
n=−N K(nω0) for some integer N. As a consequence,

∑
V∈φ ν(V ) is

uniformly bounded, say, by B8 (only dependent on X).
(5) Fix a vector bundle V on X. For every brick set consisting of vector bundles {X1, . . . , Xn},

dimHomX(Xi , V ⊗X X j ) is uniformly bounded by B9(V ) for all i, j (only dependent
on V and X).

(6) Fix a vector bundle V on X. For every brick set consisting of vector bundles {X1, . . . , Xn},
dimHomX(V ⊗X Xi , X j ) is uniformly bounded by B10(V ) for all i, j (only dependent
on V and X).

Proof (2) This is part of [47, Theorem 6.1]. It also can be shown directly as follows.
Since every indecomposable vector bundle V is of the form Ks(ω) for 1 ≤ s ≤ B4, the

rank of V is uniformly bounded, say by B6.
(3) Since ν(ω0) is negative, there is an N1 such that for all n ≥ N1 and for all s1, s2,

ν(ωs2,Ys2
) − ν(ωs1,1 − nω0) ≥ B1
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where B1 is the constant given in Lemma 6.7(1). By Lemma 6.7(1), for such n, s1, s2,

HomX(OX(ωs2,Ys2
)),OX(ωs1,1 − nω0)) �= 0.

By (E6.8.1),

HomX(Ks2 , Ks1(−nω0)) �= 0 (E6.9.1)

for all s1, s2 and all n ≥ N1.
Let φ be a brick set of vector bundles. We claim that |φ| ≤ N1|K| =: B7. If not, by the

pigeonhole principle, there is an s such that φ contains a subset

{Ks(n1ω0), . . . , Ks(nqω0)}
for some q > N1 where n1 < n1 < · · · < nq . Then, by (E6.9.1),

HomX(Ks(nqω0), Ks(n1ω0)) = HomX(Ks, Ks((n1 − nq)ω0)) �= 0.

This contradicts that φ is a brick set. Therefore we proved the claim.
(4) Without loss of generality, we may assume that φ contains K1. Let Ks(nω0) be any

other object in φ. By (E6.9.1), |n| < N1 where N1 is given in the proof of part (3). Therefore
φ is a subset of

⋃N1
n=−N1

K(nω0). As a consequence,
∑

X∈φ ν(X) is uniformly bounded, say
by B8.

(5) By part (4), up to a degree shift, we can assume that φ is a subset of
⋃N

n=−N K(nω0)

for a fixed integer N . Note that the global degree shift will not change the assertion. Then
the assertion follows by the fact that

⋃N
n=−N K(nω0) is a fixed set.

(6) Similar to the proof of part (5). ��
Lemma 6.10 Let X be a weighted projective line. Let T be Db(coh(X)).

(1) Let M be a brick object in T . Then M ∼= N [n] where n ∈ Z and there N ∈ coh(X) is
either a vector bundle, or an ordinary simple Ox , or an indecomposable object in T orλi .

(2) If a brick set φ consists of indecomposable objects in T orλ for some λ ∈ P
1, then |φ| is

uniformly bounded by B11 (only dependent on X).
(3) If M is a brick object in T or(X), thendim M is uniformly bounded by B12 (only dependent

on X).

Proof (1) It is well-known that every indecomposable object in coh(X) is either a vector
bundle or a torsion sheaf. The assertion follows by (E6.0.3) and the fact that coh(X) is
hereditary.

(2) This is trivial if λ ∈ P\{λ0, . . . , λt }. If λ = λi for some i , T orλi is a standard tube of
rank pi with p2i brick objects, see [15, Section 2.2]. So the assertion follows.

(3) By (E6.0.3), M ∈ T orλ for some λ ∈ P. It is trivial if λ ∈ P\{λ0, . . . , λt }. Now assume
that λ = λi . All brick objects in T orλi are given in [15, Corollary 2.8]. As a consequence,
dim M ≤ pi . The assertion follows. ��

Since R in (E6.0.1) is commutative, there is a natural tensor product on coh(X), denoted
by⊗X. Note that⊗X is not (bi)exact. The derived category T := Db(coh(X)) has a canonical
monoidal structure where the tensor functor is defined by

−⊗T − := −⊗L
X
−

(the derived tensor product). Note that ⊗T is biexact so that T is a monoidal triangulated
category. Next we show that this monoidal triangulated structure is fpd-tame when X is
domestic.
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Theorem 6.11 Retain the notation introduced above. If X is domestic, then the canonical
monoidal triangulated structure on Db(coh(X)) is fpd-tame.

Proof Let T denote Db(coh(X)). By Proposition 6.5, T is fpd-infinite. By definition, it
remains to show that fpd(M) < ∞ for every indecomposable object M in T .

Since M is indecomposable and coh(X) is hereditary, by [14, Lemma 3.3], M is of the
form N [n] for some N ∈ coh(X) and n ∈ Z. By Lemma 6.10(1), N is either a vector bundle
or a torsion. So we fix an N and consider the following two cases.

Case 1: N is a vector bundle. In this case N ⊗X − is exact and N ⊗T Y = N ⊗X Y for
all Y ∈ coh(X).

If n �= 0, 1, by the proof of Lemma 4.11, fpd(N [n] ⊗T −) = 0. Now we deal with the
case n = 0 or M = N . Let φ be a brick set. By Lemma 6.10(1), we can write φ = ⋃

δ∈Z φδ ,
with δ integers ranging from small to large, where φδ is either empty or of the form

{Xδ,1[δ], Xδ,2[δ], . . . , Xδ,tδ [δ]}
for some Xδ,s ∈ coh(X). Since

HomT (Xδ,s[δ], N ⊗T Xδ′,s′ [δ′]) = 0

for all δ > δ′, the adjacency matrix A(φ, N ⊗T −) is a upper triangular block matrix. Now
the idea of [14, Lemma 6.1] implies that we only need to consider blocks, namely, we can
assume that φ = φδ for some δ. For each block associated to φδ , we can further assume that
δ = 0 and φ0 = {X1, . . . , Xt } for some Xs ∈ coh(X). Without loss of generality, we assume
that

φ = φ0 = {X1, . . . , Xt }
for some X1, . . . , Xt ∈ coh(X). If φ contains an ordinary simpleOx , then, by Lemma 6.2(2),
φ does not contain any vector bundle. In this case, one can further decompose φ according
to (E6.0.3) so that A(φ, N ⊗T −) is a block diagonal matrix. For each block, φ is either
{Ox } or consisting of objects in T orλi . So we consider these two subcases. If φ = {Ox },
it is easy to see that HomT (Ox , N ⊗T Ox ) has dimension bounded by the rank of N .
This is uniformly bounded. If φ is a subset of T orλi , then there are only finitely many
possibilities [Lemma 6.10(2)]. Hence entries and size of the A(φ, N ⊗T −) is uniformly
bounded. Therefore ρ(A(φ, N ⊗T −)) is uniformly bounded. The second case is when φ

does not contain any ordinary simpleOx . Then the size of φ is uniformly bounded by Propo-
sition 6.9(3) and Lemma 6.10(2). We claim that each entry in A(φ, N ⊗T −) is uniformly
bounded, or di j := dimHomX(Xi , N ⊗X X j ) is uniformly bounded for all Xi , X j in φ.
If both Xi and X j are vector bundles, the assertion follows from Proposition 6.9(5). If Xi

is in T orλi and X j is a vector bundle, then di j = 0. If Xi is a vector bundle and X j is in
T orλi , then di j is bounded by rank(Xi ) rank(N ) dim X j , which is uniformly bounded by
Proposition 6.9(2) and Lemma 6.10(3). If Xi and X j are both in T orλi , then di j is bounded
by (dim Xi ) rank(N )(dim X j ) which is uniformly bounded. Combining all these cases, one
proves that fpd(N ) is finite by Lemma 4.8 (Gershgorin Circle Theorem).

Next we deal with the case n = 1 (namely, M = N [1]) and re-cycle some notation
used in the previous paragraphs. By Lemma 6.10(1), we can write φ = ⋃

δ∈Z φδ , with
δ being integers ranging from small to large, where φδ is either empty or of the form
{Xδ,1[δ], Xδ,2[δ], . . . , Xδ,tδ [δ]}. Since coh(X) is hereditary,

HomT (Xδ,s[δ], N [1] ⊗T Xδ′,s′ [δ′]) = 0

123



3206 J. J. Zhang, J.-H. Zhou

for all s, s′ and all δ < δ′. Therefore the adjacency matrix A(φ, N [1] ⊗T −) is a lower
triangular block matrix. For each block we can assume that δ = 0 and φ = {X1, . . . , Xt } as
in the case n = 0. If φ contains an ordinary simple Ox , then, by Lemma 6.2(2), φ does not
contain any vector bundle. In this case, one can further decompose φ according to (E6.0.3)
so that A(φ, N [1] ⊗T −) is a block diagonal matrix. For each block, φ is either {Ox } or
consisting of objects in T orλi . So we consider these two subcases. If φ = {Ox }, then

HomT (Ox , N [1] ⊗T Ox ) = Ext1
X
(Ox , N ⊗T Ox )

which is bounded by the rank(N ). If φ is a subset of T orλi , then there are only finitely
many possibilities, see the proof of Lemma 6.10(2). Hence the entries and the size of the
A(φ, N [1] ⊗T −) are uniformly bounded. Therefore ρ(A(φ, N [1] ⊗T −)) is uniformly
bounded. The second case is when φ does not contain any ordinary simpleOx . Then the size
of φ is uniformly bounded by Proposition 6.9(3) and Lemma 6.10(2). We claim that each
entry in A(φ, N [1] ⊗T −) is uniformly bounded, or

di j := dimHomX(Xi , N [1] ⊗X X j ) = dim Ext1
X
(Xi , N ⊗X X j )

= dimHomX(N ⊗X X j , Xi (ω0)) = dimHomX(N (−ω0) ⊗X X j , Xi )

is uniformly bounded for all Xi , X j in φ. Note that the third equality is Serre duality. If both
Xi and X j are vector bundles, the assertion follows and Proposition 6.9(6). If Xi is in T orλi

and X j is a vector bundle, we obtain that

di j ≤ rank(X j ) rank(N (−ω0)) dim Xi ,

which is uniformly bounded by Proposition 6.9(2) and Lemma 6.10(3). If Xi is a vector
bundle and X j is in T orλi , then di j = 0. If Xi and X j are both in T orλi , then

di j ≤ dim(X j ) rank(N (−ω0)) dim Xi ,

which is uniformly bounded. Combining all these cases, one proves that fpd(N [1]) is finite
by Lemma 4.8 (Gershgorin Circle Theorem).

Case 2: N is a torsion. By definition, N ⊗T − = N ⊗L
X
−. If n �= −1, 0, 1, a proof similar

to Lemma 4.11(1) shows that fpd(N [n]) = 0. We need to analyze the cases n = −1, 0, 1.
The following proof is independent of n.

Since N is torsion and indecomposable, by (E6.0.3), N is either in T orx or Torλi . We will
use Gershgorin Circle Theorem [Lemma 4.8]. Let φ = {X1, . . . , Xm} be any brick set in T
and let (di j )m×m denote the adjacency matrix A(φ, N [n] ⊗T −) where

di j = dimHomT (Xi , N [n] ⊗T X j ).

By Lemma 4.8, it suffices to show

(a) each di j is uniformly bounded (only dependent on M := N [n]).
(b) For each j , there are only uniformly-bounded-many i such that di j �= 0.

Proof of (a): For each j , write X j = Y j [s j ] for some Y j ∈ coh(X) and s j ∈ Z. Since
N ∈ T orλ, Hs

N (X j ) := Hs(N [n] ⊗T X j ) is zero for s �= n + s j − 1, n + s j and Hs
N (X j )

is in T orλ for s = n + s j − 1, n + s j . Since coh(X) is hereditary,

N [n] ⊗T X j =
∑

s

Hs(N [n] ⊗T X j )[−s],

see [16, Lemma 2.1]. If Y j is a vector bundle, then

dim Hs
N (X j ) ≤ (dim N )(rank(Y j ))
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for all s. If X j is torsion, then

dim Hs
N (X j ) ≤ (dim N )(dim Y j )

for all s. In both cases, dim Hs(X j ) is uniformly bounded by Proposition 6.9(2) and Lemma
6.10(3). Using the Serre duality and Proposition 6.9(2) and Lemma 6.10(3) again, one sees
that∑

s,t∈Z
dimHomT (Xi [t], Hs(N [n] ⊗T X j )[s]) =

∑
s,t

dimHomT (Xi [t], Hs
N (X j )[s])

is uniformly bounded. Hence

di j = HomT (Xi , N [n] ⊗T X j ) =
∑

s

HomT (Xi , Hs(N [n] ⊗T X j )[s])

is uniformly bounded.
Proof of (b): As noted before, fpd(N [n]) = 0 when n �= −1, 0, 1. So, in this proof,

we assume that n is −1 or 0 or 1. Without loss of generality, we only prove that there are
only uniformly-bounded-many i such that di1 �= 0. By a complex shift, we can assume
that X1 ∈ coh(X). Since coh(X) is hereditary, one can check that, if Xi ∈ coh(X)[m] for
|m| ≥ 3, then di1 = 0.

For each m with |m| ≤ 2, let φm consist of Yi ∈ coh(X) such that Xi = Yi [m] ∈ φ

and di1 �= 0. If φm does not contain any ordinary simple Ox , then, by Proposition 6.9(3)
and Lemma 6.10(2), |φm | is uniformly bounded. If φm contain an ordinary simple Ox , then
di1 �= 0 implies that x is in the support of N ⊗X X1. Therefore there are only finitely many
possible x . Further, X1 is eitherOx or a vector bundle, and in the latter case, di1 �= 0 implies
that N must be Ox . In both case, N [n] ⊗T X1 is supported at x . Therefore φm consists of a
single elementOx . Combining above, we obtain that

∑
|m|≤2 |φm | is uniformly bounded. As

a consequence, (b) holds.
Now it follows by Lemma 4.8, fpd(N [n]) < ∞. Combining Cases 1 and 2, we finish the

proof. ��
Now we are ready to prove Theorem 0.3.

Proof of Theorem 0.3 (1) If Q is of finite type, byCorollary 4.10 everymonoidal triangulated
structure on Db(rep(Q)) is fpd-finite. The converse follows from Lemmas 6.1(2), 4.3
and 4.5 and Proposition 6.5.

(2) Suppose Q is tame. By Lemma 6.1(2) and Theorem 6.11, there is a fpd-tame monoidal
structure on T . Applying Lemma 4.6 to A = C = rep(Q), there is a fpd-wild monoidal
structure.

(3) This follows from parts (1,2), Lemmas 4.3 and 6.6.
(4) This follows from part (1). ��
Corollary 6.12 Let Q be a finite acyclic quiver.

(1) Q is of finite type if and only if rep(Q) does not contain an infinite brick set.
(2) Q is of tame type if and only if rep(Q) contains an infinite brick set and does not contain

an infinite connected brick set.
(3) Q is of wild type if and only if rep(Q) contains an infinite connected brick set.

Proof (1) If Q is of finite type, rep(Q) contains only finitely many indecomposable objects.
So rep(Q) does not contains an infinite brick set.
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For the converse, we assume that kQ is of tame or wild type. By Lemmas 4.3 and 4.5,
rep(Q) contains an infinite brick set. This yields a contradiction. Therefore the assertion
follows.

(3) If Q is of wild type, by Lemmas 4.3, rep(Q) contains an infinite connected brick set.
Conversely suppose rep(Q) contains an infinite connected brick set. By Lemma 6.6, every
monoidal triangulated structure on Db(rep(Q)) is fpd-wild. By Theorem 0.3(3), Q is of wild
type.

(2) Follows from parts (1,3). ��

7 Examples

The natural construction of weak bialgebras associated to quivers, given in Lemma 2.1,
produces many monoidal triangulated categories by Lemma 1.9(2). The main goal of this
section is to construct other examples of (weak) bialgebras most of which are related to finite
quivers. We will see that, given a quiver Q, there are different weak bialgebra structures
on kQ such that the induced tensor products over rep(Q) are different from (E2.1.1). As a
consequence, there are several different monoidal abelian structures on rep(Q) generally. We
will also see that there are monoidal triangulated structures on derived categories associated
to noncommutative projective schemes. The first example comes from [35].

Example 7.1 This example follows some ideas from [35, Theorem 3.2]. Let Q be a quiver
with n vertices. We label vertices of Q as 1, 2, . . . , n. Suppose that 1 is either a source or a
sink, namely, Q satisfies the following condition, either

(1) there is no arrows from 1 to j for every j , or
(2) there is no arrows from j to 1 for every j .

Let ei be the idempotent corresponding to the vertex i , and we use p for a path of length at
least 1.

First we define a bialgebra structure on kQ by

ε(e1) = 1, �(e1) = e1 ⊗ e1,

ε(ei ) = 0, �(ei ) =
∑
s<i

(ei ⊗ es + es ⊗ ei ) + ei ⊗ ei ,

ε(p) = 0, �(p) = e1 ⊗ p + p ⊗ e1

for all i > 1 and all paths p of length at least 1. It is routine to check that this defines a
cocommutative bialgebra structure on kQ.

By the above definition, �(x) = e1 ⊗ x + x ⊗ e1 for all x in the ideal J generated by
arrows of Q (this is also the graded Jacobson radical of kQ). Let I be any sub-ideal of J .
Then it is clear that I is a bialgebra ideal of kQ. Therefore there is an induced bialgebra
structure on kQ/I .

Let Q is a finite acyclic quiver. Let (�, ε) be a coalgebra structure on kQ. Suppose
|Q0| = n, then � is called a partitioning morphism (cf. [30, p. 460]) if

(1) there are E1, . . . , En which are subsets of E = {(i, j) | 1 ≤ i, j ≤ n},
(2) Ei ∩ E j = ∅ if i �= j , and
(3) for every 1 ≤ k ≤ n, �(ek) = ∑

(i, j)∈Ek

ei ⊗ e j .

123



Frobenius–Perron theory of representations of quivers 3209

Let Q(i, j) be the set of paths from vertex i to vertex j , then:

Proposition 7.2 [30, Proposition 4] Let Q be a finite acyclic quiver. Suppose kQ has a
coalgebra structure (kQ,�, ε). Then kQ0 is a subcoalgebra of kQ and � is a prealgebra
map if and only if

(1) � is a partitioning morphism,
(2) �(α1 · · ·αm) = �(α1) · · ·�(αm) where αi ∈ Q1,
(3) �(α) ∈ ⊕

(i, j)∈Ek ,(i ′, j ′)∈El

kQ(i, i ′) ⊗ kQ( j, j ′) for any α : k → l.

Proof Note the fact that if kQ0 is a subcoalgebra of kQ and � is a prealgebra morphism,
then � is a partitioning morphism. The rest of the proof is similar to [30, Proposition 4], and
we omit it here. ��
Remark 7.3 (1) Following Proposition 7.2, our first step is to understand all weak bialgebra

structures on k
⊕n . This is already a non-trivial task and we post it as a question.

Can we classify all weak bialgebra structures on k
⊕n?

When n = 2, see Lemma 7.5 below.
(2) There are algebras A which do not admit any weak bialgebra structure. Let A be the

algebra k[x]/(xn) for some n. Then A admits a (weak) bialgebra structure if and only
if n = pt where p = char k > 0 and t ≥ 1. We give a sketch proof of one implication.
Suppose that A := k[x]/(xn) is a weak bialgebra. Note that A is local which implies
that both the target and source counital subalgebras of A are k. As a consequence, A is
a bialgebra. So the augmentation ideal J := ker ε is the Jacobson radical of A. So the
associated graded Hopf algebra grJ A, which is isomorphic to A as an algebra, is the
restricted enveloping algebra of a restricted Lie algebra. Therefore the k-dimension of
A is pt for some t ≥ 1. The assertion follows.

(3) Suppose char k = p > 0. Let A be the finite dimensional Hopf algebra

k[x1, . . . , xn]/(x p
1 , . . . , x p

n )

for some n ≥ 2. The coalgebra structure of A is determined by

�(xi ) = xi ⊗ 1+ 1⊗ xi

for all i . Since A is local, the only brick object in A is the trivial module k. Therefore
fpd(M) < ∞ for every object inA. On the other hand, A is wild when n ≥ 2. Therefore
conditions (a) and (b) in Theorem 0.4 are not equivalent if we remove the hereditary
hypothesis.

Definition 7.4 Let A be an algebra. Two (weak) bialgebra structures (�1, ε1) and (�2, ε2) on
A are called equivalent if there is an algebra automorphismσ of A such that�1σ = (σ⊗σ)�2

and ε1σ = ε2.

Lemma 7.5 Let B = k
⊕2 = ke1⊕ke2. Then there are five different weak bialgebra structures

on B:

(a) �(e1) = e1 ⊗ e1,�(e2) = e2 ⊗ e2 + e1 ⊗ e2 + e2 ⊗ e1, ε(e1) = 1 and ε(e2) = 0.
(b) �(e1) = e1 ⊗ e1 + e2 ⊗ e2,�(e2) = e2 ⊗ e1 + e1 ⊗ e2, ε(e1) = 1 and ε(e2) = 0.
(c) �(e2) = e2 ⊗ e2,�(e1) = e1 ⊗ e1 + e1 ⊗ e2 + e2 ⊗ e1, ε(e1) = 0 and ε(e2) = 1.
(d) �(e2) = e2 ⊗ e2 + e1 ⊗ e1,�(e1) = e1 ⊗ e2 + e2 ⊗ e1, ε(e1) = 0 and ε(e2) = 1.
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(e) �(e1) = e1 ⊗ e1,�(e2) = e2 ⊗ e2, ε(e1) = 1 and ε(e2) = 1.

Note that (a) and (c) are equivalent bialgebra structures (and so are (b) and (d)). The fifth
one is a weak bialgebra, but not a bialgebra.

Note that (e) in the above lemma is the direct sum of two copies of trivial Hopf algebra
k. Consequently, it is a weak Hopf algebra. Other bialgebra algebras in the above lemma are
not (weak) Hopf algebras.

Proof Fix a (weak) bialgebra structure (�, ε) on B. Let Bt and Bs be target and source
counital subalgebras of B, see [54, Definition 2.2.3].

Case 1: dim Bt = 1, then Bt = Bs = k1B . In this case, B is a bialgebra. As a consequence,
ε(e1) + ε(e2) = ε(e1 + e2) = ε(1) = 1. Since ei are idempotents, ε(ei ) is 1 or 0. First we
assume that ε(e1) = 1 and ε(e2) = 0. Write �(e1) = ∑

i, j ai j ei ⊗ e j . By the counital
axiom, we obtain that �(e1) = e1 ⊗ e1 or �(e1) = e1 ⊗ e1 + e2 ⊗ e2. If �(e1) = e1 ⊗ e1,
we obtain case (a); if �(e1) = e1 ⊗ e1 + e2 ⊗ e2, we obtain case (b). The other situation is
ε(e1) = 0 and ε(e2) = 1. By symmetric, we have (c) and (d).

Case 2: dim Bt = 2. Then Bt = Bs = B. By [6, Lemma 2.7], �(e1) = e1 ⊗ e1 and
�(e2) = e2 ⊗ e2. Then it is easy to check that we obtain (e). ��
Lemma 7.6 Let A be a bialgebra and J be its Jacobson radical. Suppose that J is nilpotent.
If B := A/J ∼= k

⊕n as an algebra for some positive integer n, then B is a quotient bialgebra
of A.

Proof Let π be the canonical quotient map from A to B. It’s clear that π is an algebra map.
Consider the composition of algebra maps:

A
�−→ A ⊗ A

π⊗π−−−→ B ⊗ B.

Since B ⊗ B doesn’t have nilpotent elements and J is nilpotent, the above algebra map from
A → B ⊗ B factors through the quotient map π , that is, there exists a unique algebra map
�B from B → B ⊗ B, such that the following diagram commutes

A
�

π

A ⊗ A

π⊗π

B
�B

B ⊗ B.

Furthermore, (�B ⊗ I d)�B and (I d ⊗ �B)�B are the algebra maps induced by algebra
maps (π⊗π⊗π)(�⊗ I d)� and (π⊗π⊗π)(I d⊗�)� respectively from A → B⊗B⊗B.
Then �B is coassociative since � is coassociative.

Similarly, let εB : B → k be the algebra map induced by ε : A → k. It is not hard to
verify that εB satisfies the counital axiom. Consequently, B is a quotient bialgebra of A and
J is a bi-ideal. ��

Now we are ready to classify (weak) bialgebras on a small quiver.

Proposition 7.7 Suppose Q is the quiver with two vertices {1, 2} and w arrows from 1 to
2 with w ≥ 1. Let A be the path algebra kQ. Then there are 5 types of weak bialgebra
structures on A up to equivalences.

(a) �(e1) = e1 ⊗ e1,�(e2) = e2 ⊗ e2 + e1 ⊗ e2 + e2 ⊗ e1, ε(e1) = 1, ε(e2) = 0, and for
any arrow r from 1 to 2, �(r) = e1 ⊗ r + r ⊗ e1 and ε(r) = 0.
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(b) �(e1) = e1 ⊗ e1 + e2 ⊗ e2,�(e2) = e2 ⊗ e1 + e1 ⊗ e2, ε(e1) = 1, ε(e2) = 0, and for
any arrow r from 1 to 2, �(r) = r ⊗ e1 + e1 ⊗ r and ε(r) = 0.

(c) �(e2) = e2 ⊗ e2,�(e1) = e1 ⊗ e1 + e1 ⊗ e2 + e2 ⊗ e1, ε(e2) = 1, ε(e1) = 0, and for
any arrow r from 1 to 2, �(r) = e2 ⊗ r + r ⊗ e2 and ε(r) = 0.

(d) �(e2) = e1 ⊗ e1 + e2 ⊗ e2,�(e1) = e2 ⊗ e1 + e1 ⊗ e2, ε(e2) = 1, ε(e1) = 0, and for
any arrow r from 1 to 2, �(r) = r ⊗ e2 + e2 ⊗ r and ε(r) = 0.

(e) �(ei ) = ei⊗ei , ε(ei ) = 1 for i = 1, 2, and the Jacobson radical J of A is a subcoalgebra
of A.

Proof Let J be the Jacobson radical of A, which is the ideal generated by the arrows from 1
to 2. It is clear that J 2 = 0 and A/J ∼= B where B is as given in Lemma 7.5.

We first consider bialgebra structures on A.
By Lemma 7.6, A/J is a quotient bialgebra of A and J is a bi-ideal of A. All bialgebra

structures on B ∼= A/J are classified in Lemma 7.5. We will use this classification to analyze
the bialgebra structures on A.

Case 1: Suppose the bialgebra structure on B is as in Lemma 7.5(a). Lifting the bialgebra
structure on B to A, we have

�(e1) = e1 ⊗ e1 + e1 ⊗ t1 + e2 ⊗ t2 + t3 ⊗ e1 + t4 ⊗ e2 + T ,

�(e2) = e1 ⊗ e2 + e2 ⊗ e1 + e2 ⊗ e2 − e1 ⊗ t1 − e2 ⊗ t2 − t3 ⊗ e1 − t4 ⊗ e2 − T ,

where T ∈ J ⊗ J and ti ∈ J for 1 ≤ i ≤ 4, and

ε(e1) = 1, ε(e2) = 0, ε(r) = 0 for all r ∈ J .

By counital axiom, we have t1 = t3 = 0. By using the equation �(e1e2) = 0, we have
t2 = t4 = 0. In the bialgebra structure of A, we have, for every arrow r from 1 to 2,

�(r) = e1 ⊗ r + r ⊗ e1 + f (r) ⊗ e2 + e2 ⊗ g(r) + w(r)

where f (r), g(r) ∈ J and w(r) ∈ J ⊗ J . Using the fact that r = re1, we obtain that
f (r) = g(r) = 0 for all r .
Pick any k-basis of J , say {ri }, we can write,

�(e1) = e1 ⊗ e1 +
∑
i, j

ai j ri ⊗ r j ,

�(e2) = e1 ⊗ e2 + e2 ⊗ e1 + e2 ⊗ e2 −
∑
i, j

ai j ri ⊗ r j ,

�(ri ) = e1 ⊗ ri + ri ⊗ e1 +
∑
j,k

c jk
i r j ⊗ rk .

Suppose deg(e1) = deg(e2) = 0 and deg(ri ) = 1. Let ≡ denote = modulo higher degree
terms. Then the coalgebra structure above can be written as

�(e1) ≡ e1 ⊗ e1

�(e2) ≡ e1 ⊗ e2 + e2 ⊗ e1 + e2 ⊗ e2

�(ri ) ≡ e1 ⊗ ri + ri ⊗ e1.

By [35, Lemma 3.1], if two different bialgebra structures on A both satisfy the above equa-
tions, then they are isomorphic.
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Therefore, in this case, there exists a unique bialgebra structure on A up to isomorphism,
that is,

�(e1) = e1 ⊗ e1,

�(e2) = e1 ⊗ e2 + e2 ⊗ e1 + e2 ⊗ e2,

�(ri ) = e1 ⊗ ri + ri ⊗ e1,

which is exactly (a).
Case 2: Suppose the bialgebra structure on B is as in Lemma 7.5(b). Lifting the bialgebra

structure on B to A, we have

�(e1) = e1 ⊗ e1 + e2 ⊗ e2 + e1 ⊗ t1 + e2 ⊗ t2 + t3 ⊗ e1 + t4 ⊗ e2 + T ,

where T ∈ J ⊗ J and ti ∈ J for 1 ≤ i ≤ 4, and

�(e2) = e1 ⊗ e2 + e2 ⊗ e1 − e1 ⊗ t1 − e2 ⊗ t2 − t3 ⊗ e1 − t4 ⊗ e2 − T ,

ε(e1) = 1, ε(e2) = 0, ε(r) = 0 for all r ∈ J .

By counital axiom, we have t1 = t3 = 0. By the fact ei is an idempotent, we have T = 0. In
the bialgebra structure of A, for every arrow r from 1 to 2, we have

�(r) = e1 ⊗ r + r ⊗ e1 + f (r) ⊗ e2 + e2 ⊗ g(r) + w(r)

where f (r), g(r) ∈ J and w(r) ∈ J ⊗ J . Using the fact that e1r = 0, we obtain that
f (r) = g(r) = 0 for all r and w(r) + r ⊗ t2 + t4 ⊗ r = 0. Hence, for all t ∈ J ,

�(t) = e1 ⊗ t + t ⊗ e1 − t ⊗ t2 − t4 ⊗ t .

Moreover, the coassociative axiom, (I d ⊗�)�(e2) = (�⊗ I d)�(e2), implies t2 = t4 = 0.
We obtain (b).

Cases 3 and 4: When the bialgebra structure on B is as in Lemma 7.5(c) and (d), it’s
similarly to case 1 and case 2 respectively, and we obtain (c) and (d).

Next, we consider weak bialgebra, but not bialgebra, structures on A.
Let At and As be the target and source counital subalgebras. By [11, (2.1) and Proposition

2.4], dim At = dim As and As commutes with At . If dim At = dim As = 1, by [55, Lemma
8.2], A is a bialgebra since �(1) = 1⊗ 1, which is the case we have just finished above. So
dim At = dim As ≥ 2. Since As is separable (hence semisimple), As ∩ J = {0}. Thus there
is an injective map

As −→ A
π−→ B

which implies that dim At = dim As = 2 and that π(As) = B.
Now we claim that At = As ∼= B. Since π(As) = B, we can write As = span{1, e1+ p}

where p ∈ J . In this case, At = As since the space of elements which commute with e1+ p
is As itself, and they both are weak bialgebras. Let l denote the idempotent e1 + p. Assume
that

�(1) = a11⊗ 1+ a2l ⊗ 1+ a31⊗ l + a4l ⊗ l

where ai ∈ k. By [11, Equations (2.7a) and (2.7b)], a1 + a2 = 0 and �(l) = (a2 + a4)l ⊗ l.
By �(1) = �(12), a2 = a3 and one of following equalities hold:

(i) �(1) = l ⊗ l,
(ii) �(1) = 1⊗ 1− l ⊗ 1− 1⊗ l + l ⊗ l,
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(iii) �(1) = 1⊗ 1− l ⊗ 1− 1⊗ l + 2l ⊗ l.

However, (i) implies that l is a scalar multiple of 1 and (ii) implies that 1 − l is a scalar
multiple of 1, which both are impossible. So (iii) holds and �(1) = (1− l)⊗ (1− l)+ l ⊗ l,
which means At = As ∼= B as weak bialgebra, where the weak bialgebra structure on B as
in Lemma 7.5(e).

Re-write l1 = l and l2 = 1 − l. Then �(l1) = l1 ⊗ l1 and �(l2) = l2 ⊗ l2. Note that
A = At ⊕ J as vector space. Then for any arrow r from 1 to 2, we have

�(r) = f (r) ⊗ l1 + g(r) ⊗ l2 + l1 ⊗ p(r) + l2 ⊗ q(r) + w(r),

where f (r), g(r), p(r), q(r) ∈ J and w(r) ∈ J ⊗ J . By rl1 = r and l2r = r , f (r) =
g(r) = p(r) = q(r) = 0 for all r . That is J is a subcoalgebra of A. It’s not hard to check
any coalgebras structure over J satisfy conditions in Definition 1.7.

Moreover, let σ : (A,�, ε) → (A,�′, ε′) via σ(li ) = ei and σ(r) = r for r ∈ J , where
(A,�′, ε′) is the weak bialgebra as in (e). Then σ is an algebra automorphism and (�, ε) is
equivalent to (�′, ε′). ��

We finish this section with examples related to both commutative projective varieties and
noncommutative projective schemes in the sense of [2].

Definition 7.8 [34, p. 1230] Let X be a smooth projective scheme.

(1) A coherent sheaf E on X is called exceptional if HomX(E, E) ∼= k and Exti
X
(E, E) = 0

for every i ≥ 0.
(2) A sequence E1, . . . , En of exceptional sheaves is called an exceptional sequence if

Extk
X
(Ei , E j ) = 0 for all k and for all i > j .

(3) If an exceptional sequence generates Db(coh(X)), then it is called full.
(4) If an exceptional sequence satisfies

Extk
X
(Ei , E j ) = 0

for all k > 0 and all i, j , then it is called a strongly exceptional sequence.

The above concepts are extended to an arbitrary triangulated category in [50, Definition
4.1]. The existence of a full (strongly) exceptional sequence has been proved formany smooth
projective schemes.However, onCalabi–Yauvarieties there are no exceptional sheaves.When
X has a full exceptional sequence E1, . . . , En , then there is a triangulated equivalence

RHomX(⊕n
i=1Ei ,−) : Db(coh(X)) ∼= Db(mod−A) (E7.8.1)

where A is the finite dimensional algebra EndX(⊕n
i=1Ei ), see [50, Theorem 4.2] (or [9,

Theorem 3.1.7]). By Example 5.3(2), there is a canonical monoidal triangulated struc-
ture on Db(coh(X)) induced by ⊗X. Then we obtain a monoidal triangulated structure
on Db(Mod f .d −A) via (E7.8.1). By Example 5.3(1), if A is a weak bialgebra, there is a
(different) canonical monoidal triangulated structure on Db(Mod f .d −A) (or equivalently,
on Db(coh(X))). In short, there are possibly many different monoidal triangulated structures
on a given triangulated category.

Next we give an explicit example related to noncommutative projective schemes.

Example 7.9 Let T be a connected graded noetherian Koszul Artin–Schelter regular alge-
bra of global dimension at least 2. If T is commutative, then T is the polynomial ring
k[x0, x1, . . . , xn] for some n ≥ 1. Let X be the noncommutative projective scheme associ-
ated to T in the sense of [2]. In [2] proj T denotes the category of coherent sheaves on X, but
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here we use coh(X) instead. When T is the commutative polynomial ring k[x0, x1, . . . , xn],
then X is the commutative projective n-space P

n . On the other hand, there are many noethe-
rian Koszul Artin–Schelter regular algebras T that are not commutative. Let r be the global
dimension of T and O be the structure sheaf of X. Then

{O(−(r − 1)),O(−(r − 2)), . . . ,O(−1),O}
is a full strongly exceptional sequence for X in the sense of [50, Definition 4.1]. By (E7.8.1)
or [50, Theorem 4.2],

Db(coh(X)) ∼= Db(A −mod) (E7.9.1)

where A is the opposite ring of EndX(⊕n
i=1Oi ). By [50, Definition 4.6 and Theorem 4.7],

A is the opposite ring of the Beilinson algebra (which is denoted by R in [50, Definition
4.6]). By the description in [49, Definition 4.7], the Beilinson algebra is an upper triangular
matrix with diagonal entries being k. Then A can be written as kQ/I where Q is a quiver
with r vertices and the number of arrows from vertex i to vertex j equals the dimension of
Tj−i . It is clear that Q satisfies condition (2) in Example 7.1. By Example 7.1, there is a
cocommutative bialgebra structure on A. Similarly, vertex r in Q satisfies condition (1) in
Example 7.1, which implies that there is another cocommutative bialgebra structure on A.
Via (E7.9.1), Db(coh(X)) has at least two different monoidal triangulated structures induced
by two different bialgebra structures on A.

Now let T be the polynomial ring k[x0, x1]. Then X = P
1 and

Db(coh(P1)) ∼= Db((B)op −mod)

where B is the Beilinson algebra associated to T . By [49, Definition 4.7],

B =
(

k kx + ky
0 k

)
.

It is clear that B is the path algebra of the Kronecker quiver given in Example 2.7. In this case
we have twomonoidal triangulated structures on Db(coh(P1)). One is themonoidal structure
induced by⊗P1 , and the other comes from the canonical weak bialgebra structure of B = kQ
[Lemma 2.1(1)]. Together with two bialgebra structures on B, see the above paragraph,
we obtain four different monoidal triangulated structures on Db(coh(P1)). To show these
monoidal triangulated structures are not equivalent, one need to use some arguments in the
proof of Lemma 5.9 (details are omitted).

8 Proof of Theorems 0.8

It is important and interesting to calculate explicitly fpd(M) of some objects M in a monoidal
abelian (or triangulated) category. Generally this is very difficult task and dependent on
complicated combinatorial structures of the brick sets. In this section we will work out one
example. Note that some non-essential details are omitted.

A type An quiver is defined to be a quiver of form (E0.7.1):

1
α1

2
α2 · · · αi−1

i
αi · · · αn−1

n

where each arrow αi is either −→ or←−. For each n ≥ 3, there are more than one isomor-
phism classes of type An quivers with n vertices, though we denote all of them by An . In this
section we provide fairly detailed computation of fpd(M) for every indecomposable object
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in the monoidal abelian category rep(An). Using Lemma 4.11, we obtain fpd(M) for every
indecomposable object M in the monoidal triangulated category Db(rep(An)). The result
is summarized in Theorem 0.8. Throughout this section, the tensor product is defined as in
(E2.1.1).

First we try to understand brick sets in rep(An). Recall that M{i, j}, for i ≤ j , denotes
the representation of An defined by

(M{i, j})s =
{

k i ≤ s ≤ j,

0 otherwise,

(M{i, j})αs =
{

I dk i ≤ s < j,

0 otherwise.

We start with easy observations.

Lemma 8.1 If {M{1, m}, M{k, l}} is a brick set and m ≥ k ≥ 3, then {M{2, m}, M{k, l}}
also is a brick set.

Proof This is clear since k ≥ 3. ��
Lemma 8.2 For any 1 ≤ i < j ≤ n, {M{1, i}, M{1, j}} is not a brick set.

Proof There are two cases.

Case 1: s(αi ) = i . Let f : M{1, j} → M{1, i} be ( f )k =
{

I d k ≤ i

0 k > i
. Then it is clear

that f ∈ Hom(M{1, j}, M{1, i}) and Hom(M{1, j}, M{1, i}) �= 0.

Case 2: t(αi ) = i . Let g : M{1, i} → M{1, j} be (g)k =
{

I d k ≤ i

0 k > i
. Then g ∈

Hom(M{1, i}, M{1, j}) and Hom(M{1, i}, M{1, j}) �= 0.
Combining these two cases, one sees that {M{1, i}, M{1, j}} is not a brick set. ��
In the above, we can replace 1 by any positive integer no more that i .

Lemma 8.3 Suppose i ≤ j ≤ k. Then one of spaces Hom(M{i, j}, M{i, k}) and
Hom(M{i, k}, M{i, j}) is isomorphic to k while the other is zero.

Proof An idea similar to the proof of Lemma 8.2 shows that one of spaces is nonzero and
the other is zero. For the one that is nonzero, it must be k by Lemma 4.2. ��
Lemma 8.4 If f : M{i, k} → M{i, l} is a non-zero morphism and k �= l, then for any j ≤ i ,
Hom(M{i, l}, M{ j, k}) = 0 and Hom(M{ j, l}, M{i, k}) = 0.

Proof Assume that g : M{i, l} → M{ j, k} is non-zero morphism, then it can induce a
non-zero morphism ĝ : M{i, l} → M{i, k}. By Lemma 8.3, f = 0 which contradicts the
assumption. Therefore, Hom(M{i, l}, M{ j, k}) = 0. Similarly, Hom(M{ j, l}, M{i, k}) =
0. ��

Next we define a binary relation, denoted by#, that does not necessarily satisfy the usual
axioms of an order.

Definition 8.5 For N , N ′ ∈ rep(An), we write N # N ′ if Hom(N , N ′) ∼= k. Usually we
only consider indecomposable objects N , N ′.
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Another easy observation, following from Lemma 8.3, is

Lemma 8.6 Let I ⊂ {1, 2, . . . , n} and SI = {Xi | Xi = M{1, i}, i ∈ I }. Then (SI ,#) is a
totally ordered set. Similarly, {Yi | Yi = M{i, n}, i ∈ I } is a totally ordered set.

Lemma 8.7 Let N = M{i, j}, N ′ = M{k, l} and k ≤ j < l.

(1) If s(α j ) = j and i ≤ k, then Hom(N ′, N ⊗ N ′) ∼= k where N ⊗ N ′ = M{k, j}.
(2) If t(α j ) = j , then for all m ≤ j , Hom(N ′, M{m, j}) = 0.

Proof (1) In this case, we have i ≤ k ≤ j . By definition, N ′ = M{k, l} and N ⊗ N ′ =
M{k, j}. Let f : N ′ → N ⊗ N be defined by ( f )s =

{
I d if k ≤ s ≤ j

0 otherwise
. Then it is not

hard to check 0 �= f ∈ Hom(N ′, N ⊗ N ′).
If f ′ ∈ Hom(N ′, N ⊗ N ′), then there is a scalar c ∈ k such that ( f ′)s = cI d for all

k ≤ s ≤ j . Then f ′ = c f and Hom(N ′, N ⊗ N ′) ∼= k.
(2) Since k ≤ j < l, (N ′) j+1 = k. Let f ∈ Hom(N ′, M{m, j}). Then, for every s > j ,

fs = 0 as (M{m, j})s = 0. So we have

( f ) j (N ′)α j = (M{m, j})α j ( f ) j+1 = 0.

Since (N ′)α j = I dk, we obtain ( f ) j = 0. Using a similar equation as above and induction,
one sees that fs = 0 for all s < j . Therefore f = 0 as desired. ��

For the rest of this section we use φ for a brick set in rep(An). Given a brick set φ and an
indecomposable representation M{i, j}, we define three subsets of φ according to {i, j}:
(1) φi = {N ∈ φ | (N )i ∼= k, (N ) j = 0},
(2) φ j = {N ∈ φ | (N )i = 0, (N ) j ∼= k},
(3) φi j = {N ∈ φ | (N )i ∼= k, (N ) j ∼= k}.
It is clear that φ contain the disjoint union of φi , φ j and φi j . Note that φl , for l being either
i or j , can be divided into the following two parts:

φ̂l = {N ∈ φl | M{i, j} ⊗ N # M{i, j}},
φ̃l = {N ∈ φl | M{i, j} # M{i, j} ⊗ N }.

Lemma 8.8 Let N be an object in φ that satisfies either M{i, j}⊗N = 0 or M{i, j}⊗N = N.
Then

ρ(A(φ, M{i, j} ⊗ −)) = max{a, ρ(A(φ\{N }, M{i, j} ⊗ −))}

where a =
{
0 if M{i, j} ⊗ N = 0,

1 if M{i, j} ⊗ N = N .

Proof Write φ = {N1, . . . , Nm} where N1 = N . By the hypothesis on N ,

dim Hom(Nk, M{i, j} ⊗ N ) = 0

for 2 ≤ k ≤ m. Hence, in the matrix A(φ, M{i, j} ⊗ −), ak1 = 0 for all k ≥ 2. As a
consequence,

ρ(A(φ, M{i, j} ⊗ −)) = max{a, ρ(A(φ\{N1}, M{i, j} ⊗ −))}
where a := a11 is the (1, 1)-entry in A(φ, M{i, j} ⊗−). Clearly a has the desired property.

��
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Lemma 8.9 Let N ∈ φi and N ′ ∈ φ j . Then {N , M{i, j} ⊗ N ′} and {M{i, j} ⊗ N , N ′} are
brick sets.

Proof Write N as M{i ′, j ′}. Then i ′ ≤ i and j ′ < j . Similarly, N ′ = M{k, l} for some k > i
and l ≥ j , and consequently, M{i, j} ⊗ N ′ = M{k, j}. A version of Lemma 8.1 shows that
{M{i ′, j ′}, M{k, l}}being abrick set implies that {M{i ′, j ′}, M{k, j}} is a brick set. Therefore
{N , M{i, j} ⊗ N ′} is a brick set. A similar argument shows that {M{i, j} ⊗ N , N ′} is brick
set. ��
Lemma 8.10 Let j be a positive integer no more than n. If j = n or s(α j ) = j , then
A(φ j , M{i, j} ⊗ −) is similar to an upper triangular matrix in which all diagonal entries
are 1.

Proof If j = n, then |φ j | = 1 and A(φ j , M{i, j} ⊗ −) = (1)1×1 by Lemma 8.2.
If j < n and s(α j ) = j , by Lemma 8.6, the set ({M{i, j} ⊗ N | N ∈ φ j },#) is a totally

ordered set. Let |φ j | = m and we can label the objects in φ j so that

M{i, j} ⊗ N1 # · · · # M{i, j} ⊗ Nm .

By Definition 8.5,

Hom(M{i, j} ⊗ Nk, M{i, j} ⊗ Nl) ∼=
{
0 if l < k,

k if l ≥ k.
(E8.10.1)

And, by Lemma 8.7(1),

Hom(Nk, M{i, j} ⊗ Nk) ∼= k. (E8.10.2)

Combine (E8.10.1) and (E8.10.2), then

dimHom(Nk, M{i, j} ⊗ Nl) =
{
0 if l < k,

1 if l ≥ k.

The assertion follows. ��
The next theorem is Theorem 0.8(2).

Theorem 8.11 Let Q be a quiver of type An given in (E0.7.1) for some n ≥ 2. Then the
following hold in rep(Q):

fpd(M{i, j}) =

⎧⎪⎨
⎪⎩
1 if M{i, j} is a sink,

min{i, n − j + 1} if M{i, j} is a source,

1 if M{i, j} is a flow.

Proof First we show that

fpd(M{i, j}) ≥

⎧⎪⎨
⎪⎩
1 if M{i, j} is a sink,
min{i, n − j + 1} if M{i, j} is a source,
1 if M{i, j} is a flow.

(E8.11.1)

Let φ be the singleton consisting of M{i, j}. It is clear that A(φ, M{i, j} ⊗ −) is (1)1×1.
Hence fpd(M{i, j}) ≥ 1.Now suppose that M{i, j} is a source. Let d = min{i, n− j+1}.We
construct a brick set with d elements as follows. By Lemma 8.6, ({M{k, i} | 1 ≤ k ≤ i},#)
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and ({M{ j, m} | j ≤ m ≤ n},#) are two totally ordered sets. We list elements in these two
sets as

M{k1, i} # · · · # M{ki , i} and M{ j, m1} # · · · # M{ j, mn− j+1} (E8.11.2)

where {kl}il=1 and {ml}n− j+1
l=1 are distinct integers from 1 to i and from j to n respectively.

Since d = min{i, n − j + 1}, we have a set of d elements

φ = {M{k1, mn− j+1}, M{k2, mn− j }, . . . , M{kd , mn− j+2−d}}.
We claim that φ is a brick set. If there is a nonzero map from M{ks, mn− j+2−s} to
M{kt , mn− j+2−t } for some s < t , then, when restricted to vertices { j, j + 1, . . . , n}, we
obtain a nonzero map from M{ j, mn− j+2−s} to M{ j, mn− j+2−t }. This contradicts the sec-
ond half of (E8.11.2). Therefore there is no nonzero morphism from M{ks, mn− j+2−s} to
M{kt , mn− j+2−t } for s < t . Similarly, there is no nonzero morphism from M{kt , mn− j+2−t }
to M{ks, mn− j+2−s} for s < t , by using the first half of (E8.11.2). Thus we prove our claim.
Using this brick set, one see that every entry in the matrix A(φ, M{i, j} ⊗ −) is 1, conse-
quently, ρ(A(φ, M{i, j} ⊗ −)) = d . Therefore fpd(M{i, j}) ≥ d if M{i, j} is a source.
Combining with the inequality fpd(M{i, j}) ≥ 1, we obtain (E8.11.1).

It remains to show the opposite inequality of (E8.11.1), or equivalently, to show that

ρ(A(φ, M{i, j} ⊗ −)) ≤

⎧⎪⎨
⎪⎩
1 if M{i, j} is a sink,
min{i, n − j + 1} if M{i, j} is a source,
1 if M{i, j} is a flow,

(E8.11.3)

for every brick set φ in rep(Q). We use induction on the integer |φ|+n. If |φ|+n is 1, nothing
needs to be proved. So we assume that |φ| + n ≥ 2. If |φ| = 1, then A(φ, M{i, j} ⊗ −) is
either (0)1×1 or (1)1×1. It is clear that the assertion holds. Now we assume that |φ| ≥ 2. This
forces that n ≥ 3 (but we will not use this fact directly). If there is an object N ∈ φ such that
either M{i, j} ⊗ N = 0 or M{i, j} ⊗ N = N , then (E8.11.3) follows from Lemma 8.8 and
the induction hypothesis.

For the rest of the proof we can assume that

N � M{i, j} ⊗ N �= 0

for every object N ∈ φ. Note that the above condition implies that φ is the disjoint of φi , φ j

and φi j . Now it suffices to consider φ satisfying the following conditions:

(*) φ = φi ∪ φ j ∪ φi j ,
(**) for every N ∈ φ, M{i, j} ⊗ N � N .

Let w be the number of objects in φ. Suppose that φ j is not empty. If there is an N ∈ φ j

such that N ⊗M{i, j} # M{i, j}, we let Nw be the object in φ j ∪φi j such that Nw⊗M{i, j}
is largest in the set

{N ⊗ M{i, j} | N ∈ φ j ∪ φi j }.
Such an object Nw exists by a version of Lemma 8.6. It is easy to see that Nw ∈ φ j . By the
choice of Nw, one can show that, for every Nk ∈ φ j ∪ φi j with k �= w,

Hom(Nk, Nw ⊗ M{i, j}) = 0.

If Nk ∈ φ\(φ j ∪ φi j ), then, by Lemma 8.9,

Hom(Nk, Nw ⊗ M{i, j}) = 0.
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Therefore akw = 0 for all k < w as an entry in the adjacency matrix A(φ, M{i, j} ⊗−). As
a consequence,

ρ(A(φ, M{i, j} ⊗ −)) = max{1, ρ(A(φ\{Nw}, M{i, j} ⊗ −))}.
Assertion (E8.11.3) follows by induction hypothesis. The other possibility is that for every
N ∈ φ j we have M{i, j} # N ⊗ M{i, j}. Now let N1 be the object in φ j ∪ φi j such that
N1 ⊗ M{i, j} is smallest in the set

{N ⊗ M{i, j} | N ∈ φ j ∪ φi j }.
Such an object N1 exists by a version of Lemma 8.6. It is easy to see that N1 ∈ φ j . By the
choice of N1, one sees, for every Nk ∈ φ j ∪ φi j with k �= 1,

Hom(N1, Nk ⊗ M{i, j}) = 0.

If Nk ∈ φ\(φ j ∪ φi j ), then, by Lemma 8.9

Hom(N1, Nk ⊗ M{i, j}) = 0.

Therefore a1k = 0 for all k > 1 as an entry in the adjacency matrix A(φ, M{i, j} ⊗ −). As
a consequence,

ρ(A(φ, M{i, j} ⊗ −)) = max{1, ρ(A(φ\{N1}, M{i, j} ⊗ −))}.
Assertion (E8.11.3) follows by induction hypothesis. Combining these two cases, we show
that (E8.11.3) holds by induction when φ j is not empty.

Similarly, (E8.11.3) holds by induction when φi is not empty. The remaining case is when
φi and φ j are empty, or

(∗∗∗) φ = φi j .

We divide the rest of the proof into 5 small subcases.
Subcase 1: t(αi−1) = i . Pick any object in φ, say N . Suppose that (N1)i−1 �= 0. Then

Hom(N1, M{i, j}) = 0. Note that in this case M{i, j} = M{i, j} ⊗ N for all N ∈ φ.
Therefore a1k = 0 for all k > 1 as an entry in the adjacency matrix A(φ, M{i, j} ⊗ −). As
a consequence,

ρ(A(φ, M{i, j} ⊗ ρ(A(φ\{N1}, M{i, j} ⊗ −)).

Assertion (E8.11.3) follows by induction hypothesis. Therefore, without loss of generality,
we can assume that (N1)i−1 = 0 for all N1 ∈ φ. Now everything can be computed in the
subquiver quiver Q\{1}. Then we reduce the number of vertices from n to n − 1. Again the
assertion follows from the induction hypothesis.

Subcase 2: t(α j ) = j . This is equivalent to Subcase 1 after one relabels vertices of Q by
setting i ′ = n + 1− i for all 1 ≤ i ≤ n.

Subcase 3: i = 1. Since φ = φi j , by Lemma 8.6, φ consists of single object. As a
consequence, A(φ, M{i, j}⊗−) is either (0)1×1 or (1)1×1. Then ρ(A(φ, M{i, j}⊗−)) ≤ 1
and the assertion follows trivially.

Subcase 4: j = n. This is equivalent to Subcase 3 after one re-labels vertices of Q by
setting i ′ = n + 1− i for all 1 ≤ i ≤ n.

Subcase 5: Not cases 1-4, namely, i > 1, j < n, t(αi−1) = i − 1 and t(α j ) = j + 1. In
this case M{i, j} is a source. We list all objects in φ = φi j as

M{i1, j1}, . . . , M{iw, jw}
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where 1 ≤ is ≤ i and j ≤ js ≤ n. By Lemma 8.3, all is are distinct. The same holds true for
js . Therefore |φ| = w ≤ d := min{i, n − j + 1}. Since every entry of A(φ, M{i, j} ⊗ −)

is at most 1, we obtain that ρ(A(φ, M{i, j} ⊗ −)) ≤ |φ| ≤ d as desired.
Combining (E8.11.1) with (E8.11.3), we finish the proof. ��
Note that, for M, N ∈ rep(Q),

HomDb(rep(Q))(M[0], N [1]) ∼= Ext1rep(Q)(M, N ).

For the rest of this section we use Ext1(M, N ) instead of Ext1rep(Q)(M, N ). The Euler char-
acteristic of two representations M and N of Q is defined to be

〈dimM,dimN 〉Q =
∑
v∈Q0

xv yv −
∑

α∈Q1

xs(α)yt(α)

where dim denotes the dimension vector and xv = dim((M)v), yv = dim((N )v) for any
v ∈ Q0. By [25, p.65], we have

dimHom(M, N ) − dim Ext1(M, N ) = 〈dimM,dimN 〉Q . (E8.11.4)

One can verify the following.

Lemma 8.12 Assume Q is of type An. Let N = M{i1, j1}, N ′ = M{i2, j2} and i1 ≤ i2.

(1) If j1 ≤ i2 − 2, then Ext1(N , N ′) = Ext1(N ′, N ) = 0.
(2) Suppose that j1 = i2 − 1.

(a) If s(α j1) = j1, then Ext1(N , N ′) ∼= k, Ext1(N ′, N ) = 0.
(b) If s(α j1) = i2, then Ext1(N , N ′) = 0, Ext1(N ′, N ) ∼= k.

(3) Suppose either i1 < i2 ≤ j1 < j2 or i1 < i2 ≤ j2 < j1.

(a) If Hom(N , N ′) ∼= k, then Ext1(N , N ′) = 0, Ext1(N ′, N ) ∼= k.
(b) If Hom(N ′, N ) ∼= k, then Ext1(N , N ′) ∼= k, Ext1(N ′, N ) = 0.
(c) If {N , N ′} is a brick set, then Ext1(N , N ′) = Ext1(N ′, N ) = 0.

(4) If i1 = i2 or j1 = j2, then Ext1(M, N ) = Ext1(N , M) = 0.

Proof When j1 ≤ i2 − 2, it is easy to see

dimHom(N , N ′) = dimHom(N ′, N ) = 0

and

〈dimN ,dimN ′〉Q = 〈dimN ′,dimN 〉Q = 0.

Therefore, Ext1(N , N ′) = Ext1(N ′, N ) = 0.
As for (2), (3) and (4), the proofs are similar and we omit them here. ��
A direct corollary of Lemma 8.12 is

Corollary 8.13 Assume Q is of type An. If Hom(M{i1, j1}, M{i2, j2}) ∼= k, then

Ext1(M{i1, j1}, M{i2, j2}) = 0.

Any brick set φ in rep(Q) is also a brick set in Db(rep(Q)). In the next lemma we are
working with the category Db(rep(Q)) and φ (respectively, φi and φ j ) still denotes a brick
set in rep(Q).
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Lemma 8.14 Retain the notation above. Then A(φi , M{i, j}[1] ⊗ −) is similar to a strictly
lower triangular matrix.

Proof By Lemma 8.6, ({M{i, j} ⊗ N | N ∈ φi },#) is a totally ordered set, which can be
listed as

M{i, j1} # M{i, j2} # · · · M{i, j|φ|i }. (E8.14.1)

When we compute the adjacency matrix A(φi , M{i, j}[1] ⊗ −), we order elements in φi

according to (E8.14.1). For any two objects M{is1 , js1}, M{is2 , js2} in φi with s1 < s2, we
have M{i, js1} # M{i, js2}. An easy analysis shows that either {M{is1 , js1}, M{i, js2}} is a
brick set or Hom(M{is1 , js1}, M{i, js2}) ∼= k. By Lemma 8.12(3),

Ext1(M{is1 , js1}, M{i, j} ⊗ M{is2 , js2}) = 0.

By Lemma 8.12(4), we have

Ext1(M{is1 , js1}, M{i, j} ⊗ M{is1 , js1}) = Ext1(M{is1 , js1}, M{i, js1}) = 0.

As a consequence, A(φi , M{i, j}[1] ⊗ −) is a strictly lower triangular matrix. ��
Lemma 8.15 Let N ∈ φ̂ j , N ′ ∈ φi ∪ φi j and N ′′ ∈ φ̃ j . then

Ext1(N , M{i, j} ⊗ N ′) = Ext1(N ′, M{i, j} ⊗ N ′′) = Ext1(N , M{i, j} ⊗ N ′′) = 0.

Proof Similar to the proof of Lemma 8.12, we only prove the first equation and leave out the
proof of the last two equations.

Write N = M{i1, j1} and N ′ = M{i2, j2}. By definition, φ̂ j is nonempty. This implies
that s(αi1−1) = i1 − 1.

First we suppose that N ′ ∈ φi . If j2 �= i1 − 1, then, by Lemmas 8.1 and 8.12 (1,3c),
Ext1(N , M{i, j} ⊗ N ′) = 0. If j2 = i1 − 1, then Ext1(N , M{i, j} ⊗ N ′) = 0 by
Lemma 8.12(2). Therefore, Ext1(N , M{i, j} ⊗ N ′) = 0 always holds for N ′ ∈ φi .

Nextwe suppose that N ′ ∈ φi j . Then either {N , M{i, j}} is a brick set orHom(N , M{i, j})
∼= k. By Lemma 8.12(3), Ext1(N , M{i, j} ⊗ N ′) = 0 since M{i, j} ⊗ N ′ = M{i, j}.

The assertion follows. ��
Now, we prove Theorem 0.8(3).

Theorem 8.16 Let Q be a quiver of type An given in (E0.7.1) for some n ≥ 2. Then

fpd(M{i, j}[1]) =

⎧⎪⎨
⎪⎩
min{i − 1, n − j} if M{i, j} is a sink,

1 if M{i, j} is a source,

1 if M{i, j} is a flow.

Proof Since this is a statement about the derived category Db(rep(Q)), we need to consider
all brick objects in this derived category. However, by the argument given in the proof of
Lemma4.11 (2), we only need to consider brick sets of the form

φ = {N1, . . . , Nm | Ns ∈ rep(Q)}
which consists of objects in the abelian category rep(Q).

The rest of the proof is somewhat similar to the proof of Theorem 8.11.
If there exists an object N1 = M{i0, j0} ∈ φ satisfying M{i, j}⊗N1 ∼= N1, byLemma8.2,

there exist at most one object N2 = M{i1, j1} ∈ φ satisfying j1 = i0 − 1 and at most one
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object N3 = M{i2, j2} ∈ φ satisfying i2 = j0 + 1. Then, by Lemmas 8.1 and 8.12 , in
the first column and the first row of A(φ, M{i, j}[1] ⊗ −), all entries are zero except for
a12, a21, a13, a31, and a12a21 = a13a31 = 0. No matter which case is, we always have

ρ(A(φ, M{i, j}[1] ⊗ −)) = ρ(A(φ\{N1}, M{i, j}[1] ⊗ −)).

Also, if there is an object N ∈ φ satisfying M{i, j} ⊗ N = 0, we also have

ρ(A(φ, M{i, j}[1] ⊗ −)) = ρ(A(φ\{N }, M{i, j}[1] ⊗ −)).

Similar to the proof of Theorem 8.11, it suffices to consider the brick set φ satisfying the
following conditions:

(*) φ = φi ∪ φ j ∪ φi j ,
(**) for every N ∈ φ, M{i, j} ⊗ N � N .

By Lemma 8.14, if we re-arrange objects in φ as φ̂ j , φ̂i , φi j , φ̃i and φ̃ j , then
A(φ, M{i, j}[1] ⊗ −) is a block lower triangular matrix. By Lemma 8.15,

ρ(φ, M{i, j}[1] ⊗ −) = ρ(φi j , M{i, j}[1] ⊗ −).

Therefore, for the rest we consider the brick set φ satisfying φi j = φ.
We divide the rest of the proof into 3 small cases.
Case 1: M{i, j} is a source. In this case, for any N ∈ φ, Hom(N , M{i, j}) ∼= k.

Then by Lemma 8.12(3), Ext1(N , M{i, j}) = 0. As a consequence, the adjacency matrix
A(φ, M{i, j}[1] ⊗ −) is a zero matrix. Therefore, in this case, fpd(M{i, j}[1]) = 0.

Case 2: M{i, j} is a flow, without loss of generality, assume that αi−1 = α j =←−.
For any N = M{i1, j1} ∈ φ, if i1 = i , by Lemma 8.12(4), Ext1(N , M{i, j}) = 0. If
i1 < i , either Hom(N , M{i, j}) ∼= k or {N , M{i, j}} is a brick set, then by Lemma 8.12(3),
Ext1(N , M{i, j}) = 0. As a consequence, the adjacency matrix A(φ, M{i, j}[1] ⊗ −) is a
zero matrix. Therefore, in this case, fpd(M{i, j}[1]) = 0.

Case 3: M{i, j} is a sink. In this case, for any N = M{i1, j1} ∈ φ, if i1 = i , by
Lemma 8.12(4), Ext1(N , M{i, j}) = 0. If j1 = j , by Lemma 8.12(4), Ext1(N , M{i, j}) =
0. Therefore, since M{i, j} ⊗ N = M{i, j}, we can assume that i1 < i and j1 > j . Now,
it’s easy to see Ext1(N , M{i, j}) ∼= k by Lemma 8.12(3). As a consequence, all entries in
the adjacency matrix A(φ, M{i, j}[1] ⊗ −) are 1 and ρ(A(φ, M{i, j}[1] ⊗ −)) = |φi j | ≤
min{i − 1, n − j}.

On the other hand, by Lemma 8.6, ({M{k, i} | 1 ≤ k ≤ i − 1},#) and ({M{ j, m} |
j + 1 ≤ m ≤ n},#) are two totally ordered sets. We list elements in these two sets as

M{k1, i} # · · · # M{ki−1, i} andM{ j, m1} # · · · # M{ j, mn− j }
where {kl}i−1

l=1 and {ml}n− j
l=1 are distinct integers from 1 to i−1 and from j+1 to n respectively.

Let d = min{i − 1, n − j}, then we have a set of d elements

φ = {M{k1, mn− j }, M{k2, mn− j−1}, . . . , M{kd , mn− j+1−d}}
which is a brick set.Using this brick set, one see every entry in thematrix A(φ, M{i, j}[1]⊗−)

is 1 by Lemma 8.12, consequently, ρ(A(φ, M{i, j}[1] ⊗ −)) = d . Hence, in this case,
fpd(M{i, j}[1]) = min{i − 1, n − j}. ��
Proof of Theorem 0.8: (1) This follows from Lemma 4.11(1).
(2) This follows from Lemma 4.11(2) and Theorem 8.11.
(3) This follows from Theorem 8.16. ��
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