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a b s t r a c t

In this paper, a switched control method for a class of wearable robotic systems that prioritizes

the use of human skeletal muscles in an assistive rigid powered exoskeleton is derived. A general

N-degree-of-freedom (N-DOF) human–robot model is proposed to consider the challenges induced by

the wearable system that include uncertainties and nonlinearities, unilateral actuation properties of

the skeletal muscles, input delays, as well as a time varying actuator efficiency. Two control modes that

alternatively switch and control a wearable robotic system are designed to overcome these challenges.

A multiple Lyapunov functional analysis with state-dependent constraints on the switch criteria is

performed to prove the stability. Simulations are performed to demonstrate the gain conditions,

selected for each subsystem, that stabilize the overall system. Experiments on a human participant

wearing a 4-DOF hybrid exoskeleton that combines functional electrical stimulation and a powered

exoskeleton demonstrate the effectiveness of the switched control design.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

Wearable robotic systems are increasingly being used for hu-
man augmentation in industrial and military applications
(Cempini, De Rossi, Lenzi, Vitiello, & Carrozza, 2012; Choo &
Park, 2017; De Looze, Bosch, Krause, Stadler, & O’Sullivan, 2016;
Huo, Mohammed, Moreno, & Amirat, 2014; Walsh, 2018) and as
assistive devices during rehabilitation (Cempini et al., 2012; Huo
et al., 2014; In, Kang, Sin, & Cho, 2015; Jamwal, Xie, Hussain,
& Parsons, 2012; Kim et al., 2012; Kubota et al., 2013; Pons,
2008, 2010). Recent papers on wearable robotic systems have
used new control theory tools such as hybrid zero dynamics
and energy shaping (Aroche, Meyer, Tu, Packard, & Arcak, 2019;
Harib et al., 2018; Lv & Gregg, 2017). These control strategies
for wearable robots primarily use actuation from electric motors.
In contrast, the focus of our paper is a muscle first strategy
control that enables a human user to maximize skeletal muscle
use or harness muscle’s inherent metabolic energy, via functional
electrical stimulation (FES), and still use a rigid wearable robot.
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The strategy is potentially beneficial from both rehabilitation

nd augmentation aspects. Firstly, compared to a case where a

owered exoskeleton is used solely, a shared workload between

xternally stimulated muscles and a powered exoskeleton can

educe actuator and battery sizes, and thus make the overall

ystem less bulkier. Secondly, the rigid exoskeleton uses electric

otors to provide predictable torques. This attribute can be used

o overcome relatively high nonlinearities and uncertainties that

re in the musculoskeletal dynamics. These technical problems

an also be relevant to another class of wearable robotic systems

hat comprise of soft robotic actuators such as, artificial mus-

les (Andrikopoulos, Nikolakopoulos, & Manesis, 2014; Caldwell,

edrano-Cerda, & Goodwin, 1995; Chou & Hannaford, 1996;

aerden & Lefeber, 2002; Reynolds, Repperger, Phillips, & Bandry,

003; Tondu & Lopez, 2000). Unmodeled phenomenon and hys-

eresis effects (Vo-Minh, Tjahjowidodo, Ramon, & Van Brussel,

010) can add nonlinear effects and uncertainties during soft

ctuator control (Mirvakili & Hunter, 2018). The control of these

oft actuators may be improved by using them in conjunction

ith a light weight rigid robot.

We propose a general class of hybrid wearable robotic system

omprising of a muscle/soft actuator and a rigid robot, where

he latter can be substituted in an event of a degraded control

erformance or reduced actuator efficiency that otherwise may

mpair control effectiveness. For example, the reduced actua-

or efficiency is usually observed during FES of skeletal muscles
here a rapid onset of the muscle fatigue reduces a muscle’s
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orce output. As a result of this combination, this general class
f hybrid wearable robotic system possesses distinct dynamic
haracteristics of skeletal muscles (or soft actuators) and a rigid
owered exoskeleton. These characteristics include unilateral ac-
uators that produce force only in one direction. Due to this
nilateral force generation, these soft actuators have to be im-
lemented as an agonist–antagonist pair to produce bidirectional
orques at each robotic joint. Further, fluid-based actuation or
low activation of human muscles may introduce electromechan-
cal delays (EMD) (Sharma, Gregory and Dixon, 2011), a form of
nput delay, in the wearable system. The control of this class
f wearable robots is further complicated by the presence of
onlinearities and uncertainties in the human–robot model and
need to maintain performance in the event of loss of control
ffectiveness. In view of these challenges, this class of wearable
obot system may necessitate use of switched control.

A switched control method for an N-degree-of-freedom
N-DOF) general class of wearable robotic systems is proposed in
his paper. The resulting hybrid system is driven by two control
odes: I and II, and a switch signal that indicates the control
ode. Mode I aims at addressing the input delay problem and
pplies a PD-based controller for a combined use of skeletal
uscle/soft actuator and electric motors. General gain conditions

o adjust the muscle-motor contributions are derived. Mode II uti-
izes electric motors with a smooth variable structure controller
VSC) (Zinober, 1994) to actuate all of the N limb joints when the
actuator efficiency approaches a designed threshold.

The two main contributions of this paper are considering
istinct input delays in the wearable robotic system and new
tate-dependent constraint conditions in a multiple Lyapunov
unctional approach for switched systems. Here we discuss the
wo contributions. Firstly, a proportional derivative (PD) based
ontrol strategy that compensate for EMDs is developed in a gen-
ral N-DOF system. Input delay problems of nonlinear control sys-
ems have recently been explored in Alibeji, Kirsch, Dicianno, and
harma (2017), Bekiaris-Liberis and Krstic (2012), Krstic (2009),
ei and Khalil (2015, 2016), Nihtilä (1989), Polyakov, Efimov,
erruquetti, and Richard (2013), Sharma, Bhasin, Wang and Dixon

(2011) and Sharma, Gregory et al. (2011). Compared to those, in
this paper, a particular challenge is introduced by distinct EMDs,
τ
(j)
i , in the muscles or soft actuators of an agonist–antagonist pair
(j = 1, 2) at different joints (i = 1, 2, . . . ,N). By considering
this challenge, the result of this paper generalizes the analysis
in Sharma, Bhasin et al. (2011) from a uniform input delay, τ ,
to τ (j)i and applies the control design in the model of a gen-
eral wearable robotic system. Accordingly, delay compensation
terms are specifically designed for each muscle/actuator group
and Lyapunov–Krasovskii (L-K) functionals are chosen to prove
the stability of the N-DOF system under the developed controller.

Secondly, the stability of the switched N-DOF wearable robotic
system is analyzed via a multiple Lyapunov functional (MLF)
(Branicky, 1998; DeCarlo, Branicky, Pettersson, & Lennartson,
2000; Goebel, Sanfelice, & Teel, 2009; Liberzon & Morse, 1999)
approach, provided that each subsystem in the switch family is
proven to attain a semi-globally uniformly ultimately bounded
(sGUUB) stability. In Kirsch, Alibeji, Dicianno, and Sharma (2016),
a similar fatigue-motivated switched strategy was proposed for
a single DOF hybrid neuroprosthesis. A common second order
sliding mode controller was designed based on a feedback lin-
earized virtual input that was used for both muscles and motors.
The stability of the switched system was then analyzed by a
common Lyapunov functional (CLF) (Liberzon & Morse, 1999).
Downey, Cheng, Bellman, and Dixon (2017) also used a CLF
to prove the stability of a 1-DOF lower-limb neuroprosthetic
system. Asynchronous stimulation of different muscle groups was
modeled as a switched system. However, in our current paper,
2

due to the existence of the delay compensation terms and the
corresponding L-K functional, it is difficult to find an explicit
CLF that guarantees the arbitrary (fast) switch. Instead, different
Lyapunov functionals have to be considered to facilitate different
control modes. As a result, when the subsystems are combined,
discontinuity of the Lyapunov functional occurs at each switch.
In this situation, typically, a dwell time approach is employed in
an MLF analysis to guarantee the stability. However, due to the
dwell time, the unnecessary waiting period between switches,
in general, might be undesirable for human augmentation or
rehabilitation. Therefore, in the MLF analysis of this paper, we
explicitly derive additional constraints in the switch criteria to
not only guarantee the overall stability, but also enable a desired
switch immediately once those constraints are satisfied.

A preliminary conference paper on a 5-DOF lower-limb
human–robot model with a uniform input delay at knee joints
was presented in Sheng, Molazadeh, and Sharma (2018). In the
current paper, the theoretical results have been extended to
a general N-DOF system with different input delays of each
soft actuator at each joint. The control mode II has also been
modified to use the VSC controller with a continuous input. A
new Lemma 1 has been introduced to perform the switch criteria
that fully depend on the measurable states and estimated model
parameters. This guarantees the feasibility of experiment imple-
mentation. New simulations that show the use of gain conditions
and experimental results with a human participant that validate
the controller have also been added.

Notation: For simplicity, in this paper, (vi)N represents a vector
v = (v1, v2, . . . , vN )T ∈ RN and

(
aij
)
M×N ∈ RM×N represents a

matrix array. vτ = v(t − τ ) = (vi(t − τi))N =
(
vi,τi

)
N ∈ RN

denotes the vector v after each element, as a time dependent
function, being delayed by τi, (i = 1, 2, . . . ,N). Time dependent
functions can be simplified as v(t) = v ∈ RN when there is no
time delay.

Remark. The work here is motivated from FES-based control
of skeletal muscles in a hybrid exoskeleton. However, we in-
terchangeably denote muscles as soft actuators. This is a slight
abuse of the terminology used by the soft actuator community.
The terminology is interchangeably used to extend the proposed
switched framework to a general class of wearable exoskeleton
that combine FES control of skeletal muscles or soft actuators
with a powered exoskeleton.

2. Modeling

A generalized N-DOF model for a wearable robotic system is
expressed by the Euler–Lagrange (E-L) equations:

D(q)q̈ + C(q, q̇)q̇ + G(q) + Mev(q, q̇) + W

= T (1)
s − T (2)

s + Tm, (1)

where q(t) = (qi(t))N ∈ RN are time dependent limb joint
angles. D(q) ∈ RN×N , C(q, q̇) ∈ RN×N , and G(q) ∈ RN are a
generalized inertia matrix, a Coriolis–centripetal matrix and a
gravity vector, respectively. Mev(q, q̇) ∈ RN expresses passive
moments due to the elastic-viscous effect at each limb joint. W ∈

RN represents a disturbance term. T (j)
s (t) =

(
T (j)
s,i (t)

)
N

∈ RN
≥0 is

a vector that represents torques contributed by each actuator:
j, where j = 1, 2, of an agonist–antagonist soft actuator pair at
a joint: i, where i = 1, 2, . . . ,N . Tm(t) =

(
Tm,i(t)

)
N ∈ RN is

a vector that represents torques exerted by electric motors of a
rigid exoskeleton at a joint: i. The torque exerted by the electric
motor at a joint i is modeled according to a linear relationship,

T = K u , (2)
m,i m,i m,i
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I⎛⎝
here Km,i ∈ R>0 is a motor constant and um,i(t) ∈ R is an input
o the electric motor. The N-DOF model is developed under the
ollowing assumptions:

A1) Modeling of T (j)
s and distinct input delays. The torque pro-

uced by a soft actuator j at a joint i is modeled as
(j)
s,i = µ̂

(j)
i η

(j)
i u(j)

a,i,τ (j)i
, (3)

here η(j)i (q, q̇) ∈ R>0 is a lumped bounded unknown nonlin-
ar function that maps a positive input delayed control signal
(j)

a,i,τ (j)i
= u(j)

a,i(t − τ
(j)
i ) ∈ R>0 to T (j)

s,i . τ
(j)
i ∈ R>0 is the EMD

associated with the actuator j at joint i. τ (j)i values are assumed as
known constants but can have distinct values for different i and j.

(A2) Time-variant actuator efficiency. Motivated from the phe-
nomenon of the human muscle fatigue (Sharma, Kirsch, Alibeji, &
Dixon, 2017), we introduce a time-variant term, µ̂(j)

i (t) ∈ [ς
(j)
i , 1],

as the estimate of the actuator efficiency. ς (j)
i ∈ R is the lower

bound of µ̂(j)
i and µ̂(j)

i is assumed to follow a known continuous
governing equation that models the fatigue and recovery process,
as
˙̂µ
(j)
i = Γ

(j)
i (µ̂(j)

i , u
(j)

a,i,τ (j)i
). (4)

(A3) The disturbance, W (t), and the unknown functions: Mev(q, q̇)
and η(j)i are bounded.

3. Control design

3.1. Two control modes in the switched N-DOF human–robot system

Two control modes are integrated to control the N-DOF system
in (1). In mode I, torque contributions from soft actuators and
assistive electric motors can share work load. The input to the
soft actuators in (3) is designed as

u(j)
a,i =

1 + ξ

2
K (j)
a,iu

(j)
s,i, (5)

where u(j)
s,i(t) ∈ R>0 is the subsequently designed proportional

derivative (PD) feedback controller with a compensation term for
different EMDs. K (j)

a,i ∈ R is an additional gain to modulate u(j)
s,i

f individual actuators. ξ (t) ∈ {−1, 1} is a switch signal. ξ = 1
indicates mode I and ξ = −1 indicates mode II. After substituting
(5) into (3), the torque contribution from the soft actuator is
expressed as

T (j)
s,i =

1 + ξ
τ
(j)
i

2
µ̂

(j)
i η

(j)
i K (j)

a,iu
(j)

s,i,τ (j)i
. (6)

By adding the switch signal to (2), electric motor torque contri-
butions are expressed as

TmI ,i =
1 + ξ

2
Km,iumI ,i, (7)

where umI ,i ∈ R denotes the control input to the electric motor
under mode I.

When mode II (ξ = −1) is activated, all the joints are driven
by torque contributed from electric motors as

TmII ,i =
1 − ξ

2
Km,iumII ,i, (8)

where umII ,i ∈ R is the control input to the electric motor under
mode II.

By combining mode I and mode II and using (1), (6), (7) and
(8), the N-DOF system under a switched control of the defined
3

actuators can be expressed as

D(q)q̈ + C(q, q̇)q̇ + G(q) + Mev(q, q̇) + W

=

(
1 + ξ

τ
(1)
i

2
µ̂

(1)
i η

(1)
i K (1)

a,i u
(1)

s,i,τ (1)i

)
N

(9)

−

(
1 + ξ

τ
(2)
i

2
µ̂

(2)
i η

(2)
i K (2)

a,i u
(2)

s,i,τ (2)i

)
N

+

(
1 + ξ

2
Km,iumI ,i

)
N

+

(
1 − ξ

2
Km,iumII ,i

)
N
,

hich consists of two subsystems indexed by the switch signal,
(t). For simplicity of the subsequent derivations, we denote

ˆ
(j)

=

(
µ̂

(j)
i

)
N

∈ RN , η(j) =

(
η
(j)
i

)
N

∈ RN , u(j)
s =

(
u(j)
s,i

)
N

∈ RN ,

umI =
(
umI,i

)
N ∈ RN and umII =

(
umII,i

)
N ∈ RN .

3.2. The state vector of trajectory tracking and delay compensation

The control objective is to make the switched system, (9), track
a desired trajectory, qd(t) =

(
qdi (t)

)
N ∈ RN under the following

assumption:

(A4) The desired trajectories and their time derivatives are known
and bounded.

The tracking error e(t) = (ei(t))N ∈ RN is defined as

ei = qd,i − qi. (10)

To facilitate the control development and the stability analysis,
the auxiliary signal r(t) ∈ RN is

r = ė + αe −
ξ + 1
2

βec, (11)

where

ec(t) =

(
e(1)c,i

)
N

−

(
e(2)c,i

)
N

(12)

is a delay compensation vector defined as

e(j)c,i =

∫ t

t−τ (j)i

u(j)
s,i(θ )dθ. (13)

, β ∈ R>0 are constant gains. The error signal, r , that contains
elocity error information has the piecewise continuous property.
o facilitate the input delays, the delay compensation term in (11)
s only used in mode I; i.e., when ξ = 1. (11) and (13) consider
hat the values of the input delays are different for each unilateral
oft actuator. Using the tracking errors e, r , the switch signal, ξ ,
nd the efficiency state, µ̂(j), a state vector y ∈ U is defined as

y =

[
eT , rT , µ̂(1)T , µ̂(2)T , ξ

]T
, (14)

here U = R2N
× [ς

(1)
1 , 1] × [ς

(1)
2 , 1] × · · · × [ς

(1)
N , 1] × [ς

(2)
1 , 1] ×

ς
(2)
2 , 1]×· · ·×[ς

(2)
N , 1]×{−1, 1}. To achieve the control objective

nd to also maintain the efficiency of the muscle/soft actuator, the
ollowing sections describe the design of the control inputs: u(j)

s ,
mI , umII , and the switch criteria that is dependent on the state
ector, y.

.3. Feedback control law and closed loop error dynamics

.3.1. Mode I: ξ = 1
The feedback control law for u(j)

s and umI that determines mode
is designed as

u(1)
s

u(2)
s

⎞⎠ = Ku

⎛⎝ Q (1)
1 Q2Q3

Q (2)
1 Q2Q3

⎞⎠ r, (15)

umI Q4
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here Q (1)
1 , Q (2)

1 , Q2, Q3, Q4 ∈ RN×N are

Q (1)
1 = diag

(
1 + sgn (r1)

2
,
1 + sgn (r2)

2
, . . . ,

1 + sgn (rN)
2

)
,

(2)
1 = diag

(
1 − sgn (r1)

2
,
1 − sgn (r2)

2
, . . . ,

1 − sgn (rN)
2

)
,

2 = diag
(
ρs,1, ρs,2, . . . , ρs,N

)
, (16)

3 = diag (sgn (r1) , sgn (r2) , . . . , sgn (rN)) ,

4 =
(
ρm,ij

)
N×N .

u ∈ R>0, ρs,i ∈ R>0, are constant control gains. ρm,ij ∈ R,
epresents the variable control gains of the electric motors. The
gn (·) function is used in view of the unilateral property of the
oft actuators and to facilitate control of an agonist–antagonist
air. When, ξ = 1, by differentiating both sides of (11), then
ultiplying by D(q), using (9) and (10), and substituting (15), the

closed loop error dynamics of the subsystem (ξ = 1) is obtained
as

D(q)ṙ = −
1
2
Ḋ(q)r − e + Φ̃ +Φd + W

− D̂(q)βKuQ2r − KMKuQ4r

− D̃(q)βKuQ2r (17)

+ βH (1)KuQ
(1)
1,τ (1)

Q2Q3,τ (1) rτ (1)

− βH (2)KuQ
(2)
1τ (2)

Q2Q3,τ (2) rτ (2) ,

here Q (1)
1τ (1)

, Q (2)
1,τ (2)

, Q (1)
3,τ (1)

and Q (2)
3,τ (2)

are defined by delaying each

i(t) signal in (16) by τ (1)i or τ (2)i . H (j)
∈ RN×N is

(j)
= D(q) −

1
β
diag

(
µ̂

(j)
1 η

(j)
1 , µ̂

(j)
2 η

(j)
2 , . . . , µ̂

(j)
N η

(j)
N

)
K (j)
A .

KM and K (j)
A are diagonal matrices of the motor constant, Km,i, and

gains, K (j)
a,i , defined in (2) and (5), respectively, and D̂ ∈ RN×N is

an estimate of D. Therefore, the estimation error D̃ ∈ RN×N is D̃ =

D − D̂. In (17), Φ̃ ∈ RN is Φ̃ = Φ − Φd, where Φ(t),Φd(t) ∈ RN

are defined as

Φ =
1
2
Ḋr + e + D (q̈d + αė)+ Cq̇ + G + Mev, (18)

Φd = D(qd)q̈d + C(qd, q̇d)q̇d + G(qd) + Mev(qd, q̇d).

According to Sadegh and Horowitz (1990) and the assumption
A3) and (A4), it can be proven that

Φ̃ +Φd + W
 ≤ δΦ(∥z∥) ∥z∥ + Ψ , (19)

here z ∈ R4N is z = (eT , rT , e(1)
T

c , e(2)
T

c )T . δΦ(·) is a posi-
ive globally invertible non-decreasing function. Ψ ∈ R>0 is a
onstant.

.3.2. Mode II: ξ = −1
In mode II, the robust VSC controller, umII (t), is designed as

mII = K−1
M

(
r

∥r∥ + rc

(
δΦ ′(∥yer∥) ∥yer∥ + Ψ ′

)
+ Kvr

)
, (20)

where yer = (eT , rT )T . Kv ∈ R>0 is a constant control gain.
rc ∈ R>0 is a small constant. δΦ ′(·), which is a positive globally
invertible non-decreasing function, and Ψ ′

∈ R>0 are guessing
functions to bound

Φ̃ +Φd + W − B̃
. They satisfyΦ̃ +Φd + W − B̃

 ≤ δΦ ′(∥yer∥) ∥yer∥ + Ψ ′,

where B̃ ∈ RN is the remaining bounded actuation from mode
I due to EMD after the most recent switch and will certainly
4

disappear in a short time period, maxi{τi}. By using the same
derivation as in the case when ξ = 1 but substituting (20) for
the control input, the closed loop error dynamics corresponding
to the subsystem (ξ = −1) of (9) is derived as,

D(q)ṙ = −
1
2
Ḋ(q)r − e + Φ̃ +Φd + W − B̃ (21)

−
r

∥r∥ + rc

(
δΦ ′(∥yer∥) ∥yer∥ + Ψ ′

)
− Kvr.

.4. Switch criteria

According to (3), the torque generated under a certain input
an vary with the actuator efficiency. To obtain a consistent joint
orque, these actuators can be switched with electric motors
hen the efficiency is low and re-activated upon recovery. There-

ore, a switch logic is designed to determine the choice between
he subsystems, ξ = 1 or ξ = −1. This behavior is modeled as

ξ+
= −ξ− (e−

T
, r−

T
, µ−

T
, ξ−)T ∈ D , (22)

here (·)− and (·)+ denote the value just before and after the
witch. The set D consists the union of three sets and forms the
witch criteria, as

=

{
y ∈ U : ξ = 1, ∃j ∈ {1, 2} , i ∈ {1, 2, . . . ,N}

s.t.µ̂(j)
i ≤ µ

}
∪ Derξ ∪

{
y ∈ U : (eT , rT , ξ ) ∈ D′

erξl ,

∀j ∈ {1, 2} , i ∈ {1, 2, . . . ,N} s.t.µ̂(j)
i ≥ µ

}
. (23)

, µ ∈ [maxi,j
{
ς

(j)
i

}
, 1], µ < µ, are constants that describe the

lower and upper thresholds of the efficiency states to enable the
switch. After one of the efficiency states drops below the designed
threshold, µ, system will utilize the control mode II, (subsystem
ξ = −1) instead of the control mode I, (subsystem ξ = 1), until
all of the those states recover to the designed values, µ. Derξ , and
D′

erξl
are additional state dependent conditions to be designed so

that overall stability of (9) for tracking a desired trajectory can be
ensured in the presence of switches.

4. Stability of the subsystems

The following properties and definitions will be used during
the stability analysis.

σ1 ∥r∥2
≤ rTDr ≤ σ2 ∥r∥2 . (24)

λ1 ∥yer∥2
≤

1
2
eT e +

1
2
rTDr ≤ λ2 ∥yer∥ 2. (25)

TH (j)Q (j)
1,τ (j)

Q2Q
(j)
3,τ (j)

rτ (j)

σ
(j)
3 ρ̄s ∥r∥

Q (j)
1,τ (j)

rτ (j)
 , ⏐⏐⏐σ (j)

3

⏐⏐⏐ ≤ σ̄
(j)
3 . (26)

T D̃(q)r ≤ σ̃3 ∥r∥2 . (27)

∥e∥
e(j)c  ≤

β2ϵ(j)
2

4
∥e∥2

+
1
ϵ(j)

2

e(j)c 2 . (28)

∥r∥
Q (j)

1,τ (j)
rτ (j)
 ≤

ε(j)
2

2

Q (j)
1,τ (j)

rτ (j)
2 +

1
2ε(j)2

∥r∥2 . (29)

τ
(j)
i

∫ t

t−τ (j)i

u(j)2
s,i (θ )dθ ≤ −e(j)

2

c,i . (30)

emark 1. (i) In (24), σ1, σ2 ∈ R>0 are minimal and maximal
igenvalues of D(q). The inequality is obtained due to the property
f the inertia matrix. In (25), λ1, λ2 ∈ R>0 are constants. (28) and
29) are obtained by Young’s inequality and constants ϵ(j)

2
, ε(j)

2
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R>0. (30) is obtained by Cauchy–Schwarz inequality. (ii) In (26),
(j)
3 = max

{√
eig
(
H (j)T (t)H (j)(t)

)}
, where eig

(
H (j)(t)TH (j)(t)

)
={

σ
(j)
3,1, σ

(j)
3,2...σ

(j)
3,N

}
are eigenvalues of H (j)T (t)H (j)(t). The gains K (j)

a,i

ntroduced in (5) provide some flexibility to manipulate σ
(j)
3

o reach desired ranges with bounded perturbations. Therefore,
σ

(j)
3

⏐⏐⏐ ≤ σ̄
(j)
3 ∈ R>0. The constant ρ̄s = maxi

{
ρs,i
}
. (iii) In

27), D̃(q) ∈ RN×N is the difference between the actual inertial
atrix, D(q), and the estimate, D̂(q). Similarly to (ii), there is a

onstant σ̃3 ∈ R≥0 such that σ̃3 ≥ max
{√

eig
(
D̃T D̃

)}
. Similarly

to (25), there are eigenvalues, σ̂1, σ̂2 ∈ R>0, of D̂(q) such that
σ̂1 ∥r∥2

≤ rT D̂r ≤ σ̂2 ∥r∥2.

The following theorems in this section first ensure the stability
of each individual subsystems based on the closed loop error
dynamics derived in (17) and (21), respectively. The stability of
the overall switched system is then analyzed in the next section.

A Lyapunov functional candidate is chosen as

V =
1
2
eT e +

1
2
rTDr +

1 + ξ

2

∑
i,j

(
P (j)
1,i + P (j)

2,i

)
, (31)

here

(j)
1,i =ω

(j)
i

∫ t

t−τ (j)i

(∫ t

ψ

u(j)2
s,i (θ )dθ

)
dψ, (32)

(j)
2,i =

σ̄
(j)
3 ρ̄sβKuε

(j)2

2
(33)

·

∫ t

t−τ (j)i

(
1 + (−1)j+1sgn (ri(θ ))

2
ri(θ )

)2

dθ,

nd ω(j)
i ∈ R>0, i = 1, 2, . . . ,N , j = 1, 2. It is noted that V in (31),

uses two different Lyapunov functionals, which are used to ana-
yze the two individual subsystems. Due to the form of r in (11)
nd the existence of P (j)

1,i and P (j)
2,i, V is continuously differentiable

ithin each subsystem but is discontinuous at switches.

heorem 1 (Stability of the Subsystem When ξ = 1). For the closed
oop error dynamics in (17), provided σ̂1, λ1, λ2, σ̄3, ρ̄s, ϵ(j)

2
, ε(j)

2
are

chosen as per Remark 1, if there exist ω(j)
i ∈ R>0, i = 1, 2, . . . ,N,

j = 1, 2, ω̄τ = maxi,j
{
ω

(j)
i τ

(j)
i

}
, σ̄ε2 = maxj

{
σ̄

(j)
3 ε

(j)2
}

such that

control gains, α, β , Q2, Q4 and Ku satisfy

α −

β2
(
ϵ(1)

2
+ ϵ(2)

2
)

4
> 0, (34)

D̂βQ2 + KMQ4 = σ̂1βKρ I,⎛⎝σ̂1Kρ − σ̃3ρ̄s −
ρ̄s

2

⎛⎝∑
j

σ̄
(j)
3

ε(j)
2 + σ̄ε2

⎞⎠⎞⎠βKu

−ω̄τ ρ̄
2
s K

2
u − K1 − K2 > 0, (35)

where constants, Kρ , K1, K2 ∈ R>0, and the initial states (eT0, r
T
0 )

T ,
are inside a region of attraction,

Ω0 =
{
(eT , rT )T : e, r ∈ RN ,

(eT , rT )T ≤

√
Π

λ2

}
, (36)

here,

=

{
0, Πp ≤ 0

(37)

Πp, Πp > 0

5

Πp =λ1min
i,j

{
1,
σ̄

(j)
3 ρ̄sβε

(j)2

2λ1τiρ2
s,iKu

}
δΦ−2(2√K1χ

)
−

∑
i,j

(
P (j)
1,i + P (j)

2,i

)
− δ1, (38)

then from an initial value, V0 ≥ Θ , the L-K functional (31) converges
semi-globally according to

V (t) ≤ V0 exp (−ϱt)+Θ (1 − exp (−ϱt)) . (39)

δ1 ∈ R>0 is an arbitrarily small constant. χ, ϱ,Θ ∈ R>0 are
constants derived in the proof.

The proof is provided in Appendix. It should be noted that
the constants or variables to be determined in Theorem 1 can be
ategorized into two groups including control gains that directly
ffect the control inputs, and auxiliary constants for proving the
tability. The former includes: the feedback gains, α and Ku, the
ain, β , to modulate the delay compensation term, the diagonal
ain matrix, Q2, to allocate the contribution ratio among the soft
ctuators, the constant, Kρ , to determine the equation for online
olving the matrix, Q4, which modulates torque contributions
rom motors. The latter includes the constants, σ̂1, λ1, λ2, σ̄3, ρ̄s,
(j)2 , ε(j)

2
, defined as per Remark 1, and K1, K2, χ , to be determined

n the proof to estimate the region of attraction and the ultimate
ound.

heorem 2 (Stability of the Subsystem When ξ = −1). For the
losed loop error dynamics in (21) and a control law in (20), the
yapunov functional, (31), converges semi-globally from any initial
alue, V ′

0 ≥ Θ ′, according to

≤ V ′

0 exp
(
−ϱ′t

)
+Θ ′

(
1 − exp

(
−ϱ′t

))
, (40)

ntil a uniformly ultimate bound, Θ ′, is reached, provided the states
eT , rT )T are initially inside the region of attraction,

′

0 =
{
(eT , rT )T : e, r ∈ RN ,

(eT , rT )T ≤

√
Π ′

λ2

}
, (41)

here

′
= λ1δΦ

′
−2
(

√
λ4

Kv,1rc
) − δ′

1, (42)

here the constant, λ4 = min {α, Kv}, and an arbitrarily small
onstant, δ′

1 ∈ R>0. Kv,1 ∈ R>0 is a constant that affects the
onservative estimates of the ultimate bound and the region of
ttraction. ϱ′,Θ ′

∈ R>0 are constants derived from the subsequent
tability analysis.

The proof is provided in Appendix.

. Stability of the switched system

Provided the control inputs, u(j)
s , umI , umII , are designed ac-

ording to Theorems 1 and 2, then the Lyapunov functional of
ach subsystem is shown to converge according to either (39)
r (40). The stability within each subsystem therefore refers to
he bounded trajectory tracking errors. However, when switch
ccurs, the error state, r , and the Lyapunov functional, V , have
discontinuous jump when ξ ∈ {−1, 1} changes its sign. In ad-
ition, error states may locate outside the region of attraction of
he individual controllers due to disturbance or initial conditions.
n these situations, in order to ensure the stability of the overall
witched system, D and D′ in the switch criteria, (23), need
erξ erξl
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o be further designed as

Derξ =

{
(eT , rT , µ̂(1)T , µ̂(2)T , ξ )T ∈ U :

ξ = 1, (eT , rT )T ∈ Ω∗

0

}
, (43)

′

erξl =

{
(eT , rT , ξ )T ∈ R2N

× {−1, 1} :

(eT , rT )T ∈ Ω0, (eT , rT , ξ )T ∈ Ω1l

}
. (44)

erξ is designed so that control mode II can be activated when the
rror states are out of the region of attraction of control mode
even when no muscle is fatigued. The set Ω∗

0 is designed as

Ω∗

0 =
{
(eT , rT )T : e, r ∈ RN ,

(eT , rT )T ≥

√
Π+δ∗1
λ2

}
, where

δ∗

1 ∈ R>0 is a constant such that δ∗

1 < δ1. The purpose of adding
∗

1 is that, combined with the fact in (23) that µ < µ, such a
esign avoids the Zeno behavior. The subscript l, l ∈ Z>0, in (44) is
sed to describe a piecewise continuous behavior. The following
tability analysis imposes a non-empty set,Ω1l in (44) and shows
hat the tracking errors re guaranteed to be bounded in finite
ime.

Firstly, for convenient notations in the subsequent stability
nalysis, we would like to describe the piecewise continuity of
he switched system and how the time-dependent variables are
valuated at switch instant in the following way. The previously
efined subscript, l, denotes the lth piece between the (l − 1)th
nd lth switch. (The 0th switch refers to t = 0.) In addition, we
se the subscript, ‘‘o’’ and ‘‘x’’ to represent the start and end point,
espectively, of the current piece. As a result, tx,l denotes the time
nstant when the lth switch occurs. el, rl, ξl and Vl represent the
ontinuous time-dependent variables that are evaluated at the
ime tl ∈ [tx,l−1, tx,l]. For example, el = el(tl). Next, we define the
alues of the state variable, el, at the time instants: right after the
revious switch and right before the next switch, as eo,l and ex,l,
espectively, i.e., eo,l = el(tx,l−1, ξ

+

l (tx,l−1)), ex,l = el(tx,l, ξ−

l (tx,l)).
imilarly, we also define ro,l, Vo,l, and rx,l, Vx,l. We also define V̂l

nd V̂x,l−1, respectively, as estimates of Vl and Vx,l−1, respectively,
y approximating the inertial matrix, D, in (31), by D̂ with an
stimation error, D̃, that is defined in Remark 1 As a result, for
≥ 2,

Vl = V̂l +
1
2
rTl D̃rl, (45)

x,l−1 = V̂x,l−1 +
1
2
rTx,l−1D̃rx,l−1. (46)

Secondly, based on the estimated Lyapunov functional, we design
the set Ω1l as

Ω1l =

{
(eTl , r

T
l , ξl)

T
: el, rl ∈ RN , ξl = −1, l ≥ 2, (47)

1
2
eTl el +

1
2
rTl D̂rl +

1
2
σ̃3 ∥rl∥2

+
1
2
σ̃3
rx,l−1

2
≤max

{
ΩI +

1
2
σ̃3
rx,l−1

2 , V̂x,l−1 −

∑
i,j

P (j)
2,i

⏐⏐⏐
tl

} }
,

here ΩI is given by (53) in Appendix. The following lemma
hows the property of the Ω1l that will be further used in the
ubsequent stability analysis.

emma 1. y = (eT , rT , µ̂(1)T , µ̂(2)T , ξ )T is well defined on U and
he control inputs, u(j)

s , (j = 1, 2), umI , umII , are designed as in
heorems 1 and 2. For the time period between two consecutive
witches, l − 1 and l, l ≥ 2, if the states, (eTl , r

T
l , ξl)

T belong to the
et, Ω1l , then the L-K functional Vl satisfies Vl ≤ max

{
ΩI , Vx,l−1 −

i,j P
(j)
2,i

⏐⏐⏐
tl

}
. The set, Ω1l , is non-empty if the assumption, ΩI

λ2+σ̃3
>

σ̃3Π holds.

λ2(λ2+σ̃3)

6

Fig. 1. A 2-link planar mechanism under the switched control.

The proof is provided in Appendix. Finally, the following theo-
rem, which is one of the main results of this paper, guarantees the
stability of the overall switched system when tracking a desired
trajectory.

Theorem 3. If y = (eT , rT , µ̂(1)T , µ̂(2)T , ξ )T is well defined on U and
the followings are satisfied:

(1) the switch criteria, D, is designed according to (23), (43) and
(44);

(2) the control inputs, u(j)
s , (j = 1, 2), umI , umII , are designed as in

Theorems 1 and 2;

(3) according to Remark 2 (see Appendix), α, Kv , is chosen such that
ΩII
λ1

≤
ΩI

λ2+σ̃3
−

σ̃3Π
λ2(λ2+σ̃3)

(ΩII is given by (57) in Appendix. Assume
ΩI

λ2+σ̃3
>

σ̃3Π
λ2(λ2+σ̃3)

.),

then the set, Ω1l , in (44), can be designed according to (47), such
that the error states within the region of attraction can be bounded
as,
(eT , rT )T ≤ Ωer in finite time, where the constant, Ωer ∈ R>0,

is given by the subsequent analysis.

The proof is provided in Appendix.

. Simulations

To demonstrate gain selections of the designed controller, sim-
lations are performed on trajectory tracking of a 2-link planar
echanism under the switched scheme, as illustrated in Fig. 1.

Desired trajectories are generated by periodically repeated 5th
order polynomials that satisfy the conditions: q1(2kTperiod) = π ,
q2(2kTperiod) = π/2, q1((2k+1)Tperiod) = π/2, q2((2k+1)Tperiod) =

, Tperiod = 10 seconds, k = 0, 1, 2, . . .. First and second
erivatives of q1, q2 at kTperiod are all zero. Electric motors are
ssigned at both joint 1 and 2 while an agonist–antagonist pair of
oft actuators is assigned at joint 1. The soft actuators and their
ime-variant actuator efficiency are modeled according to human
uscle biomechanics with a fatigue/recovery effect as in Alibeji
t al. (2017) and Kirsch, Bao, Alibeji, Dicianno, and Sharma (2018).
he EMDs of the two muscle groups that actuate joint 1 are set
s τ (1)1 = 0.1 sec and τ (2)1 = 0.09 sec. Torque constant of electric
otors are KM = diag(5.4, 5.4). For the subsystem of ξ = 1, the
esign and analysis of control mode I involves selections of the
ollowing constant parameters (i, j = 1, 2) that can be categorized
nto 2 groups:

i) Gains that directly affect the control inputs: α = 10, β =

, Ku = 7.9, Kρ = 18, K (j)
a,i = 1 (no additional modulation),

s,1 = 0.6, ρs,2 = 0 (no soft actuator assigned at joint 2),
=
(
ρ

)
obtained by online solving the linear algebraic
4 m,ij 2×2
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Fig. 2. Simulation result of trajectory tracking of a 2-link planar mechanism under the switched control. (a) Joint angles. (b) Norm of the error states (logarithm-scaled)
and the estimated region of attraction. (c) L-K functional (logarithm-scaled) and the estimated ultimate bound. (d) Time-variant actuator efficiency, i.e., muscle fatigue
and recovery. (e)–(f) Discontinuity of the L-K functional at each switch. (g)–(i) Simulated unstable situations of the subsystem, ξ = 1, when gain conditions are not
atisfied.
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quation, D̂βQ2 + KMQ4 = σ̂1βKρ I , where σ̂1(t) is the smallest
eigenvalue of the estimated inertia matrix.

(ii) Auxiliary constants selected for estimating the region of at-
traction and the ultimate bound: ϵ(j) = ε(j) = 1, ω(j)

i = 4,
ω̄τ = maxi,j

{
ω

(j)
i τ

(j)
i

}
= 0.4, σ̄ (1)

3 = 7.47, σ̄ (2)
3 = 7.41 σ̄ε2 =

axj
{
σ̄

(j)
3 ε

(j)2
}

= 7.47, ρ̄ = maxi
{
ρs,i
}

= 0.6, σ̃3 = 0 (no model

uncertainty in simulations), λ1 = 0.26 ≤ min∀t
{ 1
2 ,

1
2σ1(t)

}
,

2 = 4.39 ≥ max∀t
{ 1
2 ,

1
2σ2(t)

}
, δΦ (·) = 10 (·), Ψ = 0.15,

= 8, K1 = 22.80, K2 = 5.00, κ (j)
i = 3.10, γ (j)

i = 2.47,

3 = 6.88 ≤ mini,j

{
χ −

δΦ2(∥z∥)
4K1

,
λ2

(
κ
(j)
i −γ

(j)
i

)
τ
(j)
i ω

(j)
i

,
2λ2γ

(j)
i ρ2s,iKu

σ̄
(j)
3 ρ̄sβε(j)

2

}
.

As a result, control gains listed in (i) satisfy all the gain con-
itions described in Theorem 1. A conservative estimate of the
ltimate bound of V (t) when ξ = 1 is given by V (t) < λ2Ψ

2

4λ3K2
=

0.91 × 10−2. The region of attraction is estimated according to

Theorem 1, as
(eT , rT )T <

√
(1.90 −

∑
i,j

(
P (j)
1,i + P (j)

2,i

)
)/4.39,

where P (j)
1,i and P (j)

2,i are computed online. For the subsystem of
ξ = −1, the control input is determined according to Theorem 2
with control gains rc = 0.001, Kv = 10, and a guessing function,
δΦ ′ (∥yer∥) ∥yer∥ + Ψ ′

= 10 ∥yer∥2
+ 1 + ∥Φd∥, to bound the

uncertainties. As a result, by selecting the auxiliary constants
according to the proof of Theorem 2, Kv,1 = 10, Kv,2 = 0.69,

Ψ ′′
= 0.0014 ≥

rc
4Kv,1

+
rcΨ ′

2

4Kv,2
+Kv,2rc , λ4 = min {α, Kv} = 10, λ5 =

0.00 ≤ λ4 −Kv,1rcδΦ ′
2
(∥yer∥), the ultimate bound of V (t) when

= −1 is estimated by λ2Ψ
′′

λ5
= 0.62 × 10−5 while the region of

attraction is estimated by
√
λ1δΦ ′−2 (

√
λ4

Kv,1rc
)/λ2 = 0.77. After

btaining the estimated region of attraction and the ultimate
ound of V (t) for both ξ = 1 and ξ = −1, the complete switch

criteria can be designed according to (22), (23), (43), (44) and
(47), where the thresholds for actuator efficiency are selected as
µ = 0.9994, µ = 0.9999. Fig. 2(a)–(d) summarizes the simulation
results. Due to the combination of two different Lyapunov func-
tionals as in (31), the discontinuities at switches can be observed
in Fig. 2e and Fig. 2f. Fig. 2(g)–(i) list some examples when the
ubsystem, ξ = 1, is unstable by violating the gain conditions.
7

pecifically, in Fig. 2g, β is set to 0. This eliminates the delay
ompensation term and makes (35) impossible to be satisfied. In
ig. 2h, β = 0.1, Ku = 100. A small β and an over amplified Ku
akes (35) impossible to hold with positive constants, K1, K2. In
ig. 2i, α = 1 and β = 20 makes (34) difficult to be satisfied
nless ϵ(j) are chosen as very small numbers. However, this will
mplify ω(j)

i in order to guarantee the existence of a positive χ .
ccording to (35), large ω(j)

i will further restrict the choice of Ku,
1 and K2 to be small numbers. As a result, according to (53) (in
ppendix), the ultimate bound will be greatly amplified, although
t does not go to infinity.

. Experiments

The control design is also demonstrated in a human sitting-
o-standing task using a wearable 4-DOF hybrid neuroprosthetic
ystem as shown in Fig. 3. We consider it as a combination of
wo 2-DOF serial human–robot system that includes the parts of
he right leg and the left leg. Each part is modeled and controlled
s an individual 2-DOF system, where the absolute knee angle
ith respect to the horizontal direction and the relative hip angle
eferenced to the thigh link are regarded as two independent vari-
bles. Each knee joint can be actuated by the torque produced by
timulated contractions of a quadriceps–hamstring muscle pair,
s well as by an electric motor (Harmonic Drive LLC, USA). The
timulation is achieved using a commercial stimulator (Rehastim
, HASOMED GmbH, Germany) through electrode pads (Dura-
tick Plus, 6.98 cm by 12.70 cm, Chattanooga, DJO LLC, USA).
ach hip joint can be actuated by an electric motor. Joint angles
re measured by internal relative encoders of the electric mo-
ors. The actuator efficiency refers to the fatigue level of human
uscles under continuous stimulation and is predicted by the
ifferential equations reported in Alibeji et al. (2017) and Kirsch
t al. (2018). The controller is implemented and programmed
n a real time XPC target (Speedgoat GmbH, Switzerland) using
ATLAB/Simulink (MathWorks, USA). The input delay known as

he EMD in each muscle was measured using the procedure as
escribed in Alibeji et al. (2017). The results were summarized
s: 90 ms for left quadriceps, 110 ms for left hamstring, 86 ms
or right quadriceps, 90 ms for right hamstring.

The control objective is to track desired trajectories in re-
eated siting-to-standing tasks and show a automatic switch
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Fig. 3. The experiment record of able-bodied human sitting-to-standings with assistance from the wearable robotic system.
Fig. 4. Trial 1 of the sitting-to-standing experiment. (a)–(d) The desired angle
trajectories and the measured joint angles. (e)–(g) Recorded control inputs from
electric motors and the stimulation input current of the right (R) and left (L)
quadriceps (Q) and hamstring (H) muscles. (h) Actuator efficiency curve. The
lower and upper thresholds (gray dashed lines) for this trial were set as 0.91 and
0.94, respectively. (i)–(j) Norm of the tracking error in radians (logarithm-scaled,
blue curve) compared to the region of attraction (red curves). (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

between control mode I and II, which is determined by the com-
plete switch criteria including the actuator efficiency, or muscle
fatigue, as well as the derived stability conditions. The desired
trajectories are generated from normal human sitting-to-standing
profiles. The trajectories of knee angles are computed offline
by polynomial fitting while the trajectories of hip angles are
generated online as functions of the actual measured knee angles
according to a designed virtual constraint (Molazadeh, Sheng,
Bao, & Sharma, 2019) between the knee and hip joints. For both
eft and right part, the feedback control gains used in control
ode I were: α = 20, β = 2, Ku = 4, Kρ = 10, ρs,1 =

.5, ρs,2 = 0 (no soft actuator assigned at hip joints), Q4 =

ρm,ij
)
2×2 obtained by online solving the linear algebraic equation,

ˆβQ2 + KMQ4 = σ̂1βKρ I , where σ̂1(t) is the smallest eigenvalue
f the estimated inertia matrix and the motor constant matrix,
M = diag(5.4, 5.4). The feedback controller of mode II was
mplemented by setting α = 20, rc = 0.001, Kv = 10 and
Φ ′ (∥yer∥) ∥yer∥ + Ψ ′

= 10 ∥yer∥2
+ 15 + ∥Φd∥. By selecting

he auxiliary constants according to the same procedure as in the
imulations section, we can approximate the regions of attraction
s, 0.63 and 17.37, for control mode I and II, respectively.
8

Table 1
RMSE between each desired trajectory and the corresponding joint angle of the
left knee (LK), right knee (RK), left hip (LH) and right hip (RH) in three individual
trials.

Number RMSE (◦) Switch threshold

of standing LK RK LH RH µ µ

Trial 1 6 4.28 4.86 0.88 0.70 0.94 0.91
Trial 2 5 2.38 2.69 1.03 1.00 0.98 0.96
Trial 3 3 2.74 3.16 0.93 0.69 0.97 0.93

All the procedures and protocols of the experiments were
approved by the Institutional Review Board (IRB) of the University
of Pittsburgh. A male able-bodied human participant consented
to participate in the experiments. Three trials were performed.
During each trial, the participant was asked to perform a regular
siting-to-standing task without knowing the desired trajecto-
ries. To demonstrate the switch behavior, in each trial, different
thresholds for the efficiency state were set. In each trial, the
sitting-to-standing tasks were repeated multiple times until ei-
ther of the following situations occurs: (1) switches happen from
control mode I to II and from II back to I. (2) 6 sitting-to-standing
tasks were performed in each of the trial. The number of sitting-
to-standing tasks was limited to follow the approved IRB protocol.
The control performance were assessed by root mean square
errors summarized by Table 1. Fig. 4 is a graphic presentation of
the experiment result from trial 1. The shadowed region indicates
control mode I when there are stimulation inputs and muscles are
fatiguing while the rest indicates control mode II when muscles
are experiencing recovery. The border between the shadowed and
blank region is the time instant when all the switch criteria are
met and a switch occurs.

8. Conclusion

A general N-DOF switched system is formulated for a class
of wearable robotic systems. The developed control framework
switches between two control modes: a PD-based robust con-
troller with designed delay compensation terms, which facilitates
the distinct input delays and the unilateral actuation of the hu-
man muscle, and a smooth VSC, which is robust to disturbance
and uncertainties during the recovery period of a soft actuator.
An overall sGUUB stability result is achieved through an MLF
approach. The stability analysis also suggests a way to impose
additional constraints on the switch that were primarily driven
by the state of the actuator efficiency. Simulations demonstrate
the gain selections and the conservative estimate of the region of
attraction, as well as the ultimate bound. Repeated human sitting-
to-standing experiments validate the automatic switch behavior,
subject to a user-defined switch threshold of the actuator effi-
ciency state. The reported RMSEs show a practically acceptable

control error range.
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roof of Theorem 1. When ξ = 1, by taking the time derivative
f V in (31), substituting the closed loop error dynamics (17) into
he right hand side of the differentiated (31) and applying (26),
the following can be obtained.

V̇ (t) ≤ − α ∥e∥2
−
(
σ̂1Kρ − σ̃3ρ̄s

)
βKu ∥r∥2

+ β ∥e∥
∑

j

e(j)c + ∥r∥ δΦ(∥z∥) ∥z∥ + Ψ ∥r∥

+

∑
j

βσ
(j)
3 ρ̄sKu ∥r∥

Q (1)
1τ (j)

rτ (j)


+

∑
i,j

Γ
(j)
1,i +

∑
i,j

Γ
(j)
2,i +

∑
ij

Γ
(j)
3,i , (48)

here

(j)
1,i = − ω

(j)
i

∫ t

t−τ (j)i

u(j)2
s,i (θ )dθ,

(j)
2,i =ω

(j)
i τ

(j)
i ρ

2
s,i

(
1 + (−1)j+1sgn (ri)

2

)2

K 2
u r

2
i ,

Γ
(j)
3,i =

σ̄
(j)
3 ρ̄sβKuε

(j)2

2

⎛⎜⎝(1 + (−1)j+1sgn (ri)
2

ri

)2

−

⎛⎝1 + (−1)j+1sgn
(
r
τ
(j)
i

)
2

r2
τ
(j)
i

⎞⎠2⎞⎟⎠ .
sing the Cauchy-Schwartz inequality in (30) and the definition
f e(j)c,i from (13), it can be derived that

ω
(j)
i

∫ t

t−τ (j)i

u(j)2
s,i (θ )dθ ≤ −

(
ω

(j)
i − κ

(j)
i

)
τ
(j)
i

e(j)
2

c,i , (49)

here κ (j)
i ∈ R>0, is a constant and is chosen such that ω(j)

i −κ
(j)
i −

τ
(j)
i

ϵ(j)
2 > 0. By using (49), Young’s inequalities, (28), (29), it can be

urther derived from (48) that

˙ (t) ≤ −

⎛⎝α −

β2
(
ϵ(1)

2
+ ϵ(2)

2
)

4

⎞⎠ ∥e∥2 (50)

−

((
σ̂1Kρ − σ̃3ρ̄s

)
βKu −

∑
j

σ̄
(j)
3 ρ̄sβKu

2ε(j)2

− ω̄τ ρ̄
2
s K

2
u −

σ̄ε2 ρ̄sβKu

2

)
∥r∥2

−

∑
i,j

(
ω

(j)
i − κ

(j)
i

τ
(j)
i

−
1
ϵ(1)

2

)
e(j)

2

c,i

−

∑
i,j

κ
(j)
i

∫ t

t−τ (j)i

u(j)2
s,i (θ )dθ

+ ∥r∥ δΦ(∥z∥) ∥z∥ + Ψ ∥r∥ .

According to the designed control input in (15) and due to the fact
that

∫ t
t−τ (j)i

(∫ t
ψ
u(j)2
s,i (θ )dθ

)
dψ ≤ τ

(j)
i supt−τ (j)i ≤ψ≤t

∫ t
ψ
u(j)2
s,i (θ )dθ =

(j)
i

∫ t
t−τ (j)i

u(j)2
s,i (θ )dθ , it can be proven that

− κ
(j)
i

∫ t

t−τ (1)i

u(j)2
s,i (θ )dθ

≤ −

(
κ
(j)
i − γ

(1)
i

)
(j) (j) P (j)

1,i −
2γ (j)

i ρ
2
s,iKu

(j) (j)2
P (j)
2,i,
τi ωi σ̄3 ρ̄sβε

9

where the constant, γ (j)
i ∈ R>0, are selected such that γ (j)

i <

κ
(j)
i . Therefore, by defining χ ≤ min

{
α −

β2
(
ϵ(1)

2
+ϵ(2)

2)
4 ,Λ1,Λ2

}
,

here Λ1 =

(
σ̂1Kρ − σ̃3ρ̄s −

ρ̄s
2

(
σ̄
(1)
3

ε(1)
2 +

σ̄
(2)
3

ε(2)
2 + σ̄ε2

))
βKu −

¯ τ ρ̄
2
s K

2
u − K1 − K2, Λ2 = mini,j

{ 1
τ
(j)
i

(
ω

(j)
i − κ

(j)
i −

τ
(j)
i

ϵ(j)
2

)}
, and by

ompleting squares, (50) can be further bounded as

˙ ≤ −

(
χ −

δΦ2(∥z∥)
4K1

)
∥z∥2

−

(
δΦ(∥z∥) ∥z∥

2
√
K1

−

√
K1 ∥r∥

)2

−

(√
K2 ∥r∥ −

Ψ

2
√
K2

)2

+
Ψ 2

4K2

−
1
λ2

∑
j

(∑
i

λ2

(
κ
(j)
i − γ

(j)
i

)
τ
(j)
i ω

(j)
i

P (j)
1,i

−

∑
i

2λ2γ
(j)
i ρ

2
s,iKu

σ̄
(j)
3 ρ̄sβε

(j)2
P (j)
2,i

)
.

efine a constant λ3 ∈ R>0 such that λ3 ≤ mini,j

{
χ −

δΦ2(∥z∥)
4K1

,

λ2

(
κ
(j)
i −γ

(j)
i

)
τ
(j)
i ω

(j)
i

,
2λ2γ

(j)
i ρ2s,iKu

σ̄
(j)
3 ρ̄sβε(j)

2

}
, where the state vector z needs to satisfy

χ >
δΦ2(∥z∥)

4K1
. Due to the fact that − ∥z∥ ≤ −∥yer∥, V̇ can be

urther bounded as,

˙ ≤ −λ3

⎛⎝∥yer∥2
+

1
λ2

∑
i,j

(
P (j)
1,i + P (j)

2,i

)⎞⎠+
Ψ 2

4K2
. (51)

Due to (25),

V̇ ≤ −
λ3

λ2
V +

Ψ 2

4K2
.

By the comparison lemma (Khalil, 2002), V (t) associated withξ =

can be solved as,

(t) ≤ V (0) exp
(

−
λ3

λ2
t
)

+
λ2Ψ

2

4λ3K2

(
1 − exp

(
−
λ3

λ2
t
))

, (52)

when the initial value, V (0) ≥
λ2Ψ

2

4λ3K2
. When V (0) < λ2Ψ

2

4λ3K2
, it

s obvious that V (t) will never exceed λ2Ψ
2

4λ3K2
. Therefore, for an

arbitrarily small constant, δ2 ∈ R>0, a uniform ultimate bound
of V can be estimated as

ΩI = δ2 +
λ2Ψ

2

4λ3K2
. (53)

By using (52) and (53), the ultimate time can be solved as,
λ2
λ3

ln
(

V (0)
δ2

−
λ2Ψ

2

4δ2λ3K2

)
. Note that (51) holds when χ >

δΦ2(∥z∥)
4K1

.

Therefore, the region of attraction, Ω0, can be derived by letting
χ >

δΦ2(∥z∥)
4K1

or ∥z∥2 < δΦ−2
(
2
√
K1χ

)
hold, ∀(eT , rT )T ∈ Ω0.

s a result, a conservative estimate of the region of attraction is
rovided as in (36).

roof of Theorem 2. When ξ = −1, by taking the time derivative
f V in (31), substituting the closed loop error dynamics (21) into
he result, completing the squares, V̇can be bounded as

˙ ≤ − α ∥e∥2
− Kv ∥r∥2 (54)

+
rcδΦ ′ (∥yer∥)

∥r∥ + rc
∥yer∥ ∥r∥ +

rcΨ ′

∥r∥ + rc
∥r∥ .

≤ −

(
λ − K r δΦ ′

2
(∥y ∥)

)
∥y ∥

2

4 v,1 c er er
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V⏐⏐
ϕ

a

∑
Ω

−

( √
rc ∥r∥

2
√
Kv,1 (∥r∥ + rc)

−
√
Kv,1rcδΦ ′ (∥yer∥) ∥yer∥

)2

−

(√
Kv,2rc ∥r∥
(∥r∥ + rc)

−

√
rcΨ ′

2
√
Kv,2

−

)2

+ Ψ ′′,

here the constants, Kv,1, Kv,2 ∈ R>0, and Ψ ′′
≥

rc
4Kv,1

+
rcΨ ′

2

4Kv,2
+

Kv,2rc . Define a positive constant, λ5 ≤ λ4−Kv,1rcδΦ ′
2
(∥yer∥) and

yer∥ needs to satisfy

yer∥2 < δΦ ′
−2
(

√
λ4

Kv,1rc
). (55)

s a result, (54) becomes

˙ ≤ −
λ5

λ2

(
1
2
eT e +

1
2
rTDr

)
+ Ψ ′′

≤ −
λ5

λ2
V + Ψ ′′.

By the comparison lemma (Khalil, 2002), V can be solved as

(t) ≤ V ′

0 exp
(

−
λ5

λ2
t
)

+
λ2Ψ

′′

λ5

(
1 − exp

(
−
λ5

λ2
t
))

, (56)

hen the initial value, V ′

0 ≥
λ2Ψ

′′

λ5
. When starting from an initial

alue, V ′

0 <
λ2Ψ

′′

λ5
, V (t) will be always smaller than λ2Ψ

′′

λ5
. For

he same δ2, as in (53), a uniform ultimate bound of V can be
stimated as

II = δ2 +
λ2Ψ

′′

λ5
. (57)

he ultimate time is solved as t =
λ2
λ5

ln
(

V ′
0
δ2

−
λ2Ψ

′′

δ2λ5

)
. By using

55), the region of attraction can be estimated as is given in
heorem 2.

emark 2. Because limrc→0 Ψ
′′

= 0 and limrc→0Π
′

= ∞, the
control gains, α, Kv , rc can always be tuned such that the region of
attraction,Ω ′

0, is arbitrarily large while the ultimate bound,
√

ΩII
λ1

,
s arbitrarily small.

roof of Lemma 1. According to (27), it can be shown that,
1
2
eTl el +

1
2
rTl D̂rl +

1
2
rTl D̃rl −

1
2
rTx,l−1,D̃rx,l−1 (58)

1
2
eTl el +

1
2
rTl D̂rl +

1
2
σ̃3 ∥rl∥2

+
1
2
σ̃3
rx,l−1

2 .
Therefore, by using (45), (46), and (58), we can prove that, when

I+
1
2 σ̃3

rx,l−1
2 < V̂x,l−1−

∑
i,j P

(j)
2,i

⏐⏐⏐
tl
, satisfying the inequality in

47) indicates Vl ≤ Vx,l−1 −
∑

i,j P
(j)
2,i

⏐⏐⏐
tl
. When ΩI +

1
2 σ̃3

rx,l−1
2 ≥

V̂x,l−1 −
∑

i,j P
(j)
2,i

⏐⏐⏐
tl
, due to (27) and (45), satisfying the inequality

in (47) indicates Vl ≤ ΩI . Consequently, it can be obtained that

Vl ≤ max

⎧⎨⎩ΩI , Vx,l−1 −

∑
i,j

P (j)
2,i

⏐⏐⏐
tl

⎫⎬⎭ . (59)

In order to ensure the existence of a non-empty Ω1l , a solution
should exist, when ξl = −1, for the inequality in (47). A suf-
ficient condition for this is that 1

2 e
T
l el +

1
2 r

T
l D̂rl +

1
2 σ̃3 ∥rl∥2

+

1
2 σ̃3

rx,l−1
2 ≤ max

{
ΩI −

1
2 r

T
x,l−1D̃rx,l−1, V̂x,l−1 −

∑
i,j P

(j)
2,i

⏐⏐⏐
tl

}
. By

dding the term, 1 rT D̃r to both sides, this inequality is then
2 x,l−1 x,l−1

10
equivalent to

Vl −
1
2
rTl D̃rl +

1
2
rTx,l−1D̃rx,l−1 +

1
2
σ̃3 ∥rl∥2 (60)

+
1
2
σ̃3
rx,l−1

2 ≤ max
{
ΩI , Vx,l−1 −

∑
i,j

P (j)
2,i

⏐⏐⏐
tl

}
.

The left hand side can be upper bounded by Vl + σ̃3 ∥rl∥2
+

σ̃3
rx,l−1

2 while the right hand side can be lower bounded by
ΩI . In addition, according to (36) and due to the fact that ξl−1 = 1,
it can be derived that

rx,l−1
2 ≤

Π
λ2
. Therefore, a non-empty

solution set of (60) can be guaranteed if Vl + σ̃3 ∥rl∥2
+

σ̃3Π
λ2

≤ΩI
as a solution. To achieve this, by using (25), we can impose
2 ∥el∥ 2

+ (λ2 + σ̃3) ∥rl∥2
≤ (λ2 + σ̃3)

(eTl , rTl )T2 ≤ ΩI −
σ̃3Π
λ2

and obtain the condition(eTl , rTl )T ≤

√
ΩI

λ2 + σ̃3
−

σ̃3Π

λ2 (λ2 + σ̃3)
. (61)

hen ξ = −1 and the current subsystem is controlled by
ode II, the control gains α, Kv and rc can be tuned according

o Theorem 2 and Remark 2 to obtain a small enough ultimate
ound of (eTl , r

T
l )

T . Therefore, (61) can always be satisfied in finite
time as long as the assumption, ΩI

λ2+σ̃3
>

σ̃3Π
λ2(λ2+σ̃3)

, holds. This
assumption is true if the estimate, D̂, of the inertial matrix, D, is
accurate enough.

Proof of Theorem 3. Without loss of generality, we assume
initially ξ = 1 so that ξl = (−1)l+1, l = 1, 2, 3..., when
experiencing switches. By using (31), (52), (56), when all the
conditions in Theorem 3 are satisfied, the following properties
can be obtained.

If Vo,l ≥Sl : (62)
Vl ≤Vo,l exp

(
−ϕl

(
tl − tx,l−1

))
+ Sl

(
1 − exp

(
−ϕl

(
tl − tx,l−1

)))
,

f Vo,l ≤Sl : (63)
Vl ≤Sl.

x,2k = Vo,2k+1 −

∑
i,j

P (j)
2,i

⏐⏐⏐
tx,2k

, k ∈ Z>0. (64)

Vo,2k − Vx,2k−1
⏐⏐ = ∆|t=tx,2k−1 ∈ L∞, k ∈ Z>0. (65)

l, Sl ∈ R>0 are used to combine (52) and (56) in a general form
nd S2k−1 =

λ2Ψ
2

4λ3K2
, S2k =

λ2Ψ
′′

λ5
, k ∈ Z>0. (64) holds because

P (j)
1,i = e(j)c,i = 0, at time tx,2k. In (65), ∆ =

⏐⏐∑
i,j

(
P (j)
1,i + P (j)

2,i

)
+

1
2

(
ė + αe − βec

)TD(ė + αe − βec
)

−
1
2

(
ė + αe

)TD(ė + αe
)⏐⏐ and

(·) ∈ L∞ denotes boundedness. It is obvious that for any finite
index l, Vo,l and tx,l − tx,l−1 are also finite. Hence, two cases are
discussed:

(i) When l → ∞ as t → ∞, consider the cases when l = 2k − 1
and l = 2k, k ∈ Z>0. When ΩI < Vx,2k−1 −

∑
i,j P

(j)
2,i

⏐⏐⏐
tx,2k

, then

due to Lemma 1, Ω1l in (47) forces Vx,2k ≤ max
{
ΩI , Vx,2k−1 −∑

i,j P
(j)
2,i

⏐⏐⏐
tx,2k

}
, which implies Vx,2k +

∑
i,j P

(j)
2,i

⏐⏐⏐
tx,2k

≤ Vx,2k−1.

Further, due to (64), we have Vo,2k+1 ≤ Vx,2k−1. Otherwise,
when ΩI > Vx,2k−1 −

∑
i,j P

(j)
2,i

⏐⏐⏐
tx,2k

, we have Vx,2k ≤ ΩI and

i,j P
(j)
2,i

⏐⏐⏐
tx,2k

≤ P̄ , where the constant P̄ = maxΩV ,1

{∑
i,j P

(j)
2,i

}
,

=
{
(eT , rT )T : e, r ∈ RN , 1 eT e +

1 rTDr +
∑ (

P (j)
+ P (j)

)

V ,1 2 2 i,j 1,i 2,i
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}
. In this situation, Vo,2k+1 = Vx,2k +

∑
i,j P

(j)
2,i

⏐⏐⏐
tx,2k

≤ ΩI +

P̄ . As a result, Vo,2k+1 ≤ max
{
ΩI + P̄, Vx,2k−1

}
. In addition,

due to (62) and non-existence of Zeno behavior, a finite time
uration, t2k−1, makes Vx,2k−1 strictly less than Vo,2k−1 by a finite
ositive number, i.e., Vx,2k−1 < Vo,2k−1. Therefore Vo,2k+1 ≤

ax
{
ΩI + P̄, Vx,2k−1

}
< max

{
ΩI + P̄, Vo,2k−1

}
. This indicates

hat Vo,2k+1 is strictly decreasing as k increases over switches
ntil reaching ΩI + P̄ and there must exist some finite integer
∗ such that ∀k ≥ k∗, Vo,2k+1 ≤ ΩI + P̄ . Besides, due to the
oundedness property at odd switch indices given by (65) and

the convergence property given by (62), (63), it can be obtained
that ∀k > k∗, Vo,2k+2 ≤ ∆|t=tx,2k+1 + Vx,2k+1 ≤ ∆|t=tx,2k+1 +

max
{
S2k+1, Vo,2k+1

}
≤ maxΩV ,2 {∆} + max

{
ΩI ,ΩI + P̄

}
≤

maxΩV ,2 {∆}+ΩI + P̄ , whereΩV ,2 =
{
(eT , rT )T : e, r ∈ RN , 1

2 e
T e+

1
2 r

TDr+
∑

i,j

(
P (j)
1,i + P (j)

2,i

)
≤ ΩI + P̄

}
. Therefore, by combining the

analysis of both odd and even switch indices, it can be concluded
that ∀l ≥ 2k∗

+ 1, Vo,l ≤ maxΩV ,2 {∆} + ΩI + P̄ . By using
(62), (63), as well as the fact, ΩII ≤ ΩI , which is inferred from
(3) of Theorem 3, it can be obtained that Vl ≤ max

{
Vo,l, Sl

}
≤

max
{
maxΩV ,2 {∆} +ΩI + P̄, λ2Ψ

′′

λ4
,
λ2Ψ

2

4λ3K2

}
≤ max

{
maxΩV ,2 {∆} +

I + P̄,ΩI ,ΩII

}
≤ maxΩV ,2 {∆} + ΩI + P̄ . This means that

t ≥
∑2k∗

l=1

(
tx,l − tx,l−1

)
tracking error

(eT , rT )T ≤
√
V/λ1 ≤(

maxΩV ,2 {∆} +ΩI + P̄
)
/λ1 and uniform ultimate boundedness

result is therefore guaranteed.

(ii) When l is finite as t → ∞, the proof is trivial because
there is no switch after the last one. Therefore, after the last
switch, V decays continuously according to Theorem 1, so that(eT , rT )T ≤

√
ΩII/λ1.

It should be noted that assuming ξ = 1 at the beginning does
not reduce generality because according to the switch criteria, the
switched systems of any other initial conditions will eventually
switched to the subsystem with ξ = 1 within finite time and
witches. Exactly same procedure of proof can be applied after
hat.
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