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Thin elastic films can spontaneously attach to liquid interfaces, offering a platform for tailoring their
physical, chemical, and optical properties. Current understanding of the elastocapillarity of thin films is
based primarily on studies of planar sheets. We show that curved shells can be used to manipulate interfaces
in qualitatively different ways. We elucidate a regime where an ultrathin shell with vanishing bending
rigidity imposes its own rest shape on a liquid surface, using experiment and theory. Conceptually, the
pressure across the interface “inflates” the shell into its original shape. The setup is amenable to optical
applications as the shell is transparent, free of wrinkles, and may be manufactured over a range of
curvatures.
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Capillary forces can anchor a sufficiently thin elastic
solid onto a fluid interface [1–3]. Such adsorbed films offer
a means to control interfaces by modifying their shape [4],
mechanics [5,6], or permeability [7], or by providing a
substrate for physical or chemical patterning [8]. Crucial to
such applications is an understanding of how geometric
incompatibilities between a film and an interface are
resolved [9–11]. Here we focus on ultrathin (∼100 nm)
polymer films that strongly resist in-plane stretching yet
readily wrinkle, allowing them to conform to a wide range
of surface topographies [12]. Such films have given a
window into the rich interplay between geometry and
mechanics in thin solids [5,10], including connections to
pattern formation in liquid crystals [13–15]. Current under-
standing in this area has been driven primarily by studies on
planar sheets [16,17]. Do thin polymer shells exhibit
qualitatively different behaviors from planar sheets, or is
the response dictated primarily by the difference in curva-
ture between the film and the interface, as suggested by
recent work [18,19]? More generally, can shells offer new
ways to control fluid interfaces, beyond what is possible
with planar sheets?
Here we study the deformations of ultrathin axisym-

metric shells on curved liquid interfaces using experiment
and theory. Surprisingly, we find that over a wide range of

parameters, the underlying liquid simply takes on the
intrinsic shape of the shell. This behavior is distinct from
that of planar films, which are inevitably deformed by a
curved liquid interface [10,20]. The ability to “sculpt” a
liquid with a polymer shell offers a novel route to
controlling the optical properties of an interface.
We form spherical polystyrene shells of Young’s

modulus E ¼ 3.4 GPa and thickness 30 < t < 631 nm
by spin coating onto optical lenses with radius of curvature
7 < R < 500 mm [21]. A circular domain of radius 1.8 <
W < 11.4 mm is then cut and delivered to a flat air-water
interface with surface tension γ ¼ 72 mN=m. The
mechanical properties of the shell are set by its stretching
and bending moduli, Y ¼ Et and B ¼ Et3=½12ð1 − ν2Þ�,
respectively, and its Poisson ratio ν ¼ 0.34. Our parameters
place us in the high bendability regime ϵ−1 ¼ γW2=B >
103 [10]: our films buckle under minute compression. As
we will show, their ability to impose their shape on a liquid
is rooted in the high cost of stretching, analogous to the
rigidity of a stiff mylar balloon rather than the geometric
rigidity of shells that underlies the strength of architectural
domes [22,23].
In our experiments, we capture the floating shell with a

tube as drawn in Fig. 1(a), so that the interface curvature
can be varied continuously by injecting air with a syringe.
In the top-view images in Fig. 1(b), we observe a central
wrinkled “core” that shrinks as the interfacial curvature
increases. We can identify two regions with different
curvatures in panels (ii) and (iii), a central core and an
outer rim; the core has roughly the same size as the
wrinkled region in panel (i). This distinction disappears
in panel (iv), where the curvature seems uniform. In panel
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(v), radial wrinkles appear at the edge of the sheet, similar
to those observed when a flat sheet is placed on a curved
interface [10], suggesting that the liquid interface is more
curved than the rest shape of the shell.
To quantify the interface shape during this process, we

view a checkerboard pattern through the interface; tracking
the optical distortion of the pattern allows us to deduce the
height profile of the interface using a synthetic Schlieren
technique [21,24,25]. Figure 1(c) shows the measured
mean curvature H (averaged azimuthally and nondimen-
sionalized by R−1) versus the fractional distance to the
center, r=W. The data are from a range of pressures where
no wrinkles are observed [panels (iii) and (iv) in Fig. 1(b)].
As we increase the pressure, the curvature in the center of
the shell remains approximately constant and close to the
intrinsic curvature of the shell. These observations herald
the existence of a regime where the shell sculpts the fluid
into its rest shape.
Model.—The rest shape of the shell is described by an

axisymmetric height function hðrÞ ¼ r2=ð2RÞ, for
0 ≤ r ≤ W; our shells have small slope, W ≪ R. The shell
is placed at the interface of a liquid with density ρ, and a
pressure drop P0 is imposed across the interface at the edge
of the shell, setting the curvature of the interface through
the Laplace law.
The stresses in the radial and azimuthal directions, σrr

and σθθ, and the height z follow the Föppl-von Kármán
equations, which read in polar coordinates [10,21]

∂rðrσrrÞ ¼ σθθ; ð1Þ

∂rðrσθθÞ ¼ σrr þ
Y
2
ðh02 − z02Þ; ð2Þ

z00σrr þ
z0

r
σθθ ¼ P0 þ ρgz; ð3Þ

where g is the gravitational acceleration. The first equation
is the in-plane force balance in the radial direction. The
second equation is a compatibility condition, which high-
lights the role of the mismatch between the rest shape and
the actual shape of the sheet as a source of stress. The third
equation is the vertical force balance, where we have
discarded the bending contribution. These equations
must be supplemented with boundary conditions, provided
at r ¼ 0 by the smoothness of the shape, z0ð0Þ ¼ 0, the
continuity of displacement, σrrð0Þ ¼ σθθð0Þ; and at r ¼ W
by the radial force balance, σrrðWÞ ¼ γ, and the conven-
tion zðWÞ ¼ 0.
We use tension field theory to predict the shape of our

shells [10,26]: we impose that the stress field in any
direction is positive or zero. A vanishing stress means that
compression is released by small scale features such as
wrinkles; we do not describe such features and describe
instead the gross shape of the sheet through the height
function zðrÞ [4].

(a)

(b)

(c)

FIG. 1. Sculpting a curved liquid interface. (a) Experimental schematic. Adjusting the air pressure in the tube leads to different shell
configurations. (b) Top-view images of a deformed shell with t ¼ 60 nm,W ¼ 2.1 mm, and R ¼ 13.9 mm, with side-view schematics.
Pressure increases from left to right: (i) a flat interface recovers the behavior in Fig. 2; (ii) part of the wrinkled region “inflates” to its rest
curvature but a wrinkled core remains; (iii) the entire wrinkled region is inflated; (iv) the interface curvature matches the shell curvature;
(v) radial wrinkles grow from the outer edge of the shell. (c) Mean interfacial curvatureH (nondimensionalized by the intrinsic curvature
of the shell R−1) versus r=W, for a shell with t ¼ 123 nm, W ¼ 2.2 mm, and R ¼ 13.9 mm. The data span from stage (iii) (bottom
yellow curve) to stage (iv) (top curve). The center of the shell maintains a constant curvature that is close to its intrinsic value (dashed
line: H ¼ R−1).

PHYSICAL REVIEW LETTERS 127, 108002 (2021)

108002-2



Flat interface.—We first consider the situation where no
pressure drop is imposed across the interface, P0 ¼ 0
[Fig. 2(a)]. In this case the sheet remains flat, as z ¼ 0
solves the vertical force balance [Eq. (3)]. Then, the
solution to Eqs. (1) and (2) depends only on the dimen-
sionless confinement parameter [10,21]

α ¼ YW2

2γR2
; ð4Þ

which compares the tension applied at the edge, γ, to the
stress that is required to flatten the shell, YW2=R2. There is
a critical value of the confinement, αc ¼ 8, below which the
stresses remain positive over the whole sheet [Fig. 2(b),
black lines].
On the contrary, above the critical value, the solution

should vanish in a circular region around the center of the
sheet, indicating the appearance of small-scale features
[Fig. 2(c)]. Inspection of Eqs. (1) and (2) shows that the
stress vanishes in the same region in the two directions:
σrr ¼ 0 and σθθ ¼ 0 for r < W0, so that the boundary
condition at r ¼ 0 has to be replaced by the condition
σrrðW0Þ ¼ 0. Solving the force balance equations with the
new boundary condition for W0 < r < W provides the
stress field in the sheet [Fig. 2(b), red lines], and the value
of W0:

W0

W
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
ffiffiffiffiffi
αc
α

rs

: ð5Þ

We thus predict a central wrinkled region whenever α ≥ αc,
having a size W0 that grows continuously with α, reaching
W0 ¼ W in the limit α → ∞ [Fig. 2(d), solid line]. A similar
result was obtained for a neutral scarred zone in a
crystalline domain bound to a sphere [27]. The sheet

remains unwrinkled in a rim of width L ¼ W −W0, which
becomes independent of the sheet size at large confine-
ment:

L ∼W

ffiffiffi
2

α

r

¼ 2R

ffiffiffiffi
γ

Y

r
: ð6Þ

Our experiments on a flat bath support these predictions.
Figure 2(c) shows a circular region of disordered wrinkles
surrounded by an unwrinkled rim. The radius W0 of the
wrinkled region is plotted in Fig. 2(d) as a function of the
confinement α. The data fall onto Eq. (5) over 4 orders of
magnitude in α with no free parameters. We also find good
agreement at a second value of surface tension.
Curved interface.—We turn to the situation where a

pressure difference is imposed across the interface. Once
again there are solutions to Eqs. (1)–(3) with a wrinkled
core or without one. If there is a wrinkled core with radius
W0, then the hydrostatic pressure vanishes there: zðrÞ ¼
−P0=ðρgÞ for 0 ≤ r ≤ W0, consistent with the vertical force
balance (3) in the absence of stress. This sets the boundary
condition at r ¼ W0. In the unwrinkled portion, we inte-
grate Eqs. (1)–(3) numerically using the boundary value
problem solver integrate.solve_bvp implemented in SCIPY.
Figure 3 shows the numerical results corresponding

to the sheet in Fig. 1(c), which has a confinement
α ¼ 73 ≫ αc; we plot the profile of the sheet zðrÞ, its
mean curvature HðrÞ ¼ ½z00ðrÞ þ z0ðrÞ=r�=2, and the radial
stress field σrrðrÞ for different values of the pressure P0.
The top curve of Fig. 3(a) shows that at zero pressure, there
is a wrinkled zone in the center and an unwrinkled rim at
the edge; this is simply the flat interface case of Fig. 2. For
small positive pressure, the wrinkled region “inflates” to the
height z� ¼ −P0=ðρgÞ with wrinkles persisting in the
center where z ¼ z�. As in the flat case, the radial stress
falls to 0 at the edge of the wrinkled region [Fig. 3(c)].

(c)(a) (b) (d)

FIG. 2. Stretching and wrinkling on a flat liquid interface. (a) Experimental schematic. (b) Radial (solid line) and azimuthal (dashed
line) stress in the sheet from the analytic solution. (c) Top-view image of an ultrathin shell (t ¼ 112 nm, W ¼ 6.6 mm, R ¼ 51.5 mm)
conforming to a flat liquid interface by forming a wrinkled core of radiusW0 and an unwrinkled rim. Background subtracted for clarity.
(d) W0=W versus α for shells with 30 < t < 631 nm, 13.8 < R < 500 mm, and 2.2 < W < 11.4 mm on water (γ ¼ 72 mN=m, filled
symbols) or an aqueous solution of sodium dodecyl sulfate (γ ¼ 36 mN=m, open symbols). Solid line: theory with no free parameters
[Eq. (5)].
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Remarkably, between the wrinkled region and the outer
rim, the profile of the sheet is very close to its shape at rest:
RH ≃ 1 [Fig. 3(b)]. If the pressure is large enough, the
sheet deploys completely: the wrinkles in the center are
gone and the sheet is under tension everywhere. We find
that the size of this “inflatable” region is close to that of the
wrinkled region when the same shell is on a flat bath, so
that the size of the rim on a curved interface is also given by
Eq. (6). This phenomenology matches the experimental
observations (Fig. 1, see [21] for a quantitative compari-
son). The behavior is very different at small confinement,
where there would be no wrinkles on a flat interface: in this
case the shell departs significantly from its rest shape on a
curved interface [21].

A key quantity is the minimum pressure Pc needed to
inflate the shell completely. It can be estimated as
Pgrav ¼ ρgΔh, where Δh ¼ W2=ð2RÞ is the initial height
of the shell. For the parameters in Fig. 3, we find
Pgrav ≃ 0.20PLap, where PLap ¼ 2γ=R is the Laplace pres-
sure required to create a liquid interface of the same
curvature. This estimate is an upper bound due to the

flattened rim; the pressure needed to inflate the sheet in our
numerical solution is 0.16PLap.
In the inextensible limit Y → ∞, the rim disappears and

the sheet is perfectly inflated for Pgrav < P < PLap. This
range of pressures is shown in Fig. 4(a) as a function of the
curvature of the shell; there is a wrinkled core for P < Pgrav

and a wrinkled edge for P > PLap. For a finite stretching
modulus, the range of the “inflated region” increases while
the size of the inflated core shrinks [Eq. (5)]. Experiments
with a flat sheet by King et al. [10] correspond to the
vertical axis of Fig. 4(a) at zero curvature; there only the
“wrinkled edge” region is accessible. We validate this
theoretical picture by entering the inflated regime in five
additional experiments spanning a range of curvatures and
thickness, all at large confinement. Each shell inflates to its
original shape: the measured curvature in the center of the
shell is in agreement with the intrinsic shell curvature
[Fig. 4(b)].
Discussion.—We have shown how a thin interfacial shell

with vanishing bending rigidity behaves qualitatively
differently than a planar film. Namely, a shell may impose
its own shape on an interface over a range of pressures,
offering a straightforward method to control the equilib-
rium shape of a fluid. One advantage of this self-inflating
regime is that the deployed shape is robust to perturbations
in pressure, unlike a bare liquid interface where the
curvature varies continuously with the Laplace pressure.

(a)

(b)

(c)

FIG. 3. Numerical solution on a curved interface with α > αc.
We use R=W ¼ 6.3, γ=Y ¼ 1.7 × 10−4, W2ρg=Y ¼ 1.1 × 10−4

(α ¼ 73). (a) Profiles of shells at different pressures. Dashed lines
indicate wrinkled regions. The (partially) inflated regions nearly
match the initial shape. (b) Curvature versus normalized radial
position r=W. Dots indicate boundaries between wrinkled and
smooth regions. A curvature RH ¼ 1 corresponds to the initial
shape of the shell. (c) Radial stress versus normalized radial
position r=W. Green curves: analytic solution for a flat interface
(P0 ¼ 0).

(a)

(b)

FIG. 4. Inflated regime. (a) Phase diagram in the inextensible
limit. (b) Mean curvature at the center of the shell in the “inflated”
regime, for shells with a large confinement. The values are close
to the intrinsic shell curvatures, R−1 (dashed line), for a variety of
shell curvatures and thicknesses. Repeated symbols are from the
same shell at different pressures.
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This property could be useful for optical applications, and it
may be achieved with little intervention, which we dem-
onstrate by inflating a shell using an oil droplet floating on
water [21].
Although we focused on spheres, our analysis can be

generalized to any axisymmetric shell. When the stretched
rim is narrow, its size should depend only on the
slope of the shell at the edge, h0ðWÞ, since this is the sole
aspect of the shape that appears explicitly in the force
balance [Eqs. (1)–(3)]. Writing Eq. (6) using the slope
h0ðWÞ ¼ W=R, we find L ≃ 2W

ffiffiffiffiffiffiffiffi
γ=Y

p
=h0ðWÞ. This gen-

eralization is supported by a detailed analysis of a conical
shell on a curved interface [21]. Moreover, our numerical
results for a cone show that the region that is wrinkled for
P0 ¼ 0 corresponds to the region that inflates to its rest
shape at sufficient pressure, just as it does for a spherical
shell [21].
Not all axisymmetric shells inflate to their rest shape.

The question of which shapes are maintained upon inflation
dates back to the optimization of parachutes by Taylor [28].
Since then, closed surfaces have received the most attention
[29,30]. Recently, Gorkavyy reported a condition for an
axisymmetric shell to retain its shape upon inflation [31],
although these calculations are for a uniform pressure drop
across the shell; the condition in the presence of a pressure
gradient is as yet unknown. Whatever this condition may
be, our work suggests that it is satisfied for a sphere and
a cone.
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