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ABSTRACT
Neuroprosthetic devices that use transcutaneous neuromus-

cular electrical stimulation (NMES) are potential interven-
tions to restore skeletal muscle function in people with neu-
rological disorders. As commonly noted, how to assess the
NMES-induced muscle fatigue is a critical problem. This
is because the capability of fatigue assessment is a neces-
sary precursor for optimally modulating the NMES dosage
to improve the control performance of a neuroprosthesis
and ensure user’s safety. To effectively estimate the NMES-
induced muscle fatigue, this paper proposes a novel state
observer that combines a mathematical predictive fatigue
model and intermittent feedback from ultrasound-derived
strain images. The strain images quantify muscle contractil-
ity during NMES. Principal component regression (PCR) is
used to derive a relationship between the strain images and
instantaneous muscle force production. Lyapunov stability
analysis was performed to obtain the convergence property
of the designed observer. A globally uniformly ultimately
bounded (GUUB) result was obtained. Simulations based
on pre-recorded data from a human experiment were also
conducted to demonstrate the performance of the designed
observer.

Key words: neuroprosthesis, neuromuscular electrical
stimulation (NMES), muscle fatigue, ultrasound imaging,
state observer, Lyapunov analysis

1 INTRODUCTION
Neurological injuries such as spinal cord injuries (SCI)

and stroke cause mobility disorders and impair the quality of

∗Co-contact author: Kang Kim {kangkim@upmc.edu}.
†Co-contact author: Nitin Sharma {nsharm23@ncsu.edu}.

life of the affected persons. A recent estimate [1] shows that

the annual incidence of SCI in the United States is about 54

cases per 1 million people. There are around 17,730 new

SCI cases each year. In addition, approximately 7.0 mil-

lion Americans (who are older than 20 years old) are self-

reported to have had a stroke [2]. Research shows that neuro-

prosthetic devices that use neuromuscular electrical stimula-

tion (NMES) can help restore or enhance the lost or impaired

motor functions due to SCI or stroke [3]. Transcutaneous

NMES applies external electrical pulses, via surface elec-

trodes, to artificially activate a paralyzed or paretic skeletal

muscle. NMES-elicited muscle contractions enable desired

limb movements.

Modeling, design and control of NMES to restore limb

functions is therefore of a great research interest. However,

as commonly noted, NMES causes a rapid onset of muscle

fatigue because the artificial muscle recruitment pattern is

non-optimal compared to voluntary muscle contractions of a

person with no neurological disorders [4]. Due to the NMES-

induced muscle fatigue, the force generation capability of the

muscle is quickly deteriorated. Thus, the onset of fatigue

acts as a decreasing control gain in the feedback loop and

degrades NMES control performance. The control error is

likely to inflate if the control method is not robust or cannot

adapt to the unknown time-variant fatigue state. In addition,

excessively stimulating an already fatigued muscle may also

result in injuries.

Therefore, for the purpose of ensuring both control per-

formance and safety, estimating and monitoring the NMES-

induced fatigue is important. To achieve this, multiple sensor

modalities for direct fatigue assessment, for example, elec-

tromyography (EMG) or surface electromyography (sEMG),

have been investigated in the literature [5]. Compared to

other sensor modalities, ultrasound imaging has the advan-
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tages such as non-invasiveness, capability to visualize mus-
cle anatomy and a good signal-to-noise ratio for wide range
of muscle depths. Our recent studies [6, 7] proposed high
frame rate ultrasound strain images to characterize the fa-
tigue effect. A potential correlation between the image-
derived muscle strain and the force produced by muscle con-
traction was demonstrated. The strain-force correlation is
promising to be further formulated as a measurement model
to estimate the NMES-induced muscle fatigue. However,
noise, artifacts and errors accumulated during the signal pro-
cessing, as well as the unexplained variance that exists in the
strain-force correlation, will likely affect the performance of
fatigue estimation. In addition to those methodologies for
direct fatigue assessment, mathematical models [8] use dif-
ferential equations to predict the fatigue effect. These mod-
els do not work well by themselves due to difficulties of ac-
curately identifying model parameters. More importantly,
known initial conditions are essential to calculate the fatigue
state based on differential equations, but in practice they are
less likely available.

Despite the limitations of the mathematical predictive
model, it provides a theoretical temporal trend of the fatigue
development and is therefore useful to regularize the mea-
surements from ultrasound images. In this paper, the pro-
posed novel methodology for fatigue estimation combines a
first order predictive fatigue model with measurements from
ultrasound strain images and formulates a state observer. The
predictive model provides a theoretical trend of the fatigue
development, while the ultrasound measurements enable a
fast convergence to the ground truth without knowing exact
initial conditions. Despite the uncertainties that exist in both
ultrasound imaging measurements and the predictive model,
the observer, which works in a closed-loop structure, bene-
fits the fatigue estimation in a way that the bias or errors of
the estimation in the worst case can be bounded. Main chal-
lenges in the observer design of this problem are as follows.
1) Ultrasound measurements are only intermittently taken as
feedback due to stability issues, as well as limitations of data
acquisition and computational resources. 2) The stability
of the observer needs to be guaranteed in the presence of
model nonlinearities, uncertainties and measurement pertur-
bations. Considering these challenges, a Lyapunov stability
analysis was performed to prove a globally uniformly ulti-
mate bounded (GUUB) convergence result of the designed
observer. To demonstrate the proposed methodology, sim-
ulations were also conducted by using synthetic data gen-
erated from a preliminary experiment on human quadriceps
muscle.

2 MATERIALS AND METHODS
2.1 Modeling and problem formulation

The muscle output force during NMES is determined by
both muscle activation and fatigue status and is expressed as

F(t) = F0µ(t)a(t), (1)

where t ∈ R≥0 denotes the time vector, F0 ∈ R is a constant
that denotes the maximum force produced by the fully acti-
vated and completely non-fatigued muscle. µ ∈ [0,1] is the
state variable for muscle fatigue. a ∈ [0,1] is a time-variant
parameter that describes the muscle activation. In this paper,
to simplify the problem and to mainly focus on the estimation
of the fatigue, isometric muscle contractions are assumed.
Therefore, in Eqn. (1), force-length and force-velocity re-
lationships, which typically appears in a Hill-Huxley model
[9], are neglected.

To measure the force produced by each individual mus-
cle group is a non-trivial problem. Therefore, we adopt a
measurement model that is derived from the correlation be-
tween the force, F , and the synchronized 2-dimensional (2D)
ultrasound strain images (See Section 2.4.) according to our
recent study [7]. The correlation is between a 1D time series
and a 2D matrix sequence (that consists of image pixels) and
can therefore be identified by a principal component regres-
sion (PCR). As a result, it can be obtained that

F(t) = b̂+ b̃+(ĈT +C̃T )S(t)+Fδ(t), (2)

where S(t) ∈ RN is a column vector that contains all the N
pixels in a strain image at time t. Ĉ ∈ RN , b̂ ∈ RN are coeffi-
cients identified by PCR to determine the strain-force corre-
lation. b̃ ∈ RN , C̃ ∈ RN and Fδ(t) ∈ RN are unknown pertur-
bations to reflect the residues or unexplained variance during
the regression. Denoting the sum of known or measurable
quantities in Eqn. (2) as a measurement vector, y(t) ∈ RN ,
provides the measurement model as

y = b̂+ĈT S(t) (3)

The muscle activation, a, in Eqn. (1) can be written as

a(t) = â(t)+ ã(t) (4)

= a(0)e−wat +wa

∫ t

0
e−wa(t−τ)u(τ)dτ+ ã,

where â : R≥0→ [0,1] denotes the part that can be estimated
by a nominal model of first order dynamics while ã∈ [0,1] is
the discrepancy between the estimated and the actual muscle
activation. In Eqn. (4), wa ∈ R>0 is the reciprocal of the
time constant while u : R≥0 → [0,1] represents the NMES
input that is normalized by the maximum amplitude applied
in the stimulation protocol. The state variable, µ, in Eqn. (1),
describes the fatigue effect and can be further described by a
first order differential equation [8] as

µ̇ = w f (µ−µ)a+wr(1−µ)(1−a)+µδ. (5)

In Eqn. (5), w f ∈ R>0 and wr ∈ R>0 are the reciprocal of
the fatigue constant and the recovery constant, respectively.
The constant, µ∈ [0,1], denotes the minimum that the fatigue
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state, µ, can attain. The variable, µδ ∈ [0,1], represents for
the unmodeled uncertainties. The objective of the following
sections is to design a state observer to estimate the fatigue
state, µ, as defined in Eqn. (1) and Eqn. (5).

2.2 Observer design
The observer can be designed by superposing the nom-

inal model of the fatigue state and the gain modulated feed-
back term from ultrasound imaging measurements. The
nominal model can be derived, by replacing the variables in
Eqn. (5) with known estimates, as

˙̂µ = ŵ f (µ̂− µ̂)â+ ŵr(1− µ̂)(1− â), (6)

where the state variable, µ̂ ∈ [0,1], constants, ŵ f ∈ R>0, µ̂ ∈
[0,1] and ŵr ∈ R>0 are known estimates of µ, w f , µ and ŵr,
respectively. The estimation error is defined as, µ̃ = µ− µ̂,
w̃ f = w f − ŵ f , µ̃ = µ− µ̂ and w̃r = wr− ŵr. The feedback
term can be designed according to the ultrasound imaging
based measurement model, given by Eqn (3). By combining
Eqn. (6) and Eqn. (3), the observer to estimate the fatigue
state is designed as

˙̂µ = ŵ f (µ̂− µ̂)â+ ŵr(1− µ̂)(1− â)+Lσ(y− âµ̂F0), (7)

Lσ =

{
L σ = 1
0 σ = 0

,

where Lσ ∈ R≥0 is a feedback gain. σ describes if the ultra-
sound image measurements are taken as the feedback (σ= 1)
or not (σ = 0).

2.3 Stability analysis
The following theorem summarizes the convergent

property of the designed observer in Eqn. (7).
Theorem 1. ∃ a finite t∗ ∈ R>0, s.t., ∀t ≥ t∗, the es-

timation error, µ̃(t) = µ− µ̂, satisfies |µ̃| ∈ L∞, if the feed-
back gain, Lσ is appropriately selected according to the sub-
sequent analysis.

Proof. By using Eqn. (1), Eqn. (2) and Eqn. (3), as well
as the relationship, a = â+ ã, it can be obtained that

y = F0µ(â+ ã)−C̃T S(t)− b̃−Fδ. (8)

Further, using the definitions of w̃ f , µ̃ and w̃r, as well as Eqn.
(5), Eqn. (7) and Eqn. (8), µ̇− ˙̂µ can be calculated alge-

braically as,

µ̇− ˙̂µ =(ŵ f + w̃ f )(µ−µ)(â+ ã)+(ŵr + w̃r)(1−µ)(1− â− ã)

+µδ− ŵ f (µ̂− µ̂)â− ŵr(1− µ̂)(1− â)−Lσ(y− âµ̂F0)

=− µ̃(w f a+wr(1−a)+LσF0(â+ ã)) (9)
+(ŵ f (µ̂− µ̂)− ŵr(1− µ̂)−LσF0µ̂)ã

+(µ̂− µ̂)âw̃ f + ŵ f âµ̃+(1− µ̂)(1− â)w̃r

+(µ̂− µ̂)w̃ f ã+ ŵ f µ̃ã+ âw̃ f µ̃− (1− µ̂)w̃rã+ w̃ f µ̃ã

+µδ +Lσ(C̃T S− b̃−Fδ).

Design a Lyapunov functional candidate as

V =
1
2

µ̃2. (10)

Using Eqn. (9), the time derivative of V along the trajectory
of µ̃ is derived and bounded as

V̇ =µ̃(µ̇− ˙̂µ)

≤− (w f a+wr(1−a)+LσF0â)µ̃2 +LσF0 |ã| µ̃2 (11)

+
∣∣ŵ f (µ̂− µ̂)− ŵr(1− µ̂)

∣∣ |ã| |µ̃|+ ∣∣(µ̂− µ̂)â
∣∣ ∣∣w̃ f

∣∣ |µ̃|
+
∣∣ŵ f â

∣∣ ∣∣µ̃∣∣ |µ̃|+ |(1− µ̂)(1− â)| |w̃r| |µ̃|
+
∣∣µ̂− µ̂

∣∣ ∣∣w̃ f ã
∣∣ |µ̃|+ ∣∣ŵ f

∣∣ ∣∣µ̃ã
∣∣ |µ̃|+ |â| ∣∣w̃ f µ̃

∣∣ |µ̃|
+ |1− µ̂| |w̃rã| |µ̃|+

∣∣w̃ f µ̃ã
∣∣ |µ̃|+ |µδ| |µ̃|

+Lσ(
∣∣C̃T S

∣∣+ ∣∣b̃+Fδ

∣∣−F0µ̂ |ã|) |µ̃|

For some constants, Ψã, Ψw̃ f , Ψµ̃, Ψw̃r , Ψw̃ f ã, Ψµ̃ã, Ψw̃ f µ̃,
Ψw̃r ã, Ψw̃ f µ̃ã, Ψµδ

, the corresponding quantities Li ∈ R≥0,
i = 1,2, ...,10, are defined as follows:

L1 =
|ŵ f (µ̂−µ̂)−ŵr(1−µ̂)|2|ã|2

4Ψ2
ã

, L2 =
|(µ̂−µ̂)â|2|w̃ f |2

4Ψ2
w̃ f

,

L3 =
|ŵ f â|2|µ̃|2

4Ψ2
µ̃

, L4 =
|(1−µ̂)(1−â)|2|w̃r |2

4Ψ2
w̃r

,

L5 =
|µ̂−µ̂|2|w̃ f ã|2

4Ψ2
w̃ f ã

, L6 =
|ŵ f |2|µ̃ã|2

4Ψ2
µ̃ã

,

L7 =
|â|2|w̃ f µ̃|2

4Ψ2
w̃ f µ̃

, L8 =
|1−µ̂|2|w̃r ã|2

4Ψ2
w̃r ã

,

L9 =
|w̃ f µ̃ã|2
4Ψ2

w̃ f µ̃ã
, L10 =

|µδ|
2

4Ψ2
µ

δ

.

(12)

Due to Eqn. (12), Eqn. (11) can be further bounded, after
completing the squares, as the following

V̇ ≤− µ̃2(w f a+wr(1−a)+LσF0â−LσF0 |ã|−
10

∑
i=1

Li)

+Ψ
2 +Lσ(

∣∣C̃T S
∣∣+ ∣∣b̃+Fδ

∣∣−F0µ̂ |ã|) |µ̃| , (13)

Ψ
2 =Ψ

2
ã +Ψ

2
w̃ f

+Ψ
2
µ̃ +Ψ

2
w̃r +Ψ

2
w̃ f ã

+Ψ
2
µ̃ã +Ψ

2
w̃ f µ̃ +Ψ

2
w̃r ã +Ψ

2
w̃ f µ̃ã +Ψ

2
µδ
.
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The following facts or assumptions need to be discussed be-
fore the stability results can be obtained:

F1) The Ψ2 terms are used to facilitate the model uncer-
tainties, w̃ f , w̃r, etc. These constants proportionally deter-
mine the ultimate bound of the estimation error, µ̃. Small Ψ2

terms result in large Li.
F2) The unknown model uncertainties, ã, w̃ f , w̃r, µ̃, µδ,

are assumed bounded. Therefore, Li terms can be bounded
by known time dependent functions that can be calculated
with the estimated constants or variables, ŵ f , ŵr, µ̂, µ̂, â.

F3) The feedback gain, L, needs to be saturated by a
constant, L ∈ R>0, i.e., ∀t, L≤ L.

F4) The value of σ ∈ {0,1} is determined by if the in-
equality,

L |ã|+ 1
F0

10

∑
i=1

Li ≤ Lâ≤ Lâ, (14)

has a solution for L. σ = 0 if the solution set is empty while
σ = 1 if the solution set is non-empty. In addition, the es-
timation of muscle activation, a, is assumed to be accurate
enough so that |ã| can be bounded by a small number. Thus,
the solution of Eqn. (14) always exists during some time pe-
riod. In fact, in the situation when |ã| is large, the muscle
activation, a, needs to be considered as a second unknown
state for estimation. With a single measurement output, y,
the observability is not well defined in the current problem
formulation.

F5) The perturbations in the measurement model are
bounded and it can be obtained that, for a constant, M ∈R≥0,

(
∣∣C̃T S

∣∣+ ∣∣b̃+Fδ

∣∣−F0µ̂ |ã|) |µ̃| ≤M |µ̃| . (15)

When F1, F2, ..., F5 are all satisfied, the following con-
clusions on stability can be obtained:

(i) σ = 0, Lσ = 0. Eqn. (13) becomes V̇ ≤ −µ̃2(w f a+
wr(1−a)−∑

10
i=1 Li)+Ψ2. It is obvious that w f a+wr(1−a)

can always be lower bounded by a positive constant. There-
fore, there always exist a group of Ψ2 terms such that ∑

10
i=1 Li

is small enough and w f a+wr(1− a)−∑
10
i=1 Li ≥ λ1, where

λ1 is a positive constant. As a result,

V̇ ≤− µ̃2
λ1 +Ψ

2 (16)

≤− (1−θ1)λ1µ̃2− (θ1λ1µ̃2−Ψ
2),

where θ1 is a constant and 0 < θ1 < 1. Therefore, ∀|µ̃| ≥√
Ψ2

θ1λ1
, V̇ ≤−(1−θ1)λ1µ̃2. According to [10], this implies

that

|µ̃| ≤max

|µ̃(t10)|e
−(1−θ1)λ1(t1−t10 ),

√
Ψ2

θ1λ1

 , (17)

where t1 ∈ R≥0 denotes the time vector during this period
while t10 is the initial time of this period.

(ii) σ = 1, Lσ = L. According to F4, ∃ λ2 ∈ R>0 as
a constant, such that, w f a+wr(1− a)+LσF0â−LσF0 |ã|−
∑

10
i=1 Li ≥ λ2. Further, according to F5, Eqn. (13) becomes

V̇ ≤−µ̃2
λ2 +Ψ

2 +LM |µ̃| , (18)

≤−(1−θ2)λ2µ̃2− (θ2λ2µ̃2−LM |µ̃|−Ψ
2),

where θ2 is a constant and 0 < θ2 < 1. Similarly to (i), it

can be obtained that, ∀|µ̃| ≥ LM+

√
(LM)

2
+4θ2λ2Ψ2

2θ2λ2
, V̇ ≤−(1−

θ2)λ2µ̃2. Therefore,

|µ̃| ≤max
{
|µ̃(t20)|e

−(1−θ2)λ2(t2−t20 ), (19)

LM+

√(
LM
)2

+4θ2λ2Ψ2

2θ2λ2

}
,

where t2 ∈ R≥0 denotes the time vector during this period
while t20 is the initial time of this period. Finally, since (i)
and (ii) share a common Lyapunov functional, the error tra-
jectory |µ̃| that is obtained by cascading (i) and (ii) in turn
can be proven to be bounded as,

|µ̃| ≤max
{
|µ̃(0)|e−min{(1−θ1)λ1,(1−θ2)λ2}t ,Ω

}
, (20)

Ω = max


√

Ψ2

θ1λ1
,

LM+

√(
LM
)2

+4θ2λ2Ψ2

2θ2λ2

 .

The GUUB convergence result is proven. It is noted that
when the ultrasound imaging measurement is off (σ = 0),
the observer is stable due to the convergence property of the
nominal model Eqn. (6). However, the rate of convergence
is small and the ultimate bound is determined by the model
uncertainties. If the ultrasound imaging measurement can be
frequently active, the rate of convergence is dominant by λ2,
which is determined and can be controlled by the feedback
gain, L, selected according to Eqn. (14). The ultimate bound
can also be controlled and minimized if the ultrasound imag-
ing measurement kept active. In this situation, the fatigue
estimation is dominant by direct ultrasound measurements
and a saturation, L, on the gain is required to control the es-
timation error due to measurement noise.

2.4 Synthetic data generation from a preliminary ex-
periment

The preliminary experiment was conducted on a human
participant with no neurological disorders. The participant
was seated on a lab-built leg extension machine, as shown
in Fig. 1a. The experimental protocols were approved by
the Institutional Review Board (IRB) of the University of
Pittsburgh. The NMES pulses (amplitude of 28 mA, pulse
frequency of 35 Hz, pulse width of 300 μs) were gener-
ated from a stimulator (Rehastim 1, HASOMED GmbH,
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Figure 1. A preliminary experiment to generate the simulation data. (a) Experiment setup. Ultrasound images and force produced by
muscle contractions were synchronously recorded through an ultrasound transducer and a load cell, respectively. NMES pulses were sent
to stimulate the quadriceps muscle via two large electrode pads. (b) Load cell registered force produced by muscle contractions during the
NMES protocol. Shadowed areas denote the time period when ultrasound imaging measurements are turned on. (c) Zoomed in force profiles
during one muscle contraction. The solid line represents for the actual measured force by the load cell while the dotted line represents for
the force derived from ultrasound strain images by PCR. (d) Co-registered and overlaid ultrasound B-mode images and the processed axial
strain images using speckle tracking algorithm in a 16 by 16 mm region of interest on the vastus intermedius (VI) of the quadriceps muscle.

Germany) and activated contractions of quadriceps muscle

through two electrodes (Dura-Stick Plus, 6.98 cm by 12.70

cm, Chattanooga, DJO, USA). Within 80 seconds, the stimu-

lation was programmed to repeatedly turn on every 2 seconds

with a duty cycle of 75%. The knee movement of the leg

was constrained by a load cell (LC101-150, OMEGA En-

gineering, USA) that was attached normally to the front of

the shank. The force produced by muscle contractions was

registered at a sampling frequency of 1 kHz. A sequence

of ultrasound images, which was synchronized to the force

profile, was acquired using high frame rate planewave imag-

ing (frame rate of 2kHz, center frequency of 5 MHz, sam-

pling frequency of 20 MHz) with a ultrasound imaging re-

search platform (Prodigy, S-Sharp, Taiwan). As shown by

the shadowed area in Fig. 1b, the ultrasound measurements

were only available for less than 1 second every 8 seconds.

The instantaneous displacement vector field of the muscle

was processed from the acquired ultrasound image sequence

using a speckle tracking algorithm [11]. The strain images

were then obtained by taking spatial gradient of the displace-

ment vector field along the axial direction, as shown by the

overlaid and co-registered ultrasound images in Fig. 1d. Es-

timated force profiles were calculated using the strain images

according to Eqn. (3) with identified regression coefficients.

Fig. 1c shows a comparison between the image-derived force

profile and the actual force data registered by the load cell.

The actual force data was used to generate the ground

truth of the fatigue state in simulation. According to Eqn.

(1), the fatigue state, μ, can be considered as the normalized

force and was calculated by μ = F/(F0a), where F is the

recorded force and F0 is the initial force peak. The muscle

activation, a, was computed using Eqn. (4). By neglecting

the fatigue effect during the first several muscle contractions,

Figure 2. Curves of the fatigue state. The dotted line was ob-
tained by normalizing the force profile recorded from the experiment.
The solid line was generated by the fatigue model with the identified
model parameters (See text.). The solid line was used as the ground
truth during simulations.

the activation parameter, wa, can be identified by fitting the

recorded force profile to a first order step response, provided

the NMES input is a constant step during one muscle con-

traction. ã is ignored in the simulation. As a result, the curve

representing for the actual fatigue state, μ, recorded from the

experiment is obtained, as shown by the dotted line in Fig.

2. After numerically integrating both sides of Eqn. (5) (and

ignoring μδ), the resultant equation,

μ =μ(0)+w f μ
∫ t

0
adt +w f

∫ t

0
(−μa)dt

+wr

∫ t

0
(1−μ−a+μa)dt, (21)

is a multi-variate linear relationship among μ,
∫ t

0 adt,∫ t
0(−μa)dt and

∫ t
0(1 − μ − a + μa)dt. By applying a con-

strained multi-variate linear regression on Eqn. (21), param-

eters, μ, w f and wr can be obtained. The results were summa-
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wa [s-1] µ w f [s-1] wr[s-1]

4.47 3.80e-9 3.95e–2 4.07e-10

Table 1. Identified parameters of the muscle activation (Eqn. (4))
and the fatigue model (Eqn. (5)).

rized in Tab. 1. Finally, as shown by the solid line in Fig. 2,
a synthetic fatigue curve was generated using Eqn. (5) with
the identified model parameters. This curve was used as a
ground truth for fatigue estimation during the simulation.

3 RESULTS AND DISCUSSION
Simulation was performed to estimate the state variable

of NMES-induced muscle fatigue by using the designed ob-
server in Eqn. (7). Figure 3 summarizes the results. In
Fig. 3a, the ground truth was intentionally generated with
µ(0) = 0.67 while the observer that is blind to this initial
condition was initialized with a random guess, µ̂(0) = 1.
The feedback gain when ultrasound imaging measurements
were available was selected as L = 0.08. By comparing the
dotted line and the solid line, it is seen that the estimated
fatigue state converged to the ground truth despite the ini-
tial discrepancy. Particularly, during the time period when
the ultrasound imaging was active, the rate of convergence,
shown as the negative slope of the solid curve, was greatly
increased, compared to the relatively flat period (when the
estimation was dominant by the nominal model). Therefore,
it was demonstrated that the ultrasound feedback can accel-
erate the convergence of estimation. This will be crucial for
the proposed methodology when adopted in neuroprosthetic
devices so that the controlled modulation of the NMES input
can response in time.

Figure 3b compares the estimated force curve (calcu-
lated by Eqn. (1) with the observed fatigue state) with the
simulated ground truth. Figure 3c shows the fatigue estima-
tion when L is chosen as different values. It demonstrates
that an increased gain makes the ultrasound feedback more
dominant in the fatigue estimation. As a result, the initial
transient time period (before the estimated state converges
to its ultimate bound) is much shorter. The estimation er-
ror within this period is also smaller. However, with an in-
creased contribution from the ultrasound measurement, the
observer also attained a curve that is mostly determined by
the image-derived force profile. In this simulation, because
the residues in the PCR (when calculating y in the feedback
term of Eqn. (7)) can be inherited and inflate the LM term
(as in Eqn. (15)) when L is large, an estimation bias from the
ground truth can be expected, as shown by the solid curves
(gain = 0.2, 0.4). As shown in Tab. 2, the root mean square
error (RMSE), which is between the observer estimated force
and the ground truth and is calculated in different time inter-
vals, can demonstrate the discussion in this paragraph.

To test the robustness of the observer to model uncer-
tainties, w̃ f , w̃r and µ̃, synthetic perturbations that follows
zero mean Gaussian distributions were added to the corre-
sponding model parameters. The situations when the feed-

gain 0 0.05 0.08 0.2 0.4

t ∈ [0,64] 3.68 2.66 2.34 2.00 2.09

t ∈ [10,64] 3.07 1.74 1.30 1.17 1.64

t ∈ [20,64] 2.58 1.04 0.56 1.10 1.67

t ∈ [30,64] 2.19 0.61 0.19 1.08 1.38

t ∈ [40,64] 1.88 0.41 0.15 0.77 0.83

Table 2. RMSE between the ground truth and the observer esti-
mated force (N) under different feedback gains calculated in different
time (s) intervals.

perturbation L = 0.08 L = 0.2

0.1% 2.34±0.00 2.00±0.00

0.5% 2.34±0.01 2.00±0.00

1% 2.34±0.02 2.00±0.00

2% 2.34±0.03 2.00±0.00

5% 2.35±0.08 2.00±0.01

10% 2.35±0.16 2.01±0.02

20% 2.40±0.28 2.04±0.09

Table 3. Mean ± standard deviation of the RMSE obtained in a
10000-realization simulation when different perturbations (See text.)
were added to the model parameters.

back gain were chosen as, 0.08 and 0.2, respectively, and the
variance of the Gaussian distribution was chosen as, 0.1%,
0.5%, 1%, 2%, 5%, 10% and 20%, respectively, of the un-
perturbed parameter, were simulated for 10000 independent
realizations. The results are summarized by Tab. 3 in the
form of mean ± standard deviation of the RMSE. Overall,
the observer showed a good robustness in the simulation and
a larger gain (0.2) can potentially yield better robustness than
a smaller gain (0.08).

4 CONCLUSION
This paper proposed an ultrasound imaging based ob-

server to estimate the NMES-induced muscle fatigue. The
observer consists of a nominal fatigue model of first order
dynamics and an intermittently active feedback term from
ultrasound imaging measurements. The stability of the ob-
server was thoroughly analyzed through a Lyapunov analysis
to obtain the GUUB convergence result. To further demon-
strate the property and feasibility of the observer, simulations
were performed using synthetic data generated from an ex-
periment on the human quadriceps muscle. The simulations
show that the designed observer is promising to estimate ef-
fects of the NMES-induced muscle fatigue. The simulations
also provide a general guideline, which is consistent with the
theoretical analysis, for tuning the feedback gain.
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Figure 3. Simulation results of fatigue estimation using the designed observer. (a) The observed fatigue state when the feedback was 0.08,
compared with the ground truth. (b) Estimated force profile using the estimated fatigue state from (a), compared with the ground truth. (c)
Curves of estimated fatigue state using different feedback gains, compared with the ground truth.
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