
Planning for Robotic Dry Stacking
with Irregular Stones

Yifang Liu, Jiwon Choi, and Nils Napp

1 Introduction

We critically depend on modifying our environment, e.g., by constructing shelters,
infrastructure for transportation, water, energy, and waste management, as well as
structures that regulate the natural environment such as dams, drainage, and pro-
tection against avalanches. Labor and materials are the main cost drivers of the
construction industry, which also produces approximately 500 million tons of demo-
lition waste, mostly in the form of concrete [1]. Cement production accounts for
(≈%5) of global CO2 emission [2]. Robotic construction with in situ (found) materi-
als simultaneously addresses primary cost drivers of construction,whilemitigating its
environmental impact. This idea has been explored in specialized situations. Driven
by the need for resource conservation in space, NASA has studied in situ mate-
rial use for extraterrestrial environments. Launching building materials into space is
very costly, yet simple structures–such as berms, walls, and shelters–might be readily
built from minimally processed but rearranged materials [3]. Such utility structures,
i.e., structures that have a specific function, but whose exact shape matters less, are
also important on Earth. Examples include erosion barriers for changing coastlines,
temporary support structures in disaster sites, or containment structures made from
contaminated materials from a nuclear or chemical leak. One particularly well-suited

Y. Liu (B) · N. Napp
School of Electrical and Computer Engineering, Cornell University,
Ithaca, NY 14853, USA
e-mail: yl892@cornell.edu

N. Napp
e-mail: nnapp@cornell.edu

J. Choi
Department of Computer Science and Engineering, University at Buffalo,
Buffalo, NY 14260, USA
e-mail: jiwoncho@buffalo.edu

© Springer Nature Singapore Pte Ltd. 2021
G. Ishigami and K. Yoshida (eds.), Field and Service Robotics, Springer Proceedings
in Advanced Robotics 16, https://doi.org/10.1007/978-981-15-9460-1_23

321

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-9460-1_23&domain=pdf
mailto:yl892@cornell.edu
mailto:nnapp@cornell.edu
mailto:jiwoncho@buffalo.edu
https://doi.org/10.1007/978-981-15-9460-1_23

322 Y. Liu et al.

Fig. 1 System overview. All the stone models are pre-scanned. The planning is conducted in a
physics simulator, then the assembly sequences are executed open-loop with a robotic arm

construction method for such types of utility structures is dry-stacking stones. This
ancient method was practiced by humankind since 3500 B.C. [4], and makes up
some of the oldest man-made structures. Theoretically, robots are ideally suited for
this work, since robots make work safer and physically less demanding. A lack of
understanding of how to pose and solve assembly planning problems of irregular
natural material into in situ functional structures, however, is currently hindering
robots from performing such useful construction tasks.

We present an algorithmic approach for solving the planning problem of assem-
bling stable structures from a collection of irregularly shaped rigid objects. The
application is to enable dry stacking with found, minimally processed rocks. We
focus on the problem of high-level placement planning for rocks to build stable
structures, and dry-stack structures with tens of rocks, which significantly improves
the state of the art. These plans are executed open-loopwithout additional tactile sens-
ing; however, our results suggest that large-scale dry-stacking robots would benefit
from better physical feedback during the construction process. The whole process
is shown in Fig. 1. To the best of our knowledge, this is the first system that can
automatically dry-stack a wall with 4 courses using natural irregular rocks, which
could significantly benefit the large-scale outdoor construction robots.

Planning for Robotic Dry Stacking with Irregular Stones 323

The rest of the paper is structured as follows: Sect. 2 provides a brief overview
of related work; Sect. 3 describes the planning algorithm; results are presented in
Sect. 4. Finally, Sect. 5 concludes the paper and discusses future work.

2 Related Work

The fundamental questions in autonomous construction are how to specify, plan, and
execute the placement of building elements to achieve a final structure. Approaches
[5–8] differ in each of these aspects, and range from determining the assembly order
of elements whose position is known in advance [5] to formulating building plans
that need to pick the type, shape, and pose of elements to build approximate shapes,
or to build structures that fulfill specific functions [9].

There are many examples of multi-robot construction [10]. Prominent exam-
ples include 3D construction according to blueprints with climbing [11] and fly-
ing [12] robots. These systems rely on uniform, custom-made rigid elements that
snap together using magnets, and focus on combinations of pre-processed compila-
tion steps and local runtime control. Another body of work is focused on distributed
collective robotic construction of functional structures composed of deformable and
amorphous materials [9, 13–16]. In these demonstrations, the deformable nature of
the building material compensates for placement inaccuracies and environmental
irregularity which simplifies planning.

When building with rigid irregular objects, small surface features substantially
affect the friction and stability. Compounding this difficulty, microfracture formation
during execution may deform the structure surface. This makes planning and stable
placement of irregular objects fundamentally different from building with regular
objects that have predictable contact geometry. In our previous work [8, 17, 18], we
proposed an architecture for solving the dry-stacking problem, based on heuristics
and deep Q-learning to build stable, large-scale structures using physics simulation
in 2D.

We leverage guidelines for building a stable structure from instructional books
for dry-stacked masonry [19–21]. For example, it is good to place large stones with
inward-sloping top surfaces on the corners, and smaller stones in the middle. Such
heuristics can provide a structured approach in making assembly decisions, but in
their description, much is left to experience and human judgment.

The most closely related work is Furrer et al. [6], who propose a pose search
algorithm that considers structural stability using a physics simulator. In addition,
they present an autonomous system, using a robot manipulator, for stacking stable
vertical towers with irregular stones. The pose search cost function considers support
polygon area, kinetic energy, the deviation between thrust line direction and the
normal of the support polygon surface, and the length between the new object and
the center of mass (CoM) of the previously stacked object. While this paper also uses

324 Y. Liu et al.

a physics simulator, we use it primarily to find a finite set of feasible poses, and then
apply a layered filtering approach, which we found results in both better and more
robust performance.

3 Methods

In this section, we first describe the notation used in this paper; then we elaborate on
the planning algorithm for stacking irregular stones. Finally, we provide the object
pose detection pipeline used in physical execution.

3.1 Notation

The world frame is a 3D coordinate system where the gravity is in the negative z-
direction, and the goal is to construct a target structure T ⊂ R

3, i.e., a subset of the
world space that should be filled by selecting and placing elements from a set of
objects O . Each object is a connected subset of R3 with its origin at the CoM.

An assembly A = (a1, a2, ..., aI) is a set of I assembled objects, where each ele-
ment ai = (oi , Pi) is a pair containing an object oi ∈ O and its pose Pi = (pi , Ri) ∈
SE(3). The position pi ∈ R

3 denotes the CoM position of object oi in the world
frame, and Ri ∈ SO(3) is its orientation. Empty space set is a set E ⊂ T s.t. every
point e ∈ E can be connected by a straight line from ∂T to ∂A without passing
through any other ai and ∂T , and ∂A denote the boundaries of T and the assem-
bly, respectively. This definition excludes the complicated internal voids created by
stacking irregular objects from counting as empty space. The top surface is given
by S = ∂E ∩ ∂A, i.e., the overlapping area of the empty set E and the assembly
A, where ∂E denotes the boundaries of empty space E . We define the action space
X (oi) of object oi to be restricted to have its CoM in E :

X (oi) = {(pi , Ri)|p ∈ E}. (1)

The world is initially assumed to be empty of objects, aside from a support surface
at the bottom of T . We want to find an assembly strategy for autonomous agents,
i.e., picking a sequence of elements oi and actions from X (oi) to build an assembly
that occupies the target structure T subject to physical contact, friction, and gravity
constraints.

3.2 Structure Planning

This section presents an assembly planning algorithm for irregular objects. Similar
to [8], we design a greedy heuristic approach to find the next best pose from a set
of feasible poses for a given object. For each object, we use a physics simulator

Planning for Robotic Dry Stacking with Irregular Stones 325

to generate a finite set of feasible stable poses, strategically reduce this set, and
choose the best available pose. By repeating this sequence, we incrementally build
the structure.
Algorithm 1: Feasible Pose Generation
Data: oi : object
Result: Feasible Poses Set

1 {(x j , y j , z j)} ← discretize position;
2 for each (x,y,z) in {(x j , y j , z j)} do
3 for Nori ← 0 to N do
4 R ← random generate an orientation;
5 reset oi pose to (x, y, z, R);
6 while Ncontact (oi) < 3 do
7 step physics simulation once;
8 end
9 pause physics simulation;

10 reset oi linear and angular velocity to 0;
11 step physics simulation once;
12 while oi is not stable do
13 step physics simulation once;
14 end
15 if distance between current pose Pi and (x, y, z, R) < Threshold then
16 add current pose Pi to Feasible Pose Set XF ;
17 else
18 continue;
19 end
20 end
21 end

3.2.1 Feasible Pose Generation

We use a physics simulator to find physically stable configurations. We approximate
the real-world state with simulation and provide a practical and efficient stability
estimate of the systemwithout actually having to physically interact with the external
world. This helps us to acquire a good prior estimate for the system.

Since the action space (p and R) is continuous (Eq.1), we first sample the action
space in such away that the position p is discretized, and each position p corresponds
to a set of randomly sampled orientations R. We then make use of a rigid body
simulator to find physically stable configurations. The simulator proceeds by first
selecting an initial placement (position and orientation) for a given object on the
surface of the built structure, and then simulating the forces acting on the object until
it settles into a stable pose; see Algorithm 1. Although the number of possible initial
placements is large, a substantial amount of them settles down into a small subset
of feasible poses. This set of feasible poses for an object oi denotes XF (oi). Even

326 Y. Liu et al.

though all the poses in the feasible pose set are stable, many of them are poor choices
and result in low overall stability. In the next section, we will discuss how to refine
this set by using heuristics gathered from instructional literature for masonry books
[19–21].

3.2.2 Action Space Reduction

The refinement of action space is a hierarchical filtering approach, where each filter
removes poses that donotmeet theminimumrequirement for a satisfactory placement
according to a specific heuristic. The set of filters used in this work is presented as
follows:

• Support polygon area: the area of an object’s support polygon. A higher value of
support polygons correlates to a stable footing for the object. Similar to themethod
presented in [6], we robustly find the support polygon from the sparse contacts
by updating the simulator 10 steps and collecting all the contacts. Then, Principal
Component Analysis (PCA) is used to reduce the 3D contacts to 2D points. Finally,
the convex hull of these 2D points is calculated as a support polygon area.

• Normal of support polygon: the normal direction of the support polygon. It mea-
sures how much the normal direction deviates from the thrust line direction vector
[6].

• Neighbor height: the difference in heights of the object, after its placement, with
its left and right neighboring objects. The height of an object is represented by
CoM height. This feature helps maintain leveled surfaces in the structure.

• Stone top surface slope: the top surface angle of the object at a given pose. In
building a wall, we prefer inward sloping angles to prevent stones from the top
layers to fall down from the structure [21, Pg. 49].

• Interlocking: the number of objects in the structure that are in contact with the
current object at a given pose. The use of this feature allows for staggered layering
and thus helps to prevent vertical stacking in the structure [20, Pg. 19].

Each filter evaluates one of these features. The reductions are applied hierarchi-
cally for each object as follows:

• The original feasible pose set denotes XF .
• At Filter 1, only select poses that have an inward sloping top surface angle. The
remaining poses after applying this filter denote XF1.

• At Filter 2, discard poses with dot product ‖ni · vi‖ less than the mean of all poses
from XF1, where ni represents the normal direction of the contact polygon, and vi
is the thrust line direction vector. The set of poses after applying this filter denotes
XF2.

• At Filter 3, remove poses with support polygon area less than the mean of the
support polygon area value of all stable poses. The remaining poses after applying
this filter denote XF3.

Planning for Robotic Dry Stacking with Irregular Stones 327

• At Filter 4, this is based on the current state of the structure. If it is not a corner
placement,we only choose poseswhose centroid heights are lower than the average
centroid heights of corner stones at the current course. The set of poses after
applying this filter denotes XF4.

• At Filter 5, remove the poses whose number of interlocking objects are smaller
than the mean number of interlocking. The set of poses after applying this filter
denotes XF5.

This hierarchical reduction model is carefully designed such that a random pose
at each level is more desirable than a random pose drawn at the earlier filtered levels.
It is also designed such that no good possible stable poses are removed earlier before
reaching the final selection filter. The relation between the various sets of poses is
shown in Eq.2.

XF ⊃ XF1 ⊃ XF2 ⊃ XF3 ⊇ XF4 ⊃ XF5, (2)

where XF is defined in Sect. 3.2.1.
Unlike the pose searching algorithm used in [6], which combines terms similar

to Filters 2 and 3, as well as other heuristics into a single scalar cost function and
finds poses by gradient descent, the planning algorithm proposed in this paper first
considers geometric and physical constraints using a simulator to find a discrete set
of feasible actions and further refines this set by using a hierarchical filter based on
heuristics gathered from the instructional materials. This approach eliminates the
need for tuning the relative weights in a scalar cost function. Without the need for
cost-tuning, the algorithm is more adaptable to different stones with various physical
properties, such as size, density, and friction. The reason is that with a single scalar
function the weights are coupled and the relative importance depends on the set of
objects’s physical properties. However, in the hierarchical filter, each term is assessed
in isolation and thus the method is less sensitive to the change of physical properties
in the set of objects.

3.2.3 Proposed Algorithm

Algorithm 2 describes how a structure is constructed. The inputs are the set of avail-
able objects along with the target structure to be built. During construction, it builds
the structure course by course, and within courses, it first places the corner stones
with the inward slope in the two course extrema, as shown in Algorithm 2 Line 2;
then it builds the middle area within the course (Lines 3–5). The output is the set of
assembly steps.

Algorithm 3 describes the steps to select an object and its pose for the placement.
The inputs are the set of remaining objects and their type (corner stone or random
stone), since different object types may require different hierarchical filters. The first
step is to choose a random object (Line 3) and collect the feasible poses (Sect. 3.2.1)
of this object (Line 4). Then, it applies the Hierarchical Filter (Sect. 3.2.2) to reduce

328 Y. Liu et al.

the action space at Line 5. If the reduced action space is not empty, we select one
pose from it; otherwise, we try this procedure again for a different object until it
reaches the maximum number of trials (Lines 6–11).

Algorithm 2: Proposed Assembly Approach
Data: O: object dataset, T : target structure
Result: Assembly steps

1 while target area T still has room left to build do
2 place corner stones with inward slope in the two course extrema;
3 while current course still has room left to build do
4 place stone in the current course ;
5 end
6 end

Algorithm 3: Place Stone
Data: B: set of available objects (B ⊆ O), object type
Result: Placed object pose

1 n ← 0;
2 while n ≤ Maximum Number of Trials do
3 b ← randomly choose one object from B;
4 XF ← feasible poses set;
5 X f inal ← apply Hierarchical Filter to XF ;
6 if X f inal �= ∅ then
7 place one of the X f inal poses;
8 return;
9 else

10 n ← n + 1;
11 end
12 end

3.3 Object Pose Detection

During physical execution, we first detect the object pose in the scene. We start by
capturing a set of point cloud data of an object from different views via an RGB-
D camera; we then filter out the points that do not belong to the current object by
removing the plane points from point cloud data using Point Cloud Library (PCL)
[22]; next, we merge the remaining point cloud data. We apply global registration to
provide an initial transformation and IterativeClosest Point (ICP) algorithm to further
refine the transformation using the Open3D library [23]; finally, we run registration
on merged point cloud data and pre-scanned 3Dmesh of the object to get the relative
pose between them. Similar to the third step above, the registration also contains
global registration and ICP. The whole pose detection pipeline is shown in Fig. 2.

Planning for Robotic Dry Stacking with Irregular Stones 329

Fig. 2 Object pose detection pipeline showing the sequence of detection, registration, andmerging.
See Sect. 3.3 for more details

Once the relative pose between the current object and the 3D mesh is detected,
we use the manipulator to pick up the stone and apply the same transformation to
the end-effector of the manipulator to place the stone as the planned pose.

4 Experiments

In this section,wefirst describe the experimental setup, thenwe show the stone towers
and stone walls using the proposed planning, as well as the comparison between the
pose searching algorithm proposed in [6] and the proposed method.

4.1 Experimental Setup

As shown in Fig. 4, a UR5 manipulator equipped with a ROBOTIQ 2-Finger gripper
is used in the manipulation task. An Intel® RealSenseTM SR300 RGB-D camera is
attached to the UR5 arm for point cloud data acquisition. The MoveIt! [24] package
is employed for motion planning. We collected 23 shale stones as irregular objects,
which are specifically selected such that they fit the size of the gripper. The average
weight of the selected stones is 193g with a standard deviation of 90g. The outer
bounding box size of the stones are 0.0791 ± 0.0144, 0.0585 ± 0.0086, and 0.04
± 0.0088m. During physical execution, objects are manually fed into the pickup
area. The gripper grasping position varies depending on the detected object position,
but the gripper orientation remains the same. The stone 3D model is acquired with a
Matter andForm3DDesktop Scanner. Figure3 shows some samples of the stones and
their corresponding 3D mesh models. The object pose detection and manipulation
parts are implemented using the Robot Operating System.

330 Y. Liu et al.

Fig. 3 Irregular shale stones and their corresponding 3D meshes

Fig. 4 An overview of the
experimental setup

4.2 Results

The autonomous building system is shown in Fig. 1. In this section, we first compare
the proposed algorithm with other work in simulation and physical execution; then,
we show the physical execution results.

4.2.1 Stone Tower

Our goal was to build a vertical stone tower using the pre-scanned 3D mesh models
as a test structure to evaluate planning under stability constraints. We compared the
proposedmethodwith the pose searching algorithmproposed in [6]. The comparisons
were conducted in PyBullet physics simulation [25].

The pose searching method used in [6] places each object on the top object of the
existing stacking using a physics engine. A cost function is introduced to evaluate the
“goodness” of each pose, which considers 4 elements: contact areaCi , kinetic energy
Ekin , the length between the newly placed object pose Pj and the previously placed
object pose Pi (denoted as rPj Pi), and the dot product between normal of the contact
polygon and the trust line direction vector ‖ni · vi‖. The cost function is defined as

f (Pi) = w1C
−1
i + w2Ekin(Pi) + w3‖rPj Pi ‖ + w4‖ni · vi‖ , (3)

where wj are tuned for the object set. After assigning the cost to the valid contact
pose, gradient descent is used to search the local optimal pose P∗

i .
Since we use a different type of stone from that of [6], and the size of the stones

are also different given that we use different arms and grippers, the wj given by [6]
are not optimal for our application. We also modify the last component of Eq.3 as

Planning for Robotic Dry Stacking with Irregular Stones 331

Fig. 5 Vertical tower building results. For eachmethod, we build 150 different vertical stone towers
in simulation. The x-axis shows the number of stones each tower has, and on the left figure the
y-axis shows the percentage of each height; on the right figure, the y-axis represents cumulative
percentage of each height. “random” means that we randomly pick a pose from feasible pose set;
“area” represents that the cost function only contains contact polygon area (C) one element, so
does “kinetic energy” (Ekin), “distance” (rPj Pi), and “deviation” (‖ni · vi‖). For “deviation”, we
test both multiplication ‖ni · vi‖ and division ‖ni · vi‖−1. The “weighted cost” uses the optimized
cost function. The proposed “hierarchical filter” significantly outperforms the other methods

w4‖ni · vi‖−1 given the fact that the larger the dot product is, the smaller the cost
should be. At last, we apply Bayesian optimization for Gaussian process modeling
called GPyOpt [26] to optimize the weights.

Figure5 depicts the results of using different cost functions and the proposed
hierarchical filter-based algorithm (Algorithm1). Since the heuristics used in building
a vertical tower is different from that of a wall, we modify the filters to fit the task.
The filter contains the contact polygon area C , distance rPj Pi , and the top surface
slope. We also evaluate each cost component used in Eq.3 separately. We can see
that the proposed hierarchical filter algorithm has a higher opportunity of building
a vertical tower with more than 5 stones compared to all other methods. Table1
gives the average number of stones each algorithm can build. It also shows that the
proposed method can build more stones than other methods. We randomly select 9
towers planned by the proposed method from all of the towers that have a height of
at least 6 stones for physical execution. Table2 shows the building process. Since the
first three stones can always be placed successfully, we start the table from the 4th
stone. We can see that 4/9 can be built up to 6 stones, and only 1/9 drops at the 4th
stone. Compared to the towers built in work [6], which only builds up to 4 stones with
a chance of 2/11, our method can build taller stone towers both in simulation and in
practice. The reasons for the failures in our execution could be object pose detection
error, pickup error, an opening gripper moves an object which is already placed,
differences between the object 3D mesh and the real stone, inaccuracies in contact
modeling, etc. Figure6a, b illustrate one tower example of the proposed algorithm
in the simulation environment and in practice.

332 Y. Liu et al.

Table 1 Comparison on the average tower height built using different filters

Random Area Kinetic
energy

Distance Deviation
(m)

Deviation
(d)

Weighted
cost

Proposed

3.4565 4.3944 4.0845 3.9362 3.2 4.0207 4.75 5.4118

Table 2 Physical execution (d represents stone drops, � represents the successful placements, ∅
means that the plan does not contain further steps.)

Stone
number

Tower 1 Tower 2 Tower 3 Tower 4 Tower 5 Tower 6 Tower 7 Tower 8 Tower 9

4th � � d � � � � � �
5th � � d d � � � �
6th � � � d � d

7th d d ∅ d

Fig. 6 Vertical tower and wall in simulation and corresponding physical execution results

4.2.2 Stone Wall

In this experiment, the goal is to build a stone wall. The structure is planned in
simulation using Algorithm 2, and then the UR5 manipulator places the stones to
the planned pose. The planned wall has 4 courses, and each course has 3–5 stones.
The execution order is manually calculated, but complies with the assembly order
in the simulation if there is no collision during assembly due to the gripper. In other
words, the simulated assembly order does not take into account clearances for the
fingers or grippers, but if problems exist, reordering stones within a course often fixes
potential collisions. As mentioned in the previous section, several things may cause
failures during the execution process.We categorize the failure cases into two classes:
poor placement and structure collapse. Poor placement contains bad grasping, wrong
object pose detection, and stone drops after placement. Structure collapse is the case
that after placing the current stone, more than 1 stone falls down. In this experiment, 7
out of 13 walls can be successfully built without collapsing. Table3 shows the failure

Planning for Robotic Dry Stacking with Irregular Stones 333

Table 3 Stone wall execution failure rate

Course 1 Course 2 Course 3 Course 4

Poor placement 0.14 0.18 0.29 0.48

Structure collapse 0 0.04 0.07 0.05

rate during execution. We separate the execution process based on different courses.
We can see that as the course increases, the poor placement rate also increases. All
the previous minor errors building up to larger errors lead to more failure cases.
Figure6c, d show an example of a planned wall in the simulation and the wall built
in the real world using the robotic arm without collapsing. We also compare the
proposed algorithm with untrained humans using the same set of stones. We found
that humans are much better at executing the generated open-loop plans. However,
if the assembly sequences are not provided, our human participants could not plan
several steps ahead and retorted to trial-and-error.

5 Conclusion and Future Work

The proposed method is able to plan placements for a set of irregularly shaped rocks
and build stable dry-stacked structures. Similar to previous work, we use a rigid body
simulation engine in order to find stable poses for rocks. We introduce two primary
innovations: first, we use only the physics engine to create a finite set of feasible
poses; second, we use a layered refinement architecture that significantly improves
performance compared to optimized scalar cost functions in evaluating the quality of
feasible poses. We also introduce new filtering terms, which are specific for building
walls with interlocking layers, compared to vertical stacks.

We focus on high-level placement planning as it is a central issue in dry stacking.
The overall system could be significantly improved with a more specialized and
robust execution system, specifically reactively re-planning in the face of errors and
unmodeled action outcomes, and in incorporating tactile feedback during placement
and pose evaluation. The instructional literature suggests this approach for human
builders as well: candidate stones are placed, wiggled, and then either removed
or stabilized by wedging small rocks into crevices until the newly placed rock is
stable. In any of these situations, having better high-level placement plans that can
be executed in an open-loop fashion will be beneficial and this paper represents
significant progress in that direction.

Acknowledgements We would like to thank Hironori Yoshida and Dr. Marco Hutter for their
valuable input regarding the comparison algorithm, and Jackie Chan for scanning the stones. This
work was partially supported by NSF Grant #1846340 and the SMART CoE at UB.

334 Y. Liu et al.

References

1. USEPA: Advancing sustainable materials management: 2014 fact sheet. United States Envi-
ronmental Protection Agency, Office of Land and Emergency Management, Washington, DC
20460, 22 Nov 2016

2. Green in practice 102—concrete, cement, and CO2
3. Sanders, G.B., Larson, W.E.: Progress made in lunar in situ resource utilization under NASA’s

exploration technology and development program. J. Aerosp. Eng. 26(1), 5–17 (2013)
4. Wikipedia Contributors: History of construction—Wikipedia, the free encyclopedia (2019)
5. Chen, I.-M., Burdick, J.W.: Determining task optimal modular robot assembly configurations.

In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, vol. 1,
pp. 132–137. IEEE (1995)

6. Furrer, F., Wermelinger, M., Yoshida, H., Gramazio, F., Kohler, M., Siegwart, R., Hutter, M.:
Autonomous robotic stone stacking with online next best object target pose planning. In: 2017
IEEE International Conference on Robotics and Automation (ICRA), pp. 2350–2356. IEEE
(2017)

7. Helm, V., Ercan, S., Gramazio, F., Kohler, M.: Mobile robotic fabrication on construction sites:
Dimrob. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
4335–4341. IEEE (2012)

8. Thangavelu, V., Liu, Y., Saboia, M., Napp, N.: Dry stacking for automated construction with
irregular objects. In: 2018 IEEE International Conference onRobotics andAutomation (ICRA),
pp. 1–9. IEEE (2018)

9. Napp, N., Nagpal, R.: Distributed amorphous ramp construction in unstructured environments.
In: Distributed Autonomous Robotic Systems, pp. 105–119. Springer (2014)

10. Petersen, K.H., Napp, N., Stuart-Smith, R., Rus, D., Kovac, M.: A review of collective robotic
construction. Sci. Robot. 4(28), eaau8479 (2019)

11. Petersen, K., Nagpal, R., Werfel, J.: An autonomous robotic system for three-dimensional
collective construction. Termes, June 2011

12. Lindsey, Q., Mellinger, D., Kumar, V.: Construction with quadrotor teams. Auton Robot 33(3),
323–336 (2012)

13. Doerfler, K., Sebastian Ernst, Luka Piškorec, Jan Willmann, Volker Helm, Fabio Gramazio,
andMatthias Kohler. Remotematerial deposition. In International Conference, COAC, ETSAB,
ETSAV, pages 101–107, 2014

14. Saboia, M., Thangavelu, V., Gosrich, W., Napp, N.: Autonomous adaptive modification of
unstructured environments. In: Proceedings of Robotics: Science and Systems, vol. XIV (2018)

15. Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M.: Autonomous construction
with compliant buildingmaterial. In: Intelligent Autonomous Systems, vol. 13, pp. 1371–1388.
Springer (2016)

16. Saboia, M., Thangavelu, V., Napp, N.: Autonomous multi-material construction with a hetero-
geneous robot team. In: Distributed Autonomous Robotic Systems. Springer (2018)

17. Liu, Y., Saboia, M., Thangavelu, V., Napp, N.: Approximate stability analysis for drystacked
structures. In: 2019 IEEE International Conference on Robotics andAutomation (ICRA). IEEE
(2019)

18. Liu, Y., Shamsi, S.M., Fang, L., Chen, C., Napp, N.: Deep q-learning for dry stacking irreg-
ular objects. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1569–1576. IEEE (2018)

19. Gardner, K.: Stone Building. The Countryman Press (2017)
20. McRaven, C.: Building Stone Walls, vol. 217. Storey Publishing (1999)
21. Vivian, J.: Building Stone Walls. Storey Publishing (1976)
22. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Confer-

ence on Robotics and Automation (ICRA) (2011)
23. Zhou, Q.-Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing (2018).

arXiv:1801.09847

http://arxiv.org/abs/1801.09847

Planning for Robotic Dry Stacking with Irregular Stones 335

24. Sucan, I.A., Chitta, S.: Moveit! (2013). http://moveit.ros.org
25. Coumans, E., Bai, Y., Hsu, J.: Pybullet physics engine (2018)
26. GPyOpt: Gpyopt: a bayesian optimization framework in python (2016). http://github.com/

SheffieldML/GPyOpt

http://moveit.ros.org
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt

	 Planning for Robotic Dry Stacking with Irregular Stones
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Notation
	3.2 Structure Planning
	3.3 Object Pose Detection

	4 Experiments
	4.1 Experimental Setup
	4.2 Results

	5 Conclusion and Future Work
	References

