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A B S T R A C T   

Due to the proliferation of biomedical imaging modalities, such as Photo-acoustic Tomography, Computed To
mography (CT), Optical Microscopy and Tomography, etc., massive amounts of data are generated on a daily 
basis. While massive biomedical data sets yield more information about pathologies, they also present new 
challenges of how to fully explore the data. Data fusion methods are a step forward towards a better under
standing of data by bringing multiple data observations together to increase the consistency of the information. 
However, data generation is merely the first step, and there are many other factors involved in the fusion process 
like noise, missing data, data scarcity, and high dimensionality. In this paper, an overview of the advances in data 
preprocessing in biomedical data fusion is provided, along with insights stemming from new developments in the 
field.   

1. Introduction 

Due to the proliferation of biomedical imaging modalities [1] such as 
Photo-acoustic Tomography (PAT) [2], Computed Tomography (CT) [3, 
4], Optical Microscopy and Tomography (OMT) [2], Single Photon 
Emission Computed Tomography (SPECT) [5], Magnetic Resonance [6] 
(MR) Imaging, Ultrasound, Positron Emission Tomography (PET) [7,8], 
Magnetic Particle Imaging (MPI) [9], Electroencephalogram (EEG) 
[10]/ Magnet-encephalography (MEG) [11], Electron Tomography (ET) 
[12], and Atomic Force Microscopy (AFM) [13], massive amounts of 
biomedical and health informatics data are being generated on a daily 
basis. It is commonly known that it is difficult to gain full understanding 
of the data through a single analysis modality. Take, for example, a 
malignant tumor, which is difficult to diagnose through a single mo
dality for many reasons, like the low positive predictive values, low 
specificity, etc. Therefore, it is necessary to exploit the information 

provided by multiple modalities simultaneously for better diagnosis. 
The acquisition of multimodal data is an important initial step of the 
process. In many instances, however, the real crux of the problem is how 
to fully explore all sources of information available. Data fusion provides 
a step forward towards a complete understanding of a given pathology. 

Data fusion is inspired by how humans and animals process sensory 
signals by merging multiple inputs from different internal and external 
sensors to reliably collect information about their environment for sur
vival purposes. Data fusion has been widely used in many fields, such as 
geographic information systems [14,15], wireless sensor networks 
[16–18], chem-informatics [19], and bioinformatics [20,21]. Data 
fusion involves the integration of data from different resources to 
interact and inform each other to enhance a variety of data analysis tasks 
such as detection, estimation, segmentation, and classification. Data 
fusion can be carried out at different levels [22–24], including raw 
data-level, feature-level, and decision-level. However, performing a data 
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fusion task in a particular application field can be extremely chal
lenging. For example, in the field of biomedical data analysis, a number 
of problems may occur at different fusion levels, including the following 
aspects:  

• Data noise [25]: Data noise is one of the major limitations in imaging 
and is an important issue for biomedical image preprocessing. Noise 
can be defined as unwanted information in images [26].  

• Missing values [27]: Missing values refer to the absence of data items 
for a subject. Missing values are pervasive in real-world data sets, 
and they present a significant challenge at the different levels for 
multimodal data fusion as they may be of importance to the data 
analysis task at hand.  

• Alignment and registration [28,29]: Alignment and registration aim 
at reducing spatial or temporal in-homogeneities between samples, 
including differences in acquisition frequencies, sampling devices, 
and sample physiology. In biomedical data, registration is a standard 
prerequisite for the analysis and fusion of multimodal data [30].  

• Small datasets [31–33]: Data scarcity can be a problem in domains 
where data collection is difficult, time-consuming, and/or expensive. 
A prime example is the scarcity of medical data. Analyzing small data 
sets and building statistical models using them are both challenging 
tasks. 

• High dimensionality [34]: With the proliferation of diverse modal
ities, it has been made possible to acquire large amounts of 
biomedical data with high dimensionality. Processing the 
high-dimensional data incurs a high computational cost and is 
inherently inefficient since many of the values that describe a data 
object are redundant due to noise and linear or nonlinear de
pendencies. Other potential issues include instabilities [35], distance 
concentrations, and insufficient data volumes to make use of 
high-dimensional data [36]. Consequently, the dimensionality, i.e., 
the number of values that are used to describe a data object, needs to 
be reduced prior to any subsequent processing of the data. 

This paper provides a review of methods to deal with those chal
lenges and their prospects towards the fusion of medical imaging data. 
The rest of this paper is organized as follows: Section 2 introduces some 
common biomedical image acquisition methods, including CT, MRI, X- 
ray, etc. Section 3 describes the challenge of noise and the available 
solutions. Section 4 provides a review of the missing value problem and 
imputation methods that deal with it. Then, Section 5 illustrates the 
alignment and registration methods. Section 6 provides a review of the 
small datasets issue. Section 7 describes the high dimensionality issue 
and its solutions. In Section 8, conclusions are drawn and novel trends 
are discussed. Table 11 provides all the abbreviations and their repre
sentations in this paper. 

2. Data acquisition methods 

Medical imaging [37–39] refers to a range of technologies for visu
alizing specific parts of the body for clinical diagnosis and medical 
treatment. Medical imaging can also visualize the function of tissues or 
organs. With medical imaging technologies, clinicians can investigate 
the internal structure of the skin and bones as well as diagnose and 
provide treatment. Medical imaging also assists in building datasets of 
physiology and normal anatomy to make it possible for researchers to 
conduct further analyses [40]. 

Medical imaging is a part of the broader domain of biological im
aging, which includes many different types of imaging technologies, 
such as X-ray [41,42], ultrasound [43,44], magnetic resonance imaging 
(MRI) [45], nuclear medicine functional imaging techniques -e.g., 
positron emission tomography (PET) [8,46] and single-photon emission 
computed tomography (SPECT), etc. The details of some common 
medical imaging technology are next described. 

2.1. Magnetic resonance imaging 

Magnetic resonance imaging (MRI) [47], which is a noninvasive 
medical imaging technique to produce three-dimensional detailed 
anatomical images, utilizes strong magnetic fields, magnetic field gra
dients, and radio waves to produce pictures of the anatomy and the 
physiological processes of the body. The patient to be scanned should be 
positioned within an MRI scanner that forms a strong magnetic field 
around the specific area of interest. The specific region is then defined by 
the X and Y gradient coils with energy caused by an oscillating magnetic 
field temporarily applied at the appropriate resonance frequency. The 
receiving coil then measures the radio frequency (RF) signal level 
emitted by the excited atoms. The RF signal can be used to infer the 
position information as the RF level and phase change due to the 
changing the local magnetic field by gradient coils. The contrast be
tween various tissues is determined by the rate of excited atoms 
returning to the equilibrium state. Patients might be given contrast 
agents, like gadolinium, to make the image more clear [48]. 

The advantage of the MRI [49] is that it does not rely on ionizing 
radiation or X-rays, which are harmful and may cause direct tissue 
damage or cancer. MRI is an outstanding imaging technology in regard 
to image details, though the scanning process takes long time and pro
duces loud noises. MRI has been widely used to image joints [50,51], 
brain [52], wrists [53], ankles [54,55], breasts [56], heart [6,57] and 
blood vessels [58]. However, MRI is usually expensive and may not be 
able to offer the resolution and enough information to detect all types of 
cancers, such as breast cancer which is indicated by micro-calcifications; 
currently, it cannot differentiate the benign disease and malignant tu
mors. Moreover, some patients might be allergic to the contrast agents 
or have chronic kidney disease, which prevents them from ingesting 
these agents [59]. In addition, it may be unsafe for a patient to go 
through the MRI scanner if the patient has medical implants or other 
non-removable metal inside their body [60]. Fig. 1 shows an MRI brain 
image. 

2.2. Computed tomography 

Computed tomography (CT) [3,61,62] uses rotating X-ray machines 
and computers to create cross-sectional images to visualize different 
body parts, including the head, shoulders, spine, and heart. CT provides 
a non-invasive way to visualize the inside of the body. CT can show the 
details of damage to bones, injuries of an internal organ, problems with 
blood flow, stroke, and cancer. For instance, CT can provide information 
about size, location, and shape of a tumor prior to radiotherapy or to 
guide needle biopsies. 

Since its introduction in the 1970s, CT has become a significant 
technique to supplement X-rays and ultrasonography in medical imag
ing [63]. CT has the following advantages: (1) CT can provide high 
image resolution, therefore, better details. (2) CT can exclude the 

Fig. 1. MRI brain image  
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superimposition of images of structures outside of the region of interest. 
(3) CT imaging data can be viewed in multi-planar transverse, coronal, 
or sagittal plane depending on the corresponding diagnostic task. 

However, one in 80 people could be at a risk of developing cancer 
due to being subjected to CT scans [4]. It is estimated by one study that 
0.4% of the cancers in the United States were, in fact, caused by CT 
scanning procedures. Though a study by Tubiana [61] disputed the es
timate as there is no consensus that the low level of radiation used in CT 
scans causes damage. CT is therefore not usually recommended unless 
the patient exhibits certain symptoms. Fig. 2 shows a CT brain image. 

2.3. X-ray 

X-ray waves, found in 1895 by Röntgen, are one type of high-energy 
electromagnetic radiation. X-ray waves have been widely used for 
medical imaging since their introduction as they can pass through the 
body to create images of different parts of your body by variable shades 
of black and white [42,64,65]. For patients to be scanned, they need to 
be positioned so that the body part to be imaged is located between an 
X-ray source and an X-ray detector. When X-rays pass through the body, 
they can be absorbed at different rates due to the different densities of 
different body parts. Then, an image can be generated as a detector on 
the other side of the body picks up the X-rays after they pass through the 
body. When the X-rays pass through high-density body parts, such as 
bones, they will be shown as clear white areas on the image. In contrast, 
low-density parts, such as lungs and hearts, it will be shown as darker 
areas on the image. 

X-ray imaging is widely used for the examination of bone fractures 
and breaks [62], tooth problems such as root infection and loose teeth 
[66], and scoliosis [67]. X-rays are also commonly used as an imaging 
method to produce mammograms for detecting breast cancers. X-ray 

imaging [68] is painless, fast, and non-invasive. However, X-rays expose 
the patients to radiation. Therefore, it should be used judiciously. Fig. 3 
shows an X-ray image from a healthy subject. 

2.4. Ultrasound 

The principle of Ultrasound is that high-frequency sound can travel 
through soft tissues and fluids, and then it bounces back or echoes off 
denser surfaces to generate images [68]. The echoes determine the ul
trasound image features in shades of gray, which reflect different den
sities as more ultrasound bounces back when hitting a denser object. 
Different ultrasound frequencies can generate images with different 
qualities. For example, high frequencies can provide high-quality im
ages, but they are more readily absorbed by the skin and other tissue, 
and thus, they cannot penetrate as deeply as lower frequencies. As Ul
trasound uses radio waves instead of radiation to form images, it is much 
safer compared to X-ray and CT. Ultrasound is suitable for use during 
pregnancy to monitor the baby’s development. 3D ultrasound can pro
vide a static 3D image of the baby, while 4D can provide a moving video. 
Besides monitoring the fatal development, ultrasound can be used for 
the diagnosis of internal organs, such as the liver, kidneys, and thyroid 
nodules. Fig. 4 shows a fetal ultrasound image. 

2.5. Positron emission tomography 

Positron emission tomography (PET) is a nuclear medicine imaging, 
which is based on the radioactive substances known as the radiotracers 
to provide clear visualization of the changes in metabolic processes, 
blood flow, regional chemical composition, absorption, etc. [69]. With 

Fig. 2. CT brain image  

Fig. 3. X-ray image from a healthy subject  

Fig. 4. Fetal Ultrasound  

Fig. 5. PET normal brain image  
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the injection a small amount of liquid radioactive material as the tracer 
into the body, gamma rays by tracers are then emitted and detected by 
the gamma cameras to generate a 3D image, which is similar to an X-ray 
image. Variable tracers may be used depending on the purpose of the 
scan. 

Due to the high cost and complexity of the support infrastructure, 
like cyclotrons, PET scanners, etc., PET was mainly used for researches 
in the past. However, in recent years, due to the advanced technology 
and the proliferations of PET scanners, PET is also employed in clinical 
applications to help with disease diagnosis, which can help improve the 
understanding of disease pathogenesis. PET can be applied for the 
diagnosis of movement disorders, epilepsy, brain tumors, stroke and 
neuronal plasticity, neuropharmacology, dementia, and some possible 
future applications with different types of tracers. Usually, PET can be 
used together with CT or MRI to help doctors to get a more detailed view 
of the illness, and therefore to get a better assessment of the patient’s 
condition. Fig. 5 shows an example of PET normal brain image. 

2.6. Single-photon emission computed tomography 

Single-photon emission computed tomography (SPECT) is another 
type of nuclear medicine tomographic imaging technique that is also 
based on gamma rays [70]. SPECT can provide true 3D information that 
is traditionally shown as cross-sectional slices through the patients and 
is free to be reformatted and manipulated according to the application 
requirements. 

For the SPECT imaging, patients need to take an injection of the 
gamma-emitting radioisotope into the bloodstream. Usually, the radio
isotope is a simple soluble dissolved ion, like an isotope of gallium (III). 
In most cases, a marker radioisotope is used to create radioligand when 
it is attached to a specific ligand. The properties of the radioligand bind 
it to specific types of tissues. Then, the coupled combination of ligand 
and radiopharmaceutical can be carried to bound to the region of in
terest in the body, followed by the gamma camera can see the ligand 
concentration. 

Different from traditionally taking a picture of the anatomical 
structure, SPECT allows monitoring of the biological activity at each 
place in the 3-D region analyzed. The amounts of blood flow are indi
cated by the emission from the radionuclide in the capillaries of the 
imaged regions. The images obtained from SPECT imaging by using a 
gamma camera are multiple 2-D images from different angles. After
wards, a tomographic reconstruction algorithm is applied to the multi
ple projections, yielding a 3-D data set. The imaging principle of SPECT 
is similar to PET as they both use radioactive tracers and the detection of 
gamma rays. Differently, SPECT emits gamma radiation, which is 
measured directly, while PET tracers emit positron annihilate with 
electrons up to a few millimeters away, making two gamma photons to 

be emitted in opposite directions. As PET imaging can immediately find 
these emissions coincident as to provide more radiation event localiza
tion information, it can provide higher resolution than SPECT. However, 
SPECT is significantly cheaper than PET as they are able to use longer- 
lived and more easily obtained radioisotopes. 

SPECT can be utilized as a complement of any gamma imaging study 
as it can provide a true 3D representation, such as tumor imaging, 
infection (leukocyte) imaging, thyroid imaging, or bone scintigraphy. As 
SPECT provides accurate localization in 3D space, it can be used to 
provide information about localized function in internal organs, like 
functional cardiac or brain imaging. Fig. 6 shows a SPECT image from a 
patient with uncontrolled complex partial seizures. 

Table 1 shows a summary of the common biomedical image 
methods, including MRI, CT, X-ray etc., with their corresponding im
aging method, advantages, disadvantages and their applications. 

3. Preprocessing of noisy data 

3.1. Background 

Data noise is one of the major factors affecting the quality of imaging 
outputs, and addressing the negative impact of noise is an important step 
for biomedical image processing. Noise can be defined as any unwanted 
information in images. Consider, for example, an image where input 
sensory information is presented as a grey-level matrix or tensor, then, 
an element in an image can be expressed as a pair 

Fig. 6. SPECT brain image  

Table 1 
Summary of common biomedical image acquisition methods  

Modalities Imaging 
method 

Advantage Disadvantage Application 

MRI Magnetic 
fields and 
radio waves 

• Less 
radiation 
compared to 
CT and X- 
ray 

• Expensive 
• Noise 
• Radiofrequency 
energy 

joints, brain 
[52], wrists, 
ankles[54, 
55], breasts, 
heart, blood 
vessels, and 
etc. 

CT Ionizing 
radiation 

• Cheaper 
than MRI 
• High 
image 
resolution 
• Accurate, 
fast, and 
painless 

• Potential 
allergy to the 
contrast agent 
• Harmful to the 
unborn baby 

damage to 
bones, injuries 
of an internal 
organ, 
problems with 
blood flow, 
stroke, cancer 
and etc. 

X-ray Ionizing 
radiation 

• Painless 
• Fast 

• No 3D 
information 
• Radiation 

bone 
fractures, 
tooth 
problems, 
scoliosis, lung 
problems, etc. 

Ultrasound Sound waves • Safe, 
quick, and 
easy 
• Do not use 
radiation 

• Fewer details as 
X rays 
• cannot be 
applied in areas 
that contain gas 
(such as lungs) 
• doesn’t pass 
through bones 

diagnosis of 
internal 
organs 
fetal 
development 

PET Radiotracers • Painless, 
noninvasive 

• Cause a major 
allergic reaction 
• Harmful to 
babies if 
pregnant 

Detect cancer 
at an earlier 
stage 

SPECT gamma rays • Less time 
compared to 
PET 
• Cheaper 
than PET 

• Long scan times 
• Low-resolution 
images 

Monitor brain 
disorders, 
heart 
problems and 
bone 
disorders.  
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(i, v(i)) (1)  

where i∈I, denotes the coordinate and v(i) represents the corresponding 
grey level. Note that the number of variables defining the coordinate 
(sometimes referred to as a dimension of) i can vary depending on 
specific tasks and processes. v(i) is a real value in grey level images while 
in color images v(i) is a triplet for red, green, and blue channels, 
respectively. The value of every pixel v(i) is obtained by the measure
ment of light intensity, which can be implemented by a charged-coupled 
device (CCD) matrix. The capacitors in the CCD device count the number 
of photons in a period of time to generate the intensities. According to 
the central limit theorem, the numbers of photons received by the 
captors fluctuate around their mean values if the subject of the image is 
in constant light. However, in real-life applications, the capacitors can 
receive bogus heat photons if they are not cooled down appropriately. In 
such circumstances, noise appears in the final image, which can be 
expressed as 

v(i) = u(i) + n(i) (2)  

where v(i) is the value obtained by observation, u(i) is the original true 
value and n(i) stands for the noise value. Various factors can contribute 
to the noise n(i), such as calibration error and quantization degradation, 
which are unavoidable in measurement. Specifically, for biomedical 
imaging like CT, there can be random noise, electronic noise, statistical 
noise, and round-off noise. 

The quality of CT images is related to several factors. For example, 
inappropriate protocol parameter values and the movement of patients 
can blur the reconstructed images. The movement is sometimes un
avoidable in practical applications due to the breathing and heart 
beating. Field of view is also a significant factor for CT imaging. The 
reconstructed images can be degraded if the field of view is too small or 
too big. Artifact is another major factor for CT, which is defined as the 
difference between the desired CT numbers and the obtained CT 
numbers [71]. The quality of MRIs is also related to a bunch of factors, 
such as movement of the objects and scanning times [72]. 

In the remainder of this section, we focus on image noise and 
denoising methods. The common noise models are discussed, and the 
state-of-the-art denoising techniques are presented, including wavelet- 
based methods, Markov random field-based algorithms, anisotropic 
diffusion filtering, non-local methods, bilateral and trilateral methods, 
and deep learning-based denoising. 

3.2. Noise models 

The prior knowledge of noise models is beneficial for denoising 
processing. Since the image noise often appears randomly, it is suitable 
to describe it by random variables and probability density functions 
(PDFs). 

3.2.1. Gaussian noise 
The Gaussian noise model is often used to simulate thermal noise. For 

the univariate Gaussian noise n, its PDF is written as 

pn(x) =
1

̅̅̅̅̅̅̅̅̅̅
2πσ2

√ e−
(x−μ)2

2σ2 , −∞ < x < +∞ (3)  

where μ denotes the mean value and σ2 represents the variance. In 
digital images, x stands for the gray-level, so it is non-negative and often 
defined as integer x∈[0,255]. Fig. 7(a) shows a raw brain image 
extracted from Open Access Series of Imaging Studies (OASIS) brain 
dataset [73]. Fig. 7(b-c) present the Gaussian noise injection results with 
variance of 0.01 and 0.02, respectively. 

3.2.2. White noise 
Gaussian noise is defined by its PDF, but white noise is based on the 

noise power. From the view of the spectrum, white noise power is a 
constant value. In an image with white noise, the intensity value of each 
pixel is different from its neighboring values. Fig. 8 presents an example 
of a brain MRI image with white noise. 

3.2.3. Impulse valued noise 
Impulse valued noise, also known as salt and pepper noise, is another 

type of image noise that is commonly seen during transmission. The 
definition can be expressed as 

qSP(i, j) =

{
γ x(i, j) = Ns ∨ Np
1 − γ otherwise (4)  

where Ns = 255 denotes sault noise, and Np = 0 denoting pepper noise. 
x(i, j) represents the pixel value at position (i, j) after salt-and-pepper 
noise is added to the original image. γ means the noisy density, which 
is a factor meaning how many percentages of all pixels will add salt-and- 
pepper noise. The salt and pepper noise does not corrupt the whole 
image but changes parts of the pixel values. Because in data trans

Fig. 7. Gaussian noise  

Fig. 8. White noise  
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Fig. 9. Impulse valued noise  

Fig. 10. Periodic noise  

Fig. 11. Speckle noise  

Fig.12. Poisson noise  
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mission, some values of pixels can be corrupted and substituted by either 
pure black or pure white values. Fig. 9 illustrates an example of an MRI 
brain image and its contamination with impulse valued noise. 

3.2.4. Periodic noise 
Periodic noise is caused by electric interference during the image 

capture process. Periodic noise has a certain pattern that repeats inde
pendently in the spatial domain. Fortunately, periodic noise can be 
easily removed by filtering in the frequency domain. An instance of sine 
periodic noise is provided in Fig. 10. 

3.2.5. Speckle noise 
Speckle noise is multiplicative noise, which is usually caused by bad 

information channels. As this noise is multiplicative with the original 
signals, it appears with the signals and disappears when the pixel values 
are zero. The speckle noise is modelled as multiplicative noise, defined 
as 

Io = If + NmIf + Na (5)  

where If means noise-free image, and Io the observed image. Nm and Na 
denotes the multiplicative noise and additive noise, respectively. An 
example of speckle noise with 0.05 variance is given in Fig. 11. 

3.2.6. Poisson noise 
Poisson noise is so named because it obeys the Poisson distribution. 

Poisson noise is caused by the quantum characteristic of light. The 
number of the quanta that arrives on the surface of the photoelectric 
detection device follows statistical fluctuation so that image is granular. 
As a result, the contrast of the image diminishes, and the detailed in
formation is covered. An instance is presented in Fig. 12. 

3.2.7. Rayleigh noise 
Rayleigh noise is often seen in radar images, and its PDF is given by 

pn(x) =
x
σ2e− x2

2σ2 , x ≥ 0 (6)  

where the σ2 represents the variance. Fig. 13 presents an example of 
Rayleigh noise. 

3.2.8. Gamma noise 
Gamma noise often occurs in laser images with the PDF given by 

pn(x) =
abxb−1

(b − 1)!
e−ax, x ≥ 0 (7)  

where a > 0 and b is a positive integer. Fig. 14 illustrates an instance of 

Fig. 13. Rayleigh noise  

Fig. 14. Gamma noise  

Table 2 
summary of different noise types  

Type of noise Description 

Gaussian noise Gaussian noise obeys Gaussian distribution, which can be 
defined by mean and variance. 

White noise White noise is defined based on the noise power, which is a 
constant value. 

Impulse valued 
noise 

Impulse valued noise is also known as salt and pepper noise, 
which is often seen during transmission. 

Periodic noise Periodic noise has certain pattern that repeats independently in 
spatial domain, which can be easily removed by filtering in 
frequency domain. 

Speckle noise Speckle noise is multiplicative noise, which is usually caused by 
bad information channels. 

Poisson noise Poisson noise obeys the Poisson distribution, which is caused by 
the quantum characteristic of light. 

Rayleigh noise Rayleigh noise is often seen in radar images. 
Gamma noise Gamma noise often occurs in laser images.  
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Gamma noise. 
Considering the length of this review, only the above eight common 

noise models are discussed. Table 2 offers a summary of these different 
types of noise. 

3.3. Denoising Methods 

Extensive research has been done for image denoising. In this sec
tion, we present the well-known denoising algorithms, and these 
methods sometimes are combined to get better denoising results. 

3.3.1. Wavelet-based methods for denoising 
Wavelet transform is the most widely used method for signal anal

ysis, which offers multi-resolution analysis by scale-space domain 
transform. Two factors determine the wavelet transform result: wavelet 
basis function and decomposition level. The wavelet basis function is 
responsible for generating components of different frequencies. The 
decomposition level controls the threshold for the wavelet transform. 
Generally, wavelet-based denoising methods contain the following 
steps: wavelet decomposition, thresholding, and wavelet reconstruction. 
Denoising by wavelet algorithms is computationally efficient, and it 
requires less manual intervention as there is no parameter tuning. Edge 
preservation ability of wavelet methods is also outstanding. Hence, 
wavelet transform has been used for image denoising, enhancement, and 
feature extraction. 

Kazubek [74] suggested using Wiener filtering to analyze the co
efficients of the wavelet transform. Portilla, et al. [75] proposed a scale 
mixture denoising model in the wavelet domain. Firstly, the noisy image 
was decomposed into wavelet coefficients, and the covariance in the 
local neighborhood was estimated by a Gaussian vector and a hidden 
positive scalar multiplier. Then, a Bayesian based estimation algorithm 
was leveraged for removing Gaussian noise. Finally, the denoised image 
was obtained by wavelet reconstruction. Ghazel, et al. [76] conducted a 
detailed study on fractal wavelet coding for image denoising and 
restoration. Gruber, et al. [77] proposed to locally decompose the 
embedded noisy signals into lower dimension space and use local in
dependent component analysis to remove the noise. Afterwards, the 
noise-free signals can be obtained by reconstruction. They also put 
forward a delayed algorithm for multiple unknown signals extraction for 
denoising. In the experiment of denoising in nuclear magnetic resonance 
spectra, the performance of their denoising algorithms was compared 
with kernel principle component analysis. Luisier, et al. [78] suggested 
employing Stein’s unbiased risk estimate to obtain the weights in their 
model and proposed a wavelet thresholding algorithm. Khmag, et al. 
[79] designed a cluster-based denoising method in the wavelet domain. 
The coefficients from the second level of wavelet decomposition were 
used to generate sparse multi-resolution features from the noisy images. 
The clustered coefficients were linked based on the sparsity as well as 
self-similarity information. Bao, et al. [80] combined the wavelet 
transform with a deep learning algorithm. Firstly, the monogenic 
wavelet transform was selected as the feature extractor to generate 
amplitude and phase representations from the noisy images. Then, these 
representations served as the input to a deep deconvolutional neural 
network model for denoising. Finally, the denoised coefficients formed 
the clean image by inverse transform. Chen, et al. [81] proposed a new 
indicator called weight sum variance of digital number probability 
(WSVODP), which is only related to the difference of the sensors. The 
proposed WSVODP was capable of determine the optimal wavelet filter 
coefficients for denoising. Gökdağ, et al. [82] used wavelet transform to 
remove white Gaussian noise from confocal laser scanning microscopy 
images. They developed a systematic algorithm to get the best param
eters for wavelet thresholding and utilized the analysis of variance to 
monitor the interactions between these parameters. Wavelet transform 
can also be combined with swarm optimization algorithm for denoising 
[83]. 

3.3.2. Markov random field-based methods 
Markov random field (MRF) is a popular graphical model for status 

prediction. In an MRF, the status of a certain position is only dependent 
on the status of its neighboring positions but independent of any other 
units. Naturally, an image can be seen as an MRF, with the intensity 
values being the status and the coordinates as the positions. Therefore, 
MRF can be leveraged for image denoising. 

Malfait and Roose [84] proposed a denoising method with multi
variate probability functions. However, it’s difficult to determine those 
probability functions in practice. Therefore, MRF was utilized to obtain 
the probabilities in an indirect way. For noise suppression, three prob
ability functions were modeled: a posteriori, a priori, and a conditional 
probability function. In implementation of the MRF, 3 × 3 neighborhood 
was chosen. Hua, et al. [85] used MRF as a regularization method in 
image denoising. As they employed a two-state Gaussian mixture model, 
and the dependent relationship in the spatial domain between the 
wavelet coefficients was specified by the MRF model. To determine the 
hyper-parameters and configurations, expectation-maximization and 
iterated conditional modes were leveraged. Experiment results sug
gested that their denoising algorithm achieved a better signal-to-noise 
ratio than traditional wavelet transform. Barbu [86] developed a 
real-time denoising system by a novel active random field training. The 
active random field was proposed based on MRF with conditional 
random field. To train this active random field, an optimization algo
rithm based on supervised learning was proposed. The proposed novel 
random field technique yielded state-of-the-art performance with 
thousands of times faster speed so that it can be applied in real-time 
applications. Cao, et al. [87] designed a three-layer MRF to suppress 
the image noise. Each layer was aimed at a specific task. The texture 
regions were embedded in layer-1. In layer-2, the training target was 
stored, which was the images without noise. The layer-3 is composed of 
the noisy images. Maximum a posteriori estimation between the layer-1 
and layer-2 was implemented by iterated conditional modes. Simulation 
results revealed that their multi-layer MRF could suppress the noise 
while maintaining the details in the images. Xu and Shi [88] proposed a 
denoising algorithm for parallel MRI (pMRI). Fields of experts is a type 
of high-order MRF, which was used for priors learning in the statistics in 
pMRIs. A loss-specific training algorithm was also proposed to optimize 
the parameters in the fields of experts. The experiment was carried out 
on real data, and the denoising performance of the proposed approach 
was robust. Lekadir, et al. [89] developed a denoising and fiber recon
struction method for multi-slice cardiac diffusion tensor images (DTIs) 
based on MRF. The MRF was combined with a statistical constraint for 
missing fiber and a consistency term to enable the obtained meshes 
continuous. Their method was evaluated on both synthetic and real data 
and produced satisfactory results. 

Generally speaking, MRF can preserve the texture structures by 
spatial correlation information effectively. However, the optimization of 
the MRF models is usually based on iterated conditional modes, which is 
computationally expensive. 

3.3.3. Anisotropic diffusion filtering for denoising 
Anisotropic diffusion is used for image smoothing. Unlike the 

Gaussian blur, anisotropic diffusion is capable of denoising while 
maintaining the details in the images like edges and corners. The 
concept of anisotropic diffusion was originally invented in thermal 
theory. The idea of anisotropic diffusion in image denoising is that the 
pixels can be regarded as heat flows. If the pixel value is similar to its 
neighbors, that flow will diffuse to the neighbors. Otherwise, if the 
difference between the pixel and some of its neighbors is obvious, there 
can be some edges in the neighbors, so the flow will not diffuse to those 
directions. Therefore, the edges can be preserved. In essence, anisotropic 
diffusion filtering is edge-preserving filtering. For an image I, the iter
ation expression in four directions is 

It+1 = It + λ
(
cNx,y∇N(It) + cSx,y∇S(It) + cEx,y∇E(It) + cWx,y∇W (It)

)
(8) 
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where t is the iteration time, and the four derivatives and thermal co
efficients are defined as 
⎧
⎪⎪⎨

⎪⎪⎩

∇N
(
Ix,y

)
= Ix,y−1 − Ix,y

∇S
(
Ix,y

)
= Ix,y+1 − Ix,y

∇E
(
Ix,y

)
= Ix−1,y − Ix,y

∇W
(
Ix,y

)
= Ix+1,y − Ix,y

(9)  

⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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−
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)2

k2

)

cEx,y = exp
(

−
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(
Ix,y

)2

k2

)

cWx,y = exp
(

−
∇W

(
Ix,y

)2

k2

)

(10)  

where the λ and k are hyper-parameters. Significant efforts have been 
made to further improve the performance of basic anisotropic diffusion 
methods in applications. 

Ben Abdallah, et al. [90] found that anisotropic diffusion filtering 
works when an image is contaminated with speckle noise but fails on 
other types of noise. The reason is that the noise model was estimated 
wrong. Based on this finding, they put forward an adaptive anisotropic 
diffusion filtering (AADF). In AADF, the noise estimation was done at 
every iteration so that the color noise can be effectively removed. The 
image quality was improved in their experiment in comparison with 
conventional anisotropic diffusion filtering as well as fast non-local 
mean filtering algorithms. Kim, et al. [91] proposed to use region 
adaptive smoothing strength to improve the quality of the restored im
ages by anisotropic diffusion. In each iteration, an adaptive classifier 
was trained to obtain a promising estimation on the smoothing strength 
with respect to the changing noise. The training samples for the classifier 
were also carefully selected in order to ensure good results. In their 
implementation, decision tree was selected as the classification algo
rithm. They also proposed a region analysis approach to reduce the 
computational complexity. The proposed method yielded better peak 
signal to noise ratio than several anisotropic diffusion variant tech
niques. Xia, et al. [12] proposed a denoising technique for phase images 
based on anisotropic diffusion. They introduced a synthetic noise esti
mation technique to the anisotropic diffusion to accurately classify the 
noise pixels from the desired signal pixels so that the diffusion process 
can be iterated with the corresponding coefficients effectively. The 
proposed method was evaluated on artificial and real mouse artery 
images and achieved good denoising performance while preserving 
detailed information. Beitone, et al. [92] proposed a gradient aniso
tropic diffusion to reconstruct heat sources from noisy temperature 
fields. The gradient anisotropic diffusion was optimized to generate the 
possible heat source in an aluminum plate. Ben Abdallah, et al. [93] 
developed a segmentation technique for blood vessel images based on 
anisotropic diffusion. To remove the noise in the RGB fundus images, an 
adaptive anisotropic diffusion filter was used, with the combination of 
noise level functions. Then, the images were converted to gray-scale 
images for blood vessel segmentation. The noise level function was 
defined as the local variance in the images, which can be calculated 
intensities of the pixels. In their improved version of speckle 
noise-reducing anisotropic diffusion, the noise level function values of 
homogeneous regions were computed for noise estimation. Chen, et al. 
[94] put forward a denoising algorithm for seismic data analysis with 
anisotropic diffusion and isotropic diffusion. They found that the con
ventional Chambolle–Lions anisotropic diffusion (CLAD) method fails in 
separating noise from features when the characteristic of them is in 
multiple scales because it is difficult to find an appropriate threshold. 

Hence, an energy-based dynamic CLAD was developed which can 
distinguish noise from real information and employ different diffusion 
strategies for different regions dynamically. The threshold was defined 
as the mean of gradient magnitude, and it was updated during the it
erations of diffusion. Hadj Fredj and Malek [95] studied the oriented 
speckle reducing anisotropic diffusion (OSRAD) and tried to improve its 
computational efficiency so that the OSRAD can be applied in real-time 
denoising. They implemented a CUDA-based OSRAD, which runs on 
GPU. Compared with traditional OSRAD running on CPU, this 
CUDA-based OSRAD ran thirty times faster with the same denoising 
effect, which was better than other denoising algorithms like wavelet 
and bilateral based methods in their experiment. The removal of speckle 
noise in ultrasound images poses a major challenge in medical image 
analysis. Jubairahmed, et al. [96] discovered that conventional aniso
tropic diffusion could cause the loss of contour information in ultra
sound images. They suggested employing contourlet transform to 
decompose the ultrasound images into coefficients and leverage 
thresholding for denoising. Then, the denoised coefficients formed the 
image by reconstruction. Finally, to remove speckle noise, the adaptive 
nonlinear anisotropic diffusion was performed on the reconstructed 
image. Kamalaveni, et al. [97] proposed to improve the anisotropic 
diffusion by dynamic diffusion rate for different regions of images with 
the aim to maintain more details like lines and corners. Firstly, the 
structure tensor of each pixel was computed and decomposed to get the 
eigenvalues and eigenvectors. Then, the maximum and minimum 
gradient variations for every pixel were generated by its eigenvalues and 
eigenvectors. Afterwards, the edge functions and the corresponding 
derivatives along the gradient directions can be obtained. Finally, the 
self-snake diffusion filter was used to remove speckle noise, and an edge 
stopping term was added for sharpness improvement. Bai and Feng [98] 
put forward a generalized anisotropic diffusion, inspired by the frac
tional order anisotropic diffusion. A novel derivative named G-deriva
tive was presented, and the generalized anisotropic diffusion can be 
given based on Euler–Lagrange equations. Detailed analyses of stability 
and simulation results were also presented. Elsharif, et al. [99] devel
oped a hybrid denoising system for ultrasound images. They performed 
two level discrete wavelet transform (DWT), and employed anisotropic 
diffusion was used for speckle removal. The nonlinear filtering was also 
performed on the DWT coefficients, and the total variation was utilized 
to obtain better quality. Their method outperformed several traditional 
denoising algorithms in terms of image quality measurements like 
signal-to-noise ratio, etc. Guo, et al. [100] introduced weighted 
Euclidean distance to detect edges in synthetic aperture radar images so 
that the coefficients of anisotropic diffusion can be updated adaptively. 
The comparison of Gaussian weighting and nonlinear weighting mech
anism was discussed as well. Mishra, et al. [101] proposed to harness the 
edge density probability function and the local information of pixels to 
better adjust the diffusion directions in speckle reducing anisotropic 
diffusion. The false contours can be removed by edge density informa
tion, and the phenomenon of over smoothing can be alleviated by the 
relativity of pixels. Experimental results revealed that their method 
produced better sharpness of the lines in ultrasound images. Mei, et al. 
[102] suggested to used phase asymmetry to recognize lines and edges 
in ultrasound images. Based on this phase asymmetry idea, they pro
posed a new fractional total variation method. The coefficients of frac
tional order anisotropic diffusion were developed based on phase 
asymmetry. The entire denoising model was optimized by gradient 
descent. The edge preserving and denoising performance was improved, 
and the staircase phenomenon was alleviated as well. 

3.3.4. Non-local methods for denoising 
Non-local methods take a different perspective to remove the noise in 

images. Instead of denoising based on local information, such as linear 
filtering and median filtering, non-local methods employ the redun
dancy information in images for noise removal. The entire image is 
divided into several blocks. To remove noise in certain block, non-local 
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methods will search the other blocks with similar structures and 
compute a weighted average estimation as the denoised pixel value. 

Suppose a pixel i with observed gray-level v(i) in a noisy image I, the 
estimation by non-local means (NLM) filtering is defined as 

NLM(v(i)) =
∑

j∈I
w(i, j)v(j) (11)  

where w(i, j) serves as the weighting factor, which satisfies 
{ 0 ≤ w(i, j) ≤ 1, ∀j ∈ I

∑

j∈I
w(i, j) = 1 (12) 

The similarity in the pixel pair (i, j) is measured by the gray-level 
vectors of their blocks. With this weighting strategy, non-local means 
not only considers the single-pixel values but takes the neighborhood 
structure information into account, so that it can produce robust 
denoising results. Non-local methods have been widely used for various 
types of image denoising applications, and variations have been pro
posed as well. 

Yang, et al. [103] proposed a hybrid speckle removal system based 
on NLM for ultrasound images. The local structure information was used 
to generate speckle noise statistics in local blocks. To reduce mixed 
noise, Chen, et al. [104] proposed a robust bi-sparsity model to generate 
the similarity based on the prior information. The coefficients and 
non-local means were utilized to recognize the similar structures, which 
were regularized by L0 norm. With the aim of handling outliers and 
improving robustness, a weighting mechanism was also added to their 
system. The experimental results demonstrated the superiority of their 
method. Yu, et al. [105] developed a probabilistic NLM method to 
remove speckle noise from optical coherence tomography images. 
Rank-ordered absolute difference (ROAD) was employed to distinguish 
the noisy pixels in the local blocks of the image, and the uncorrupted 
probability can be calculated. Consequently, better similarity estimation 
can be performed between the image blocks. Finally, the noisy pixels can 
be restored using weighted means. The improved NLM yielded prom
ising speckle removal performance and preserved the structure infor
mation at the same time. In [106], a discontinuity indicator was 
proposed to classify the edges and noise, and an adaptive bandwidth 
parameter was used to replace the fixed one to obtain better denoising 
performance. Mandal, et al. [107] put forward a super-resolution algo
rithm with only a single noisy image. The noise strength was evaluated 
by the gradients of local blocks. To implement sparse representation, an 
adaptive thresholding algorithm was proposed. An additional term was 
included to reserve edges and contours in the reconstructed image. Qian, 
et al. [108] suggested using principal component analysis to estimate 
the noise level to improve the efficacy of NLM. Tang, et al. [109] found 
that there is a correlation between the image blocks without noise, 
which can be revealed by low-rank representation. Hence, a corrupted 
probability term was employed for regularization. Multiple estimations 
of the local blocks were harnessed to get the aggregated denoised image. 
Bindilatti, et al. [110] combined Wiener filter with non-local weighting 
to remove signal-dependent noise like Poisson noise. They proposed to 
estimate parameters by non-local block information based on stochastic 
distance. Georgiev, et al. [111] developed a 3D image analysis algorithm 
based on non-local denoising in complex domains. Panigrahi, et al. 
[112] firstly transformed the images into the curvelet domain, and the 
approximation and detailed coefficients were obtained. Then, a 
multi-scale NLM was proposed to remove noise and maintain edges. To 
distinguish noise and signal, hard thresholding was used. The experi
ment was implemented with both gray-level and color images. Shah
doosti and Rahemi [113] used a log-likelihood to get denoised pixels in 
images, and the non-local information of the blocks was generated based 
on Pearson distance for filtering. Hou, et al. [114] proposed pixel-level 
non-local self-similarity which performed better than block-level simi
larity, because it is easier to obtain similar pixels than similar blocks. 

Mei, et al. [115] proposed an optimized Bayesian non-local means to 
estimate the noise-free ultrasound images. Redundancy index of every 
block was computed to locate the low-redundancy areas of the image. 
Zeng, et al. [116] integrated non-local filtering and low-rank regulari
zation to remove noise from hyperspectral images. The image was first 
divided into overlapping blocks. To separate the clean blocks from noisy 
blocks and maintain structure information simultaneously, a local 
rank-constrained low-rank technique was proposed. Finally, an NLM 
algorithm was used to remove noise. 

3.3.5. Bilateral and Trilateral filtering 
Bilateral and trilateral filters are nonlinear filters that are capable of 

removing noise as well as preserving details, such as edges and corners 
in images. Good denoising results by bilateral and trilateral methods are 
contributed by the weighted sum of intensity values in the neighborhood 
of the pixels. The weights are carefully chosen, which are related to not 
only the pixel spatial distances but also the intensity distances. Given an 
image I, the bilateral filtering is expressed as 

Bil(I(x)) =
1
C

∑

y∈N(x)

e
−

y−x2

2σ2
d e

−
|I(y)−I(x)|2

2σ2
r I(y) (13)  

where the σd and σr are hyper-parameters that control the tradeoff be
tween spatial distance and intensity distance, N(x) is the neighboring 
field of pixel x and C is the constant value obtained by 

C =
∑

y∈N(x)

e
−

y−x2

2σ2
d e

−
|I(y)−I(x)|2

2σ2
r (14) 

The values of the two hyper-parameters σd and σr are crucial for the 
final denoising results. Unfortunately, there is little theoretical research 
on how to determine optimal hyper-parameters. In practice, they are 
usually determined by trial and error. Zhang and Gunturk [117] tried to 
model the two as noise variance functions by empirical analysis. They 
revealed that σr is the more significant factor of the two, which is linear 
to the noise’s standard deviation. An improved multi-resolution bilateral 
filtering was proposed by integrating bilateral filtering with a wavelet 
thresholding method. Akdemir Akar [118] suggested harnessing the 
genetic algorithm to optimize the parameters in bilateral filter model for 
Rician noise elimination in MRIs. Balocco, et al. [119] proposed a 
speckle reducing bilateral filter (SRBF) for ultrasound denoising. To 
preserve the image details, the statistical characteristics of noise were 
embedded into the conventional bilateral filter. Lin, et al. [120] devel
oped an automated system to remove impulse noise and Gaussian noise 
based on a switching mechanism. Firstly, the features for textures and 
boundaries were generated for every pixel in the image. Then, each pixel 
was classified as impulse noise, Gaussian noise or real signal based on a 
sorted quadrant median vector approach. Finally, the switching bilateral 
filter was employed to remove these two different types of noise based 
on the classification labels. Their method can work efficiently without 
weighting parameters. Zhang, et al. [121] also suggested removing 
impulse and Gaussian noise within one framework. Firstly, they found 
out all the impulse noise pixels by a detector and edge component value. 
Then, they suggested connecting the edges to get refined regions. 
Finally, an adaptive bilateral filter was proposed to remove the two 
types of noise with different strategies automatically based on the label 
information from the detector. Wei, et al. [122] put forward a two-stage 
denoising algorithm for 3D optical and laser scanning. In the first stage, 
a joint bilateral filter method was developed to remove most noise in the 
3D mesh while preserving texture features. In the second stage, they 
proposed to add the boundaries and lines as constraints to the traditional 
Laplacian smoothing because the feature lines are easy to obtain after 
the denoising in the first stage. Phophalia and Mitra [123] integrated the 
bilateral filter with rough set theory (RST) to improve denoising efficacy 
as well as preserving more details. The RST was employed for generating 
edge mask and labels at pixel level, which can be used to guide the 

S. Wang et al.                                                                                                                                                                                                                                   



Information Fusion 76 (2021) 376–421

386

Table 3 
Summary of image denoising methods  

No. Authors Type of noise Methods Datasets Results 

1 Kazubek [74] White Gaussian noise A thresholding for pre-processing 
and Wiener filtering for denoising 

Standard test images (Barbara and 
Lena) 

The proposed method achieved state-of-the- 
art PSNRs with less computational 
complexity. 

2 Portilla, et al.  
[75] 

White Gaussian noise Wavelet decomposition, Gaussian 
vector, and Bayesian estimation 

Standard test images (Lena, 
Barbara, Boats, House, and 
Peppers) 

Their algorithm achieved substantially 
better PSNR and mean squared error than 
some previous methods. 

3 Ghazel, et al.  
[76] 

White Gaussian noise Fractal wavelet coding Standard test image (Lena) The fractal wavelet coding produced better 
denoising performance in terms of PSNR 
and root mean squared error. 

4 Clauset, et al.  
[151] 

White Gaussian noise Local ICA and kernel PCA Standard test image (Lena) and 
nuclear magnetic resonance 
spectra 

The kernel PCA achieved better denoising 
effects on nuclear magnetic resonance 
spectra images. 

5 Pedersen, et al.  
[152] 

White Gaussian noise Stein’s unbiased risk estimate and 
wavelet thresholding 

Standard test images (Al, Bridge, 
Crowd, Goldhill, Barbara, Boats, 
House, and Peppers) 

Near-optimal denoising results were 
achieved with less computation 
requirement. 

6 Fielding, et al.  
[153] 

White Gaussian noise Dictionary learning, cluster, and 
wavelet decomposition 

8 benchmark images (girl, baboon, 
couple, bark, etc.) 

The proposed method achieved state-of-the- 
art denoising performances within less 
execution time. 

7 Pedersen, et al.  
[152] 

White Gaussian noise Convolutional neural network and 
monogenic transform 

Berkeley segmentation dataset The combined framework achieved state-of- 
the-art performance in terms of both 
visualization and PSNR. 

8 Molenberghs, 
et al. [154] 

Stripe noise Weight sum variance of digital 
number probability 

Remote sensing images Their denoising approach yielded better 
PSNR, which consequently helped the cloud 
segmentation. 

9 Gökdağ, et al.  
[82] 

White Gaussian noise Wavelet thresholding and analysis 
of variance 

Confocal laser scanning 
microscopy images 

The proposed method achieved satisfactory 
denoising results. 

10 Golilarz, et al.  
[83] 

White Gaussian noise Multi-population differential 
evolution-assisted Harris hawks 
optimization algorithm and 
thresholding neural network 

Satellite images Utilization of particle intelligent algorithms 
for parameter optimization enhanced the 
denoising performance. 

11 Malfait and 
Roose [84] 

White Gaussian noise Wavelet decomposition, Markov 
random field, and probability 
functions 

Standard test images (House, 
Peppers, and aerial photographs) 

The denoising effect of the proposed method 
was better than other wavelet-based 
methods. 

12 Hua, et al. [85] Speckle noise Wavelet decomposition, Markov 
random field, Gaussian mixture 
model, and expectation 
maximization 

Synthetic aperture radar images The proposed method outperformed 
conventional wavelet methods for 
denoising. 

13 Kim and Curry  
[155] 

Gaussian noise Active random field Standard test images (Lena, 
Barbara, Boats, House, and 
Peppers) 

Active random field performed better than 
conventional Markov random field as well 
as thousands of times speedup. 

14 Dong and Peng  
[156] 

White Gaussian noise Hierarchical Markov random field 
and iterated conditional modes 

Standard test images (Lena, Bark, 
Straw, Tile roof, Baboon, Barche, 
Brodatz, and Elaine) 

The proposed method can preserve more 
texture information as well as efficiently 
denoise. 

15 Cismondi, et al.  
[157] 

Non-central Chi 
distributed noise 

Markov random field, sliding 
window scheme, and Gaussian 
mixture model 

Parallel magnetic resonance 
images 

Their method was effective and robust in 
comparison with state-of-the-art 
approaches. 

16 Do, et al. [158] Fiber noise Markov random field and a 
consistency term 

Multi-slice cardiac diffusion tensor 
images 

Their method improved the performance of 
denoising and reconstruction on 3D images. 

17 Roland, et al.  
[159] 

Gaussian noise, 
multiplicative noise, and 
mixed color signal- 
dependent noise 

Adaptive anisotropic diffusion 
filtering 

Berkeley segmentation dataset and 
retinal images 

The image quality was improved in their 
experiment in comparison with 
conventional anisotropic diffusion filtering 
as well as fast non-local mean filtering 
algorithms. 

18 Mirkes, et al.  
[160] 

White Gaussian noise Anisotropic diffusion and region 
adaptive smoothing strength 

Kodak dataset The proposed method yielded better peak 
signal-to-noise ratio than several anisotropic 
diffusion variant techniques. 

19 Idri, et al. [161] Random noise and speckle 
noise 

Anisotropic diffusion and 
synthetic noise estimation 
technique 

Phantom and mouse artery images The proposed method achieved good 
denoising performance while maintaining 
detailed information. 

20 Myrtveit, et al.  
[162] 

White Gaussian noise Gradient anisotropic diffusion Infrared thermography Their method can accurately generate heat 
sources in noisy field images. 

21 Wang and Rao  
[163] 

Gaussian noise, Speckle 
noise, and Poisson noise 

Adaptive anisotropic diffusion and 
noise level function 

STARE Project database and DRIVE 
database 

The proposed denoising algorithm is 
beneficial to image segmentation. 

22 Stamatakis and 
Alachiotis [164] 

Gaussian noise Anisotropic diffusion and energy- 
based dynamic CLAD 

Seismic data Their method was effective in removing 
noise from seismic data. 

23 Little [165] Speckle noise CUDA based oriented speckle 
reducing anisotropic diffusion 

Synthetic data and real ultrasound 
video images 

This CUDA-based OSRAD ran thirty times 
faster with the same denoising effect, which 
was better than other denoising algorithms 
like wavelet and bilateral-based methods in 
their experiment. 

24 Jubairahmed, 
et al. [96] 

Speckle noise Contourlet transform and adaptive 
nonlinear anisotropic diffusion 

The US image database The despeckling performance of this 
approach was better than several state-of- 
the-art methods. 

25 Speckle noise 

(continued on next page) 
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Table 3 (continued ) 

No. Authors Type of noise Methods Datasets Results 

Lefort, et al.  
[166] 

Structure tensor, maximum and 
minimum gradient variations, and 
self-snake diffusion filter 

Standard test images (Lena, Fruits, 
Camera, Ship, Lift, Wheel, Cat, 
Trui1, Barbara, and House) 

The proposed method outperformed 
conventional diffusion algorithms. 

26 Schafer and 
Graham [167] 

White Gaussian noise Generalized anisotropic diffusion Standard test images (Lena, 
Barbara, Boat, and Peppers) 

The generalized anisotropic diffusion was 
effective in denoising. 

27 Elsharif, et al.  
[99] 

Speckle noise Wavelet decomposition and 
nonlinear filtering 

Ultrasound images Their method outperformed several 
traditional denoising algorithms in terms of 
image quality measurements. 

28 Guo, et al. [100] Speckle noise Weighted Euclidean distance and 
nonlinear filtering 

Synthetic aperture radar images The proposed method can remove speckle 
noise and better maintain the edge 
information at the same time. 

29 Ratitch, et al.  
[168] 

Speckle noise Edge density probability function 
and nonlinear filtering 

Ultrasound images Experiments revealed that their method 
produced better sharpness of the lines in 
ultrasound images. 

30 Mei, et al. [102] Speckle noise Fractional total variation, gradient 
descent and fractional order 
anisotropic diffusion 

Ultrasound images The edge-preserving and denoising 
performance was improved, and the 
staircase phenomenon was alleviated as 
well. 

31 Tsiatis and 
Davidian [169] 

Speckle noise Non-local means filtering with 
local structure information 

Ultrasound images The denoising performance was better 
compared with original non-local means. 

32 Gottfredson, et al. 
[170] 

Gaussian noise, salt-and- 
pepper noise and random 
valued impulse noise 

Non-local means filtering and 
robust bi-sparsity model 

Standard test images (F16, Lena, 
Peppers, House, Barbara, Boat, 
Bridge, Pentagon, and Couple) 

The denoising performance of their 
approach was better than several state-of- 
the-art methods. 

33 Gad and Darwish  
[171] 

Speckle noise Probabilistic non-local means and 
rank-ordered absolute difference 

Optical coherence tomography 
images 

The improved NLM yielded promising 
speckle removal performance and preserved 
the structure information at the same time. 

34 Roy [172] White Gaussian noise Non-local means filtering, 
discontinuity indicator and 
adaptive bandwidth 

USC-SIPI image database The proposed method yielded better PSNR 
than some mainstream algorithms. 

35 Laird [173] White Gaussian noise, 
Rayleigh noise and 
uniform noise 

Non-local means filtering and 
adaptive thresholding algorithm 

Standard optical images, 
Middlebury database and BSD100 
dataset 

Their method was robust and effective in the 
experiments on different datasets as well as 
under different noise conditions. 

36 Rotnitzky and 
Wypij [174] 

White Gaussian noise Non-local means filtering and 
principal component analysis 

Brillouin optical time domain 
analyzer signals 

The proposed system can denoise without 
distortion. 

37 Tang, et al. [109] Speckle noise Non-local means filtering and low- 
rank representation 

Optical coherence tomography 
images 

The experiments on real world images 
suggested that their method outperformed 
several state-of-the-art approaches in 
denoising. 

38 Robins, et al.  
[175] 

Poisson noise Wiener filter with non-local 
weighting 

Standard test images (Cameraman, 
Peppers, Barbara, Boat and Head 
CT) 

The proposed algorithm was effective in 
denoising and it can preserve more edge 
information. 

39 Georgiev, et al.  
[111] 

Gaussian noise Complex-domain non-local 
denoising 

3D time-of-flight data Their method showed superiority in 
complex domain denoising. 

40 Vansteelandt, 
et al. [176] 

White Gaussian noise Curvelet transform and multi-scale 
non-local means 

Standard test images (Barbara, 
Boat, Building, Cameraman, 
Couple, Goldhill, House, Lake, Lena 
and Peppers) and color images 

The proposed algorithm achieved state-of- 
the-art performance in terms of PSNR. 

41 Stekhoven and 
Bühlmann [177] 

Speckle noise Log-likelihood and Pearson 
distance 

Ultrasound images The denoising performance of their method 
exceeded some state-of-the-art approaches 
in terms of PSNR. 

42 Donders, et al.  
[178] 

White Gaussian noise and 
real-world noise 

Pixel-level non-local self- 
similarity 

BSD68 dataset, Cross-Channel 
dataset, and Darmstadt Noise 
Dataset 

Their method achieved competitive 
denoising results. 

43 Waljee, et al.  
[179] 

Speckle noise Optimized Bayesian non-local 
means 

Ultrasound images Their method improved the denoising 
performance and preserved more edge 
information compared with original non- 
local means. 

44 Brick and Kalton  
[180] 

Gaussian noise, white 
Gaussian noise, stripe 
noise and impulse noise 

Non-local means filtering and low- 
rank regularization 

Hyperspectral images The proposed scheme achieved state-of-the- 
art denoising performance. 

45 Zhang and 
Gunturk [117] 

White Gaussian noise and 
real-world noise 

Bilateral filtering and wavelet 
thresholding 

Standard test images (Barbara, 
Boat, Goldhill, House, Lena and 
Peppers) and color images 

The evaluation on both synthetic and real- 
world images revealed the effectiveness of 
their method. 

46 Zhang [181] Rician noise Bilateral filtering and genetic 
algorithm 

Brain magnetic resonance images The performance of bilateral filtering is 
dependent on the parameter selection, and 
genetic algorithm improved the denoising 
performance. 

47 Horton and 
Lipsitz [182] 

Speckle noise Speckle reducing bilateral filter Ultrasound images Their algorithm was applicable in various 
speckle noise situations. 

48 Lin, et al. [120] Impulse noise and 
Gaussian noise 

Switching bilateral filtering and 
sorted quadrant median vector 
approach 

Standard test images (Boat, 
Goldhill, Airplane, Lena, and 
Bridge) 

Their method can work efficiently without 
weighting parameters. 

49 Fuller and Kim  
[183] 

Impulse noise and 
Gaussian noise 

Impulse noise detector, adaptive 
bilateral filtering and improved 
artificial bee colony 

Standard test images (Airplane, 
Boats, Bridge, Goldhill, House, 
Lena, Monarch, Pepper, etc.) 

The denoising results of their algorithm was 
better than some state-of-the-art filters. 

50 3D optical and laser scanning 

(continued on next page) 
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bilateral filter. Zhang, et al. [124] proposed an adaptive wavelet 
shrinkage algorithm and combined it with trilateral filter to eliminate 
impulse and speckle noise in ultrasound images. 

The trilateral filter is an improved form of bilateral filter, which is 
proposed to deal with impulse noise elimination. The trilateral filter 
introduces a ROAD function to determine whether a pixel is on an edge 
or it is impulse noise. Chen, et al. [125] found that conventional bilateral 
filter fails when the centroid of a neighborhood is labeled as noise pixel 
in hyperspectral image. Hence, they proposed a trilateral smoothing 
algorithm to solve this challenge. Langampol, et al. [126] suggested 
improving the performance of switching bilateral filters by introducing a 
domain weight pattern. The domain weight pattern was proposed to 
describe the intensity distribution of the center pixel and its neighbor
hood. With this novel pattern, the mixed noise and the strength can be 
obtained so that the bilateral filter achieved better results. Cui, et al. 
[127] proposed a guided trilateral filter scheme and applied it for 
denoising in ultrasound images, which was generated by the maximum 
likelihood estimation over the residual of noisy images and target im
ages. Bilateral and trilateral filters can also be used to improve the 
quality of videos, like frame rate up-conversion and signal-to-noise-ratio 
improvement [128]. 

3.3.6. Deep learning for denoising 
Deep learning is one of the most active research topics in computer 

science nowadays, which has been applied in various practical prob
lems, such as image recognition [129], semantic segmentation [130], 
and restoration [131]. In fact, the CNN model was proposed as early as 
1989 by LeCun, et al. [132] for recognition of handwritten zip codes, but 
restricted by ineffective training algorithms and limited computational 
resources-thus, the mainstream scientific community and practitioners 
did not pay much attention to CNNs. Deep learning was popularized by 
the AlexNet [133] in 2012, with its exciting performance on ImageNet 
Large-Scale Visual Recognition Challenge (ILSVRC). Since then, various 
CNN models have been invented such as VGG [134], ResNet [135], 
DenseNet [136], SqueezeNet [137], MobileNet [138], etc. These popu
lar CNN models are designed for image classification, but they can also 
be used for image denoising. 

Schuler, et al. [139] proposed to use multilayer perceptron for image 
deconvolution, which sharpens a blurry image. The input to the multi
layer perceptron was the noisy images, while the output was the 
denoised clean images. The mapping by multilayer perceptron worked 
without feature selection, and it can be used to remove different types of 
noise as well as mixed noise. Huang, et al. [140] proposed a self-learning 

Table 3 (continued ) 

No. Authors Type of noise Methods Datasets Results 

Yenduri and 
Iyengar [184] 

Gaussian noise and real- 
world noise 

Joint bilateral filter and improved 
Laplacian smoothing 

The proposed scheme was effective and 
feasible in 3D mesh denoising. 

51 Biessmann, et al.  
[185] 

Gaussian noise and Rician 
noise 

Bilateral filter with rough set 
theory 

Open Access Series of Imaging 
Studies and Brain Tumor 
Segmentation challenge data 

The proposed denoising method achieved 
better denoising performance on two 
benchmark datasets. 

52 Nelwamondo, 
et al. [186] 

Impulse noise and speckle 
noise 

Adaptive wavelet shrinkage 
algorithm and trilateral filtering 

Ultrasound images The proposed method can denoise while 
improve the sharpness of the edges. 

53 Do and Batzoglou 
[187] 

Real-world noise Trilateral smoothing algorithm Indian Pines, Salinas, and the 
University of Pavia 

Their method achieved better performance 
than traditional bilateral filtering. 

54 Nelwamondo, 
et al. [186] 

Gaussian noise, salt and 
pepper noise, uniform 
impulse noise, and 
speckle noise 

Switching bilateral filter and 
domain weight pattern 

Standard test images (Lena, 
Baboon, Girl, Pentagon, House, 
Airplane, Sailboat, Aerial, Stream- 
and-bridge, etc.) 

The proposed approach outperformed 
several bilateral filter-based methods in 
eliminating noise. 

55 Cui, et al. [127] Speckle noise Guided trilateral filter scheme and 
maximum likelihood estimation 

Ultrasound images Their method was effective in image 
denoising and less sensitive to parameter 
settings. 

56 Zhang, et al.  
[188] 

Interpolation noise Motion estimation and trilateral 
filtering 

Standard image sequences 
(Football, Tennis, Garden, Mobile, 
Paris, and Container) 

Trilateral filtering can help improve the 
video quality in frame rate up-conversion. 

57 Schuler, et al.  
[139] 

White Gaussian noise Multilayer perceptron Berkeley segmentation dataset The proposed method can be applied in real- 
world image de-blurring. 

58 Pampaka, et al.  
[189] 

Gaussian noise and rain 
streaks 

Self-learning image decomposition 
framework 

Real-world images Their method outperformed state-of-the-art 
approaches in removing rain streaks and 
Gaussian noise. 

59 Reiter and 
Raghunathan  
[190] 

White Gaussian noise Stacked denoising autoencoder CIFAR-bw dataset The proposed autoencoder was evaluated on 
a large dataset and achieved state-of-the-art 
denoising performance. 

60 Van Buuren  
[191] 

White Gaussian noise Residual blocks and multi-scale 
feature selection 

Standard test images (Boats, Lena, 
Pepper, etc.), and Berkeley 
Segmentation Dataset 

The experiment suggested that their model 
achieved better denoising results than eight 
state-of-the-art approaches. 

61 Allison [192] Stripe noise Residual blocks and wider CNN 
structure 

Meteorological satellite infrared 
cloud images 

Their CNN model was better than several 
state-of-the-art methods in denoising. 

62 Zhang [193] Real-world noise Spectral difference mapping 
algorithm and principal 
component analysis 

Hyperspectral images and airborne 
data 

The proposed method reduced 
computational complexity and preserved 
more spectra details while denoising. 

63 Allison [192] Gaussian noise and 
Poisson noise 

3-D atrous denoising convolution 
neural network 

Hyperspectral images The proposed architecture outperformed 
several state-of-the-art methods. 

64 Sinharay, et al.  
[194] 

Gaussian noise Residual learning and batch 
normalization 

BSD68 Their model worked effectively for 
denoising with less computational time. 

65 Zheng, et al.  
[147] 

Gaussian noise Privacy-preserving deep neural 
network 

ChestX-ray8 Their method can be applied in a cloud 
computing environment for denoising. 

66 Little [165] Rain streaks Recurrent network, residual 
mapping, and bilateral LSTM 

Rain100H The proposed model achieved satisfactory 
denoising results on real-world images. 

67 Little [165] Gaussian noise and real- 
world noise 

Attention-guided denoising 
convolutional neural network 

Berkeley Segmentation Dataset and 
Waterloo Exploration 
Database 

The denoising performance of the proposed 
network was comparable to state-of-the-art 
models. 

68 Wu and Bailey  
[195] 

Gaussian noise and real- 
world noise 

Batch-renormalization denoising 
network 

Berkeley Segmentation Dataset and 
Waterloo Exploration Database 

The proposed model yielded better 
performance than state-of-the-art denoising 
algorithms.  
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image decomposition framework that can be applied to denoising. With 
sparse representation and clustering, their method does require training 
images, so it can be used for single image denoising. Li [141] designed a 
denoising autoencoder and stacked these autoencoders together for 
noise removal. Sun, et al. [142] first employed residual learning to 
produce a denoised reference image for the input noisy image. Then, a 
multi-scale feature selection structure based on residual blocks was 
proposed to restore the details with both the input noisy image and the 
denoised reference. Xiao, et al. [143] also use residual learning with the 
aim of reducing mapping size. Then, a wider CNN architecture with 
more convolutional layers was employed for denoising, and the repre
sentations from different CNN layers were harnessed to recover the 
details and texture information. They also extend their research for 
single image denoising. Xie, et al. [144] put forward a spectral differ
ence mapping algorithm for hyperspectral image denoising. The 
denoised key band was proposed to implement efficient computing, 
which was obtained by principal component analysis. Liu and Lee [145] 
presented a 3-D atrous denoising convolution neural network for 
denoising. Both the spatial and spectral domains were leveraged to 
extract features. In order to prevent overfitting as well as to preserve 
more detail, multi-scale and multi-branch analysis was conducted. Tian, 
et al. [146] combined residual learning with batch normalization to 
accelerate the training process for image denoising. Zheng, et al. [147] 
proposed a denoising deep neural network and applied it for privacy 
preservation in the cloud. Ren, et al. [148] first trained two single 
recurrent networks and coupled them to extract both rain streaks and 
noise-free backgrounds. Then, bilateral LSTM was designed to integrate 
the two models to propagate the rain streaks and background. Tian, et al. 
[149] introduced an attention mechanism into deep CNN to remove 
image noise, and they also proposed to use batch re-normalization to 
fuse two deep CNNs for denoising in [150]. 

To summarize, in this section, we provided a detailed account of 
various image denoising methods, including wavelet-based methods, 
Markov random fields, anisotropic diffusion filtering, non-local 
methods, bilateral and trilateral methods, and deep learning-based 
denoising. A brief summary of these denoising methods is listed in 
Table 3. In many practical applications, however, a combination of 
denoising methods is likely to produce more satisfactory results. Image 
denoising is still a challenge in image pre-processing, and the quest for 
better denoising performance is likely to continue for years to come. 

4. Missing value challenge 

At the data-level for multimodal data fusion, we often meet a sig
nificant unavoidable challenge—missing values. This ‘missing value 
challenge’ pervasively exists in the majority of real-world data sets, and 
four commonly seen scenarios are listed below. The first is: when dealing 
with locally missing samples in a single dataset, a clear and complete 
data entry will not be easy to obtain due to many reasons [196]. For 
instance, the selected detector is inappropriate, the detector is partially 
occluded or malfunctioned during the working process, or the data is 
omitted during the collection process. All these factors may lead to the 
data-missing challenge. The next point is when multiple modalities are 
involved in a system, obtaining the data from only one modality cannot 
present complete and accurate information of the system. For instance, 
MEG and EEG are always recorded at the same time to compensate in
formation for each other [197]. Thirdly, when taking samples at 
different modalities, if the utilized sampling points are incomparable, 
the obtained data will possibly be seen as structurally missing. For this 
scenario, each modality is appropriately sampled on its own. However, 
the points on the common sampling grid would be seen as missing data if 
they miss the data from all modalities [198]. The fourth circumstance is 
connection prediction, which often appears in social network analysis 
and recommender systems. For instance, the challenge in the analysis of 
social networks is how to well predict social connections according to an 
existing database of connections [199], where known entries are far 

from enough. 

4.1. Missingness mechanisms 

Missingness mechanisms can be defined as the nature and categories 
of missing values. If considered from the perspective of missing distri
bution, three unique categories can be listed: Missing Completely at 
Random (MCAR), Missing at Random (MAR) [185], and Missing not at 
Random (MNAR) [187]. 

In the case of MCAR, the missing data distribution is random and 
uncorrelated with the values of any variables. In the case of MAR, the 
missing distribution is not completely random; that is, the missing of 
such data is not associated with the missing values themselves but 
possibly has some relations with the observed values. In the case of 
MNAR, the absence of data is dependent on missing values themselves 
[193,200,201]. 

4.2. Missing data patterns 

In general, missing data patterns can be categorized into two: uni
variate and multivariate. Under the circumstance of a univariate miss
ingness pattern, missing values can only exist in one variable. A typical 
example can be seen in Table 4, where x stands for the variable and C 
stands for the row. It is explicit that variable x6 is the only variable with 
missing data [196]. 

Under the circumstance of multivariate missingness pattern, missing 
values will exist in no less than two variables. Moreover, this pattern 
could be categorized into a monotone pattern and arbitrary patterns. In 
the situation of monotone, if the data for column xi is missing, then all 
subsequent data will be missing, as shown in Table 5 [196]. 

For an arbitrary pattern, as illustrated in Table 6, missing values can 
appear anywhere, and no matter how one arranges variables, no special 
structure would appear [196]. 

All in all, if not handling well, missing data would greatly affect the 

Table 4 
Univariate missingness pattern   

x1 x2 x3 x4 x5 x6 

C1 76 109 56 83 17 207 
C2 123 82 111 100 106 ? 
C3 67 73 89 8 29 ? 
C4 25 106 45 34 10 ? 
C5 213 55 38 145 89 ? 
C6 89 45 90 17 96 ?  

Table 5 
Multivariate missingness pattern: monotone pattern   

x1 x2 x3 x4 x5 x6 

C1 76 109 56 83 17 207 
C2 123 82 111 100 106 ? 
C3 67 73 89 8 ? ? 
C4 25 106 45 ? ? ? 
C5 213 55 ? ? ? ? 
C6 89 ? ? ? ? ?  

Table 6 
Multivariate missingness pattern: arbitrary pattern   

x1 x2 x3 x4 x5 x6 

C1 76 109 56 83 17 ? 
C2 ? 82 111 100 106 80 
C3 67 73 ? 8 29 96 
C4 25 ? 45 34 ? 109 
C5 213 55 38 145 89 310 
C6 89 45 90 ? 96 95  
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quality of multimodal data fusion in various ways. One obvious impact is 
efficient information, and statistical power may be reduced [202,203], 
and thus some useful data analysis approaches will become difficult to 
employ [204]. In addition, some bias may be introduced into estima
tions derived from the statistical model [159,160,200]. Therefore, to 
improve the quality of the knowledge obtained from data fusion and 
other intelligent data analysis approaches, the first issue we must handle 
with is missing values. 

The remainder of this section introduces a solution called Missing 
Data Imputation Techniques. The meaning for each abbreviation used is 
stated out in Table 11. 

4.3. Missing Data Imputation Techniques 

Missing Data Imputation Techniques (MDITs) are commonly utilized 
to deal with the missing values [205]. Rather than delete or tolerate the 
cases associated with missing values, it can well handle the missing 
values by imputing appropriate new values and at the same time 
retaining the originally known values in the dataset. There exist various 
methods in the field of MDITs. They can be divided into two categories: 
non-ignorable (NI) missing data imputation and ignorable missing data 
imputation. 

4.3.1. Non-ignorable (NI) missing data imputation methods 

4.3.1.1. Likelihood-based methods. One main category of NI imputation 
methods is the likelihood-based method. To well utilized this method, 
the first thing that needs to be determined is the mechanism of miss
ingness. This is because, under the case of MNAR, having the specified 
information of primary data and missing data mechanism becomes a 
necessity, as they must be jointly modeled to prevent bias from being 
introduced into estimations. A typical way is to integrate a parametric 
model for NI and the complete data log-likelihood [206–208]. 

There exist three commonly used alternative likelihood-based 
methods: Selection Models (SMs), Pattern Mixture Models (PMMs), 
and Shared Parameter Models (SPMs), proposed by Mahapatra, et al. 
[209]. PMMs and SMs can be considered as two decomposing possibil
ities of the joint distribution. For SMs, a specification of the distribution 
for complete primary data and the probability distribution for the 
missing data patterns is needed [196] [210,211]. While for PMMs, 
which supposes that there exists a mixture of patterns in the missingness, 
need to take the circumstances of model parameters for each pattern into 
consideration and operate the computation separately. However, PMMs 
cannot directly provide marginal estimates [64,212–214]. Instead of 
incorporating common parameters into models, SPMs are usually 
applied when the missingness is possibly related to the true underlying 
response for a subject when the data settings are clustered and longi
tudinal [215–219]. 

4.3.1.2. Non-likelihood-based methods. The non-likelihood-based 
methods require the joint distribution of the complete data to be like a 
non-parametric (or semi-parametric) model. In contrast, the mechanism 
of missingness to be like a parametric model [220–222]. 

A well-known non-likelihood-based method is sensitivity analysis, 
which has been utilized in many types of research [223, 224]. However, 
the sensitivity analysis is known to have a few defects. The first one lies 
in practice; its presentation of results is not simplified and concise 
enough. Secondly, sensitivity analysis has the limitation that it is usually 
confined to a relatively small number of parameters. Last but not least, if 
various sensitivity analysis could be predicted, contradictory conclu
sions would possibly be generated [225]. 

4.3.1.3. Comparison and summary. The non-likelihood-based methods 
are more widely utilized in comparison to the likelihood-based methods 
because it is difficult to seek a non-response model that is perfectly 

specified as a function of reported values in most real-world cases. 
Nevertheless, the NI missing data imputation methods are not simple 
and flexible enough, as they need not only the model for the complete 
data but also the specified information of missingness distribution. In 
the next part, we will introduce some Ignorable missing data imputation 
approaches. 

4.3.2. Ignorable missing data imputation methods 
Ignorable missing data imputation methods could be categorized as 

single and multiple imputation methods. 

4.3.2.4. Single imputation methods. Single imputation means substitut
ing each missing value with a single value. After filling in all the miss
ingness and achieving a new complete dataset, more standard data 
analysis approaches will be able to come into use. Moreover, it merely 
handles one time of missing values, implying that a consequent consis
tency of results could be achieved from the same analysis [226], which 
signifies that the single imputation approaches are suitable for utilizing 
in the field of machine learning. The following introduced are various 
traditional utilized main basic single imputation techniques and two 
modern single imputation techniques: deep learning approach and 
Expectation Maximization (EM) approach. 

Mean imputation. Mean imputation is one of the commonly utilized 
imputation approaches. It supposes the average value of a variable is the 
best estimation of all the circumstances in which information about the 
variable is missing [179,227]. Therefore, when the data missingness 
case is MCAR, an average value will be assigned to the known values of 
the same variable [180]. Suppose x4 in Table 5 is a continuous variable, 
the blanks of missing values which are marked with ‘?’ will be filled in 
by the mean values of the three observed values of the variable x4, ac
cording to: 

x4 =
1
3

∑3

i=1
Ci(x4) (15) 

However, imputing the sub-group average of all the sub-group 
missing data may not be the best choice. Cohen [228] proposed an 
improved method to split the missing values into two parts and impute 
according to the following equations: 

Xobs ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n + nobs − 1

nobs − 1

√

σobs (16)  

σ2
obs =

1
nobs

∑nobs

i=1

(

Xi − Xobs

)2

(17)  

where Xobs represents the mean of observed values, and nobs represents 
the number of observed values. 

To conclude, mean imputation is a good choice for the MCAR 
circumstance. It is rapid and easy to put into practice. Nevertheless, one 
defect of this method is it may result in underestimation of the popu
lation variance, and thus a small standard error and a possibly Type I 
error. 

Regression imputation. Regression imputation aims at substituting 
each missing data blank with a newly predicted value on the basis of a 
regression model in the case of MAR [181]. 

Generally, the process of regression estimation is divided into two 
stages. In the first phase, a regression model is established utilizing all 
the existing complete observed values, and then the value for missing
ness blank will be computed according to the established regression 
model. 

Regression imputation preserves the size information of the sample 
by retaining the absence of values, which is superior to Multiple Impu
tation (MI). However, since the imputation data is computed by the 
regression model that needs specifying, there are exaggerations of cor
relation and covariance. A larger sample size becomes a need to give out 
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stable estimations [229]. 
Hot-deck imputation. The general process of this approach is: first, 

stratifying the data set based on some auxiliary variables; then saving 
the complete cases in the classes of the active file; finally, imputing each 
missing blank of the variable for a non-respondent with the observed 
response from the most ‘similar’ respondent [230]. 

Random and deterministic are two typical hot-deck imputation 
methods. The random method randomly selects the respondent from a 
range of potential respondents. If the corresponding class has no ob
servations, it will be combined with other classes and the imputation 
would be performed according to the merged class [196]. While for the 
deterministic hot-deck, there are many instances. Similar Response 
Pattern Imputation (SRPI) determines the most similar case with no 

missingness and copies the values, in this case, to substitute the blank in 
those cases with missingness. The K-NN imputation approach starts with 
searching the missing value of the K’s nearest neighbor and then sub
stitutes the blank with the mean value of the variable value corre
sponding to the K’s nearest neighbor. [226,231]. 

The hot-deck preserves the associations and distribution of the 
available information by replacing different missingness with different 
observed values and holds the appropriate measured level of variables. 
The results are usually superior to those from the mean imputation and 
the regression imputation [196]. 

Deep Learning (Datawig). To deal with the missing value challenge 
in large-scale datasets containing millions of rows or in tables with 
heterogeneous data types, including unstructured text, a deep learning 
imputation method called ‘Datawig’ was introduced. It is a robust, 
scalable approach for missing value imputation that combines deep 
learning feature extractors with automatic hyperparameter tuning and 
could offer more flexible modelling options as well as achieve relatively 
accurate results when compared to other imputation methods. An 
example imputation flow path for Datawig on non-numerical data is 
shown in Fig. 15 [185]. 

Expectation Maximization (EM). The EM method in missing data 
handling is an approach of seeking maximum likelihood estimation of 
parameters of an underlying distribution in the data set with missingness 
issue [232]. 

As Figure 16 shows, it starts with predicting the missingness ac
cording to assumed values for the parameters. Next, it utilizes the pre
dictions for the updating of parameters. Then repeats these two steps 
until the sequence of parameters converges to maximum likelihood es
timations [233]. 

The EM method is favored for its statistical properties. In most cases, 
it outperforms popular incomplete data handling approaches (e.g., mean 
imputation) because it supposes the missingness circumstance as MAR. 
This method guarantees the convergence to the local maximum value of 
the likelihood function. If the degree of missingness is high, then the 
speed of convergence will be slow. Otherwise, the speed will be fast. 
However, one limitation of the EM method is it adds little uncertainty 
component to the estimation, which neglects the estimation variability. 
Moreover, EM does not guarantee the convergence to a global maximum 
likelihood solution [234,235]. 

Even if single imputation may sometimes be considered as a poten
tial approach to address the missing data problem, it has little 

Fig. 15. An example imputation flow path for Datawig on non-numerical data  

Fig. 16. The procedure of EM  
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uncertainty in missing data estimations. As a result, bias may be intro
duced into the available sample size and the standard deviation. Apart 
from that, confidence intervals for parameter estimates could become 
too narrow, and a severe Type I error will exist. Thus, to focus on 
introducing the uncertainty into the model, the information of multiple 
imputation methods will be discussed in the next section [188]. 

4.3.3. Multiple imputation methods 
In order to effectively deal with missingness in the circumstance 

under MAR and multivariate normality assumptions, Multiple Imputa
tion (MI) is generally introduced. MI compensates for the obvious 
shortcomings of single imputation while retaining most of its main 
benefits [221]. The main idea of MI can be utilized to introduce statis
tical uncertainty into the model by multiple imputations of missing data. 
This uncertainty is utilized to simulate the sample variability of a 

complete dataset. MI is very effective even when dealing with a dataset 
with a small number of samples. However, each operation of MI may 
generate imputed results that are slightly different from each other, so 
the results are not reproducible. MI is also computationally intensive 
and will become time-consuming when dealing with the workload of 
imputing multiple (usually more than 5) data sets. In addition, different 
categories of imputation models require different result integration ap
proaches, giving restrictions in the selection of models [236] [237]. 

4.3.3.5. General procedure. MI has several desirable features. First of 
all, it can introduce suitable random error into the imputation process, 
which can enable an approximately unbiased estimation of all param
eters. Other deterministic imputation methods are difficult to achieve 
this under general settings [238]. Besides, MI can deal with all cate
gories of data and analysis with no need for specific software. Better 

Fig. 17. General procedure of MI  

Table 7 
A summary table for the missing data imputation methods  

S. 
n. 

Reference Method Missing Data 
Category 

Imputation Category Characteristic 

1 Little [165] SM Non-ignorable Likelihood-based Under the MNAR assumption 
Require the specific distribution of the missing mechanism 

2 Little [165] PMM Non-ignorable Likelihood-based Under the MNAR assumption 
Do not directly provide marginal estimates 

3 Wu and Bailey  
[195] 

SPM Non-ignorable Likelihood-based Under the MNAR assumption 
The calculation is complicated. 

4 Robins, et al.  
[175] 

Sensitivity 
analysis 

Non-ignorable Non-likelihood- 
based 

Presentation of results is not simplified and concise enough. Usually confined to a 
relatively small number of parameters. Contradictory conclusions would possibly be 
generated. 

5 Waljee, et al.  
[179] 

Mean imputation Ignorable Single imputation 
(Traditional) 

Good choice for the MCAR circumstance 
Simple and rapid. 
May result in underestimation of the population variance. 

6 Zhang [241] Regression 
imputation 

Ignorable Single imputation 
(Traditional) 

Good choice for the MAR circumstance 
Preserves the size information 
Need a larger sample size to give out stable estimations 

7 Andridge and 
Little [242] 

Hot-deck 
imputation 

Ignorable Single imputation 
(Traditional) 

Good choice for the MAR circumstance 
Preserve the associations and distribution of the available information 

8 Biessmann, et al.  
[185] 

Datawig (Deep 
learning) 

Ignorable Single imputation 
(Modern) 

Robust, scalable, flexible, and accurate. 

9 Do and Batzoglou 
[187] 

EM Ignorable Single imputation 
(Modern) 

More effective than other single imputation methods in most cases. 
Add a little uncertainty component to the estimation. 
May fall into the local extreme value. 
The convergence rate is not very fast, and the calculation is very complicated. 

10 Zhang [193] MCMC Ignorable Multiple imputation A long enough Markov chain is constructed for the distribution of the elements to 
stabilize to a stationary distribution.  
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standard error estimates can also be obtained by utilizing repeated im
putations [239]. Last but not least, even when the number of imputing 
times is limited, MI can still complete the task very well. In some ap
plications, just 3–5 imputations are sufficient to obtain excellent results. 
One famous MI method that can be well used to deal with non-monotone 
missing pattern circumstances is Markov Chain Monte Carlo (MCMC). It 
is a Monte Carlo integration method utilizing Markov chains. In each 
iteration of this method, the imputations are drawn from the target 
probability distribution, and then the unknown parameter values of the 
predictive distribution are simulated according to the draws from the 
completed data posterior [193]. The basic procedure of MI mainly in
cludes the following three stages: Imputation stage, Analysis stage, and 
Combination stage, as illustrated in Fig. 17 [240]. 

4.3.3.6. Selection of Multiple imputation model. The imputation model 
built for MIs will focus on two factors. The first thing it needs to 
concentrate on is: the selected imputation methods have to be proper, 
which means they should be compatible with the analysis methods 
[240]. The choice is often made according to the category about the 
missingness patterns, the mechanisms of missing values, and the dis
tribution of data. The second factor that needs to be considered is the 
variables. The variables that are used by the analysis model should 
absolutely be included. While those that are not used for analysis can 
also be included if they are highly related to the missing values. How
ever, when dealing with complicated circumstances, it is sometimes 
difficult to find a perfect imputation as there exists a bias in the esti
mator of MI variance for domains that are not part of the imputation 
model [196]. 

4.3.4. Comparison and summary 
To conclude, single imputation tries substituting each missing value 

with a single value. In contrast, MI handles the missingness based on 
repeated simulation, with a good reflection of sampling variability for 
the values in the real world. Both of them have the potential of preparing 
the input dataset for data fusion. A summary table for the missing data 
imputation methods listed above is displayed in Table 7. 

All in all, there is no perfect imputation strategy that can deal with all 
categories of missing value challenges in the dataset. Each imputation 
strategy may perform well on some datasets and missing data types but 
may perform poorly on others. Unless a specific strategy is determined to 
be used for a particular type of missing value due to obvious setting 
rules, it is best to experiment and evaluate which model works best for 
your own dataset. 

5. Alignment and Registration 

Alignment and registration aim to reduce spatial or temporal in
homogeneities between samples, including differences in acquisition 
frequencies, sampling devices, and sample physiology. In biomedical 
data, registration is a standard prerequisite for the analysis and fusion of 
multimodal data. Registration is prevalent in neuroimaging due to the 
human brain’s relative in-elasticity [243], while studies involving 
registration of other anatomical regions have also been conducted 
[244]. Image alignment and registration are commonly required in the 
clinical analysis and biomedical research of imaging data [240]. 
Registration provides the benefits of correlation between individual 
samples and independent subjects. In modern clinical treatment, a 
reliable diagnosis is often based on multiple clinical measurements that 
provide complementary information, e.g., X-ray and MRI provides 
adequate visualization of bone and tissue structure, respectively [240]. 
While clinicians are trained to utilize a variety of measurements to 
achieve a diagnosis, integrating imaging modalities through alignment 
and registration can provide a more efficient diagnosis while also 
providing a basis for procedures like image-guided radiotherapy [245, 
246] and techniques like video microscopy [247,248]. From the 

perspective of modern research, a significant challenge is the in
homogeneities between individual samples. The effect of this in
homogeneity is especially significant in the case of neuroimaging, where 
a lack of geometric comparability between subject brains impedes the 
identification of specific characteristics [249]. Registration is a funda
mental prerequisite for neuroimaging research, providing the basis for 
subsequent procedures like volumetric feature extraction, atlas con
struction, and 3D brain reconstruction. In the data fusion either in 
research or application, homogeneity amongst single modalities and 
structural homogeneity amongst multiple modalities yields better per
formance. Application of alignment and registration can be the basis for 
the fusion of information from multiple modalities. 

5.1. Transformations and Interpolations 

Transformations for registration adjust the sample towards the 
desired target space that reduces inhomogeneities. Transformations can 
be categorized into linear and nonlinear transformations. Linear trans
formation involves the calculation of rotational and translational vec
tors, mitigating global positional changes. A typical type of linear 
transformation is rigid transformations, which involve rotations, trans
lations, scaling, and shearing [250]. The transformations can be enco
ded in a matrix M, for which the transformed data is the product of the 
matrix with the original data, i.e., x′

= M⋅x. Linear transformations are 
suitable for data with minor distortion or deformations. A prime 
example is in neuroimaging: where patients are mainly stationary dur
ing the imaging process, and the skull provides a structural containment 
for the brain [251,252]. However, linear transformations are not suit
able for organs involved in constant moderate-scale motions, e.g., heart 
and lungs. These motions present local deformations, which can be 
adjusted by nonlinear transformations. There are two main types of 
nonlinear transformation: (1) physical-model-based (2) basis 
function-based. Physical-model-based transformations like the linear 
elasticity transformation predominately model the deformation of ob
jects based on stress and strain theory, where internal forces of the 
current state and external forces of deformation interact towards equi
librium. Other physical models, like the fluid flow or medical a priori 
based on the human anatomical structure, can also be used for nonlinear 
transformations [246]. Apart from transformations, another essential 
subject in registration is interpolation. Interpolation is used to approx
imate values of points outside of set grid positions, a common scenario 
for registration between samples of varying sizes and resolutions. The 
most common method is linear interpolations, where the interpolated 
value of a point is dependent on the distances to the neighboring points. 
Computational complexity increases with the use of more neighboring 
points and more complex interpolation methods. Other interpolation 
methods include the nearest neighbor, windowed sinc, and stochastic 
interpolation. Interpolations can cause fluctuations in registration 
measures and create artifacts in registered images [253]. Trans
formations and interpolations form the basis for any registration method 
set used with or prior to the data fusion process and are generally chosen 
based on the type of data and modalities involved in fusion. 

5.2. Intensity-based registration 

Intensity-based registration relies on the information of individual 
image voxels to derive registration measures, which are often iteratively 
optimized for better transformation from source data to a template or 
reference data. For images, these methods are also known as voxel-based 
registration. Standard measures include mutual information, cross- 
correlation, and the sum of squared differences (SSD). Optimization 
methods, detailed in the following Section 5.5, estimate the best pa
rameters for the transformation model based on these measures. Here 
we provide some basic examples of these commonly used measures. Sum 
of square differences is one of the fundamental measures of registration, 
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with a transformation function of f, 

SSD =
∑

i

∑

j

(
Ri,j − f

(
Si,j

))2 (18)  

where R is the reference, and S is the source. A modified mass-preserving 
SSD has been applied for the registration of lung CT [65]. A similar 
alternative to SSD is the sum of absolute differences (SAD), where we 
take the sum of scaled voxel-wise differences between the registered and 
reference images. 

SAD =
1
n
∑

i

∑

j

⃒
⃒|Ri,j − f

(
Si,j

)
‖ (19) 

SAD has been widely applied for intensity-based registration, 
including its role as a measure of registration quality measure for a 
generative adversarial network (GAN) which registers cardiac and 
retinal MRI images [254]. Another class of intensity-based registration 
methods is based on mutual information, which captures 
non-parametric statistical dependencies with no a priori requirements. 
Mutual information (MI) between two images can be calculated with 
measures of entropy, whose basic formulation is 

MI = E(R) + E(f (S)) − E(R, f (S)) (20)  

where E represents entropy estimation methods, e.g., Tsallis entropy, 
Renyi entropy, and the original Shannon entropy. Maximization of 
mutual information between the registered image and reference leads to 
robust and reliable registration. Mutual information and normalized MI 
are some of the most commonly applied method classes. Previous ap
plications of mutual information include focusing on increasing local MI 
with regional mutual information [255], adaption to multimodal data 
[256], and combination with gradient information [33,257]. With a lack 
of dependency on initialization and preprocessing of the source, MI has 
also been applied in unsupervised registration with no or limited ref
erences [258]. MI has also been used as a constraint in the loss function 
of a cyclic-GAN model, optimizing an overlay of MRI on CT images for 
better image-guided thermal ablation of liver tumors [259]. These 
techniques can be easily applied or extended for more 
data-fusion-focused applications. As the basis of intensity-based regis
tration methods, the above-mentioned measures are calculated based on 
the global intensity values of the data. Therefore, intensity-based 
registration does not capture spatial or temporal dependencies for 
data in higher than one dimension. This drawback is often mitigated 
with feature-based registration in the following subsection. 

5.3. Feature-based registration 

Feature-based registration derives registration measures from ho
mogeneous features between samples. The lower dimensionality of the 
homogeneous features requires less computational power compared to 
voxel-based registration. Features can be categorized into two types: (1) 
artificial identification points or extrinsic landmarks introduced into the 
data, (2) anatomical and geometric identifications, or intrinsic land
marks contained within the data. Extrinsic landmarks are also known as 
artificial identification points (AIPs). These AIPs can be foreign markers 
that can be artificially implanted or injected onto the subject, e.g., 
molds, contrast, radioactive tracers. With recent developments in the 
medical apparatus, AIP is usually non-invasive or minimally invasive. 
However, for certain types of biomedical data, AIP can be highly inva
sive, e.g., radioactive tracers for nuclear medicine. Extrinsic landmarks 
are limited by the physical placement or injection of the AIPs, which 
may not be optimal. AIP provides a basis for the registration of highly 
deformable or elastic anatomy like skin and soft tissue [260]. However, 
compared to AIP implanted on rigid anatomical structures like bones, 
the movement of AIP in soft tissue also poses a problem in providing a 
robust positioning basis. Registration measures can be efficiently 
calculated by comparing the AIP and fiducial markers, specially 

designed identification points [261]. Intrinsic landmarks are anatomical 
and geometric identifications that are important within samples, 
providing local and uniform information over the entire sample. These 
landmarks include morphological features of anatomical components 
and geometric landmarks of image features like corners, intersections, 
local minima, and local maxima. These intrinsic landmarks can be 
identified either through manual segmentation or algorithmic pipelines. 
By computing measures between these identifications between samples, 
we can provide measures of registration similarity. Commonly used 
distances include Euclidean distance, Mahalanobis distance, and Man
hattan distance. Registration methods that use intrinsic landmarks can 
be categorized by their use of different morphological features into three 
types: point-based methods, curve-based methods, and surface-based 
methods. The following subsections introduce these methods. 

5.3.1. Point-based methods 
Point-based methods usually identify clear anatomical structures in 

an image and position feature points on these structures as the basis for 
scale-space registration. These methods heavily depend on the quality of 
information on the targeted anatomical structures but are often uni
versally applicable to different modalities. Computer vision algorithms 
like the Harris detection algorithm have been applied in neuroimaging 
to detect and select corners as feature points. Scale-invariant feature 
transform (SIFT) is also a point-based method that compares keypoint 
features invariant to translation, rotation, and scaling. The Iterative 
Closest Point (ICP) algorithm is often applied to optimize feature point 
selection and register feature points between samples [262]. The ICP 
iterates the procedure of finding a set of close reference points, calcu
lating the distance measure, and performing the transformation until 
convergence to an optimal registration. ICP is often applied for multi
modal registration and fusion [263]. Point-based methods are often used 
for or with external landmarks, while feature points can be also be 
selected based on maximal information content in the context of 
anatomical geometry [264]. Point-based methods have been applied for 
landmark registration prior to the fusion of MRI and PET images [265]. 

5.3.2. Curve-based methods 
Point-based methods usually identify characteristic curves or lines, 

which contain features like edges, object contours, gradient minima, 
maxima, and crest lines. These features can form representations of 
anatomical structures and their boundaries. These methods include 
standard edge detection methods like the Canny edge detector with its 
subsequent improvements, e.g., the use of curvelets as a replacement of 
Gaussian filters [266,267]. Second-order approaches based on Laplacian 
of Gaussian and recent fuzzy logic approaches are also used for feature 
detection. An alternate approach is the use of contours. The classic 
‘snake’ of active contours are energy-minimizing splines, driven by in
ternal forces and external constraints to approach the lines and edges of 
anatomical structures [268]. Similar elastic contour approaches have 
been applied to various image registration applications [269]. Im
provements in the classic ‘snake’ include balloon-based models to 
reduce dependency on contour initialization [270] and united snakes to 
combine B-spline functions, FEM functions, etc., [271]. More recent 
applications include the use of active contours, which tolerate discon
tinuities by replacing smoothness constraints with masked regulariza
tion [272], and the use of curve-based registration for time-series of 
intensity change in dynamic contrast-enhanced MRI [273]. 

5.3.3. Surface-based methods 
Surfaces or regions are characterized by homogeneous local surface 

shapes or distinct boundaries. Surfaces inherently provide more redun
dancy than curves and point landmarks, crucial for non-rigid trans
formations. Surface-based methods are inherently similar to curve or 
line-based methods. For some of the prior mentioned point-based or 
curve-based methods, we can directly extend their formulation to sur
faces, e.g., the extension of non-rigid ICP to a point cloud [274]; the 
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extension of ’snake’ methods of active contours to ’level sets’ involves 
contour initialization to a surface [275]. While these ’level sets’ provide 
a basis for segmentation, surface or region-based methods can also 
involve the use of segmentation to isolate surfaces of interest for regis
tration. Brain registration, especially cortical surface registration, in
volves transforming cortical features to 2D, ellipsoid, or spherical planes 
or other surfaces for subsequent rigid transformation or deformable 
warping [276, 277]. Warping is a method of measuring a deformation 
field between processed and source images. Warping does not neces
sarily involve registered image and source image but can also include 
warping based on prior knowledge, e.g., the gradient nonlinearity of 
MRI magnetic fields. Recent studies combined biomechanical prior with 
geometric shape prior for surface registration of MRI to transrectal ul
trasound [278,279]. Other recent registration studies with segmentation 
include the 3D active contour segmentation of the liver from abdominal 
MRI for registration [280]. 

5.4. Hybrid registration methods 

Hybrid registration methods combine intensity-based and feature- 
based registration methods for higher quality registration. Standard 
hybrid registration includes a feature-based step and an intensity-based 
step, where each step is designed to register global or local information 
[281]. The combination of surface and intensity registration methods is 
commonly used in neuroimaging to obtain specific brain structures 
[282], while a recent study has successfully registered 3D curves with 
3D surfaces [283]. Another type of hybrid registration uses a hierar
chical approach, where sample data are converted to a hierarchy of 
resolutions, where registration is performed at each level and combined 
for final registration. The use of hierarchical registration avoids local 
minima with the global information provided by low-resolution levels, 
while multiple registrations at various medium to high-resolution levels 
reduce the requirement for bootstrapping optimizations, resulting in 
higher computational efficiency [284]. For intensity-based methods, 
this process can involve a single atlas or reference resized to various 
hierarchies or multiple atlases in each level [285], while hierarchical 
registration can also be applied with feature-based registration at each 
or selected levels [286]. The combinations of multiple registration levels 
or various registration methods improve registration quality [287]. Hi
erarchical registration is often applied to registrations with differing 
methods on partial data or transformed data common in multimodal 
data fusion [288]. 

5.5. Optimization for registration 

The majority of registration and alignment procedures can be 
formulated as optimization problems. Therefore, the method of opti
mization is of vital importance. In this section, we will introduce some of 
the fundamental approaches to optimization, including gradient 
descent, Newton’s method, and Powell’s method. We will also mention 
recent advances in global optimization, including evolutionary algo
rithms and deep learning. Gradient descent (GD) is a major category of 
optimization methods used for registration. GD searches for local 
minima in a step-wise fashion, moving towards negative gradient re
gions. A simple representation is, 

xt+1 = xt − γ∇f (xt) (21)  

where the x represents variables in registered data, t represents a 
timestep in optimization, and ∇f is the gradient of the objective function 
f . GD methods are constrained by defining a convergence criterion, 
where the optimization process is stopped if the criterion is satisfied. A 
variety of optimization methods have been derived from fundamental 
GD [289]. Examples include steepest gradient descent, which applies a 
simplified first-order Taylor, and conjugate gradient descent, which 
applies the Gram-Schmidt procedure to orthogonalize gradient vectors 

in each step of the descent. 
Another category of optimization method is based on the classical 

root find method – Newton’s method. A simple representation of this 
second-order derivative-based method is, 

xt+1 = xt − γ∇f (xt)Hf (xt)
−1 (22)  

where Hf is a matrix of second-order partial derivatives, or Hessian, of 
the objective function f . Quasi-Newton methods, like the Broyden- 
Fletcher-Goldfarb-Shanno (BFGS) method, are often applied to avoid 
the calculation of the complete Hessian. A simplified BFGS, with unit 
step size, can be used to compute the Hessian using, 

Hf (xt) =
∇f (xt) − ∇f (xt−1)

xt − xt−1
(23) 

This is also known as the Secant method. Compared to GD, optimi
zation algorithms based on Newton’s method often converges more 
efficiently due to second-order and iterative information. The 
Levenberg-Marquardt method combines GD with Newton’s method for 
even higher efficiency. 

As an alternative to these gradient-based methods, Powell’s method 
is a gradient-free alternative for registration optimization. It uses iter
ative line search minimizations to find optimal values of individual 
variables i and determine the next step with a scalar variable αi. 

xt+1 = xt −
∑

i
αisi (24) 

Termination criterions similar to GD convergence criteria are applied 
to stop the optimization process [290]. Without the need for derivations, 
Powell’s method is significantly more efficient than gradient-based 
methods like GD and Quasi-Newton. It is often used for the optimiza
tion of image registration problems [291]. Powell’s method is inherently 
limited in its degrees of freedom; to mitigate this limitation, alternative 
gradient-free methods have been developed, e.g., the Nelder-Mead 
method. 

The gradient-based and gradient-free methods discussed above are 
the most classical and generic algorithms available for opti
mization—more modern approaches, like evolutionary algorithms, 
model biological processes. Genetic algorithms (GA) are a popular 
branch of evolutionary algorithms inspired by natural selection. In GA, 
solutions are modeled as individuals within a population. Each solution 
contains a number of parameters modeled as genes, which are used to 
evaluate the individual’s fitness using a fitness function. Using the 
concept of ‘survival of the fittest,’ pairs of individuals combine their 
genes to produce new individuals or solutions, known as offsprings. 
Other concepts like mutation and termination are also present in most 
GA. Compared to GD-derived methods and Powell’s method, GA is a 
global optimization method. 

Another new approach is the use of universal approximators, like 
neural networks. Depending on the depth of the neural network used, 
this approach is also known as deep learning [292]. By reformulating the 
registration problem as supervised transformation or unsupervised 
transformation estimation based on similarity metrics, we can incor
porate the iterative optimization procedure into the training and opti
mization of neural networks, opening a range of new methodologies for 
registration and alignment of biomedical data [293]. Studies have 
shown that deep learning methods can outperform standard registration 
and alignment in multiple fields. By formulating neural network outputs 
into registration metrics, studies have performed deformable registra
tion of neonatal brain MRI and showed better performance compared to 
mutual information-based methods [293]. Similarly, deep learning has 
also been applied for unsupervised registration without ground truth 
references, where a twin translation and transformation network also 
outperformed a range of standard registration methods [294]. Apart 
from standard applications of neural networks in a reformulation of the 
similarity optimization problem, deep learning also includes 
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reinforcement learning and generative models. Reinforcement learning 
involves a trained agent, typically composed of a policy and value 
network, which explores the space of transformations for registration. 
Generative models are neural networks that can generate new data from 
the provided source; these models include the previously mentioned 
GAN and cyclic-GAN. These models can either be used as an improved 
similarity measure optimization framework, unsupervised registration 
method, or as a means to convert multimodal registration to unimodal 
registration. More detailed descriptions of these methods, along with 
examples, can be found in the survey by Blessy and Sulochana [295]. 

5.6. Quality Assessment 

Quality assessment is an essential part of the registration and 
alignment, especially for data fusion, where the quality of the registered 
and aligned images directly impacts fusion quality. Quality assessment 
can be done on two bases: with ground truth reference and without a 
ground truth reference. The ground truth reference, or optimal solution, 
can be used to directly calculate registration accuracy and robustness. In 
recent studies of applying deep learning for registration, classical algo
rithmic registration results were used as the optimal solution, while the 
neural networks were used to increase efficiency significantly [296]. 
However, in most cases, the ground truth reference is not available. 
Conventional methods include the use of fiducial markers [296], i.e., 
extrinsic landmarks detailed in Section 5.4, and visual inspection based 
on morphology. Phantom studies have also been used for quality 
assessment in intra-modality registrations, especially in thorax imaging 
[297]. Apart from the previously introduced use of mutual information 
for unsupervised registration, alternative quality assessment metrics 
have also been applied, including MSE, peak signal-noise ratio (PSNR), 
gradient smoothness, and redundant information estimation. Another 
alternative quality assessment method for registration without ground 
truth references is consistency analysis, which involves registering im
ages in reverse order from the registered data to source data [298,299]. 
This process directly compares the reconstructed sample and the ground 
truth original, which allows for computations and optimizations based 
on consistency measures. The quality assessment procedure in the 
registration and alignment of biomedical data provides a basis for 
evaluating fusion quality and is therefore essential to the fusion process. 

5.7. Practical Applications 

5.7.1. Neuroimaging – MRI-PET Registration 
A typical application of registration among modalities is in the fusion 

of MRI and PET data in neuroimaging. The fusion of MRI and PET data 
usually requires the registration of MRI data and the co-registration of 
PET data. MRI registration usually requires B1-field and gradient 
nonlinearity correction, which corrects magnetic field inhomogeneities 
in the imaging apparatus [300]. This correction is usually followed by 
intensity normalization with histogram peak sharpening and removing 
the skull and cerebellum components from the brain images with 
bootstrapping threshold approximations. MRI images are then regis
tered to a brain template for spatial normalization, usually through 
linear intensity-based registration. Brain templates are the spatial 
standards for the human brain, generated from neuroimaging or au
topsies of a single individual, e.g., Talairach or Collin-27, or a group of 
subjects, e.g., MNI-152. In many studies, PET images are taken with MRI 
images. The PET images are then aligned to the corresponding registered 
MRI images through rigid alignment [301,302]. Through the process of 
co-registration, spatial alignment and normalization are inherited by the 
co-registered PET images. The two modalities’ fusion can then be per
formed from the feature-level to voxel-level [303]. Many studies also 
performed brain segmentation into specific anatomical regions, where 
ROI-specific features like volume or cortical thickness can be obtained. 
With co-registered PET images, ROI-specific features of MRI and PET can 
be combined to expand feature space. 

Table 8 
Summary of references in Section 5 Alignment and Registration  

Reference Year Task/Summary Type Application 

Cohen and Cohen 
[224] 

1993 Active contour 
models with balloon 
models. 

Curve- 
based 

Various 

Maurer, et al.  
[215] 

1997 Head volume 
registration with 
fiducial markers 

Point- 
based 

Neuroimaging 

Studholme, et al. 
[310] 

1999 Entropy measure for 
regional mutual 
information (MI) 

Intensity- 
based 

Neuroimaging 

Maksimovic, 
et al. [222] 

2000 Active contour 
models for 3D 
reconstruction and 
segmentation 

Curve- 
based 

Head trauma 
CT 

Christensen and 
Johnson [247] 

2001 Consistence 
registration through 
both forward and 
reverse 
transformations 

Surface- 
based 

Neuroimaging 

Jenkinson, et al.  
[311] 

2002 Brain image linear 
registration and 
motion correction 

Intensity- 
based 

Neuroimaging 

Vemuri, et al.  
[312] 

2003 Level-sets of 
contours for image 
registration 

Surface- 
based 

Neuroimaging 

Hellier and 
Barillot [313] 

2003 Hybrid of 
photometric and 
landmark-based 
registration 

Hybrid Neuroimaging 

Houhou, et al.  
[234] 

2005 Hierarchical atlas for 
image registration 

Hybrid Neck CT 

Greve and Fischl  
[205] 

2009 Brain image 
alignment 

Surface- 
based 

Neuroimaging 

Loizou, et al.  
[225] 

2007 Active contour 
segmentation of 
intima-media 
(carotid artery) 

Curve- 
based 

Cardiac 
ultrasound 

Almhdie, et al.  
[217] 

2007 ICP algorithm with 
lookup matrix 

Point- 
based 

Lung and heart 
data 

Xiao-chun, et al.  
[237] 

2007 Lucas-Kanade 
algorithm based on 
gradient descent 

Intensity- 
based 

Neuroimaging 

Postelnicu, et al.  
[314] 

2008 Combination of 
volumetric and 
surface registration 

Hybrid Neuroimaging 

Gebäck and 
Koumoutsakos  
[220] 

2009 Edge detection with 
curvelets 

Curve- 
based 

Microscopy 
images 

Danilchenko and 
Fitzpatrick  
[245] 

2010 Quality assessment 
with fiducial 
markers 

Point- 
based 

Neuroimaging 

Dietzel, et al.  
[65] 

2011 Fusion of DCE-MRI 
and X-ray 
mammograms 

Hybrid Breast DCE- 
MRI and X-ray 

De Nigris, et al.  
[236] 

2010 Hierarchical model 
with adaptive local 
mutual information 

Hybrid Neuroimaging 

Freiman, et al.  
[255] 

2011 Abdominal CT 
registration with 
local-affine 
diffeomorphic 
demons 

Hybrid Abdominal CT 

Gorbunova, et al. 
[208] 

2012 Mass preserving 
registration for lung 
CT 

Intensity- 
based 

Lung CT 

Hu, et al. [221] 2012 Hierarchical image 
registration based on 
multi-scale and 
contour line 

Curve- 
based 

Neuroimaging 

Lazar, et al.  
[256] 

2013 Batch-effect removal 
for gene expression 
data 

Intensity- 
based 

Gene 
expression data 

Kim and Tai  
[235] 

2014 Hierarchical model 
with feature-based 
registration 

Hybrid Neuroimaging 

(continued on next page) 
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5.7.2. Chest and Abdominal Imaging 
For various conditions and diseases involving the chest and 

abdominal region, combinations of X-ray, ultrasound, CT, PET, and MRI 
are often used for diagnosis. Spatial or temporal registration of samples 
or multiple modalities can provide better bases for fusion. Unlike the 
registration of relatively non-elastic neuroimaging data, chest and 
abdominal imaging cover multiple easily deformable organs and 
therefore require more sophisticated nonlinear registration methods. 
Feature-based registration with extrinsic landmarks of skin markers has 
been studied for thorax CT and SPECT registration [304]. The registra
tion of MRI with real-time ultrasound was applied for better biopsy 
procedures in potential breast cancer cases [305]. Talas, et al. [306] 
combined 2D X-ray mammograms with 3D MR mammograms with a 
nonlinear deformation model. Goodfellow, et al. [307] adapted multiple 
image registration pipelines, e.g., FSL, ANTs, designed for neuroimaging 
data for abdominal CT, while non-rigid techniques based on local affine 
assumptions have been applied to CT and DTI [308]. In most cases, rigid 
transformations cannot adapt to the abdominal and chest regions’ elastic 
and deformable physiology. 

5.7.3. Genetic data 
Although registration and alignment are primarily targeted at neu

roimaging data, similar methods are also applied in 1D or sequential 
data. A prime example is gene expression data, where data from multiple 
studies are often combined to increase sample size, or perform the meta- 
analysis. There are often multiple identifiers for a single gene. Therefore, 
gene identifiers from a single source or multiple sources often contain 
platform-specific identifiers like Illumina Gene ID or Affymetrix Gene 
ID, which must be aligned into a single framework, e.g., Entrez Gene, 
Ensemble Gene Identifiers. Due to the use of multiple studies, it is 
common for a study to contain gene expression data from multiple 
platforms, which have inherently different methods for the measure
ment of gene expression. This combination will result in batch effects 
and differences in scale within the genetic data, which need to be 
removed to align different studies [309]. The summary of the recent 
Alignment and registration research is shown in Table 8. 

6. Preprocessing for small size dataset: Data Augmentation 

Medical data are normally of small size [319]. The successes of deep 
learning algorithms fuel the interest in applying deep neural network 
models to medical image analysis, classification, segmentation, data 
fusion, etc. However, a small-size dataset will impair the generalization 
ability of deep neural network models. This generalization means the 
performance gap of a model evaluated on the test set and training set. 
This section will give a brief survey on data augmentation, which is an 
efficient image-domain solution to overfitting. 

Table 8 (continued ) 

Reference Year Task/Summary Type Application 

Suk, et al. [250] 2014 Hierarchical 
registration and 
fusion for deep 
learning 
classification of AD/ 
MCI 

Hybrid Neuroimaging 

Khallaghi, et al.  
[230] 

2015 Surface registration 
with biomechanical 
prior for image 
fusion 

Surface- 
based 

Prostate MRI 
and transrectal 
ultrasound 

Khallaghi, et al.  
[230] 

2015 Surface registration 
with statistical 
biomechanical prior 
for image fusion 

Surface- 
based 

Prostate MRI 
and transrectal 
ultrasound 

Simonovsky, 
et al. [243] 

2016 Similarity measure 
modelling as neural 
network 
classification task for 
image registration 

Intensity- 
based 

Neuroimaging 

Zhang, et al.  
[248] 

2016 Quality assessment 
based on backward 
registration 

Feature- 
based 

Various 

Xu, et al. [254] 2016 Registration 
methods for 
Abdominal CT 

Various Abdominal CT 

Che, et al. [201] 2017 Ultrasound-to- 
ultrasound 
registration 

Feature- 
based 

Ultrasound 
images 

Liu, et al. [252] 2017 Multi-level fusion of 
features for 
classification of 
Alzheimer’s disease 

Hybrid Neuroimaging 

Mahapatra, et al. 
[209] 

2018 Deformable 
registration with 
generative 
adversarial networks 
(cyclic GAN) 

Intensity- 
based 

Retinal images 
& Cardiac MRI 

Li, et al. [226] 2018 Active contour 
motion 
segmentation that 
preserves 
discontinuities 

Curve- 
based 
Surface- 
based 

Liver MRI 

Raposo and 
Barreto [232] 

2018 Registration of 3D 
curves with 3D 
surfaces 

Hybrid Orthopedic 
models 

Liu, et al. [315] 2018 Multi-modal 
registration for deep 
learning 
classification of 
Alzheimer’s disease 

Hybrid Neuroimaging 

Mohammadian, 
et al. [204] 

2019 Microscopy image 
registration with 
fiducial markers 

Point- 
based 

Correlative 
Microscopy 

Xu, et al. [210] 2019 Multi-modal 
registration with 
mutual information 
(MI) 

Intensity- 
based 

Various 

Alfano, et al.  
[316] 

2019 Breast tumour 
localisation with 
pose registration 
based on breast 
surface point cloud 

Surface- 
based 

Breast CT 

Wei, et al. [214] 2019 MRI-CT intra- 
procedural 
registration with 
cycle-GAN for 
tumour thermal 
ablation 

Intensity- 
based 

Liver MRI and 
CT 

de Vos, et al.  
[317] 

2020 Mutual information 
with unsupervised 
deep learning 

Intensity- 
based 

Breast MRI and 
Cardiac MRI 

Bhavana [318] 2020 Landmark 
registration for 
medical image 
registration and 
fusion 

Point- 
based 

CT and MRI 
images  

Table 8 (continued ) 

Reference Year Task/Summary Type Application 

Sun and Feng  
[227] 

2020 Registration for 
intensity changes in 
dynamic contrast 
enhanced (DCE) MRI 

Curve- 
based 

Liver DCE-MRI 

He and Razlighi  
[229] 

2020 Volumetric 
registration of brain 
cortical regions via 
landmarks and 
deformation 
diffeomorphisms 

Surface- 
based 

Neuroimaging 

Haskins, et al.  
[240] 

2020 Application of deep 
learning in medical 
image registration 

Various Various 

Arar, et al. [244] 2020 Unsupervised multi- 
modal image 
registration with 
task-specific three 
neural networks 

Intensity- 
based 

General  
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6.1. Background 

Fig. 18(a) shows the overfitting curves, where the test error increases 
after epoch 6 as training error continues to decrease. Fig. 18(b) presents 
a pair of desired curves, where both training and test error decrease until 
convergence. 

Traditional solutions to small-size dataset problems consist of data 
generation (DG), regularization, and ensemble approaches (EA). DG 
creates data from a sampled data source. The synthetic minority over- 
sampling technique (SMOTE) [320] is a typical algorithm for DG. Reg
ularization is mainly for the weights of models. Large weights will make 
the models unstable because minor variations on the inputs will yield 
large differences in the output for large weights. Smaller weights are 
regarded to be more regular (i.e., less specialized). Hence, this type of 
technique is called weight regularization. EA methods use multiple 
models to obtain better predictive performance than any model alone 
[320]. 

Data augmentation (DA) is an approach that solves overfitting by 
addressing the root of the problem, the training set. The augmented data 
represent a more comprehensive set of training data, thus minimizing 
the distance between the training set and test set. Fig. 19(a) shows the 

distance between the training and test set, where each dot means a 
sample image. It shows training set cannot cover the characteristics of 
the test set, so the trained model may overfit. Fig. 19(b) shows the 
training set zone is enlarged and covers the test set zone; hence, now the 
distance between the augmented training set and the test set is 
minimized. 

It should be noted that data augmentation is mainly used for image 
recognition, particularly medical image classification. This is because 
medical image collection is quite expensive and labor-intensive. Medical 
images are usually generated by positron emission tomography (PET), 
computer tomography (CT), ultrasound (US), single photon emission 
computed tomography (SPECT), magnetic resonance imaging (MRI), 
functional MRI (fMRI), Magnetic resonance spectroscopy imaging 
(MRSI) scanning, etc. Other factors also complicate medical image 
collection, such as expensive and laborious imaging scanning, patient 
privacy concerns, disease rarity, and the requirement of radiologists’ 
delineation. However, data augmentation can also be used in object 
detection carried out by R-CNN [321], fast FCNN [322], and faster 
RCNN [323], YOLO [323], YOLO9000 [324], YOLOv3 [324], etc. Se
mantic segmentation is a rising application field of data augmentation. 

The safety of a type of data augmentation is another important fac
tor. Suppose an image I, and its corresponding label is C. A safe data 
augmentation D is defined as 

C
[
Dsafe(I)

]
= C(I) (25) 

Namely, the data augmentation is label-preserving. In some cases, 
the unsafe data augmentation method will change the labels as 

C
[
Dnot−safe(I)

]
∕= C(I) (26) 

Note that “safety” is domain-dependent [325], and its certification 
needs expert knowledge. For example, rotation is safe for vehicle clas
sification (See Fig. 20(a)) but not safe for digit recognition since 9 will be 
rotated to 6 (See Fig. 20(b)). The injection of a small amount of noise is 
safe for lung disease recognition (See Fig. 20(c)), but adding a large 
amount of noise unsafe for the same task (See Fig. 20(d)). 

6.2. Data Augmentation versus other methods 

In the context of deep learning, particularly convolutional neural 
network (CNN) models, there are some special methods to solve small- 
size dataset problems, such as batch normalization, dropout, pretrain
ing and transfer learning (which will be discussed in the following sec
tions), zero-shot learning, and one-shot learning. 

The motivation of batch normalization (BN) is to solve the “internal 

Fig. 18. Training and test performance: (a) Overfitting; (b) Desired  

Fig. 19. DA help reduce the distance between training and test set  
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covariant shift (ICS)”, which means the effect of the randomness of the 
distribution of inputs to internal CNN layers during training. The exis
tence of ICS will worsen the CNN’s performance [326]. Suppose that we 
have N minibatch samples, BN normalizes the internal layer’s inputs B =

{βi} over every mini-batch, in order to make sure the batch normalized 
output V = {vi} has a uniform distribution. Mathematically, BN involves 
the learning of a function of the form 
⎧
⎨

⎩
βi, i = 1, 2.⋯, N
⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

B

⎫
⎬

⎭
↤

⎧
⎨

⎩
vi, i = 1, 2, ⋯, N
⏟̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

V

⎫
⎬

⎭
(27) 

During training, the empirical mean am and empirical variance av can 
be computed as 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

am =
1
N

(
∑N

i=1
βi

)

av =
1
N

∑N

i=1
(βi − am)

2

(28) 

The input βi ∈ B was first normalized to βi

‘

βi

‘

=
βi − am
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(av + as)

√ (29)  

where as in denominator in Eq. (29) is stability factor, used to enhance 

the numerical stability. Now the βi
‘

have zero-mean and unit-variance 
characteristics. In order to have a more expressive deep neural 
network [327] (here expressive means the network’s expressive power, 
i.e., the ability to express functions), a transformation is usually carried 
out as 

vi = b1 × βi

‘

+ b2, i = 1, 2, ⋯, N (30)  

where the parameters b1 and b2 are two learnable parameters during 
training. The transformed output vi ∈ V is then passed to the next layer 

and the normalized βi
‘

remains internal to the current layer. 
Fan, et al. [328] proposed the concept of dropout neurons (DNs) by 

randomly dropping neurons and setting their neighboring weights to 
zero during training. The selections of DNs are random with a retention 
probability (γp). Suppose we have a neuron N(i, j) and its corresponding 
original weights are t(i, j), and the collection of DNs is δ. 

tt(i, j) =

{
t(i, j) N(i, j) ∈ δ

0 N(i, j) ∕∈ δ (31)  

where tt(i,j) means the weights of neuron N(i, j) during training. γp has a 
default value of 0.5, viz., γp = 0.5. During inference, we run the entire 
CNN without dropout, but the weights of FCLs using DNs are down
scaled (viz., multiplied) by γp: 

ti(i, j) = γp × t(i, j) (32)  

where ti(i, j) denotes the weight of neuron N(i, j) during inference. 
One-shot learning or few-shot learning is to learn information about 

Fig. 20. Realistic samples of safe and non-safe data augmentations  

Fig. 21. Horizontal flipping versus vertical flipping  
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object classes from one or only a few training samples, respectively. 
Their motivation is given by humans’ ability to learn object classes from 
few examples. One-shot learning is now successfully applied in medical 
image registration [329], hand gesture recognition [330], expert-aided 
systems [331], etc. Two commonly-used methods are Siamese net
works (which learn a distance function) [332] and memory-augmented 
networks [273]. Zero-shot learning [333] is an extreme paradigm where 
at test time, the trained classifier needs to predict samples from classes 
that were not observed during training. 

6.3. Geometric Transforms 

Flipping. Flipping in geometry means the image is reflected along a 
line, leading to a mirror image of the original one. Vertical flipping is 
less common than horizontal flipping. The flipping is one of the simplest 
and most straightforward data augmentation methods [275]. Experi
ments on ImageNet, CIFAR-10, and other biomedical datasets prove the 
effectiveness of flipping. Note that on datasets such as SVHN or MNIST, 

which involve texts and digits, flipping is unsafe. Fig. 21(a) shows an 
original lung window image, and Fig. 21(b and c) present the corre
sponding horizontal and vertical flipping results. 

Rotation. Rotation is a motion of an image around a point. Usually, a 
clockwise rotation is a negative magnitude, while a counterclockwise 
rotation is a positive magnitude. In a data augmentation situation, the 
image is rotated around the central point [334]. Slight rotation such as 
within [−15∘, 15∘] are usually safe for digit recognition and text recog
nition, but a wide rotation such as within [−90∘, 90∘] may be unsafe, i.e., 
the label is no longer preserved. Fig. 22(a) shows the original lung image 
with grid lines colored in red. Fig. 22(b and c) present the rotation re
sults with rotation angles of 30 degrees and −30 degrees, respectively. 

Shear. Shear mapping displaces each point in a fixed direction by an 
amount that is proportional to its signed distance from the line passing 
through the origin and parallel to that direction [277]. If we suppose the 
original pair of coordinates is [x1, y1], and the pair of coordinates after 
shear transform is [x2,y2], then horizontal shear is defined as 

Fig. 22. Rotation results  

Fig. 23. Shear transform results  

Fig. 24. Translation schematic and results  
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[x2, y2, 1] = [x1, y1, 1] ×

⎡

⎣
1 0 0

ahs 1 0
0 0 1

⎤

⎦ (33)  

where ahs is the horizontal shear factor. Similarly, for vertical shear we 
can define as 

[x2, y2, 1] = [x1, y1, 1] ×

⎡

⎣
1 avs 0
0 1 0
0 0 1

⎤

⎦ (34)  

where avs is the vertical shear factor. Fig. 23(a) presents the original lung 
image with red grids, and Fig. 23(b and c) present the corresponding 
horizontal and vertical shear results, respectively. 

Translation. Translation in geometry is to move every pixel in the 
image by the same distance along the same direction. The translation is 
commonly used in face recognition. Face images are typically collected 
in almost perfectly centered positions, which will necessitate the AI 
classifier to be tested on similarly centered images. Using the translation 
data augmentation method, the dataset will be filled with other trans
lated images (face not in the center), so the classifier will become more 
robust and can work efficiently on images where faces are not centered. 
There will be “missing” values when images are translated outwards of 
the original image size, so we need to fill in those missing values with 
either a constant such as 0 (black) or 255 (white) or random noise [335]. 
Fig. 24(a) presents a schematic showing the translation can move the 
image along the same direction. Fig. 24(b-c) provides two translation 
results of [20,30], and [-30, -20], respectively. 

Cropping. In traditional image processing and computer vision tasks, 
cropping is an efficient tool to extract patches from a large image or a 
mixed-size image set [336,337]. Then algorithms are run on the patches 
instead of the images themselves. In the data augmentation domain, 
cropping cuts a patch with a predefined size out of the original image. 
The difference between cropping and translation is that cropping re
duces the spatial size while translation preserves the spatial size. For 

example, if the original size is [W0, H0], then the size after cropping is 
[Wc, Hc] and the size after translation is [Wt ,Ht ], we have 
{

Wt = W0, Ht = H0
Wc < W0, Hc < H0

(35) 

Fig. 25(a) shows the crop schematic where two rectangles (red and 
green) delineating the regions to be cropped. Fig. 25(b and c) show the 
cropped images from red and green rectangles, respectively. 

Geometric transformations are popular data augmentation solutions 
to increase the amount of training data [337]. The advantage of geo
metric transforms is that they are easy to carry out. The disadvantage is 
additional computation cost and storage memory, and extra training 
time. The geometric transformation must be observed carefully since 
some of them may alter the image labels. 

6.4. Noise Injection 

Gaussian Noise. Noise injection means adding noise to the inputs of a 
deep neural network model during training. The noise is usually set as a 
Gaussian noise, which is statistical noise having a probability density 
function (PDF) equal to normal distribution. The description of Gaussian 
noise is illustrated n section 3.2.1. Noise injection has proved successful 
in robot speech commands [338], fruit classification [339], plant leaf 
disease recognition [340], etc. 

Salt-and-pepper Noise. Salt-and-pepper noise, as described in sec
tion 3.2.3 is another common noise to be added to input images. Cal
deroni, et al. [341] used salt and pepper noise for the identification of 
early esophageal cancer. 

Speckle Noise. Speckle noise mentioned in section 3.2.5 is a granular 
interference that inherently exists in medical ultrasound (US) images, 
active radar, synthetic aperture radar, etc. Data augmentation with 
speckle noise has been proved efficient in radar images [342] and 
neonatal hip US images [343]. 

Noise added in other layers. All the previous methods inject noises at 

Fig. 25. Crop results  

Fig. 26. Simple photometric transform by adding and subtracting a constant value  
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the input layer; however, noises can be added at other layers. For 
example, Davatzikos, et al. [344] added noise, interpolated and 
extrapolated in learned feature spaces. Gothelf, et al. [345] added noise 
to the loss layer and presented a novel method, “DisturbLabel”, which 
randomly replaced a part of labels as an incorrect categorical value in 
each iteration. Their experiments demonstrated that DistrubLabel could 
prevent the network training from overfitting. 

6.5. Photometric Transforms 

Photometric transforms, also known as color space transform, is to 
manipulate the gray values of a grayscale image or to manipulate RGB 

color values of a color image [346]. A simple method is to add or sub
tract a constant value to increase or decrease the gray values of the 
image, making it brighter or darker. Fig. 26 gives a simplistic example, 
where (a) shows the raw image and (b-c) present the result by adding 30 
to and subtracting 30 from the raw image, respectively. 

Gamma Correction. Gamma correction is a nonlinear operation to 
adjust the luminance values of the images. It is defined by the power-law 
expression: 

fo = A × f γ
i (36)  

where fi and fo denote the input and output gray values, and their values 
are normalized into the range of [0, 1] so A = 1 will preserve the gray 
scale range. Two important ideas exist: (i) gamma compression associ
ated with γ < 1; and (ii) gamma expansion associated with γ > 1 [338]. 
The top row in Fig. 27 presents two samples of gamma compression, i.e., 
γ = (0, 5, 0.75) respectively. The bottom row in Fig. 27 presents two 
other samples of gamma expansion with γ equivalent to 1.5, and 2, 
respectively. 

Color Jittering. Color jittering (CJ) [347] shifts the color values in 
original images by adding or subtracting a random value. The benefit of 
CJ is that it can help bring in randomness change to the color channels, 
so it can aid the production of fake color images. Fig. 28 shows six color 
jittering examples on the raw image in Fig. 26(a). 

PatchShuffle. Kang, et al. [293] presented a new PatchShuffle 
method. In each minibatch, images are split into nonoverlapped patches, 
and each patch undergoes a transformation such that pixels within that 
patch are shuffled. They conducted experiments with different filter 
sizes n and different swapping probabilities ε. Suppose that the original 
image is X with size of N × N, and X is partitioned into a block matrix 
with non-overlapping patches X = {aij}, aij means the patch at i-th row 
and j-th column within the patch matrix. 

X =

⎡

⎢
⎢
⎣

a11 a12 ⋯ a1,N/n
a21 a22 ⋯ a2,N/n
⋮ ⋮ ⋱ ⋮

aN/n,1 aN/n,2 ⋯ aN/n,N/n

⎤

⎥
⎥
⎦ (37) 

The PatchShuffle transformation acts on each patch by 

ãij = pr
ij × aij × pc

ij (38) 

Fig. 27. Gamma correction  

Fig. 28. Color jittering examples  
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where  ãij denotes the transformed patch, pr
ij and pc

ij denote the row and 
column permutation matrixes, respectively. Their experiments showed 
the optimal hyperparameter is n = 2 and ε = 0.05. Fig. 29 shows the 
PatchShuffle results with n = 2,3,⋯,7. In their paper, Tibshirani [348] 
reported PatchShuffle could be applied not only on images but also on 
feature maps. 

Sharpening and blurring. Kernel filters can be used to sharpen and 
blur images. The kernel filters slide an n × n kernel across the image 
with either a Gaussian blur filter [294] or an unsharp masking [349]. 
The former yields a blurry image, while the latter yields a sharpened 
image. Fig. 30(a) shows a raw cloud image, while Fig. 30(b and c) show 
the blurry and sharpened images, respectively. 

Fig. 29. PatchShuffle results  

Fig. 30. Blurring and sharpening results  

Fig. 31. Schematic of SamplePairing  
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Fig. 31. 
Intuitively, blurring images can help classifiers better resist the blur 

(Gaussian, motion, average, etc.) during the test, and sharpened images 
bring about more edge and contrast details for object category classifi
cations. Both sharpening and blurring operations are quite common in 
data augmentation. 

6.6. Image Mixing 

Sample Pairing. The afore-mentioned transformation methods are 
single-image augmentation methods. Now we will discuss more novel 

methods working on two or more images. McIntosh and Lobaugh [350] 
proposed SamplePairing technique, which synthesizes a new training 
sample from one image by overlaying another image randomly chosen 
from the training data. That is, to take an average of two images in a 
pixel-wise way. 

Suppose there is an image C of category 1, and another randomly 
selected image D of category 2. SamplePairing method first generates 
two patches E and F from the image C and D, respectively, by random 
cropping method and random horizontal flipping. The category 2 label is 
discarded. Then the two patches E and F are mixed to generate the mixed 
patch G by averaging intensities of two patches pixelwise. 

Fig. 32. A SamplePairing example of missing house and dam images  

Fig. 33. Mixup results  
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G(i, j)
⏟̅̅ ⏞⏞̅̅ ⏟

C1

=

⎡

⎣E(i, j)
⏟̅̅⏞⏞̅̅⏟

C1

+ F(i, j)
⏟̅̅⏞⏞̅̅⏟

C2

⎤

⎦

/

2 (39)  

where C1 and C2 mean the category labels. Then the mixed patch G is 
used for network training. The authors claimed using their Sample
Pairing method can generate N2 new samples from N training sample 
dataset [351]. Fig. 32(a-b) presents the house and dam images, 
respectively. Fig. 32(c) shows the mixed image with a label of “house”. 

Mixup. A data-agnostic augmentation routine, mix-up, was proposed 
by Yan, et al. [352]. In their paper, a hyperparameter λ ∈ [0, 1] was 
introduced, and one-hot label encoding was used to use the information 
of categories of both images. Suppose (E, F) mean the two randomly 
selected samples, and t the label of corresponding categories, we can get 
the mixup sample and labels G and tG as 
{

G = λ × E + (1 − λ) × F
tG = λ × tE + (1 − λ) × tF

(40)  

where (tE, tF) are labels of two samples randomly selected from the 
training set. Briefly, mixup extends the training dataset by linearly 
interpolating two randomly selected images. Fig. 33(a-b) gives two 
randomly selected images: House and Swan, photographed from 
Leicester botanic garden and Abbey park, respectively. Fig. 33(c-i) 
presents the mixup results with λ = 0.2,0.3, ⋯,0.8, respectively. 

Nonlinear mixing. Vounou, et al. [353] expanded linear combination 
to nonlinear mixing methods. The authors proposed novel nonlinear 

mixing methods. Suppose λ ∈ [0, 1] is a random variable, the vertical 
concatenation (VC) combines the top λ fraction of image E and the 
bottom (1 −λ) fraction of image F, instead of pixelwise average. Suppose 
(W, H) are the width and height of the input image, and (w, h) are the 
width and height index, we have 

GVC(w, h) =

{
E(w, h) h ≤ λH
F(w, h) otherwise (41) 

And the horizontal concatenation (HC) is described as 

GHC(w, h) =

{
E(w, h) w ≤ λW
F(w, h) otherwise (42) 

Mixed concatenation (MC) is an application of horizontal concate
nation to the vertical concatenation of two input images. Namely, sup
pose we have 0 ≤ λ1, λ2 ≤ 1 two random variables, then 

GMC(w, h) =

⎧
⎪⎪⎨

⎪⎪⎩

E(w, h) h ≤ λ1H ∧ w ≤ λ2W
F(w, h) h ≤ λ1H ∧ w > λ2W
F(w, h) h > λ1H ∧ w ≤ λ2W
E(w, h) h > λ1H ∧ w > λ2W

(43) 

Random column interval selects a random column interval, and that 
interval part of the image E is replaced with image F. Random row in
terval does the same thing on row direction. The random row method 
selects each row at random either from image E or F. The random row 
method can be regarded as a higher frequency of vertical concatenation. 
Similarly, we can deduce the random column method. Random square is 

Fig. 34. Nonlinear mixing method  
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to cut out a random square in image E with that corresponding region in 
image F. Random pixel samples each pixel separately from both images. 
Fig. 34 shows nine nonlinear mixing methods. 

Random Erasing. Kohannim, et al. [354] introduced a new random 
erasing (RE) method, which randomly selects a rectangle region and 
erases its pixels with random values. This RE method is useful to combat 
image recognition tasks on account of occlusion, which means some 
parts of the object are blocked. RE forces the model to learn more global 
features from other unblocked parts. 

In practice, RE randomly selects an n × m patch of an image and 
masks it with either 0s (black), 255s (white), mean pixel values, or 
random values. The best patch fill method was proven to be random 
values. Two hyperparameters in RE are the fill method and the size of 
the masks [300]. Fig. 35(a) shows one arboretum picture photographed 
in Shady Lane Arboretum, Leicester. Fig. 35(b-c) shows the two random 
erasing samples, which we can still observe this is an arboretum. 

It should note that RE is not always “safe”. In digit recognition tasks, 
if the top bar was erased, then “7” may look like “1”. In other fine- 
grained tasks [355], such as tumor grade classification, the random 
erasing method may block the tumor itself. Therefore, some intervention 
strategies should be performed to guarantee the “safety” of the 
augmented dataset. Also, identifying the makes of vehicles may be 
impaired since RE may block the brands of vehicles. 

6.7. Deep learning-based Methods 

Adversarial Training. Originally, adversarial machine learning at
tempts to fool models with deceptive inputs. The adversarial attacking 
consists of a rival network that learns deceptive augmentation of images 
that cause misclassification in its rival classification network. Suppose 
we have an image A of category C1, and now we add a small amount of 
noise to it εN, in which the noise is designed strategically. The sum
mation B will fall into another category C2. 

A⏟⏞⏞⏟
C1

+ ε × N B⏟⏞⏞⏟
C2

(44)  

where ε is a small value, usually ε < 0.01. Fig. 36(a) shows an image 
labelled as “river” with 77.8% confidence. After adding the perturbation 
by DeepFool [356], this image will be labelled by AI models as “House” 
with 99.8% confidence. 

The adversarial training can be used as an effective data augmen
tation method to fix weak spots in the traditional AI model. Hence, those 
trained models will be more robust and resistant to attackers. Adversa
rial training may not increase the test performance, but it will improve 
the performance of adversarial examples, i.e., improving the security 
and robustness of trained AI models. It is noteworthy to add, though, 
that high-dimensional deep learning models may become inherently 
unstable to perturbations with high probability as works [303,304] 
demonstrate. 

Fig. 35. Example on random erasing  

Fig. 36. Adversarial training examples  

Fig. 37. A schematic of GAN  
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Generative adversarial network. The Generative adversarial network 
(GAN) consists of two neural networks contesting with each other in a 
zero-sum game [357], where one network’s gain is the other network’s 
loss. There are many generative models that currently exist, but GAN is 
leading the performances in computation speed and quality. An intuitive 

anecdote for GAN is a competition between police (Discriminator) and a 
counterfeiter (Generator), or a predator and prey [358]. Both sides are 
improving their techniques, so finally, the counterfeiter can make tickets 
that are hard to recognize as real or fake by the police, see Fig. 37. 

The success of the generator makes it powerful for generative 
modeling. GANs have been proved to be effective in data augmentation. 
Rao, et al. [359] proposed the first GAN based on multilayer perceptron 
to handle MNIST handwritten digit image, the size of which is only 28 ×
28 × 1 = 784 pixels. Nowadays, the images in recent biomedical data
sets are finer resolution and more complicated than MNIST images. 
Hence some important variants of GANs were commonly used in data 
augmentation in the biomedical field. 

For example, Wan, et al. [360] proposed a new attribute-preserving 
GAN (APGAN), that provides both attribute-preserving and good visual 
qualities after style transfer. Marquand, et al. [361] presented a new 
modified generator GAN (MG-GAN). The difference between MG_GAN 
and the basic GAN is that the generator in MG-GAN is fed with original 
data and multivariate noise to produce data with Gaussian distribution. 
The authors reported MG-GAN improved accuracy by 18.8% and 11.9% 
compared to KNN and basic GAN, respectively. Krishnan, et al. [362] 
compared deep convolutional GAN (DCGAN) with auxiliary classifier 
GAN (ACGAN) for liver lesion classification. The authors found DCGAN 
provided better results and showed that the GAN-generated CT images 
could serve as synthetic data augmentation, thus improving the per
formance of CNN. Using classic data augmentation, the classifier yielded 
78.6% sensitivity and 88.4% specificity. While adding synthetic data 
augmentation, the classifier improved to 85.7% sensitivity and 92.4% 
specificity. 

In summary, we have discussed five types of data augmentation 
methods: geometric transforms, noise injection, photometric transforms, 
image mixing, and deep learning-based methods. In practical AI model 
designing and training, the AI users will try to test one or several 
different data augmentation methods and combine them together to 
attempt to achieve better performance. The problem of choosing 
appropriate data augmentation is still an active research topic. Due to 
the page limit, the above DA types and operations are itemized in 
Table 9. 

7. Preprocessing for high dimensionality 

Dimensionality reduction (DR), or feature reduction, the process to 
remove noisy and redundant data, is a crucial pre-processing step in data 
fusion to improve the accuracy of the subsequent modules. If proper 
methods are applied, the overfitting issue can be avoided while the ac
curacy and generalization can be greatly improved by the fused data. 
Dimensionality reductions techniques are implemented through feature 
selection and feature extraction, where feature selection aims at 
selecting features from the original features, while feature extraction 
focuses more on creating new features based on the original features. 
Broadly, DR techniques can be divided into supervised and unsupervised 
techniques, respectively. Common supervised techniques include filter 
techniques, wrapper techniques, and embedded techniques. Unsuper
vised techniques include data-driven-based techniques such as Principal 
Component Analysis (PCA) and domain knowledge-driven techniques. 
These dimensionality reduction methods can also be integrated with 
deep learning models to improve the performance of those models. 

The advent of deep learning introduces new solutions to traditional 
computer vision tasks such as image classification and detection. Given 
the advantages such as high robustness and high performance with the 
help of Graphical Processing Unit (GPU), deep learning has been the 
main focus in some areas of computer science and can avoid trivial 
image preprocessing procedures. However, data reduction, as an 
important preprocessing step, can be integrated into machine learning 
models, especially for high-dimensional data analysis. According to the 
information of features, features can be divided into three classes, 
including suitable, unnecessary, and repeated. Therefore, what data 

Table 9 
Summary of various DA types and operations  

Type Operation Description 

Geometric 
Transform 

Flip The image is reflected along a line, 
leading to a mirror image of the original 
one. Horizontal flipping is more popular 
than vertical flipping [275]. 

Rotation Rotation [276] is a motion of an image 
around a point. The image is rotated 
around the central point 

Shear Shear mapping [277] displaces each point 
in a fixed direction by an amount that is 
proportional to its signed distance from 
the line passing through the origin and 
parallel to that direction. 

Translation Translation [278] is to move every pixel 
in the image by the same distance along 
the same direction 

Cropping Cropping [279, 280] extracts patches 
from a large image or a mixed-size image 
set 

Noise Injection Gaussian Noise 
(Input layer) 

Gaussian noise [282-284] is statistical 
noise having a PDF equal to normal 
distribution 

Salt-and-pepper 
Noise 
(Input Layer) 

It is a type of image noise commonly seen 
during transmission [285]. 

Speckle Noise 
(Input Layer) 

It is multiplicative noise [286, 287], 
which is usually caused by bad 
information channels. 

Noise added in 
other layers 

Noises can be added at other layers, such 
as learnt feature spaces [288] and loss 
layers [289]. 

Photometric 
Transform 

Gamma 
Correction 

Gamma correction [291] is a nonlinear 
operation to adjust the luminance values 
of the images. 

Color Jittering CJ [292] shifts the color values in original 
images by adding or subtracting a random 
value. 

Patch Shuffle Images are split into nonoverlapped 
patches, and each patch undergoes a 
transformation such that pixels within 
that patch are shuffled [293]. 

Sharpening Kernel filters of unsharp masking [295] 
Blurring Gaussian blur filters [294] 

Image Mixing SampleParing SampleParing [296] synthesizes a new 
training sample from one image by 
overlaying another image randomly 
chosen from the training data. 

Mixup Mixup [297] extends the training dataset 
by linearly interpolating two randomly 
selected images. 

Nonlinear mixing Nonlinear mixing [298] includes vertical 
concatenation, horizontal concatenation, 
mixed concatenation, random column 
interval, random row interval, random 
row, random column, random square, 
random pixel, etc. 

Random Erasing RE [299] randomly selects a rectangle 
region and erases its pixels with random 
values. 

DL-based 
Methods 

Adversarial 
Training 

Adversarial training is used as an effective 
DA method to fix weak spots in the 
traditional AI model. Those trained 
models will be more robust and resistant 
to attackers [303, 304]. 

GAN GAN [305] consists of two neural 
networks contesting with each other in a 
zero-sum game, where one network’s gain 
is the other network’s loss.  
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reduction aims at is to refine the features by utilizing all the available 
information and contribute to the improvements of models’ perfor
mance. Data reduction can be implemented in two ways through feature 
selection and feature extraction, respectively. In feature selection, only 
essential features are selected from the input data set. On the other hand, 
feature extraction creates new features from the original features. Both 
feature extraction and selection methods can be isolated or combined for 
the performance improvement of machine learning models. A classifi
cation example that introduces data reduction is shown in Fig. 38. 

For feature selection, there are usually three key steps, including 
subset generation, subset evaluation, and termination, as shown in 
Fig. 39. 

Subset generation aims at specifying a candidate subset for evalua
tion in each state. This process is determined by two key elements, 
including the search starting point and search strategy. To begin with 
the process, the search starting point, which indirectly determines the 
search direction, must be predefined. The search point could be an 
empty set where features are successively added to the set until the 
desired output is found. Inversely, the search point could also start from 
a full feature set where features can be successively removed from the 
set to produce the final feature output. Also, the search points could start 
with both ends and then add and remove features simultaneously until 
the desired output is generated. The second key element is the search 
strategy. Given a data set with N features, 2N candidate subsets can be 
chosen from the data set. The search space makes it a challenging task to 
implement an exhaustive search even when N is moderate. Different 
search strategies, including sequential search, random search, and com
plete search, therefore, have been explored. Sequential search methods 
add or remove features once at a time to find the subset. However, 
completeness is therefore abandoned, and no optimal subsets can be 
guaranteed. To facilitate the searching process, p features can be added 
in one step while q features are removed in the next step (p>q) [363]. 
The random search starts with a randomly selected subset where the 
search can proceed in two different ways. One is to introduce random
ness into the classical sequential approaches such as simulated annealing 
and random-start-hill-climbing [362]. The other is known as the Las Vegas 
algorithm that produces the next subset in a random manner. Never
theless, randomness in these methods helps avoid local optima in the 
search space, although the optimality of the subset selection is 

resource-dependent. 
Subset evaluation is a procedure to evaluate the newly generated 

feature subset by specific evaluation criteria, which can be broadly 
classified into two groups, independent criteria, and dependent criteria, 
regarding the dependency on the mining algorithms. Independent 
criteria are commonly used for the evaluation of feature subsets gener
ated by the filter models. Popular independent criteria are information 
measures, dependency measures, distance measures, and consistency mea
sures [364]. Information measures are used to measure the information 
gain from a feature. The definition of the information gain from a feature 
is the difference between the prior uncertainty and the expected pos
terior uncertainty. For two given features A and B, we prefer A if the 
information gain from A is greater than that from B. Dependency mea
sures, also known as correlation measures, measure the capability of 
predicting the value of one variable from the value of another. These 
measures depict the association between a feature and the class. In a 
classification problem, feature A turns out to be more preferable if the 
association between A and class Z is higher than the association between 
feature B and class Z. Distance measures are also known as discrimination 
measures. For a two-class classification problem, if feature A produces a 
larger difference between two-class conditional probabilities than B, 
then A has a higher priority than B. Consistency measures aim at finding a 
minimized number of features that can separate classes consistently, just 
like the full set of features can. Inconsistency is to describe the phe
nomenon of two instances with the same feature values but having 
different class labels. In the wrapper models, which can be interpreted as 
a black box for feature selection by classification, predetermined mining 
algorithms are required for feature selection. Then the dependent 
criteria measure the performance of the mining algorithms applied on 
the selected subset and therefore determine which features to be 
selected. The drawback of these measures is that the computational cost 
is expensive as predetermined mining algorithms are introduced. 

Stopping criteria determine when the feature selection process 
should stop. There are usually four popular stopping criteria. The first 
one is the completed search. It is quite straightforward that the search 
should stop when the search space has been completely explored. The 
second criterion is when some given bound is reached. Here the bound 
could be a specified number of features such as the minimum number of 
features or the maximum number of features. The third criterion is that 
feature selection should stop when the addition of any feature does not 
lead to a better subset. The last one is that an acceptable subset is 
selected in terms of the acceptable performance of a subsequent 
classifier. 

Result validation could be directly implemented by using prior 
knowledge about the data. If the relevant features are known to us be
forehand, we can then compare the known set of features with the 
selected features. The irrelevant and redundant features can also help 
remove unwanted features. However, we don’t have such prior knowl
edge in practice and have to rely on some indirect methods instead. 
When considering a feature selection for a classification problem, the 
indirect method for validation of the selected features is to compare the 
performance of the models trained by the subset features and the full set 
features. 

Feature extraction uses some transformation to map the original 
features to more significant features with possibly lower dimensionality, 

Fig. 38. Classification that introduced data reduction  

Fig. 39. Three key modules of feature selection  
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as is shown in Fig. 40. Finding a suitable representation of multivariate 
data is crucial for artificial neural networks and other classifiers [365]. 
Feature extraction can be used to reduce the complexity of data by 
representing each variable in feature space by linear combinations of 
original variables. Principal component analysis (PCA), a simple 
nonparametric method that extracts the most relevant information from 
redundant and noisy data, has been used as the most popular approach 
in feature extraction. Hence, many variants of PCA have also been 
proposed in the field. The choice of feature selection and feature 
extraction should be careful, but feature extraction shows advantages on 
computational cost [366]. In [367], the authors compared data reduc
tion methods implemented in feature subset selection and feature 
extraction on the classification of two different types of datasets, 
including email data and drug discovery data. Information gain (IG) and 
wrapper methods were used to select features when implementing 
feature selection. However, it was found the wrapper shows better 
performance than IG in terms of classification accuracy. Compared to 
feature extraction methods, wrapper methods tend to produce the 
smallest features subsets while the classification accuracy is quite 
competitive to that of the feature extraction methods. Admittedly, the 
computational cost of wrapper methods is much more expensive 
compared to feature extraction methods. Also, some works integrate 
feature selection and feature extraction [368]. In the work of Ref. [369], 
features are firstly selected in the first level of dimensionality reduction 
based on mutual correlation. In the second level, PCA is used to extract 
features in the first level. Experiments on several standard datasets 
showed that the proposed method is more advantageous than 
single-level dimensionality reduction techniques. 

Also, data reduction, which is referred to as feature reduction 
henceforth, can be implemented through supervised and unsupervised 
techniques depending on the learning patterns of these methods. In the 
following sections, we will introduce feature reduction techniques that 
are supervised and unsupervised in a sequence. 

7.1. Supervised feature reduction techniques 

Supervised feature reduction techniques require high-dimensional 
data input and output labels for the selection of relevant features 
while removing redundant features and noise. These techniques can be 
subdivided into three categories, including filter, wrapper, and 
embedded methods. There are three main differences between these 
three categories. Firstly, for filter techniques such as t-tests and Pearson 
correlation coefficient, simple statistical measures are used to measure 
the relevance of features when detecting group-level differences. Fea
tures are then ranked based on relevance. Secondly, an objective func
tion from a machine learning model is used in wrapper techniques to 
rank features regarding their relevance to the model. Finally, embedded 
methods yield a small subset of relevant features by enforcing penalties 
on a machine learning model for feature selection. In the following 
sections, we will introduce filter techniques, wrapper techniques, and 
embedded techniques one by one. 

7.1.1. Filter techniques 
Pearson correlation coefficient (PCC) is one of the representative 

filter feature reduction techniques. PCC calculates the linear correlation 
between individual features and labels and ranks the features regarding 
the linear correlations [370]. If we assume a group classification prob
lem with predictors variables X and class labels Y. Then Xi denotes the m 

dimensional vector of the ith variable for the training examples while y 
is the m dimensional vector containing all the target values. The Pearson 
correlation coefficient between predictor variables and the labels can be 
expressed as: 

Pi =

∑m
k=1

(

xk,i − xi

)

(yk − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

k=1

(

xk,i − xi

)2∑m
k=1(yk − y)

2

√ (45)  

where the bar notion denotes the average over the index k. The higher 
values of the correlation coefficient Pi, the greater relevance of the 
feature in discriminating between the classes. Users have to manually 
predefine a threshold to select relevant features for the following ma
chine learning analysis. Therefore, cross-validation procedures and a 
varied range of thresholds have to be carried out for the exploration of 
the optimal threshold that gives the best generalization of the method. 
The advantage is that PCC filters can be applied to situations when there 
are multi-group tasks but only linear dependencies between features and 
targets can be found, which becomes the major drawback of PCC espe
cially when high-dimensional data with multivariate relationships must 
be considered. Numerous studies have used PCC filters for relevant 
feature selection. In the work [371], the authors calculated PCC between 
genes. Highly correlated genes that are considered to be dependent or 
coregulated form a cluster. The signal-to-noise ratio (SNR) method is 
then used to rank the correlated genes. Genes with the highest SNR are 
used as the representatives of each group. Besides, PCC filters have been 
widely used in gender classification and Alzheimer’s disease (AD) clas
sification [372,373]. 

T-test, as one of the typical statistical hypothesis testing techniques, 
has been widely used in feature reduction as well. Let x1 and x2 be the 
mean values of the two groups of the observed samples, s1 and s2 denote 
the corresponding standard deviations. Then the t-score of a feature is 
calculated as: 

t =

⃒
⃒
⃒x1 − x2

⃒
⃒
⃒

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(N1−1)s2

1+(N2−1)s2
2

N1+N2−2

√

⋅
[

1
N1

+ 1
N2

] (46)  

where N1 and N2 are the numbers of subjects in each group. After 
calculation, a user-defined threshold of significance, e.g., p-value, that 
statistically shows whether or not the probability is greater in magnitude 
than t under the null hypothesis is introduced. Similar to PCC, the se
lection of the optimal threshold can be achieved by the cross-validation 
process [374]. Application of t-test in feature extraction allows fast 
computation and scalable to high-dimensional data. However, there are 
still several limitations of t-test based feature reduction techniques. One 
is that these methods are univariate in that no interactions between 
multiple features and spatial patterns are considered. Another is that 
t-tests are only to explore the difference between two groups, although 
this can be compensated by the equivalent analysis of variance (ANOVA) 
technique. Nevertheless, several studies have used t-test to select rele
vant features for machine learning [375,376]. An improved version of 
the t-test called ANOVA technique is usually used to select features in 
multiple groups. There is also extensive utilization of ANOVA technique 
in the field of feature reduction and selection [377–379]. Notably, 
ANOVAs provide the same benefit as t-tests, while the process of 
choosing the optimal threshold is the same. Another multivariate 
extension of ANOVA, which is named MANCOVA, has also been widely 
used in numerous feature selection tasks [379,380]. 

7.1.2. Wrapper techniques 
Wrapper techniques select feature subset through the classification 

technique. The selected feature subset is evaluated by the objective 
function through search algorithms. Wrapper techniques can be classi
fied into two categories, including Sequential Selection Algorithms 

Fig. 40. Feature extraction  
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(SSA) and Heuristic Search Algorithms (HSA). SSA starts with a proper 
subset and includes or removes one feature at a time. The selection ends 
when the subset meets the output requirement according to predefined 
criteria. SSA is simple to implement and is fast to generate results as the 
size of the search space is usually low. Therefore, SSA gives up the 
compactness to find the best subsets [346]. HSA, which uses heuristic 
information to guide the search, can neither ensure the best subset to be 
found but usually finds an acceptable subset in a reasonable time [365, 
381]. HSA can also be subdivided into two types: specific heuristics and 
general-purpose metaheuristics. The former is designed to solve a 
certain problem, while the latter aims at solving more general problems. 
According to the search direction, wrapper approaches can be further 
divided into the forward selection and backward elimination. In forward 
selection, the search starts with an empty feature set while features are 
added into the feature set step by step until the optimal subset with the 
optimal number of features found. By contrast, backward elimination 
starts with full features and iteratively removes a few features at each 
step until the optimal feature subset found. In this section, we will 
introduce recursive feature elimination (RFE) method, which is a pop
ular backward elimination technique. 

Given a two-class classification task, we have a set of features xi and 
corresponding target labels yi. And the training data is subdivided into 
two subsets, including ‘Training’ and ‘Evaluation’. The observation 
weights ai is then obtained from a machine learning algorithm. Feature 
relevance weights are then calculated through: 

W =
∑

xi∈nzo
aiyixi (47)  

where nzo stands for objects with non-zero weights. The absolute values 
of the weights W are then ranked based on their importance, where the 
lowest-ranked features at a predefined percentage are removed. In the 
following step, the model is trained with features that have excluded the 
most irrelevant features, and the accuracy on the evaluation set is re
ported by the newly trained model. This process iterates until a stopping 
criterion is met or until the feature set is empty. Finally, the subset of 
features that results in the highest accuracy is chosen for the training of 
the final machine learning model while the rest of the features are 
discarded. 

RFE requires two predefined parameters, which could be trouble
some. One is the stopping criteria. When keeping removing low ranking 
features iteratively, it’s likely the empty subset will be generated. 
However, when this happens, the iteration that gives the highest accu
racy on the evaluation set is selected. Another scenario is that the per
formance of the model in the current iteration is not significantly better 
than that of the previous iteration. Then the procedure should be 
terminated as explored by De Martino et al. [382]. Another parameter 
that needs to be predefined is the percentage of the removal of the 
features in each step. There are studies used varied parameter such as 
2%, 8%,10% [383–385]. However, the impact between the choice of the 
parameter and the overall performance of the model remains to be an 
open research question. Besides, the computational cost increases 
significantly if a very small percentage of features is removed at each 
iteration, while relevant features could be removed when the percentage 
is chosen to be a relatively large one. 

RFE has two main benefits. The first is that RFE considers multi
variate interactions between spatial patterns in the data. The second is 
REF might lead to better generalization ability as it uses a predictive 
model to remove redundant features. However, the drawback of RFE is 
also obvious that high computational cost is usually as it performs a 
completely heuristic search of the feature input space [386]. Never
theless, there are still popular usage of RFE in different areas including 
ASD [387–389], AD [390], psychosis [391], schizophrenia [392], MDD 
[331], MCI [387], mood disorder [393]. 

7.1.3. Embedded techniques 
The least absolute shrinkage and selection operator (LASSO) [348, 

351], the Elastic Net [349], and the partial least square (PLS) method 
[350] are the three most popular embedded methods. In LASSO tech
niques and Elastic Net, both machine learning and feature reduction 
procedures are integrated into a regularization framework that produces 
a selected subset. However, PLS selects features by analyzing associa
tions between the variables, either independent or dependent. We next 
describe these feature reduction methods. 

7.1.3.7. LASSO. Assume that we have a binary classification task with a 
set of features xj

i and corresponding target labels yi, where i = 1,2, …, N 
and j = 1,2,…, M. N and M stand for the number of observations and the 
dimensionality of features, respectively. Furthermore, each feature is 
assumed to be normalized by subtracting its mean and dividing by its 
standard deviations. Then, the coefficients γ̂ are computed by mini
mizing the function [351]: 

∑N

i=1

(

yi −
∑

j
xj

iγ
j

)2

+ α
∑M

j=1

⃒
⃒γj

⃒
⃒ (48)  

where α is a predefined parameter that controls the balance between 
sparsity and high predictive accuracy. When α approaches 1, the model 
becomes sparser, which means few relevant features. On the other hand, 
the model is less sparse when α approaches 0, which means more rele
vant features. The selection of the most optimal α involves cross- 
validation procedures that test a range of α. Then the one that contrib
utes to the highest model accuracy is selected. To solve the LASSO 
function, usual optimization procedures such as the coordinate descent 
algorithm can be used. 

There are two main benefits of this method in the feature reduction 
process. One is that the majority features are discarded as the majority of 
the coefficient ̂γ are set to zero. The second one is that LASSO can handle 
the situation where the number of observations is fewer than the number 
of predictor variables. There are numerous successful applications of 
feature selection using LASSO including AD classification [352–354], 
gender classification [394], autism spectrum disorder (ASD) classifica
tion [355] and so on [356,395]. 

7.1.3.8. Elastic Net. Elastic net is quite similar to LASSO but with an 
additional quadratic term [349]. If we consider the two-class classifi
cation task like the one in LASSO, then Elastic net computes model co
efficients γ̂ by minimizing the objective function [357,358]: 

∑N

i=1

(

yi −
∑

j
xj

iγ
j

)2

+ α1

∑M

j=1

⃒
⃒γj

⃒
⃒ + α2

∑M

j=1

⃒
⃒γj

⃒
⃒2 (49)  

where α1 and α2 are two user-defined parameters that control the degree 
of penalty. The penalty 

∑M
j=1|γj|

2 leverage the sparsity by resulting in 
few features with non-zero weights. These two parameters are usually 
selected via an objective parameter grid-search process which de
termines the best parameters from a range of parameters in the two 
dimensions domain. However, grid-search can be computationally 
expensive. Previous applications of feature reduction implemented 
through the Elastic Net include AD classification [359,360], and treat
ment response prediction in ADHD [361]. 

7.1.3.9. Partial Least Squares. Partial least squares correction (PLSC, 
[362]) and partial least squares regression (PLSR, [363]) are two main 
categories of the partial least squares feature reduction method. 
Compared to PLSR, PLSC is usually more popular in the medical imaging 
area. Therefore, we will discuss PLSC in this section. 

Let consider the previous two-class classification example with the 
normalized features xj

i with the corresponding target yi. Then PLSC starts 
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with the computation of cross product of the features and the target 
vectors as follows: 

P = YT X (50) 

The resulting matrix P is then decomposed by singular value 
decomposition (SVD) [362], which is: 

P = USVT (51) 

P, therefore, can be decomposed into two singular vectors (U and V) 
and a diagonal matrix S containing the ‘singular values’ in the diagonal. 
Weights in U identifies the variables in X that contribute the most in 
explaining the relationship between features and the targets. Finally, 
latent variables of X and Y are reconstructed based on the following two 
equations: 
{

Px = XV
Py = YU (52)  

Px and Py stand for the reduced latent variables of original features in X 
and the latent variables for the target variables, respectively. By doing 
so, the original features of high-dimensionality are now represented by 
low-dimensional latent variables. The applications of feature reduction 
using the partial least squares method include Age classification (young 
vs. old) [364], multimodal feature reduction tasks [365], and so on so 
forth [366]. 

7.2. Unsupervised feature reduction techniques 

Unsupervised feature reduction techniques, also known as feature 
extraction techniques, extract relevant features through linear or 
nonlinear combinations of the original features. Principal component 
analysis (PCA) and independent component analysis (ICA) are the two 
most popular unsupervised dimensionality reduction techniques. We 
start this section with PCA and ICA and end with Coordinate-Based 
Mate-Analysis (CBMA) techniques, a technique that relies on existing 
‘domain knowledge’ for feature reduction. 

7.2.1. Principal component analysis 
PCA linearly transforms the correlated variables into unrelated var

iables with reduced dimensionality [367]. In essence, these principal 
components are the linear combinations of the original features while 
keeping most of the variance in the features. The first step to construct 
principal components from high-dimensional features is to normalize 
the original features by subtracting the sample mean, and the resultant 
features are then divided by the standard deviation. Secondly, eigen
decomposition is performed based on the covariance matrix, which is 
calculated from the standardized features. The eigenvalues are sorted in 
a decreasing order that indicates the decreasing variance of the features. 
By multiplying the original normalized features with the most signifi
cant eigenvectors, the features are then mapped into a 
lower-dimensional space. The number of eigenvectors is predefined by 
the user to meet certain requirements. 

PCA has been extensively used in reducing relevant features in 
medical data classification tasks such as schizophrenia [368,369], AD 
[370], face recognition [371], and psychosis [372]. Notably, there are 
also regression studies that involved PCA such as age prediction [373] 
and AD clinical scores prediction[374]. 

PCA contributes two major benefits to dimensionality reduction in 
medical data analysis. The first one is the easy implementation and 
computational efficiency. The second is that this technique is unsuper
vised so that the categorical labels or annotations are not required for 
the extraction of relevant features. However, PCA also has some short
comings. First, users are required to predefine the number of principal 
components, which leads to repetitive experiments before the best 
number can be found. Though there are some attempts at simplifying the 
procedures [375], it remains a big challenge of PCA. Second, the 

interpretability is poor since principal components are linear combina
tions of the original features. Lastly, classical PCA may not adequately 
explore more complex nonlinear feature interactions as principal com
ponents are built through a linear transformation [376]. Having said 
this, various nonlinear generalizations of the PCA have now been pro
posed to alleviate some of these issues [377]. 

7.2.2. Independent Component Analysis 
ICA, a multivariate data-driven technique, falls into the category of 

blind-source separation methods, which separate features into underlying 
independent information components. ICA separates the mixed signals or 
features into independent and relevant features. ICA assumes that source 
signals are independent and unknown but linearly mixed [378]. 

Let the feature matrix be X ∈ Rm×n, where m and n stand for the 
number of observations and number of attributes (dimensionality), 
respectively. The source matrix is denoted by S ∈ Rm′×n, where m′ is the 
expected number of independent components. Another matrix A ∈

Rm×m′ is defined as the mixing matrix whose columns contain the 
associated n components. Based on the above variables, X can be 
expressed as [379]: 

X = AS (53) 

Additionally, we can have: 

Y = WX (54) 

Therefore, ICA focuses on estimating the unmixing matrix W ∈ Rn×m, 
which renders Y to be a good approximation of the true signal sources S. 

In fMRI, most of the ICA dimensionality reduction studies extracted 
relevant independent components from the spatial dimension. But there 
is another category of ICA that subdivides the methods into individual- 
level ICA and group-level ICA. Briefly, each subject’s features are input 
into individual ICA analysis while sets of components for the groups are 
estimated and reconstructed to obtain individual-subject independent 
components in group-level ICA. 

The advantages of ICA mainly come from two aspects. Firstly, unlike 
univariate methods, no regressors of interest need to be specified in ICA 
as the specification of regressor may require prior knowledge and as
sumptions. The second advantage of ICA mainly comes from brain sig
nals processing that has been proved to be successful in disentangling 
the brain signals such as separating motion, scanner related, and phys
iological components [379]. However, ICA also has some drawbacks. 
One is the expensive computational cost of ICA algorithms [380]. 
Another is that ICA remains to be improved as ICA algorithms may not 
be able to adequately separate default mode networks and respiration 
signals in fMRI. 

Nevertheless, there are numerous ICA studies in the medical image 
feature reduction field [346,365,381–385]. Note that there is a signifi
cant difference between PCA and ICA. In PCA, features that could be 
correlated are mapped into sets of uncorrelated features. In ICA, how
ever, original features are statistically transformed into a set of inde
pendent features. The common between PCA and ICA is that both of 
these two techniques are unsupervised and require no labeled data. 

7.2.3. Coordinate-based meta-analysis 
CBMA techniques are different from the other unsupervised methods 

in that CBMA techniques rely on existing domain knowledge for feature 
reduction while the other unsupervised methods are mainly data-driven. 
Meta-analysis techniques have been involved in the studies of modeling, 
analyzing, and reporting brain activations [386]. Representative 
meta-analysis techniques include multi-level kernel density estimation 
[387], kernel-density estimation [388], and activation likelihood esti
mation (ALE) [389]. 

CBMA has been widely used in feature reduction in medical imaging. 
For example, a CBMA technique is applied in [390] to select features for 
the classification of working memory, emotion, and pain using fMRI. 
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Table 10 
Summary of feature reduction method in recent research  

Reference Task Mode Technique FET 

L. Goh et al. [326] Classification of gene expression data Supervised Filter (PCC 
based) 

PCC between genes calculated for the classification task. 

Z. Dai et al. [327] Analysis of early Alzheimer’s disease Supervised Filter (PCC 
based) 

PCC was calculated for the measurement of the functional 
connectivity among regions. 

Y. Fan et al. [328] Gender classification Supervised Filter (PCC 
based) 

PCC is used to measure the relevance of each feature to the 
classification 

B. Mwangi et al.  
[329] 

Diagnostic classification of depressive disorder Supervised Filter (T-test 
based) 

The optimal threshold is obtained by a cross-validation process for 
T-test 

R. Chaves et al.  
[330] 

Diagnosis of Alzheimer’s disease Supervised Filter (T-test 
based) 

T-test feature selection for classification by SVM 

C. Chu et al. [331] Effectiveness of feature selection Supervised Filter (T-test 
based) 

Common feature selection methods are compared 

S. G. Costafreda et al. 
[332] 

Exploration of diagnostic specificity Supervised Filter (ANOVA) ANOVA for modeling of diagnostic group effect 

S. G. Costafreda et al. 
[396] 

Analysis of the structural neuroanatomy of 
depression 

Supervised Filter (ANOVA) ANOVA for selection of areas of maximum group differences 
between observations and 

J. H. Yoon et al.  
[333] 

Deficits in distributed representations in 
schizophrenia 

Supervised Filter (ANOVA) Voxelwise ANOVA applied in the study 

E. A. Allen et al.  
[397] 

Multivariate comparison of resting-state 
networks 

Supervised Filter 
(MANCOVA) 

Applied MANCOVA for interpretability of variability in the 
multivariate response 

S. Calderoni et al.  
[341] 

ASD analysis Supervised Wrapper (RFE) RFE and SVM are combined to identify the most discriminating 
voxels in gray matter segments (SVM-RFE). 

C. Ecker et al. [342] Investigation of the predictive value of whole- 
brain structural MR scans in autism 

Supervised Wrapper (RFE) SVM-RFE for detection of subtle differences in brain networks 
between ASD patients and healthy subjects. 

M. Ingalhalikar et al. 
[343] 

Constructing abnormality markers of pathology 
based on diffusion 

Supervised Wrapper (RFE) Features are ranked and then selected. 

C. Davatzikos et al.  
[344] 

Detection of prodromal Alzheimer’s disease via 
pattern classification 

Supervised Wrapper (RFE) RFE is used to find the minimal set of features to be fed into the 
classifier. 

D. Gothelf et al.  
[345] 

Developmental changes in multivariate 
neuroanatomical patterns 

Supervised Wrapper (RFE) 30% of worst-discriminating voxels are removed at a time until the 
performance started deteriorating 

E. Castro et al.  
[346] 

Characterization of groups using composite 
kernels and multi-source fMRI analysis data 

Supervised Wrapper (RFE) The RFE algorithm is based on the calculation of discriminative 
weights 

K. Nho et al. [347] Automatic prediction of conversion from mild 
cognitive impairment to probable AD 

Supervised Wrapper (RFE) SVM-RFE algorithm, which returns a ranking of all the features and 
then selects features accordingly. 

J. Mourão-Miranda  
[398] 

Risk assessment of mood disorders from low-risk 
adolescent 

Supervised Wrapper (RFE) RFE is used to determine the optimal subset of brain voxels that 
results in the best discrimination accuracy. 
Also, RFE helps to accurately localize the most discriminative 
brain voxels. 

J. Yan et al. [352] Multimodal neuroimaging predictors based on 
structured sparse learning 

Supervised Embedded 
(LASSO) 

Modeled the interrelated structure within the predictor variables 
by incorporating LASSO 

M. Vounou et al.  
[353] 

Sparse reduced-rank regression detects genetic 
associations 

Supervised Embedded 
(LASSO) 

Proposed the application of a penalized multivariate model, sparse 
reduced-rank regression (sRRR). 

O. Kohannim et al.  
[354] 

Discovery and replication of gene influences on 
brain structure 

Supervised Embedded 
(LASSO) 

The gene effects in genome-wide association studies (GWAS) of 
brain images are evaluated by LASSO. 

R. Casanova et al.  
[394] 

Gender classification Supervised Embedded 
(LASSO) 

Random Forest and LASSO are combined for classification. 

E. Duchesnay et al.  
[355] 

ASD classification Supervised Embedded 
(LASSO) 

Feature selection is used to predict the clinical status of a highly 
imbalanced dataset. 

I. Rish et al. [356] Predicting temporal lobe volume Supervised Embedded 
(LASSO) 

The proposed feature selection method helped to predict a tensor- 
based morphometry-derived measure of temporal lobe volume. 

A. Rao et al. [359] Classification of AD Supervised Embedded 
(Elastic Net) 

A sparsity penalty is introduced into the log-likelihood and served 
feature selection algorithm. 

J. Wan et al [360] Hippocampal Surface Mapping Supervised Embedded 
(Elastic Net) 

The association between single nucleotide polymorphisms (SNPs) 
and quantitative traits (QTs) is examined by Elastic Net. 

A. F. Marquand et al. 
[361] 

Treatment response prediction in ADHD Supervised Embedded 
(Elastic Net) 

Sparse multinomial logistic regression (SMLR) with an elastic net 
penalty is proposed. 

K. Chen et al. [364] Age classification Supervised Embedded 
(PLSC) 

A partial least square (PLS) algorithm is used to form a covariance- 
maximized combined latent variable. 

J. Sui, T. et al. [365] Analysis of multimodal feature reduction tasks Supervised Embedded 
(PLSC) 

Numerous multivariate methods have been reviewed and 
analysed. 

L. Menzies et al.  
[366] 

Analysis of obsessive-compulsive disorder Supervised Embedded 
(PLSC) 

PLSC is used to measure the correlation between the grey matter 
systems and stop-signal reaction time (SSRT). 

P. Alvarado-Alanis 
et al. [368] 

Abnormal white matter integrity in psychosis Unsupervised PCA The white manner tracts are grouped into four factors by PCA. 

P.-R. Loh et al.  
[369] 

Fast variance-components analysis of 
schizophrenia 

Unsupervised PCA Features are obtained by PCA for bivariate analyses. 

L. Khedher et al.  
[370] 

Early diagnosis of AD Unsupervised PCA Multivariate approaches for feature selection including PCA 

L. C. Paul et al.  
[371] 

Face recognition Unsupervised PCA PCA method performed worse than PLS feature extraction and 
linear SVM classifier. 

A. B. Bendixen et al.  
[372] 

Psychosis Unsupervised PCA PCA is conducted on Geriatric Anxiety Inventory (GAI) for 
disorders differentiation. 

K. Franke et al.  
[373] 

Age prediction Unsupervised PCA Training a relevance vector machine based on PCA-reduced 
features. 

(continued on next page) 
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Another CBMA feature reduction framework is known as Neurosynth, 
which is a tool for the automated synthesis of fMRI data [391]. To 
classify AD subjects, Dukart et al. applied a CBMA technique in multi
center studies with a good generalization performance reported [392]. 
In the work [331], Chu et al. reported that ROIs selected via a prior 
domain knowledge lead to better generalization ability compared to 
features selected through data-driven approaches such as RFE and t-test. 
The benefit of CBMA techniques is a posteriori certainty can be 
improved and makes neuroimaging studies less sensitive to type II errors 
[387]. But CBMA techniques may suffer from information loss as well 
because features are represented with a high degree of sparseness [393]. 

7.2.4. Summary and Discussion 
This section introduced popular data reduction techniques that can 

be divided into two categories, namely supervised and unsupervised. In 
supervised techniques, we further introduced three subsets of methods, 
including filter, wrapper, and embedded. Filter techniques discard 
redundant features according to statistical feature ranking, as shown in 
Table 10. There are two common drawbacks of these methods. One is 
that no interactions between multiple features are considered as they are 
not multivariate. The second is the difficulty in predefining a proper 
feature threshold value. By contrast, wrapper techniques are multivar
iate but computationally expensive. The performance of embedded 
feature reduction methods highly relies on penalization parameters that 
are generally chosen by cross-validation. The major difference between 
supervised methods and unsupervised methods is obviously the infor
mation using that supervised methods select relevant features in aim at 
group-level differentiation while unsupervised methods consider fea
tures independent of the final interest. 

The performance of feature reduction techniques, as mentioned 
before, is determined by several factors. One is the annoying optimal 
threshold values, either for the number of features to be chosen or the 
number of parameters to be determined in the process. The second one is 
the randomness in the process of training, and testing models as the 
reduced features may vary from fold to fold. 

In summary, feature reduction techniques have been widely used in 
the medical imaging area to improve predictive accuracy in spite of 
curse-of-dimensionality or small sample problems. While numerous 
studies compared different feature reduction methods, no method 
emerged as optimal in all medical imaging machine learning tasks. 

8. Conclusion 

Advances in sensor technologies have made it possible to leverage 
modern machine learning and AI methods, with the aim of harnessing a 
multitude of data sources for biomedical information analysis. The 

diverse nature of such data makes it unrealistic to ignore the in
terdependencies between the different data sources. It is commonly 
known that integrating a multitude of data from different imaging mo
dalities can produce more consistent, accurate, robust to equipment and 
measurement induced noise and functional information than that 
generated by a single data source. However, the fusion of multi-sourced 
data may bring various challenges, such as higher complexity in 
denoising the data, missing data values, data scarcity, larger costs in 
sensor hardware and data processing, and high dimensionality. This 
paper has reviewed these challenges and discussed state-of-the-art 
methodologies to effectively tackle them. 

Although AI broadens the already existing large spectrum of sensor 
fusion methodologies, a number of research frontiers and caveats still 
persist. Sensor fusion methods, especially when incorporating AI, have 
lower interpretability than classical approaches and may suffer from 
generalization problems when the data is scant or not fully representa
tive of the problem at hand – thus, human intervention and monitoring 
are still necessary. This is even more true for the case of biomedical 
applications, where the cost of algorithmic errors can be prohibitive. 
Hence, research efforts must be focused on increasing the interpret
ability of multi-source data pipelines processing biomedical data and on 
strengthening the level of integration with medical personnel. Although 
the level of automation in biomedical decision-making is expected to 
massively increase in the short term, little research is being directed 
towards establishing how these intelligent systems will interact with 
human experts. A new research frontier is that of establishing the effi
cacy of these algorithms when they act in a symbiotic manner with the 
medical personnel. It is conceivable that the algorithms that yield 
maximum performance in autonomous decision-making tend to induce 
human error in actual biomedical operations. 

Another exciting research frontier is that of finding new ways to 
tackle model drift effects such as data and concept drift. For example, is 
it possible to make these intelligent systems adaptive to situations such 
as data drift produced by wear in the data logging equipment, concept 
drift resulting from environmental factors – which may make some 
conditions more likely than others, essentially changing the baseline 
priors – while also adaptive to the different biases of the medical 
personnel involved? The ultimate goal is to make these systems less 
expensive to maintain as to reduce the cost of the medical treatments. 

Despite these constraints, this is an ever-expanding subject that 
shows great promise beyond the already existing numerous applications, 
and many of the surveyed techniques are already applicable if care is 
taken according to the above considerations. 

Table 10 (continued ) 

Reference Task Mode Technique FET 

Y. Wang et al. [374] AD clinical scores prediction Unsupervised PCA The Relevance Vector Machine (RVM) is built for regression based 
on PCA-reduced features. 

P. K. Douglas et al.  
[381] 

fMRI decoding Unsupervised ICA Six different machine learning algorithms are evaluated on the 
ICA-reduced features. 

J. R. Sato et al.  
[382] 

ADHD prediction Unsupervised ICA Evaluation of three different feature extraction methods while the 
classifiers showed almost the same performance. 

E. P. Duff et al.  
[383] 

Prediction using fMRI Unsupervised ICA A task-specific Independent Component Analysis (ICA) procedure 
is proposed. 

A. Hyvarinen et al.  
[384] 

Feature extraction Unsupervised ICA Novel time-contrastive learning model combined with linear ICA. 

C. Zhao et al. [385] Anomaly detection in hyperspectral imagery Unsupervised ICA Improved ICA for feature extraction. 
T. Yarkoni et al.  

[390] 
Synthesis of human functional neuroimaging 
data 

Unsupervised CBMA No heavy reliance on the automatically extracted information. 

T. M. Mitchell et al.  
[391] 

A tool for the automated synthesis of fMRI data Unsupervised CBMA A CBMA technique in multicenter studies with a good 
generalization performance.  
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approach, Revista Española de Medicina Nuclear e Imagen Molecular (English 
Edition) 40 (2021) 72–81. 

[70] A. Villalobos, B. Cheng, W. Wagstaff, I. Sethi, Z. Bercu, D.M. Schuster, Tumor-to- 
Normal Ratio Relationship between Planning Technetium-99 Macroaggregated 
Albumin and Posttherapy Yttrium-90 Bremsstrahlung SPECT/CT, J. Vasc. Interv. 
Radiol. 32 (2021) 752–760. 

[71] M. Diwakar, M. Kumar, A review on CT image noise and its denoising, Biomed. 
Signal Process. Control 42 (2018) 73–88. 

[72] S. Aja-Fernandez, A. Tristan-Vega, A review on statistical noise models for 
Magnetic Resonance Imaging, in: presented at the LPI, ETSI Telecomunicacion, 
Spain, 2013. 

[73] D.S. Marcus, A.F. Fotenos, J.G. Csernansky, J.C. Morris, R.L. Buckner, Open 
access series of imaging studies: longitudinal MRI data in nondemented and 
demented older adults, J. Cogn. Neurosci. 22 (2010) 2677–2684. 

[74] M. Kazubek, Wavelet domain image denoising by thresholding and Wiener 
filtering, IEEE Signal Process Lett. 10 (2003) 324–326. 

[75] J. Portilla, V. Strela, M.J. Wainwright, E.P. Simoncelli, Image denoising using 
scale mixtures of Gaussians in the wavelet domain, IEEE Trans. Image Process. 12 
(2003) 1338–1351. 

[76] M. Ghazel, G.H. Freeman, E.R. Vrscay, Fractal-wavelet image denoising revisited, 
IEEE Trans. Image Process. 15 (2006) 2669–2675. 

[77] P. Gruber, K. Stadlthanner, M. Böhm, F.J. Theis, E.W. Lang, A.M. Tomé, 
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based computer-aided diagnosis of the Alzheimer’s disease using t-test NMSE 
feature selection with feature correlation weighting, Neurosci. Lett. 461 (2009) 
293–297. 

[331] C. Chu, A.-L. Hsu, K.-H. Chou, P. Bandettini, C. Lin, A.s.D.N. Initiative, Does 
feature selection improve classification accuracy? Impact of sample size and 
feature selection on classification using anatomical magnetic resonance images, 
Neuroimage 60 (2012) 59–70. 

[332] S.G. Costafreda, C.H. Fu, M. Picchioni, T. Toulopoulou, C. McDonald, E. Kravariti, 
Pattern of neural responses to verbal fluency shows diagnostic specificity for 
schizophrenia and bipolar disorder, BMC psychiatry 11 (2011) 18. 

[333] J.H. Yoon, D. Tamir, M.J. Minzenberg, J.D. Ragland, S. Ursu, C.S. Carter, 
Multivariate pattern analysis of functional magnetic resonance imaging data 
reveals deficits in distributed representations in schizophrenia, Biol. Psychiatry 
64 (2008) 1035–1041. 

[334] V.D. Calhoun, J. Sui, K. Kiehl, J.A. Turner, E.A. Allen, G. Pearlson, Exploring the 
psychosis functional connectome: aberrant intrinsic networks in schizophrenia 
and bipolar disorder, Front. Psychiatry 2 (2012) 75. 

[335] E.-G. Talbi, Metaheuristics: from Design to Implementation, 74, John Wiley & 
Sons, 2009. 

[336] M. Mafarja, S. Mirjalili, Whale optimization approaches for wrapper feature 
selection, Appl. Soft Comput. 62 (2018) 441–453. 

[337] F. De Martino, G. Valente, N. Staeren, J. Ashburner, R. Goebel, E. Formisano, 
Combining multivariate voxel selection and support vector machines for mapping 
and classification of fMRI spatial patterns, Neuroimage 43 (2008) 44–58. 

[338] R.C. Craddock, P.E. Holtzheimer III, X.P. Hu, H.S. Mayberg, Disease state 
prediction from resting state functional connectivity, Magn. Reson. Med.: An Off. 
J. Int. Soc. Magn. Reson. Med. 62 (2009) 1619–1628. 

[339] B. Mwangi, K.M. Hasan, J.C. Soares, Prediction of individual subject’s age across 
the human lifespan using diffusion tensor imaging: a machine learning approach, 
Neuroimage 75 (2013) 58–67. 
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