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Due to the proliferation of biomedical imaging modalities, such as Photo-acoustic Tomography, Computed To-
mography (CT), Optical Microscopy and Tomography, etc., massive amounts of data are generated on a daily
basis. While massive biomedical data sets yield more information about pathologies, they also present new
challenges of how to fully explore the data. Data fusion methods are a step forward towards a better under-
standing of data by bringing multiple data observations together to increase the consistency of the information.
However, data generation is merely the first step, and there are many other factors involved in the fusion process

like noise, missing data, data scarcity, and high dimensionality. In this paper, an overview of the advances in data
preprocessing in biomedical data fusion is provided, along with insights stemming from new developments in the

field.

1. Introduction

Due to the proliferation of biomedical imaging modalities [1] such as
Photo-acoustic Tomography (PAT) [2], Computed Tomography (CT) [3,
4], Optical Microscopy and Tomography (OMT) [2], Single Photon
Emission Computed Tomography (SPECT) [5], Magnetic Resonance [6]
(MR) Imaging, Ultrasound, Positron Emission Tomography (PET) [7,8],
Magnetic Particle Imaging (MPI) [9], Electroencephalogram (EEG)
[10]/ Magnet-encephalography (MEG) [11], Electron Tomography (ET)
[12], and Atomic Force Microscopy (AFM) [13], massive amounts of
biomedical and health informatics data are being generated on a daily
basis. It is commonly known that it is difficult to gain full understanding
of the data through a single analysis modality. Take, for example, a
malignant tumor, which is difficult to diagnose through a single mo-
dality for many reasons, like the low positive predictive values, low
specificity, etc. Therefore, it is necessary to exploit the information
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provided by multiple modalities simultaneously for better diagnosis.
The acquisition of multimodal data is an important initial step of the
process. In many instances, however, the real crux of the problem is how
to fully explore all sources of information available. Data fusion provides
a step forward towards a complete understanding of a given pathology.

Data fusion is inspired by how humans and animals process sensory
signals by merging multiple inputs from different internal and external
sensors to reliably collect information about their environment for sur-
vival purposes. Data fusion has been widely used in many fields, such as
geographic information systems [14,15], wireless sensor networks
[16-18], chem-informatics [19], and bioinformatics [20,21]. Data
fusion involves the integration of data from different resources to
interact and inform each other to enhance a variety of data analysis tasks
such as detection, estimation, segmentation, and classification. Data
fusion can be carried out at different levels [22-24], including raw
data-level, feature-level, and decision-level. However, performing a data
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fusion task in a particular application field can be extremely chal-
lenging. For example, in the field of biomedical data analysis, a number
of problems may occur at different fusion levels, including the following
aspects:

e Data noise [25]: Data noise is one of the major limitations in imaging
and is an important issue for biomedical image preprocessing. Noise
can be defined as unwanted information in images [26].

Missing values [27]: Missing values refer to the absence of data items
for a subject. Missing values are pervasive in real-world data sets,
and they present a significant challenge at the different levels for
multimodal data fusion as they may be of importance to the data
analysis task at hand.

Alignment and registration [28,29]: Alignment and registration aim
at reducing spatial or temporal in-homogeneities between samples,
including differences in acquisition frequencies, sampling devices,
and sample physiology. In biomedical data, registration is a standard
prerequisite for the analysis and fusion of multimodal data [30].
Small datasets [31-33]: Data scarcity can be a problem in domains
where data collection is difficult, time-consuming, and/or expensive.
A prime example is the scarcity of medical data. Analyzing small data
sets and building statistical models using them are both challenging
tasks.

High dimensionality [34]: With the proliferation of diverse modal-
ities, it has been made possible to acquire large amounts of
biomedical data with high dimensionality. Processing the
high-dimensional data incurs a high computational cost and is
inherently inefficient since many of the values that describe a data
object are redundant due to noise and linear or nonlinear de-
pendencies. Other potential issues include instabilities [35], distance
concentrations, and insufficient data volumes to make use of
high-dimensional data [36]. Consequently, the dimensionality, i.e.,
the number of values that are used to describe a data object, needs to
be reduced prior to any subsequent processing of the data.

This paper provides a review of methods to deal with those chal-
lenges and their prospects towards the fusion of medical imaging data.
The rest of this paper is organized as follows: Section 2 introduces some
common biomedical image acquisition methods, including CT, MRI, X-
ray, etc. Section 3 describes the challenge of noise and the available
solutions. Section 4 provides a review of the missing value problem and
imputation methods that deal with it. Then, Section 5 illustrates the
alignment and registration methods. Section 6 provides a review of the
small datasets issue. Section 7 describes the high dimensionality issue
and its solutions. In Section 8, conclusions are drawn and novel trends
are discussed. Table 11 provides all the abbreviations and their repre-
sentations in this paper.

2. Data acquisition methods

Medical imaging [37-39] refers to a range of technologies for visu-
alizing specific parts of the body for clinical diagnosis and medical
treatment. Medical imaging can also visualize the function of tissues or
organs. With medical imaging technologies, clinicians can investigate
the internal structure of the skin and bones as well as diagnose and
provide treatment. Medical imaging also assists in building datasets of
physiology and normal anatomy to make it possible for researchers to
conduct further analyses [40].

Medical imaging is a part of the broader domain of biological im-
aging, which includes many different types of imaging technologies,
such as X-ray [41,42], ultrasound [43,44], magnetic resonance imaging
(MRI) [45], nuclear medicine functional imaging techniques -e.g.,
positron emission tomography (PET) [8,46] and single-photon emission
computed tomography (SPECT), etc. The details of some common
medical imaging technology are next described.
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Fig. 1. MRI brain image

2.1. Magnetic resonance imaging

Magnetic resonance imaging (MRI) [47], which is a noninvasive
medical imaging technique to produce three-dimensional detailed
anatomical images, utilizes strong magnetic fields, magnetic field gra-
dients, and radio waves to produce pictures of the anatomy and the
physiological processes of the body. The patient to be scanned should be
positioned within an MRI scanner that forms a strong magnetic field
around the specific area of interest. The specific region is then defined by
the X and Y gradient coils with energy caused by an oscillating magnetic
field temporarily applied at the appropriate resonance frequency. The
receiving coil then measures the radio frequency (RF) signal level
emitted by the excited atoms. The RF signal can be used to infer the
position information as the RF level and phase change due to the
changing the local magnetic field by gradient coils. The contrast be-
tween various tissues is determined by the rate of excited atoms
returning to the equilibrium state. Patients might be given contrast
agents, like gadolinium, to make the image more clear [48].

The advantage of the MRI [49] is that it does not rely on ionizing
radiation or X-rays, which are harmful and may cause direct tissue
damage or cancer. MRI is an outstanding imaging technology in regard
to image details, though the scanning process takes long time and pro-
duces loud noises. MRI has been widely used to image joints [50,51],
brain [52], wrists [53], ankles [54,55], breasts [56], heart [6,57] and
blood vessels [58]. However, MRI is usually expensive and may not be
able to offer the resolution and enough information to detect all types of
cancers, such as breast cancer which is indicated by micro-calcifications;
currently, it cannot differentiate the benign disease and malignant tu-
mors. Moreover, some patients might be allergic to the contrast agents
or have chronic kidney disease, which prevents them from ingesting
these agents [59]. In addition, it may be unsafe for a patient to go
through the MRI scanner if the patient has medical implants or other
non-removable metal inside their body [60]. Fig. 1 shows an MRI brain
image.

2.2. Computed tomography

Computed tomography (CT) [3,61,62] uses rotating X-ray machines
and computers to create cross-sectional images to visualize different
body parts, including the head, shoulders, spine, and heart. CT provides
a non-invasive way to visualize the inside of the body. CT can show the
details of damage to bones, injuries of an internal organ, problems with
blood flow, stroke, and cancer. For instance, CT can provide information
about size, location, and shape of a tumor prior to radiotherapy or to
guide needle biopsies.

Since its introduction in the 1970s, CT has become a significant
technique to supplement X-rays and ultrasonography in medical imag-
ing [63]. CT has the following advantages: (1) CT can provide high
image resolution, therefore, better details. (2) CT can exclude the
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Fig. 2. CT brain image

Fig. 3. X-ray image from a healthy subject

superimposition of images of structures outside of the region of interest.
(3) CT imaging data can be viewed in multi-planar transverse, coronal,
or sagittal plane depending on the corresponding diagnostic task.
However, one in 80 people could be at a risk of developing cancer
due to being subjected to CT scans [4]. It is estimated by one study that
0.4% of the cancers in the United States were, in fact, caused by CT
scanning procedures. Though a study by Tubiana [61] disputed the es-
timate as there is no consensus that the low level of radiation used in CT
scans causes damage. CT is therefore not usually recommended unless
the patient exhibits certain symptoms. Fig. 2 shows a CT brain image.

2.3. X-ray

X-ray waves, found in 1895 by Rontgen, are one type of high-energy
electromagnetic radiation. X-ray waves have been widely used for
medical imaging since their introduction as they can pass through the
body to create images of different parts of your body by variable shades
of black and white [42,64,65]. For patients to be scanned, they need to
be positioned so that the body part to be imaged is located between an
X-ray source and an X-ray detector. When X-rays pass through the body,
they can be absorbed at different rates due to the different densities of
different body parts. Then, an image can be generated as a detector on
the other side of the body picks up the X-rays after they pass through the
body. When the X-rays pass through high-density body parts, such as
bones, they will be shown as clear white areas on the image. In contrast,
low-density parts, such as lungs and hearts, it will be shown as darker
areas on the image.

X-ray imaging is widely used for the examination of bone fractures
and breaks [62], tooth problems such as root infection and loose teeth
[66], and scoliosis [67]. X-rays are also commonly used as an imaging
method to produce mammograms for detecting breast cancers. X-ray
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Fig. 4. Fetal Ultrasound

imaging [68] is painless, fast, and non-invasive. However, X-rays expose
the patients to radiation. Therefore, it should be used judiciously. Fig. 3
shows an X-ray image from a healthy subject.

2.4. Ultrasound

The principle of Ultrasound is that high-frequency sound can travel
through soft tissues and fluids, and then it bounces back or echoes off
denser surfaces to generate images [68]. The echoes determine the ul-
trasound image features in shades of gray, which reflect different den-
sities as more ultrasound bounces back when hitting a denser object.
Different ultrasound frequencies can generate images with different
qualities. For example, high frequencies can provide high-quality im-
ages, but they are more readily absorbed by the skin and other tissue,
and thus, they cannot penetrate as deeply as lower frequencies. As Ul-
trasound uses radio waves instead of radiation to form images, it is much
safer compared to X-ray and CT. Ultrasound is suitable for use during
pregnancy to monitor the baby’s development. 3D ultrasound can pro-
vide a static 3D image of the baby, while 4D can provide a moving video.
Besides monitoring the fatal development, ultrasound can be used for
the diagnosis of internal organs, such as the liver, kidneys, and thyroid
nodules. Fig. 4 shows a fetal ultrasound image.

2.5. Positron emission tomography

Positron emission tomography (PET) is a nuclear medicine imaging,
which is based on the radioactive substances known as the radiotracers
to provide clear visualization of the changes in metabolic processes,
blood flow, regional chemical composition, absorption, etc. [69]. With

Fig. 5. PET normal brain image
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Fig. 6. SPECT brain image

the injection a small amount of liquid radioactive material as the tracer
into the body, gamma rays by tracers are then emitted and detected by
the gamma cameras to generate a 3D image, which is similar to an X-ray
image. Variable tracers may be used depending on the purpose of the
scan.

Due to the high cost and complexity of the support infrastructure,
like cyclotrons, PET scanners, etc., PET was mainly used for researches
in the past. However, in recent years, due to the advanced technology
and the proliferations of PET scanners, PET is also employed in clinical
applications to help with disease diagnosis, which can help improve the
understanding of disease pathogenesis. PET can be applied for the
diagnosis of movement disorders, epilepsy, brain tumors, stroke and
neuronal plasticity, neuropharmacology, dementia, and some possible
future applications with different types of tracers. Usually, PET can be
used together with CT or MRI to help doctors to get a more detailed view
of the illness, and therefore to get a better assessment of the patient’s
condition. Fig. 5 shows an example of PET normal brain image.

2.6. Single-photon emission computed tomography

Single-photon emission computed tomography (SPECT) is another
type of nuclear medicine tomographic imaging technique that is also
based on gamma rays [70]. SPECT can provide true 3D information that
is traditionally shown as cross-sectional slices through the patients and
is free to be reformatted and manipulated according to the application
requirements.

For the SPECT imaging, patients need to take an injection of the
gamma-emitting radioisotope into the bloodstream. Usually, the radio-
isotope is a simple soluble dissolved ion, like an isotope of gallium (III).
In most cases, a marker radioisotope is used to create radioligand when
it is attached to a specific ligand. The properties of the radioligand bind
it to specific types of tissues. Then, the coupled combination of ligand
and radiopharmaceutical can be carried to bound to the region of in-
terest in the body, followed by the gamma camera can see the ligand
concentration.

Different from traditionally taking a picture of the anatomical
structure, SPECT allows monitoring of the biological activity at each
place in the 3-D region analyzed. The amounts of blood flow are indi-
cated by the emission from the radionuclide in the capillaries of the
imaged regions. The images obtained from SPECT imaging by using a
gamma camera are multiple 2-D images from different angles. After-
wards, a tomographic reconstruction algorithm is applied to the multi-
ple projections, yielding a 3-D data set. The imaging principle of SPECT
is similar to PET as they both use radioactive tracers and the detection of
gamma rays. Differently, SPECT emits gamma radiation, which is
measured directly, while PET tracers emit positron annihilate with
electrons up to a few millimeters away, making two gamma photons to
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Table 1
Summary of common biomedical image acquisition methods
Modalities Imaging Advantage Disadvantage Application
method
MRI Magnetic e Less e Expensive joints, brain
fields and radiation e Noise [52], wrists,
radio waves compared to e Radiofrequency  ankles[54,
CT and X- energy 55], breasts,
ray heart, blood
vessels, and
etc.
CT Ionizing e Cheaper e Potential damage to
radiation than MRI allergy to the bones, injuries
e High contrast agent of an internal
image e Harmful to the organ,
resolution unborn baby problems with
e Accurate, blood flow,
fast, and stroke, cancer
painless and etc.
X-ray ITonizing o Painless e No 3D bone
radiation o Fast information fractures,

o Radiation tooth
problems,
scoliosis, lung
problems, etc.

Ultrasound  Sound waves e Safe, o Fewer detailsas  diagnosis of
quick, and X rays internal
easy o cannot be organs
eDonotuse  applied in areas fetal
radiation that contain gas development

(such as lungs)

e doesn’t pass

through bones

PET Radiotracers e Painless, e Cause a major Detect cancer
noninvasive allergic reaction at an earlier

e Harmful to stage

babies if

pregnant

SPECT gamma rays e Less time e Longscan times  Monitor brain
compared to e Low-resolution disorders,
PET images heart
e Cheaper problems and
than PET bone

disorders.

be emitted in opposite directions. As PET imaging can immediately find
these emissions coincident as to provide more radiation event localiza-
tion information, it can provide higher resolution than SPECT. However,
SPECT is significantly cheaper than PET as they are able to use longer-
lived and more easily obtained radioisotopes.

SPECT can be utilized as a complement of any gamma imaging study
as it can provide a true 3D representation, such as tumor imaging,
infection (leukocyte) imaging, thyroid imaging, or bone scintigraphy. As
SPECT provides accurate localization in 3D space, it can be used to
provide information about localized function in internal organs, like
functional cardiac or brain imaging. Fig. 6 shows a SPECT image from a
patient with uncontrolled complex partial seizures.

Table 1 shows a summary of the common biomedical image
methods, including MRI, CT, X-ray etc., with their corresponding im-
aging method, advantages, disadvantages and their applications.

3. Preprocessing of noisy data
3.1. Background

Data noise is one of the major factors affecting the quality of imaging
outputs, and addressing the negative impact of noise is an important step
for biomedical image processing. Noise can be defined as any unwanted
information in images. Consider, for example, an image where input
sensory information is presented as a grey-level matrix or tensor, then,
an element in an image can be expressed as a pair
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(a) Raw brain image

(b) Gaussian noise with
variance of 0.01

(c) Gaussian noise with
variance of 0.02

Fig. 7. Gaussian noise

(i v(D)

where icl, denotes the coordinate and v(i) represents the corresponding
grey level. Note that the number of variables defining the coordinate
(sometimes referred to as a dimension of) i can vary depending on
specific tasks and processes. v(i) is a real value in grey level images while
in color images v(i) is a triplet for red, green, and blue channels,
respectively. The value of every pixel v(i) is obtained by the measure-
ment of light intensity, which can be implemented by a charged-coupled
device (CCD) matrix. The capacitors in the CCD device count the number
of photons in a period of time to generate the intensities. According to
the central limit theorem, the numbers of photons received by the
captors fluctuate around their mean values if the subject of the image is
in constant light. However, in real-life applications, the capacitors can
receive bogus heat photons if they are not cooled down appropriately. In
such circumstances, noise appears in the final image, which can be
expressed as

v(i) = u(i) + n(i)

(€8]

(2)

where v(i) is the value obtained by observation, u(i) is the original true
value and n(i) stands for the noise value. Various factors can contribute
to the noise n(i), such as calibration error and quantization degradation,
which are unavoidable in measurement. Specifically, for biomedical
imaging like CT, there can be random noise, electronic noise, statistical
noise, and round-off noise.

The quality of CT images is related to several factors. For example,
inappropriate protocol parameter values and the movement of patients
can blur the reconstructed images. The movement is sometimes un-
avoidable in practical applications due to the breathing and heart
beating. Field of view is also a significant factor for CT imaging. The
reconstructed images can be degraded if the field of view is too small or
too big. Artifact is another major factor for CT, which is defined as the
difference between the desired CT numbers and the obtained CT
numbers [71]. The quality of MRIs is also related to a bunch of factors,
such as movement of the objects and scanning times [72].

In the remainder of this section, we focus on image noise and
denoising methods. The common noise models are discussed, and the
state-of-the-art denoising techniques are presented, including wavelet-
based methods, Markov random field-based algorithms, anisotropic
diffusion filtering, non-local methods, bilateral and trilateral methods,
and deep learning-based denoising.

3.2. Noise models

The prior knowledge of noise models is beneficial for denoising
processing. Since the image noise often appears randomly, it is suitable
to describe it by random variables and probability density functions
(PDFs).
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(b) brain MRI with white noise

(a) brain MRI

Fig. 8. White noise

3.2.1. Gaussian noise
The Gaussian noise model is often used to simulate thermal noise. For
the univariate Gaussian noise n, its PDF is written as
1 (ew?

= e 27, —00 < X < +00

V2o

where yu denotes the mean value and o2 represents the variance. In
digital images, x stands for the gray-level, so it is non-negative and often
defined as integer x<[0,255]. Fig. 7(a) shows a raw brain image
extracted from Open Access Series of Imaging Studies (OASIS) brain
dataset [73]. Fig. 7(b-c) present the Gaussian noise injection results with
variance of 0.01 and 0.02, respectively.

3

Pa(%)

3.2.2. White noise

Gaussian noise is defined by its PDF, but white noise is based on the
noise power. From the view of the spectrum, white noise power is a
constant value. In an image with white noise, the intensity value of each
pixel is different from its neighboring values. Fig. 8 presents an example
of a brain MRI image with white noise.

3.2.3. Impulse valued noise

Impulse valued noise, also known as salt and pepper noise, is another
type of image noise that is commonly seen during transmission. The
definition can be expressed as

x(ij) = NV,
otherwise

L, )

gse(i,j) = {}/
where N; = 255 denotes sault noise, and N, = 0 denoting pepper noise.
x(i,j) represents the pixel value at position (i,j) after salt-and-pepper
noise is added to the original image. y means the noisy density, which
is a factor meaning how many percentages of all pixels will add salt-and-
pepper noise. The salt and pepper noise does not corrupt the whole
image but changes parts of the pixel values. Because in data trans-
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(b) brain MRI with impulse valued noise

(a) brain MRI (25% of the pixels corrupted)

Fig. 9. Impulse valued noise

(a) brain MRI (b) brain MRI with periodic noise

Fig. 10. Periodic noise

(a) brain MRI (b) brain MRI with speckle noise

Fig. 11. Speckle noise

(a) brain MRI (b) brain MRI with Poisson noise

Fig.12. Poisson noise
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(a) brain MRI

(b) brain MRI with Rayleigh noise (6=0.08)

Fig. 13. Rayleigh noise

(a) brain MRI

(b) brain MRI with Gamma noise

(a=0, b=0.08)

Fig. 14. Gamma noise

mission, some values of pixels can be corrupted and substituted by either
pure black or pure white values. Fig. 9 illustrates an example of an MRI
brain image and its contamination with impulse valued noise.

3.2.4. Periodic noise

Periodic noise is caused by electric interference during the image
capture process. Periodic noise has a certain pattern that repeats inde-
pendently in the spatial domain. Fortunately, periodic noise can be
easily removed by filtering in the frequency domain. An instance of sine
periodic noise is provided in Fig. 10.

3.2.5. Speckle noise

Speckle noise is multiplicative noise, which is usually caused by bad
information channels. As this noise is multiplicative with the original
signals, it appears with the signals and disappears when the pixel values
are zero. The speckle noise is modelled as multiplicative noise, defined
as

I, =1L + N, +N, 5)
where Iy means noise-free image, and I, the observed image. N, and N,
denotes the multiplicative noise and additive noise, respectively. An
example of speckle noise with 0.05 variance is given in Fig. 11.

3.2.6. Poisson noise

Poisson noise is so named because it obeys the Poisson distribution.
Poisson noise is caused by the quantum characteristic of light. The
number of the quanta that arrives on the surface of the photoelectric
detection device follows statistical fluctuation so that image is granular.
As a result, the contrast of the image diminishes, and the detailed in-
formation is covered. An instance is presented in Fig. 12.
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Table 2
summary of different noise types

Type of noise Description

Gaussian noise Gaussian noise obeys Gaussian distribution, which can be
defined by mean and variance.

White noise is defined based on the noise power, which is a
constant value.

Impulse valued noise is also known as salt and pepper noise,
which is often seen during transmission.

Periodic noise has certain pattern that repeats independently in
spatial domain, which can be easily removed by filtering in
frequency domain.

Speckle noise is multiplicative noise, which is usually caused by
bad information channels.

Poisson noise obeys the Poisson distribution, which is caused by
the quantum characteristic of light.

Rayleigh noise is often seen in radar images.

Gamma noise often occurs in laser images.

White noise
Impulse valued
noise
Periodic noise
Speckle noise

Poisson noise

Rayleigh noise
Gamma noise

3.2.7. Rayleigh noise
Rayleigh noise is often seen in radar images, and its PDF is given by
, x>0 (6)

where the ¢ represents the variance. Fig. 13 presents an example of
Rayleigh noise.

3.2.8. Gamma noise

Gamma noise often occurs in laser images with the PDF given by
bxb—l

Pul) = e, X 2 0

o1 @

where a > 0 and b is a positive integer. Fig. 14 illustrates an instance of
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Gamma noise.

Considering the length of this review, only the above eight common
noise models are discussed. Table 2 offers a summary of these different
types of noise.

3.3. Denoising Methods

Extensive research has been done for image denoising. In this sec-
tion, we present the well-known denoising algorithms, and these
methods sometimes are combined to get better denoising results.

3.3.1. Wavelet-based methods for denoising

Wavelet transform is the most widely used method for signal anal-
ysis, which offers multi-resolution analysis by scale-space domain
transform. Two factors determine the wavelet transform result: wavelet
basis function and decomposition level. The wavelet basis function is
responsible for generating components of different frequencies. The
decomposition level controls the threshold for the wavelet transform.
Generally, wavelet-based denoising methods contain the following
steps: wavelet decomposition, thresholding, and wavelet reconstruction.
Denoising by wavelet algorithms is computationally efficient, and it
requires less manual intervention as there is no parameter tuning. Edge
preservation ability of wavelet methods is also outstanding. Hence,
wavelet transform has been used for image denoising, enhancement, and
feature extraction.

Kazubek [74] suggested using Wiener filtering to analyze the co-
efficients of the wavelet transform. Portilla, et al. [75] proposed a scale
mixture denoising model in the wavelet domain. Firstly, the noisy image
was decomposed into wavelet coefficients, and the covariance in the
local neighborhood was estimated by a Gaussian vector and a hidden
positive scalar multiplier. Then, a Bayesian based estimation algorithm
was leveraged for removing Gaussian noise. Finally, the denoised image
was obtained by wavelet reconstruction. Ghazel, et al. [76] conducted a
detailed study on fractal wavelet coding for image denoising and
restoration. Gruber, et al. [77] proposed to locally decompose the
embedded noisy signals into lower dimension space and use local in-
dependent component analysis to remove the noise. Afterwards, the
noise-free signals can be obtained by reconstruction. They also put
forward a delayed algorithm for multiple unknown signals extraction for
denoising. In the experiment of denoising in nuclear magnetic resonance
spectra, the performance of their denoising algorithms was compared
with kernel principle component analysis. Luisier, et al. [78] suggested
employing Stein’s unbiased risk estimate to obtain the weights in their
model and proposed a wavelet thresholding algorithm. Khmag, et al.
[79] designed a cluster-based denoising method in the wavelet domain.
The coefficients from the second level of wavelet decomposition were
used to generate sparse multi-resolution features from the noisy images.
The clustered coefficients were linked based on the sparsity as well as
self-similarity information. Bao, et al. [80] combined the wavelet
transform with a deep learning algorithm. Firstly, the monogenic
wavelet transform was selected as the feature extractor to generate
amplitude and phase representations from the noisy images. Then, these
representations served as the input to a deep deconvolutional neural
network model for denoising. Finally, the denoised coefficients formed
the clean image by inverse transform. Chen, et al. [81] proposed a new
indicator called weight sum variance of digital number probability
(WSVODP), which is only related to the difference of the sensors. The
proposed WSVODP was capable of determine the optimal wavelet filter
coefficients for denoising. Gokdag, et al. [82] used wavelet transform to
remove white Gaussian noise from confocal laser scanning microscopy
images. They developed a systematic algorithm to get the best param-
eters for wavelet thresholding and utilized the analysis of variance to
monitor the interactions between these parameters. Wavelet transform
can also be combined with swarm optimization algorithm for denoising
[83].
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3.3.2. Markov random field-based methods

Markov random field (MRF) is a popular graphical model for status
prediction. In an MRF, the status of a certain position is only dependent
on the status of its neighboring positions but independent of any other
units. Naturally, an image can be seen as an MRF, with the intensity
values being the status and the coordinates as the positions. Therefore,
MREF can be leveraged for image denoising.

Malfait and Roose [84] proposed a denoising method with multi-
variate probability functions. However, it’s difficult to determine those
probability functions in practice. Therefore, MRF was utilized to obtain
the probabilities in an indirect way. For noise suppression, three prob-
ability functions were modeled: a posteriori, a priori, and a conditional
probability function. In implementation of the MRF, 3 x 3 neighborhood
was chosen. Hua, et al. [85] used MRF as a regularization method in
image denoising. As they employed a two-state Gaussian mixture model,
and the dependent relationship in the spatial domain between the
wavelet coefficients was specified by the MRF model. To determine the
hyper-parameters and configurations, expectation-maximization and
iterated conditional modes were leveraged. Experiment results sug-
gested that their denoising algorithm achieved a better signal-to-noise
ratio than traditional wavelet transform. Barbu [86] developed a
real-time denoising system by a novel active random field training. The
active random field was proposed based on MRF with conditional
random field. To train this active random field, an optimization algo-
rithm based on supervised learning was proposed. The proposed novel
random field technique yielded state-of-the-art performance with
thousands of times faster speed so that it can be applied in real-time
applications. Cao, et al. [87] designed a three-layer MRF to suppress
the image noise. Each layer was aimed at a specific task. The texture
regions were embedded in layer-1. In layer-2, the training target was
stored, which was the images without noise. The layer-3 is composed of
the noisy images. Maximum a posteriori estimation between the layer-1
and layer-2 was implemented by iterated conditional modes. Simulation
results revealed that their multi-layer MRF could suppress the noise
while maintaining the details in the images. Xu and Shi [88] proposed a
denoising algorithm for parallel MRI (pMRI). Fields of experts is a type
of high-order MRF, which was used for priors learning in the statistics in
PMRIs. A loss-specific training algorithm was also proposed to optimize
the parameters in the fields of experts. The experiment was carried out
on real data, and the denoising performance of the proposed approach
was robust. Lekadir, et al. [89] developed a denoising and fiber recon-
struction method for multi-slice cardiac diffusion tensor images (DTIs)
based on MRF. The MRF was combined with a statistical constraint for
missing fiber and a consistency term to enable the obtained meshes
continuous. Their method was evaluated on both synthetic and real data
and produced satisfactory results.

Generally speaking, MRF can preserve the texture structures by
spatial correlation information effectively. However, the optimization of
the MRF models is usually based on iterated conditional modes, which is
computationally expensive.

3.3.3. Anisotropic diffusion filtering for denoising

Anisotropic diffusion is used for image smoothing. Unlike the
Gaussian blur, anisotropic diffusion is capable of denoising while
maintaining the details in the images like edges and corners. The
concept of anisotropic diffusion was originally invented in thermal
theory. The idea of anisotropic diffusion in image denoising is that the
pixels can be regarded as heat flows. If the pixel value is similar to its
neighbors, that flow will diffuse to the neighbors. Otherwise, if the
difference between the pixel and some of its neighbors is obvious, there
can be some edges in the neighbors, so the flow will not diffuse to those
directions. Therefore, the edges can be preserved. In essence, anisotropic
diffusion filtering is edge-preserving filtering. For an image I, the iter-
ation expression in four directions is

Ly =1 4+ A(cNey V(1) + ¢Sxy V(L) + cExy V(L) + cWey Vg (1)) ®)
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where t is the iteration time, and the four derivatives and thermal co-
efficients are defined as
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where the 1 and k are hyper-parameters. Significant efforts have been
made to further improve the performance of basic anisotropic diffusion
methods in applications.

Ben Abdallah, et al. [90] found that anisotropic diffusion filtering
works when an image is contaminated with speckle noise but fails on
other types of noise. The reason is that the noise model was estimated
wrong. Based on this finding, they put forward an adaptive anisotropic
diffusion filtering (AADF). In AADF, the noise estimation was done at
every iteration so that the color noise can be effectively removed. The
image quality was improved in their experiment in comparison with
conventional anisotropic diffusion filtering as well as fast non-local
mean filtering algorithms. Kim, et al. [91] proposed to use region
adaptive smoothing strength to improve the quality of the restored im-
ages by anisotropic diffusion. In each iteration, an adaptive classifier
was trained to obtain a promising estimation on the smoothing strength
with respect to the changing noise. The training samples for the classifier
were also carefully selected in order to ensure good results. In their
implementation, decision tree was selected as the classification algo-
rithm. They also proposed a region analysis approach to reduce the
computational complexity. The proposed method yielded better peak
signal to noise ratio than several anisotropic diffusion variant tech-
niques. Xia, et al. [12] proposed a denoising technique for phase images
based on anisotropic diffusion. They introduced a synthetic noise esti-
mation technique to the anisotropic diffusion to accurately classify the
noise pixels from the desired signal pixels so that the diffusion process
can be iterated with the corresponding coefficients effectively. The
proposed method was evaluated on artificial and real mouse artery
images and achieved good denoising performance while preserving
detailed information. Beitone, et al. [92] proposed a gradient aniso-
tropic diffusion to reconstruct heat sources from noisy temperature
fields. The gradient anisotropic diffusion was optimized to generate the
possible heat source in an aluminum plate. Ben Abdallah, et al. [93]
developed a segmentation technique for blood vessel images based on
anisotropic diffusion. To remove the noise in the RGB fundus images, an
adaptive anisotropic diffusion filter was used, with the combination of
noise level functions. Then, the images were converted to gray-scale
images for blood vessel segmentation. The noise level function was
defined as the local variance in the images, which can be calculated
intensities of the pixels. In their improved version of speckle
noise-reducing anisotropic diffusion, the noise level function values of
homogeneous regions were computed for noise estimation. Chen, et al.
[94] put forward a denoising algorithm for seismic data analysis with
anisotropic diffusion and isotropic diffusion. They found that the con-
ventional Chambolle-Lions anisotropic diffusion (CLAD) method fails in
separating noise from features when the characteristic of them is in
multiple scales because it is difficult to find an appropriate threshold.

384

Information Fusion 76 (2021) 376-421

Hence, an energy-based dynamic CLAD was developed which can
distinguish noise from real information and employ different diffusion
strategies for different regions dynamically. The threshold was defined
as the mean of gradient magnitude, and it was updated during the it-
erations of diffusion. Hadj Fredj and Malek [95] studied the oriented
speckle reducing anisotropic diffusion (OSRAD) and tried to improve its
computational efficiency so that the OSRAD can be applied in real-time
denoising. They implemented a CUDA-based OSRAD, which runs on
GPU. Compared with traditional OSRAD running on CPU, this
CUDA-based OSRAD ran thirty times faster with the same denoising
effect, which was better than other denoising algorithms like wavelet
and bilateral based methods in their experiment. The removal of speckle
noise in ultrasound images poses a major challenge in medical image
analysis. Jubairahmed, et al. [96] discovered that conventional aniso-
tropic diffusion could cause the loss of contour information in ultra-
sound images. They suggested employing contourlet transform to
decompose the ultrasound images into coefficients and leverage
thresholding for denoising. Then, the denoised coefficients formed the
image by reconstruction. Finally, to remove speckle noise, the adaptive
nonlinear anisotropic diffusion was performed on the reconstructed
image. Kamalaveni, et al. [97] proposed to improve the anisotropic
diffusion by dynamic diffusion rate for different regions of images with
the aim to maintain more details like lines and corners. Firstly, the
structure tensor of each pixel was computed and decomposed to get the
eigenvalues and eigenvectors. Then, the maximum and minimum
gradient variations for every pixel were generated by its eigenvalues and
eigenvectors. Afterwards, the edge functions and the corresponding
derivatives along the gradient directions can be obtained. Finally, the
self-snake diffusion filter was used to remove speckle noise, and an edge
stopping term was added for sharpness improvement. Bai and Feng [98]
put forward a generalized anisotropic diffusion, inspired by the frac-
tional order anisotropic diffusion. A novel derivative named G-deriva-
tive was presented, and the generalized anisotropic diffusion can be
given based on Euler-Lagrange equations. Detailed analyses of stability
and simulation results were also presented. Elsharif, et al. [99] devel-
oped a hybrid denoising system for ultrasound images. They performed
two level discrete wavelet transform (DWT), and employed anisotropic
diffusion was used for speckle removal. The nonlinear filtering was also
performed on the DWT coefficients, and the total variation was utilized
to obtain better quality. Their method outperformed several traditional
denoising algorithms in terms of image quality measurements like
signal-to-noise ratio, etc. Guo, et al. [100] introduced weighted
Euclidean distance to detect edges in synthetic aperture radar images so
that the coefficients of anisotropic diffusion can be updated adaptively.
The comparison of Gaussian weighting and nonlinear weighting mech-
anism was discussed as well. Mishra, et al. [101] proposed to harness the
edge density probability function and the local information of pixels to
better adjust the diffusion directions in speckle reducing anisotropic
diffusion. The false contours can be removed by edge density informa-
tion, and the phenomenon of over smoothing can be alleviated by the
relativity of pixels. Experimental results revealed that their method
produced better sharpness of the lines in ultrasound images. Mei, et al.
[102] suggested to used phase asymmetry to recognize lines and edges
in ultrasound images. Based on this phase asymmetry idea, they pro-
posed a new fractional total variation method. The coefficients of frac-
tional order anisotropic diffusion were developed based on phase
asymmetry. The entire denoising model was optimized by gradient
descent. The edge preserving and denoising performance was improved,
and the staircase phenomenon was alleviated as well.

3.3.4. Non-local methods for denoising

Non-local methods take a different perspective to remove the noise in
images. Instead of denoising based on local information, such as linear
filtering and median filtering, non-local methods employ the redun-
dancy information in images for noise removal. The entire image is
divided into several blocks. To remove noise in certain block, non-local
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methods will search the other blocks with similar structures and
compute a weighted average estimation as the denoised pixel value.

Suppose a pixel i with observed gray-level v(i) in a noisy image I, the
estimation by non-local means (NLM) filtering is defined as

NLM(v(i)) = Y w(i,j)v(j) an
jel
where w(i,j) serves as the weighting factor, which satisfies
0<wij)<1,¥%el
{ > wiig) =1 a2
jel

The similarity in the pixel pair (i,j) is measured by the gray-level
vectors of their blocks. With this weighting strategy, non-local means
not only considers the single-pixel values but takes the neighborhood
structure information into account, so that it can produce robust
denoising results. Non-local methods have been widely used for various
types of image denoising applications, and variations have been pro-
posed as well.

Yang, et al. [103] proposed a hybrid speckle removal system based
on NLM for ultrasound images. The local structure information was used
to generate speckle noise statistics in local blocks. To reduce mixed
noise, Chen, et al. [104] proposed a robust bi-sparsity model to generate
the similarity based on the prior information. The coefficients and
non-local means were utilized to recognize the similar structures, which
were regularized by Ly norm. With the aim of handling outliers and
improving robustness, a weighting mechanism was also added to their
system. The experimental results demonstrated the superiority of their
method. Yu, et al. [105] developed a probabilistic NLM method to
remove speckle noise from optical coherence tomography images.
Rank-ordered absolute difference (ROAD) was employed to distinguish
the noisy pixels in the local blocks of the image, and the uncorrupted
probability can be calculated. Consequently, better similarity estimation
can be performed between the image blocks. Finally, the noisy pixels can
be restored using weighted means. The improved NLM yielded prom-
ising speckle removal performance and preserved the structure infor-
mation at the same time. In [106], a discontinuity indicator was
proposed to classify the edges and noise, and an adaptive bandwidth
parameter was used to replace the fixed one to obtain better denoising
performance. Mandal, et al. [107] put forward a super-resolution algo-
rithm with only a single noisy image. The noise strength was evaluated
by the gradients of local blocks. To implement sparse representation, an
adaptive thresholding algorithm was proposed. An additional term was
included to reserve edges and contours in the reconstructed image. Qian,
et al. [108] suggested using principal component analysis to estimate
the noise level to improve the efficacy of NLM. Tang, et al. [109] found
that there is a correlation between the image blocks without noise,
which can be revealed by low-rank representation. Hence, a corrupted
probability term was employed for regularization. Multiple estimations
of the local blocks were harnessed to get the aggregated denoised image.
Bindilatti, et al. [110] combined Wiener filter with non-local weighting
to remove signal-dependent noise like Poisson noise. They proposed to
estimate parameters by non-local block information based on stochastic
distance. Georgiev, et al. [111] developed a 3D image analysis algorithm
based on non-local denoising in complex domains. Panigrahi, et al.
[112] firstly transformed the images into the curvelet domain, and the
approximation and detailed coefficients were obtained. Then, a
multi-scale NLM was proposed to remove noise and maintain edges. To
distinguish noise and signal, hard thresholding was used. The experi-
ment was implemented with both gray-level and color images. Shah-
doosti and Rahemi [113] used a log-likelihood to get denoised pixels in
images, and the non-local information of the blocks was generated based
on Pearson distance for filtering. Hou, et al. [114] proposed pixel-level
non-local self-similarity which performed better than block-level simi-
larity, because it is easier to obtain similar pixels than similar blocks.
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Mei, et al. [115] proposed an optimized Bayesian non-local means to
estimate the noise-free ultrasound images. Redundancy index of every
block was computed to locate the low-redundancy areas of the image.
Zeng, et al. [116] integrated non-local filtering and low-rank regulari-
zation to remove noise from hyperspectral images. The image was first
divided into overlapping blocks. To separate the clean blocks from noisy
blocks and maintain structure information simultaneously, a local
rank-constrained low-rank technique was proposed. Finally, an NLM
algorithm was used to remove noise.

3.3.5. Bilateral and Trilateral filtering

Bilateral and trilateral filters are nonlinear filters that are capable of
removing noise as well as preserving details, such as edges and corners
in images. Good denoising results by bilateral and trilateral methods are
contributed by the weighted sum of intensity values in the neighborhood
of the pixels. The weights are carefully chosen, which are related to not
only the pixel spatial distances but also the intensity distances. Given an
image I, the bilateral filtering is expressed as

) 1 J;f iyt
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where the 64 and o, are hyper-parameters that control the tradeoff be-
tween spatial distance and intensity distance, N(x) is the neighboring
field of pixel x and C is the constant value obtained by

y *22 w12

C = E e Yie 27

YEN(x)

14)

The values of the two hyper-parameters o4 and o, are crucial for the
final denoising results. Unfortunately, there is little theoretical research
on how to determine optimal hyper-parameters. In practice, they are
usually determined by trial and error. Zhang and Gunturk [117] tried to
model the two as noise variance functions by empirical analysis. They
revealed that o is the more significant factor of the two, which is linear
to the noise’s standard deviation. An improved multi-resolution bilateral
filtering was proposed by integrating bilateral filtering with a wavelet
thresholding method. Akdemir Akar [118] suggested harnessing the
genetic algorithm to optimize the parameters in bilateral filter model for
Rician noise elimination in MRIs. Balocco, et al. [119] proposed a
speckle reducing bilateral filter (SRBF) for ultrasound denoising. To
preserve the image details, the statistical characteristics of noise were
embedded into the conventional bilateral filter. Lin, et al. [120] devel-
oped an automated system to remove impulse noise and Gaussian noise
based on a switching mechanism. Firstly, the features for textures and
boundaries were generated for every pixel in the image. Then, each pixel
was classified as impulse noise, Gaussian noise or real signal based on a
sorted quadrant median vector approach. Finally, the switching bilateral
filter was employed to remove these two different types of noise based
on the classification labels. Their method can work efficiently without
weighting parameters. Zhang, et al. [121] also suggested removing
impulse and Gaussian noise within one framework. Firstly, they found
out all the impulse noise pixels by a detector and edge component value.
Then, they suggested connecting the edges to get refined regions.
Finally, an adaptive bilateral filter was proposed to remove the two
types of noise with different strategies automatically based on the label
information from the detector. Wei, et al. [122] put forward a two-stage
denoising algorithm for 3D optical and laser scanning. In the first stage,
a joint bilateral filter method was developed to remove most noise in the
3D mesh while preserving texture features. In the second stage, they
proposed to add the boundaries and lines as constraints to the traditional
Laplacian smoothing because the feature lines are easy to obtain after
the denoising in the first stage. Phophalia and Mitra [123] integrated the
bilateral filter with rough set theory (RST) to improve denoising efficacy
as well as preserving more details. The RST was employed for generating
edge mask and labels at pixel level, which can be used to guide the
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Table 3
Summary of image denoising methods
No.  Authors Type of noise Methods Datasets Results
1 Kazubek [74] White Gaussian noise A thresholding for pre-processing Standard test images (Barbara and The proposed method achieved state-of-the-
and Wiener filtering for denoising ~ Lena) art PSNRs with less computational
complexity.
2 Portilla, et al. White Gaussian noise Wavelet decomposition, Gaussian Standard test images (Lena, Their algorithm achieved substantially
[75] vector, and Bayesian estimation Barbara, Boats, House, and better PSNR and mean squared error than
Peppers) some previous methods.
3 Ghazel, et al. White Gaussian noise Fractal wavelet coding Standard test image (Lena) The fractal wavelet coding produced better
[76] denoising performance in terms of PSNR
and root mean squared error.
4 Clauset, et al. White Gaussian noise Local ICA and kernel PCA Standard test image (Lena) and The kernel PCA achieved better denoising
[151] nuclear magnetic resonance effects on nuclear magnetic resonance
spectra spectra images.
5 Pedersen, et al. White Gaussian noise Stein’s unbiased risk estimate and Standard test images (Al, Bridge, Near-optimal denoising results were
[152] wavelet thresholding Crowd, Goldhill, Barbara, Boats, achieved with less computation
House, and Peppers) requirement.
6 Fielding, et al. White Gaussian noise Dictionary learning, cluster, and 8 benchmark images (girl, baboon,  The proposed method achieved state-of-the-
[153] wavelet decomposition couple, bark, etc.) art denoising performances within less
execution time.
7 Pedersen, et al. White Gaussian noise Convolutional neural network and  Berkeley segmentation dataset The combined framework achieved state-of-
[152] monogenic transform the-art performance in terms of both
visualization and PSNR.
8 Molenberghs, Stripe noise Weight sum variance of digital Remote sensing images Their denoising approach yielded better
etal. [154] number probability PSNR, which consequently helped the cloud
segmentation.
9 Gokdag, et al. White Gaussian noise Wavelet thresholding and analysis ~ Confocal laser scanning The proposed method achieved satisfactory
[82] of variance microscopy images denoising results.
10 Golilarz, et al. White Gaussian noise Multi-population differential Satellite images Utilization of particle intelligent algorithms
[83] evolution-assisted Harris hawks for parameter optimization enhanced the
optimization algorithm and denoising performance.
thresholding neural network
11 Malfait and White Gaussian noise Wavelet decomposition, Markov Standard test images (House, The denoising effect of the proposed method
Roose [84] random field, and probability Peppers, and aerial photographs) was better than other wavelet-based
functions methods.
12 Hua, et al. [85] Speckle noise Wavelet decomposition, Markov Synthetic aperture radar images The proposed method outperformed
random field, Gaussian mixture conventional wavelet methods for
model, and expectation denoising.
maximization
13 Kim and Curry Gaussian noise Active random field Standard test images (Lena, Active random field performed better than
[155] Barbara, Boats, House, and conventional Markov random field as well
Peppers) as thousands of times speedup.
14 Dong and Peng White Gaussian noise Hierarchical Markov random field  Standard test images (Lena, Bark, The proposed method can preserve more
[156] and iterated conditional modes Straw, Tile roof, Baboon, Barche, texture information as well as efficiently
Brodatz, and Elaine) denoise.
15 Cismondi, et al. Non-central Chi Markov random field, sliding Parallel magnetic resonance Their method was effective and robust in
[157] distributed noise window scheme, and Gaussian images comparison with state-of-the-art
mixture model approaches.
16 Do, et al. [158] Fiber noise Markov random field and a Multi-slice cardiac diffusion tensor Their method improved the performance of
consistency term images denoising and reconstruction on 3D images.
17 Roland, et al. Gaussian noise, Adaptive anisotropic diffusion Berkeley segmentation dataset and ~ The image quality was improved in their
[159] multiplicative noise, and filtering retinal images experiment in comparison with
mixed color signal- conventional anisotropic diffusion filtering
dependent noise as well as fast non-local mean filtering
algorithms.
18 Mirkes, et al. White Gaussian noise Anisotropic diffusion and region Kodak dataset The proposed method yielded better peak
[160] adaptive smoothing strength signal-to-noise ratio than several anisotropic
diffusion variant techniques.
19 Idri, et al. [161] Random noise and speckle  Anisotropic diffusion and Phantom and mouse artery images  The proposed method achieved good
noise synthetic noise estimation denoising performance while maintaining
technique detailed information.
20 Myrtveit, et al. White Gaussian noise Gradient anisotropic diffusion Infrared thermography Their method can accurately generate heat
[162] sources in noisy field images.
21 Wang and Rao Gaussian noise, Speckle Adaptive anisotropic diffusionand ~ STARE Project database and DRIVE ~ The proposed denoising algorithm is
[163] noise, and Poisson noise noise level function database beneficial to image segmentation.
22 Stamatakis and Gaussian noise Anisotropic diffusion and energy- Seismic data Their method was effective in removing
Alachiotis [164] based dynamic CLAD noise from seismic data.
23 Little [165] Speckle noise CUDA based oriented speckle Synthetic data and real ultrasound This CUDA-based OSRAD ran thirty times
reducing anisotropic diffusion video images faster with the same denoising effect, which
was better than other denoising algorithms
like wavelet and bilateral-based methods in
their experiment.
24 Jubairahmed, Speckle noise Contourlet transform and adaptive ~ The US image database The despeckling performance of this
et al. [96] nonlinear anisotropic diffusion approach was better than several state-of-
the-art methods.
25 Speckle noise
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No.  Authors Type of noise Methods Datasets Results
Lefort, et al. Structure tensor, maximum and Standard test images (Lena, Fruits, The proposed method outperformed
[166] minimum gradient variations, and Camera, Ship, Lift, Wheel, Cat, conventional diffusion algorithms.
self-snake diffusion filter Truil, Barbara, and House)
26 Schafer and White Gaussian noise Generalized anisotropic diffusion Standard test images (Lena, The generalized anisotropic diffusion was
Graham [167] Barbara, Boat, and Peppers) effective in denoising.
27 Elsharif, et al. Speckle noise Wavelet decomposition and Ultrasound images Their method outperformed several
[99] nonlinear filtering traditional denoising algorithms in terms of
image quality measurements.

28 Guo, et al. [100] Speckle noise Weighted Euclidean distance and Synthetic aperture radar images The proposed method can remove speckle
nonlinear filtering noise and better maintain the edge

information at the same time.

29 Ratitch, et al. Speckle noise Edge density probability function Ultrasound images Experiments revealed that their method

[168] and nonlinear filtering produced better sharpness of the lines in
ultrasound images.

30 Mei, et al. [102] Speckle noise Fractional total variation, gradient ~ Ultrasound images The edge-preserving and denoising
descent and fractional order performance was improved, and the
anisotropic diffusion staircase phenomenon was alleviated as

well.

31 Tsiatis and Speckle noise Non-local means filtering with Ultrasound images The denoising performance was better

Davidian [169] local structure information compared with original non-local means.

32 Gottfredson, et al. Gaussian noise, salt-and- Non-local means filtering and Standard test images (F16, Lena, The denoising performance of their

[170] pepper noise and random  robust bi-sparsity model Peppers, House, Barbara, Boat, approach was better than several state-of-
valued impulse noise Bridge, Pentagon, and Couple) the-art methods.

33 Gad and Darwish Speckle noise Probabilistic non-local means and Optical coherence tomography The improved NLM yielded promising

[171] rank-ordered absolute difference images speckle removal performance and preserved
the structure information at the same time.

34 Roy [172] White Gaussian noise Non-local means filtering, USC-SIPI image database The proposed method yielded better PSNR
discontinuity indicator and than some mainstream algorithms.
adaptive bandwidth

35 Laird [173] White Gaussian noise, Non-local means filtering and Standard optical images, Their method was robust and effective in the

Rayleigh noise and adaptive thresholding algorithm Middlebury database and BSD100 experiments on different datasets as well as
uniform noise dataset under different noise conditions.

36 Rotnitzky and White Gaussian noise Non-local means filtering and Brillouin optical time domain The proposed system can denoise without

Wypij [174] principal component analysis analyzer signals distortion.

37 Tang, et al. [109]  Speckle noise Non-local means filtering and low- ~ Optical coherence tomography The experiments on real world images

rank representation images suggested that their method outperformed
several state-of-the-art approaches in
denoising.

38 Robins, et al. Poisson noise Wiener filter with non-local Standard test images (Cameraman,  The proposed algorithm was effective in

[175] weighting Peppers, Barbara, Boat and Head denoising and it can preserve more edge
CT) information.
39 Georgiev, et al. Gaussian noise Complex-domain non-local 3D time-of-flight data Their method showed superiority in
[111] denoising complex domain denoising.
40 Vansteelandt, White Gaussian noise Curvelet transform and multi-scale ~ Standard test images (Barbara, The proposed algorithm achieved state-of-
etal. [176] non-local means Boat, Building, Cameraman, the-art performance in terms of PSNR.
Couple, Goldhill, House, Lake, Lena
and Peppers) and color images
41 Stekhoven and Speckle noise Log-likelihood and Pearson Ultrasound images The denoising performance of their method
Bithlmann [177] distance exceeded some state-of-the-art approaches
in terms of PSNR.
42 Donders, et al. White Gaussian noise and  Pixel-level non-local self- BSD68 dataset, Cross-Channel Their method achieved competitive
[178] real-world noise similarity dataset, and Darmstadt Noise denoising results.
Dataset
43 Waljee, et al. Speckle noise Optimized Bayesian non-local Ultrasound images Their method improved the denoising
[179] means performance and preserved more edge
information compared with original non-
local means.
44 Brick and Kalton Gaussian noise, white Non-local means filtering and low- ~ Hyperspectral images The proposed scheme achieved state-of-the-
[180] Gaussian noise, stripe rank regularization art denoising performance.
noise and impulse noise
45 Zhang and White Gaussian noise and  Bilateral filtering and wavelet Standard test images (Barbara, The evaluation on both synthetic and real-
Gunturk [117] real-world noise thresholding Boat, Goldhill, House, Lena and world images revealed the effectiveness of
Peppers) and color images their method.

46 Zhang [181] Rician noise Bilateral filtering and genetic Brain magnetic resonance images The performance of bilateral filtering is

algorithm dependent on the parameter selection, and
genetic algorithm improved the denoising
performance.

47 Horton and Speckle noise Speckle reducing bilateral filter Ultrasound images Their algorithm was applicable in various

Lipsitz [182] speckle noise situations.
48 Lin, et al. [120] Impulse noise and Switching bilateral filtering and Standard test images (Boat, Their method can work efficiently without
Gaussian noise sorted quadrant median vector Goldhill, Airplane, Lena, and weighting parameters.
approach Bridge)
49 Fuller and Kim Impulse noise and Impulse noise detector, adaptive Standard test images (Airplane, The denoising results of their algorithm was
[183] Gaussian noise bilateral filtering and improved Boats, Bridge, Goldhill, House, better than some state-of-the-art filters.
artificial bee colony Lena, Monarch, Pepper, etc.)
50 3D optical and laser scanning
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No.  Authors Type of noise Methods Datasets Results
Yenduri and Gaussian noise and real- Joint bilateral filter and improved The proposed scheme was effective and
Iyengar [184] world noise Laplacian smoothing feasible in 3D mesh denoising.
51 Biessmann, et al. Gaussian noise and Rician  Bilateral filter with rough set Open Access Series of Imaging The proposed denoising method achieved
[185] noise theory Studies and Brain Tumor better denoising performance on two
Segmentation challenge data benchmark datasets.
52 Nelwamondo, Impulse noise and speckle ~ Adaptive wavelet shrinkage Ultrasound images The proposed method can denoise while
etal. [186] noise algorithm and trilateral filtering improve the sharpness of the edges.
53 Do and Batzoglou  Real-world noise Trilateral smoothing algorithm Indian Pines, Salinas, and the Their method achieved better performance
[187] University of Pavia than traditional bilateral filtering.
54 Nelwamondo, Gaussian noise, salt and Switching bilateral filter and Standard test images (Lena, The proposed approach outperformed
etal. [186] pepper noise, uniform domain weight pattern Baboon, Girl, Pentagon, House, several bilateral filter-based methods in
impulse noise, and Airplane, Sailboat, Aerial, Stream- eliminating noise.
speckle noise and-bridge, etc.)
55 Cui, et al. [127] Speckle noise Guided trilateral filter scheme and  Ultrasound images Their method was effective in image
maximum likelihood estimation denoising and less sensitive to parameter
settings.
56 Zhang, et al. Interpolation noise Motion estimation and trilateral Standard image sequences Trilateral filtering can help improve the
[188] filtering (Football, Tennis, Garden, Mobile, video quality in frame rate up-conversion.
Paris, and Container)
57 Schuler, et al. White Gaussian noise Multilayer perceptron Berkeley segmentation dataset The proposed method can be applied in real-
[139] world image de-blurring.
58 Pampaka, et al. Gaussian noise and rain Self-learning image decomposition ~ Real-world images Their method outperformed state-of-the-art
[189] streaks framework approaches in removing rain streaks and
Gaussian noise.
59 Reiter and White Gaussian noise Stacked denoising autoencoder CIFAR-bw dataset The proposed autoencoder was evaluated on
Raghunathan a large dataset and achieved state-of-the-art
[190] denoising performance.
60 Van Buuren White Gaussian noise Residual blocks and multi-scale Standard test images (Boats, Lena, The experiment suggested that their model
[191] feature selection Pepper, etc.), and Berkeley achieved better denoising results than eight
Segmentation Dataset state-of-the-art approaches.
61 Allison [192] Stripe noise Residual blocks and wider CNN Meteorological satellite infrared Their CNN model was better than several
structure cloud images state-of-the-art methods in denoising.
62 Zhang [193] Real-world noise Spectral difference mapping Hyperspectral images and airborne ~ The proposed method reduced
algorithm and principal data computational complexity and preserved
component analysis more spectra details while denoising.
63 Allison [192] Gaussian noise and 3-D atrous denoising convolution Hyperspectral images The proposed architecture outperformed
Poisson noise neural network several state-of-the-art methods.
64 Sinharay, et al. Gaussian noise Residual learning and batch BSD68 Their model worked effectively for
[194] normalization denoising with less computational time.
65 Zheng, et al. Gaussian noise Privacy-preserving deep neural ChestX-ray8 Their method can be applied in a cloud
[147] network computing environment for denoising.
66 Little [165] Rain streaks Recurrent network, residual Rain100H The proposed model achieved satisfactory
mapping, and bilateral LSTM denoising results on real-world images.
67 Little [165] Gaussian noise and real- Attention-guided denoising Berkeley Segmentation Dataset and ~ The denoising performance of the proposed
world noise convolutional neural network Waterloo Exploration network was comparable to state-of-the-art
Database models.
68 Wu and Bailey Gaussian noise and real- Batch-renormalization denoising Berkeley Segmentation Datasetand ~ The proposed model yielded better

[195]

world noise

network

Waterloo Exploration Database

performance than state-of-the-art denoising
algorithms.

bilateral filter. Zhang, et al. [124] proposed an adaptive wavelet
shrinkage algorithm and combined it with trilateral filter to eliminate
impulse and speckle noise in ultrasound images.

The trilateral filter is an improved form of bilateral filter, which is
proposed to deal with impulse noise elimination. The trilateral filter
introduces a ROAD function to determine whether a pixel is on an edge
or it is impulse noise. Chen, et al. [125] found that conventional bilateral
filter fails when the centroid of a neighborhood is labeled as noise pixel
in hyperspectral image. Hence, they proposed a trilateral smoothing
algorithm to solve this challenge. Langampol, et al. [126] suggested
improving the performance of switching bilateral filters by introducing a
domain weight pattern. The domain weight pattern was proposed to
describe the intensity distribution of the center pixel and its neighbor-
hood. With this novel pattern, the mixed noise and the strength can be
obtained so that the bilateral filter achieved better results. Cui, et al.
[127] proposed a guided trilateral filter scheme and applied it for
denoising in ultrasound images, which was generated by the maximum
likelihood estimation over the residual of noisy images and target im-
ages. Bilateral and trilateral filters can also be used to improve the
quality of videos, like frame rate up-conversion and signal-to-noise-ratio
improvement [128].
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3.3.6. Deep learning for denoising

Deep learning is one of the most active research topics in computer
science nowadays, which has been applied in various practical prob-
lems, such as image recognition [129], semantic segmentation [130],
and restoration [131]. In fact, the CNN model was proposed as early as
1989 by LeCun, et al. [132] for recognition of handwritten zip codes, but
restricted by ineffective training algorithms and limited computational
resources-thus, the mainstream scientific community and practitioners
did not pay much attention to CNNs. Deep learning was popularized by
the AlexNet [133] in 2012, with its exciting performance on ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC). Since then, various
CNN models have been invented such as VGG [134], ResNet [135],
DenseNet [136], SqueezeNet [137], MobileNet [138], etc. These popu-
lar CNN models are designed for image classification, but they can also
be used for image denoising.

Schuler, et al. [139] proposed to use multilayer perceptron for image
deconvolution, which sharpens a blurry image. The input to the multi-
layer perceptron was the noisy images, while the output was the
denoised clean images. The mapping by multilayer perceptron worked
without feature selection, and it can be used to remove different types of
noise as well as mixed noise. Huang, et al. [140] proposed a self-learning
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image decomposition framework that can be applied to denoising. With
sparse representation and clustering, their method does require training
images, so it can be used for single image denoising. Li [141] designed a
denoising autoencoder and stacked these autoencoders together for
noise removal. Sun, et al. [142] first employed residual learning to
produce a denoised reference image for the input noisy image. Then, a
multi-scale feature selection structure based on residual blocks was
proposed to restore the details with both the input noisy image and the
denoised reference. Xiao, et al. [143] also use residual learning with the
aim of reducing mapping size. Then, a wider CNN architecture with
more convolutional layers was employed for denoising, and the repre-
sentations from different CNN layers were harnessed to recover the
details and texture information. They also extend their research for
single image denoising. Xie, et al. [144] put forward a spectral differ-
ence mapping algorithm for hyperspectral image denoising. The
denoised key band was proposed to implement efficient computing,
which was obtained by principal component analysis. Liu and Lee [145]
presented a 3-D atrous denoising convolution neural network for
denoising. Both the spatial and spectral domains were leveraged to
extract features. In order to prevent overfitting as well as to preserve
more detail, multi-scale and multi-branch analysis was conducted. Tian,
et al. [146] combined residual learning with batch normalization to
accelerate the training process for image denoising. Zheng, et al. [147]
proposed a denoising deep neural network and applied it for privacy
preservation in the cloud. Ren, et al. [148] first trained two single
recurrent networks and coupled them to extract both rain streaks and
noise-free backgrounds. Then, bilateral LSTM was designed to integrate
the two models to propagate the rain streaks and background. Tian, et al.
[149] introduced an attention mechanism into deep CNN to remove
image noise, and they also proposed to use batch re-normalization to
fuse two deep CNNs for denoising in [150].

To summarize, in this section, we provided a detailed account of
various image denoising methods, including wavelet-based methods,
Markov random fields, anisotropic diffusion filtering, non-local
methods, bilateral and trilateral methods, and deep learning-based
denoising. A brief summary of these denoising methods is listed in
Table 3. In many practical applications, however, a combination of
denoising methods is likely to produce more satisfactory results. Image
denoising is still a challenge in image pre-processing, and the quest for
better denoising performance is likely to continue for years to come.

4. Missing value challenge

At the data-level for multimodal data fusion, we often meet a sig-
nificant unavoidable challenge—missing values. This ‘missing value
challenge’ pervasively exists in the majority of real-world data sets, and
four commonly seen scenarios are listed below. The first is: when dealing
with locally missing samples in a single dataset, a clear and complete
data entry will not be easy to obtain due to many reasons [196]. For
instance, the selected detector is inappropriate, the detector is partially
occluded or malfunctioned during the working process, or the data is
omitted during the collection process. All these factors may lead to the
data-missing challenge. The next point is when multiple modalities are
involved in a system, obtaining the data from only one modality cannot
present complete and accurate information of the system. For instance,
MEG and EEG are always recorded at the same time to compensate in-
formation for each other [197]. Thirdly, when taking samples at
different modalities, if the utilized sampling points are incomparable,
the obtained data will possibly be seen as structurally missing. For this
scenario, each modality is appropriately sampled on its own. However,
the points on the common sampling grid would be seen as missing data if
they miss the data from all modalities [198]. The fourth circumstance is
connection prediction, which often appears in social network analysis
and recommender systems. For instance, the challenge in the analysis of
social networks is how to well predict social connections according to an
existing database of connections [199], where known entries are far
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Table 4
Univariate missingness pattern
X1 Xo X3 X4 Xs X6
C 76 109 56 83 17 207
Cy 123 82 111 100 106 ?
C3 67 73 89 8 29 ?
Cy 25 106 45 34 10 ?
Cs 213 55 38 145 89 ?
Ce 89 45 90 17 96 ?
Table 5
Multivariate missingness pattern: monotone pattern
X1 Xo X3 X4 Xs X6
C1 76 109 56 83 17 207
Cy 123 82 111 100 106 ?
C3 67 73 89 8 ? ?
Cy 25 106 45 ? ? ?
Cs 213 55 ? ? ? ?
Ce 89 ? ? ? ? ?
Table 6
Multivariate missingness pattern: arbitrary pattern
X1 Xo X3 X4 Xs Xe
Cy 76 109 56 83 17 ?
Cy ? 82 111 100 106 80
Cs 67 73 ? 8 29 9%
Cy 25 ? 45 34 ? 109
Cs 213 55 38 145 89 310
Cs 89 45 90 ? 96 95

from enough.

4.1. Missingness mechanisms

Missingness mechanisms can be defined as the nature and categories
of missing values. If considered from the perspective of missing distri-
bution, three unique categories can be listed: Missing Completely at
Random (MCAR), Missing at Random (MAR) [185], and Missing not at
Random (MNAR) [187].

In the case of MCAR, the missing data distribution is random and
uncorrelated with the values of any variables. In the case of MAR, the
missing distribution is not completely random; that is, the missing of
such data is not associated with the missing values themselves but
possibly has some relations with the observed values. In the case of
MNAR, the absence of data is dependent on missing values themselves
[193,200,201].

4.2. Missing data patterns

In general, missing data patterns can be categorized into two: uni-
variate and multivariate. Under the circumstance of a univariate miss-
ingness pattern, missing values can only exist in one variable. A typical
example can be seen in Table 4, where x stands for the variable and C
stands for the row. It is explicit that variable xg is the only variable with
missing data [196].

Under the circumstance of multivariate missingness pattern, missing
values will exist in no less than two variables. Moreover, this pattern
could be categorized into a monotone pattern and arbitrary patterns. In
the situation of monotone, if the data for column x; is missing, then all
subsequent data will be missing, as shown in Table 5 [196].

For an arbitrary pattern, as illustrated in Table 6, missing values can
appear anywhere, and no matter how one arranges variables, no special
structure would appear [196].

All in all, if not handling well, missing data would greatly affect the
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quality of multimodal data fusion in various ways. One obvious impact is
efficient information, and statistical power may be reduced [202,203],
and thus some useful data analysis approaches will become difficult to
employ [204]. In addition, some bias may be introduced into estima-
tions derived from the statistical model [159,160,200]. Therefore, to
improve the quality of the knowledge obtained from data fusion and
other intelligent data analysis approaches, the first issue we must handle
with is missing values.

The remainder of this section introduces a solution called Missing
Data Imputation Techniques. The meaning for each abbreviation used is
stated out in Table 11.

4.3. Missing Data Imputation Techniques

Missing Data Imputation Techniques (MDITs) are commonly utilized
to deal with the missing values [205]. Rather than delete or tolerate the
cases associated with missing values, it can well handle the missing
values by imputing appropriate new values and at the same time
retaining the originally known values in the dataset. There exist various
methods in the field of MDITs. They can be divided into two categories:
non-ignorable (NI) missing data imputation and ignorable missing data
imputation.

4.3.1. Non-ignorable (NI) missing data imputation methods

4.3.1.1. Likelihood-based methods. One main category of NI imputation
methods is the likelihood-based method. To well utilized this method,
the first thing that needs to be determined is the mechanism of miss-
ingness. This is because, under the case of MNAR, having the specified
information of primary data and missing data mechanism becomes a
necessity, as they must be jointly modeled to prevent bias from being
introduced into estimations. A typical way is to integrate a parametric
model for NI and the complete data log-likelihood [206-208].

There exist three commonly used alternative likelihood-based
methods: Selection Models (SMs), Pattern Mixture Models (PMMs),
and Shared Parameter Models (SPMs), proposed by Mahapatra, et al.
[209]. PMMs and SMs can be considered as two decomposing possibil-
ities of the joint distribution. For SMs, a specification of the distribution
for complete primary data and the probability distribution for the
missing data patterns is needed [196] [210,211]. While for PMMs,
which supposes that there exists a mixture of patterns in the missingness,
need to take the circumstances of model parameters for each pattern into
consideration and operate the computation separately. However, PMMs
cannot directly provide marginal estimates [64,212-214]. Instead of
incorporating common parameters into models, SPMs are usually
applied when the missingness is possibly related to the true underlying
response for a subject when the data settings are clustered and longi-
tudinal [215-219].

4.3.1.2. Non-likelihood-based = methods. The  non-likelihood-based
methods require the joint distribution of the complete data to be like a
non-parametric (or semi-parametric) model. In contrast, the mechanism
of missingness to be like a parametric model [220-222].

A well-known non-likelihood-based method is sensitivity analysis,
which has been utilized in many types of research [223, 224]. However,
the sensitivity analysis is known to have a few defects. The first one lies
in practice; its presentation of results is not simplified and concise
enough. Secondly, sensitivity analysis has the limitation that it is usually
confined to a relatively small number of parameters. Last but not least, if
various sensitivity analysis could be predicted, contradictory conclu-
sions would possibly be generated [225].

4.3.1.3. Comparison and summary. The non-likelihood-based methods
are more widely utilized in comparison to the likelihood-based methods
because it is difficult to seek a non-response model that is perfectly
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specified as a function of reported values in most real-world cases.
Nevertheless, the NI missing data imputation methods are not simple
and flexible enough, as they need not only the model for the complete
data but also the specified information of missingness distribution. In
the next part, we will introduce some Ignorable missing data imputation
approaches.

4.3.2. Ignorable missing data imputation methods
Ignorable missing data imputation methods could be categorized as
single and multiple imputation methods.

4.3.2.4. Single imputation methods. Single imputation means substitut-
ing each missing value with a single value. After filling in all the miss-
ingness and achieving a new complete dataset, more standard data
analysis approaches will be able to come into use. Moreover, it merely
handles one time of missing values, implying that a consequent consis-
tency of results could be achieved from the same analysis [226], which
signifies that the single imputation approaches are suitable for utilizing
in the field of machine learning. The following introduced are various
traditional utilized main basic single imputation techniques and two
modern single imputation techniques: deep learning approach and
Expectation Maximization (EM) approach.

Mean imputation. Mean imputation is one of the commonly utilized
imputation approaches. It supposes the average value of a variable is the
best estimation of all the circumstances in which information about the
variable is missing [179,227]. Therefore, when the data missingness
case is MCAR, an average value will be assigned to the known values of
the same variable [180]. Suppose x4 in Table 5 is a continuous variable,
the blanks of missing values which are marked with ‘?” will be filled in
by the mean values of the three observed values of the variable x4, ac-
cording to:

1 3
Xg4 = 5 ;Ci()u)

However, imputing the sub-group average of all the sub-group
missing data may not be the best choice. Cohen [228] proposed an
improved method to split the missing values into two parts and impute
according to the following equations:

(15)
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where X5, represents the mean of observed values, and n represents
the number of observed values.

To conclude, mean imputation is a good choice for the MCAR
circumstance. It is rapid and easy to put into practice. Nevertheless, one
defect of this method is it may result in underestimation of the popu-
lation variance, and thus a small standard error and a possibly Type I
error.

Regression imputation. Regression imputation aims at substituting
each missing data blank with a newly predicted value on the basis of a
regression model in the case of MAR [181].

Generally, the process of regression estimation is divided into two
stages. In the first phase, a regression model is established utilizing all
the existing complete observed values, and then the value for missing-
ness blank will be computed according to the established regression
model.

Regression imputation preserves the size information of the sample
by retaining the absence of values, which is superior to Multiple Impu-
tation (MI). However, since the imputation data is computed by the
regression model that needs specifying, there are exaggerations of cor-
relation and covariance. A larger sample size becomes a need to give out
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stable estimations [229].

Hot-deck imputation. The general process of this approach is: first,
stratifying the data set based on some auxiliary variables; then saving
the complete cases in the classes of the active file; finally, imputing each
missing blank of the variable for a non-respondent with the observed
response from the most ‘similar’ respondent [230].

Random and deterministic are two typical hot-deck imputation
methods. The random method randomly selects the respondent from a
range of potential respondents. If the corresponding class has no ob-
servations, it will be combined with other classes and the imputation
would be performed according to the merged class [196]. While for the
deterministic hot-deck, there are many instances. Similar Response
Pattern Imputation (SRPI) determines the most similar case with no
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missingness and copies the values, in this case, to substitute the blank in
those cases with missingness. The K-NN imputation approach starts with
searching the missing value of the K’s nearest neighbor and then sub-
stitutes the blank with the mean value of the variable value corre-
sponding to the K’s nearest neighbor. [226,231].

The hot-deck preserves the associations and distribution of the
available information by replacing different missingness with different
observed values and holds the appropriate measured level of variables.
The results are usually superior to those from the mean imputation and
the regression imputation [196].

Deep Learning (Datawig). To deal with the missing value challenge
in large-scale datasets containing millions of rows or in tables with
heterogeneous data types, including unstructured text, a deep learning
imputation method called ‘Datawig’ was introduced. It is a robust,
scalable approach for missing value imputation that combines deep
learning feature extractors with automatic hyperparameter tuning and
could offer more flexible modelling options as well as achieve relatively
accurate results when compared to other imputation methods. An
example imputation flow path for Datawig on non-numerical data is
shown in Fig. 15 [185].

Expectation Maximization (EM). The EM method in missing data
handling is an approach of seeking maximum likelihood estimation of
parameters of an underlying distribution in the data set with missingness
issue [232].

As Figure 16 shows, it starts with predicting the missingness ac-
cording to assumed values for the parameters. Next, it utilizes the pre-
dictions for the updating of parameters. Then repeats these two steps
until the sequence of parameters converges to maximum likelihood es-
timations [233].

The EM method is favored for its statistical properties. In most cases,
it outperforms popular incomplete data handling approaches (e.g., mean
imputation) because it supposes the missingness circumstance as MAR.
This method guarantees the convergence to the local maximum value of
the likelihood function. If the degree of missingness is high, then the
speed of convergence will be slow. Otherwise, the speed will be fast.
However, one limitation of the EM method is it adds little uncertainty
component to the estimation, which neglects the estimation variability.
Moreover, EM does not guarantee the convergence to a global maximum
likelihood solution [234,235].

Even if single imputation may sometimes be considered as a poten-
tial approach to address the missing data problem, it has little
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uncertainty in missing data estimations. As a result, bias may be intro-
duced into the available sample size and the standard deviation. Apart
from that, confidence intervals for parameter estimates could become
too narrow, and a severe Type I error will exist. Thus, to focus on
introducing the uncertainty into the model, the information of multiple
imputation methods will be discussed in the next section [188].

4.3.3. Multiple imputation methods

In order to effectively deal with missingness in the circumstance
under MAR and multivariate normality assumptions, Multiple Imputa-
tion (MI) is generally introduced. MI compensates for the obvious
shortcomings of single imputation while retaining most of its main
benefits [221]. The main idea of MI can be utilized to introduce statis-
tical uncertainty into the model by multiple imputations of missing data.
This uncertainty is utilized to simulate the sample variability of a

complete dataset. MI is very effective even when dealing with a dataset
with a small number of samples. However, each operation of MI may
generate imputed results that are slightly different from each other, so
the results are not reproducible. MI is also computationally intensive
and will become time-consuming when dealing with the workload of
imputing multiple (usually more than 5) data sets. In addition, different
categories of imputation models require different result integration ap-
proaches, giving restrictions in the selection of models [236] [237].

4.3.3.5. General procedure. MI has several desirable features. First of
all, it can introduce suitable random error into the imputation process,
which can enable an approximately unbiased estimation of all param-
eters. Other deterministic imputation methods are difficult to achieve
this under general settings [238]. Besides, MI can deal with all cate-
gories of data and analysis with no need for specific software. Better

Table 7
A summary table for the missing data imputation methods
S. Reference Method Missing Data Imputation Category  Characteristic
n. Category
1 Little [165] SM Non-ignorable Likelihood-based Under the MNAR assumption
Require the specific distribution of the missing mechanism
2 Little [165] PMM Non-ignorable Likelihood-based Under the MNAR assumption
Do not directly provide marginal estimates
3 Wu and Bailey SPM Non-ignorable Likelihood-based Under the MNAR assumption
[195] The calculation is complicated.
4 Robins, et al. Sensitivity Non-ignorable Non-likelihood- Presentation of results is not simplified and concise enough. Usually confined to a
[175] analysis based relatively small number of parameters. Contradictory conclusions would possibly be
generated.
5 Waljee, et al. Mean imputation ~ Ignorable Single imputation Good choice for the MCAR circumstance
[179] (Traditional) Simple and rapid.
May result in underestimation of the population variance.
6 Zhang [241] Regression Ignorable Single imputation Good choice for the MAR circumstance
imputation (Traditional) Preserves the size information
Need a larger sample size to give out stable estimations
7 Andridge and Hot-deck Ignorable Single imputation Good choice for the MAR circumstance
Little [242] imputation (Traditional) Preserve the associations and distribution of the available information
8 Biessmann, et al. Datawig (Deep Ignorable Single imputation Robust, scalable, flexible, and accurate.
[185] learning) (Modern)
9 Do and Batzoglou = EM Ignorable Single imputation More effective than other single imputation methods in most cases.
[187] (Modern) Add a little uncertainty component to the estimation.
May fall into the local extreme value.
The convergence rate is not very fast, and the calculation is very complicated.
10 Zhang [193] MCMC Ignorable Multiple imputation A long enough Markov chain is constructed for the distribution of the elements to

stabilize to a stationary distribution.
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standard error estimates can also be obtained by utilizing repeated im-
putations [239]. Last but not least, even when the number of imputing
times is limited, MI can still complete the task very well. In some ap-
plications, just 3-5 imputations are sufficient to obtain excellent results.
One famous MI method that can be well used to deal with non-monotone
missing pattern circumstances is Markov Chain Monte Carlo (MCMCQ). It
is a Monte Carlo integration method utilizing Markov chains. In each
iteration of this method, the imputations are drawn from the target
probability distribution, and then the unknown parameter values of the
predictive distribution are simulated according to the draws from the
completed data posterior [193]. The basic procedure of MI mainly in-
cludes the following three stages: Imputation stage, Analysis stage, and
Combination stage, as illustrated in Fig. 17 [240].

4.3.3.6. Selection of Multiple imputation model. The imputation model
built for MIs will focus on two factors. The first thing it needs to
concentrate on is: the selected imputation methods have to be proper,
which means they should be compatible with the analysis methods
[240]. The choice is often made according to the category about the
missingness patterns, the mechanisms of missing values, and the dis-
tribution of data. The second factor that needs to be considered is the
variables. The variables that are used by the analysis model should
absolutely be included. While those that are not used for analysis can
also be included if they are highly related to the missing values. How-
ever, when dealing with complicated circumstances, it is sometimes
difficult to find a perfect imputation as there exists a bias in the esti-
mator of MI variance for domains that are not part of the imputation
model [196].

4.3.4. Comparison and summary

To conclude, single imputation tries substituting each missing value
with a single value. In contrast, MI handles the missingness based on
repeated simulation, with a good reflection of sampling variability for
the values in the real world. Both of them have the potential of preparing
the input dataset for data fusion. A summary table for the missing data
imputation methods listed above is displayed in Table 7.

All in all, there is no perfect imputation strategy that can deal with all
categories of missing value challenges in the dataset. Each imputation
strategy may perform well on some datasets and missing data types but
may perform poorly on others. Unless a specific strategy is determined to
be used for a particular type of missing value due to obvious setting
rules, it is best to experiment and evaluate which model works best for
your own dataset.

5. Alignment and Registration

Alignment and registration aim to reduce spatial or temporal in-
homogeneities between samples, including differences in acquisition
frequencies, sampling devices, and sample physiology. In biomedical
data, registration is a standard prerequisite for the analysis and fusion of
multimodal data. Registration is prevalent in neuroimaging due to the
human brain’s relative in-elasticity [243], while studies involving
registration of other anatomical regions have also been conducted
[244]. Image alignment and registration are commonly required in the
clinical analysis and biomedical research of imaging data [240].
Registration provides the benefits of correlation between individual
samples and independent subjects. In modern clinical treatment, a
reliable diagnosis is often based on multiple clinical measurements that
provide complementary information, e.g., X-ray and MRI provides
adequate visualization of bone and tissue structure, respectively [240].
While clinicians are trained to utilize a variety of measurements to
achieve a diagnosis, integrating imaging modalities through alignment
and registration can provide a more efficient diagnosis while also
providing a basis for procedures like image-guided radiotherapy [245,
246] and techniques like video microscopy [247,248]. From the
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perspective of modern research, a significant challenge is the in-
homogeneities between individual samples. The effect of this in-
homogeneity is especially significant in the case of neuroimaging, where
a lack of geometric comparability between subject brains impedes the
identification of specific characteristics [249]. Registration is a funda-
mental prerequisite for neuroimaging research, providing the basis for
subsequent procedures like volumetric feature extraction, atlas con-
struction, and 3D brain reconstruction. In the data fusion either in
research or application, homogeneity amongst single modalities and
structural homogeneity amongst multiple modalities yields better per-
formance. Application of alignment and registration can be the basis for
the fusion of information from multiple modalities.

5.1. Transformations and Interpolations

Transformations for registration adjust the sample towards the
desired target space that reduces inhomogeneities. Transformations can
be categorized into linear and nonlinear transformations. Linear trans-
formation involves the calculation of rotational and translational vec-
tors, mitigating global positional changes. A typical type of linear
transformation is rigid transformations, which involve rotations, trans-
lations, scaling, and shearing [250]. The transformations can be enco-
ded in a matrix M, for which the transformed data is the product of the
matrix with the original data, i.e., X = M-x. Linear transformations are
suitable for data with minor distortion or deformations. A prime
example is in neuroimaging: where patients are mainly stationary dur-
ing the imaging process, and the skull provides a structural containment
for the brain [251,252]. However, linear transformations are not suit-
able for organs involved in constant moderate-scale motions, e.g., heart
and lungs. These motions present local deformations, which can be
adjusted by nonlinear transformations. There are two main types of
nonlinear transformation: (1) physical-model-based (2) basis
function-based. Physical-model-based transformations like the linear
elasticity transformation predominately model the deformation of ob-
jects based on stress and strain theory, where internal forces of the
current state and external forces of deformation interact towards equi-
librium. Other physical models, like the fluid flow or medical a priori
based on the human anatomical structure, can also be used for nonlinear
transformations [246]. Apart from transformations, another essential
subject in registration is interpolation. Interpolation is used to approx-
imate values of points outside of set grid positions, a common scenario
for registration between samples of varying sizes and resolutions. The
most common method is linear interpolations, where the interpolated
value of a point is dependent on the distances to the neighboring points.
Computational complexity increases with the use of more neighboring
points and more complex interpolation methods. Other interpolation
methods include the nearest neighbor, windowed sinc, and stochastic
interpolation. Interpolations can cause fluctuations in registration
measures and create artifacts in registered images [253]. Trans-
formations and interpolations form the basis for any registration method
set used with or prior to the data fusion process and are generally chosen
based on the type of data and modalities involved in fusion.

5.2. Intensity-based registration

Intensity-based registration relies on the information of individual
image voxels to derive registration measures, which are often iteratively
optimized for better transformation from source data to a template or
reference data. For images, these methods are also known as voxel-based
registration. Standard measures include mutual information, cross-
correlation, and the sum of squared differences (SSD). Optimization
methods, detailed in the following Section 5.5, estimate the best pa-
rameters for the transformation model based on these measures. Here
we provide some basic examples of these commonly used measures. Sum
of square differences is one of the fundamental measures of registration,
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with a transformation function of f,

SSD = ZZ(R:'J *f(su))z
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where R is the reference, and S is the source. A modified mass-preserving
SSD has been applied for the registration of lung CT [65]. A similar
alternative to SSD is the sum of absolute differences (SAD), where we
take the sum of scaled voxel-wise differences between the registered and
reference images.

SAD — %ZZ} IRy —£(Si;) |

SAD has been widely applied for intensity-based registration,
including its role as a measure of registration quality measure for a
generative adversarial network (GAN) which registers cardiac and
retinal MRI images [254]. Another class of intensity-based registration
methods is based on mutual information, which captures
non-parametric statistical dependencies with no a priori requirements.
Mutual information (MI) between two images can be calculated with
measures of entropy, whose basic formulation is

19

MI =E(R) + E(f(S)) — E(R,f(S)) (20)
where E represents entropy estimation methods, e.g., Tsallis entropy,
Renyi entropy, and the original Shannon entropy. Maximization of
mutual information between the registered image and reference leads to
robust and reliable registration. Mutual information and normalized MI
are some of the most commonly applied method classes. Previous ap-
plications of mutual information include focusing on increasing local MI
with regional mutual information [255], adaption to multimodal data
[256], and combination with gradient information [33,257]. With a lack
of dependency on initialization and preprocessing of the source, MI has
also been applied in unsupervised registration with no or limited ref-
erences [258]. MI has also been used as a constraint in the loss function
of a cyclic-GAN model, optimizing an overlay of MRI on CT images for
better image-guided thermal ablation of liver tumors [259]. These
techniques can be easily applied or extended for more
data-fusion-focused applications. As the basis of intensity-based regis-
tration methods, the above-mentioned measures are calculated based on
the global intensity values of the data. Therefore, intensity-based
registration does not capture spatial or temporal dependencies for
data in higher than one dimension. This drawback is often mitigated
with feature-based registration in the following subsection.

5.3. Feature-based registration

Feature-based registration derives registration measures from ho-
mogeneous features between samples. The lower dimensionality of the
homogeneous features requires less computational power compared to
voxel-based registration. Features can be categorized into two types: (1)
artificial identification points or extrinsic landmarks introduced into the
data, (2) anatomical and geometric identifications, or intrinsic land-
marks contained within the data. Extrinsic landmarks are also known as
artificial identification points (AIPs). These AIPs can be foreign markers
that can be artificially implanted or injected onto the subject, e.g.,
molds, contrast, radioactive tracers. With recent developments in the
medical apparatus, AIP is usually non-invasive or minimally invasive.
However, for certain types of biomedical data, AIP can be highly inva-
sive, e.g., radioactive tracers for nuclear medicine. Extrinsic landmarks
are limited by the physical placement or injection of the AIPs, which
may not be optimal. AIP provides a basis for the registration of highly
deformable or elastic anatomy like skin and soft tissue [260]. However,
compared to AIP implanted on rigid anatomical structures like bones,
the movement of AIP in soft tissue also poses a problem in providing a
robust positioning basis. Registration measures can be efficiently
calculated by comparing the AIP and fiducial markers, specially
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designed identification points [261]. Intrinsic landmarks are anatomical
and geometric identifications that are important within samples,
providing local and uniform information over the entire sample. These
landmarks include morphological features of anatomical components
and geometric landmarks of image features like corners, intersections,
local minima, and local maxima. These intrinsic landmarks can be
identified either through manual segmentation or algorithmic pipelines.
By computing measures between these identifications between samples,
we can provide measures of registration similarity. Commonly used
distances include Euclidean distance, Mahalanobis distance, and Man-
hattan distance. Registration methods that use intrinsic landmarks can
be categorized by their use of different morphological features into three
types: point-based methods, curve-based methods, and surface-based
methods. The following subsections introduce these methods.

5.3.1. Point-based methods

Point-based methods usually identify clear anatomical structures in
an image and position feature points on these structures as the basis for
scale-space registration. These methods heavily depend on the quality of
information on the targeted anatomical structures but are often uni-
versally applicable to different modalities. Computer vision algorithms
like the Harris detection algorithm have been applied in neuroimaging
to detect and select corners as feature points. Scale-invariant feature
transform (SIFT) is also a point-based method that compares keypoint
features invariant to translation, rotation, and scaling. The Iterative
Closest Point (ICP) algorithm is often applied to optimize feature point
selection and register feature points between samples [262]. The ICP
iterates the procedure of finding a set of close reference points, calcu-
lating the distance measure, and performing the transformation until
convergence to an optimal registration. ICP is often applied for multi-
modal registration and fusion [263]. Point-based methods are often used
for or with external landmarks, while feature points can be also be
selected based on maximal information content in the context of
anatomical geometry [264]. Point-based methods have been applied for
landmark registration prior to the fusion of MRI and PET images [265].

5.3.2. Curve-based methods

Point-based methods usually identify characteristic curves or lines,
which contain features like edges, object contours, gradient minima,
maxima, and crest lines. These features can form representations of
anatomical structures and their boundaries. These methods include
standard edge detection methods like the Canny edge detector with its
subsequent improvements, e.g., the use of curvelets as a replacement of
Gaussian filters [266,267]. Second-order approaches based on Laplacian
of Gaussian and recent fuzzy logic approaches are also used for feature
detection. An alternate approach is the use of contours. The classic
‘snake’ of active contours are energy-minimizing splines, driven by in-
ternal forces and external constraints to approach the lines and edges of
anatomical structures [268]. Similar elastic contour approaches have
been applied to various image registration applications [269]. Im-
provements in the classic ‘snake’ include balloon-based models to
reduce dependency on contour initialization [270] and united snakes to
combine B-spline functions, FEM functions, etc., [271]. More recent
applications include the use of active contours, which tolerate discon-
tinuities by replacing smoothness constraints with masked regulariza-
tion [272], and the use of curve-based registration for time-series of
intensity change in dynamic contrast-enhanced MRI [273].

5.3.3. Surface-based methods

Surfaces or regions are characterized by homogeneous local surface
shapes or distinct boundaries. Surfaces inherently provide more redun-
dancy than curves and point landmarks, crucial for non-rigid trans-
formations. Surface-based methods are inherently similar to curve or
line-based methods. For some of the prior mentioned point-based or
curve-based methods, we can directly extend their formulation to sur-
faces, e.g., the extension of non-rigid ICP to a point cloud [274]; the
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extension of “snake’ methods of active contours to ’level sets’ involves
contour initialization to a surface [275]. While these ’level sets’ provide
a basis for segmentation, surface or region-based methods can also
involve the use of segmentation to isolate surfaces of interest for regis-
tration. Brain registration, especially cortical surface registration, in-
volves transforming cortical features to 2D, ellipsoid, or spherical planes
or other surfaces for subsequent rigid transformation or deformable
warping [276, 277]. Warping is a method of measuring a deformation
field between processed and source images. Warping does not neces-
sarily involve registered image and source image but can also include
warping based on prior knowledge, e.g., the gradient nonlinearity of
MRI magnetic fields. Recent studies combined biomechanical prior with
geometric shape prior for surface registration of MRI to transrectal ul-
trasound [278,279]. Other recent registration studies with segmentation
include the 3D active contour segmentation of the liver from abdominal
MRI for registration [280].

5.4. Hybrid registration methods

Hybrid registration methods combine intensity-based and feature-
based registration methods for higher quality registration. Standard
hybrid registration includes a feature-based step and an intensity-based
step, where each step is designed to register global or local information
[281]. The combination of surface and intensity registration methods is
commonly used in neuroimaging to obtain specific brain structures
[282], while a recent study has successfully registered 3D curves with
3D surfaces [283]. Another type of hybrid registration uses a hierar-
chical approach, where sample data are converted to a hierarchy of
resolutions, where registration is performed at each level and combined
for final registration. The use of hierarchical registration avoids local
minima with the global information provided by low-resolution levels,
while multiple registrations at various medium to high-resolution levels
reduce the requirement for bootstrapping optimizations, resulting in
higher computational efficiency [284]. For intensity-based methods,
this process can involve a single atlas or reference resized to various
hierarchies or multiple atlases in each level [285], while hierarchical
registration can also be applied with feature-based registration at each
or selected levels [286]. The combinations of multiple registration levels
or various registration methods improve registration quality [287]. Hi-
erarchical registration is often applied to registrations with differing
methods on partial data or transformed data common in multimodal
data fusion [288].

5.5. Optimization for registration

The majority of registration and alignment procedures can be
formulated as optimization problems. Therefore, the method of opti-
mization is of vital importance. In this section, we will introduce some of
the fundamental approaches to optimization, including gradient
descent, Newton’s method, and Powell’s method. We will also mention
recent advances in global optimization, including evolutionary algo-
rithms and deep learning. Gradient descent (GD) is a major category of
optimization methods used for registration. GD searches for local
minima in a step-wise fashion, moving towards negative gradient re-
gions. A simple representation is,

X1 = X — }’Vf(xr) 21)

where the x represents variables in registered data, t represents a
timestep in optimization, and Vf is the gradient of the objective function
f. GD methods are constrained by defining a convergence criterion,
where the optimization process is stopped if the criterion is satisfied. A
variety of optimization methods have been derived from fundamental
GD [289]. Examples include steepest gradient descent, which applies a
simplified first-order Taylor, and conjugate gradient descent, which
applies the Gram-Schmidt procedure to orthogonalize gradient vectors
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in each step of the descent.

Another category of optimization method is based on the classical
root find method — Newton’s method. A simple representation of this
second-order derivative-based method is,

Xep1 = Xp — va(xr)Hf ()Cr)71 (22)
where Hy is a matrix of second-order partial derivatives, or Hessian, of
the objective function f. Quasi-Newton methods, like the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method, are often applied to avoid
the calculation of the complete Hessian. A simplified BFGS, with unit
step size, can be used to compute the Hessian using,

Vf (%) = Vif (xi-1)

Xp — X1

H/(XI) (23)

This is also known as the Secant method. Compared to GD, optimi-
zation algorithms based on Newton’s method often converges more
efficiently due to second-order and iterative information. The
Levenberg-Marquardt method combines GD with Newton’s method for
even higher efficiency.

As an alternative to these gradient-based methods, Powell’s method
is a gradient-free alternative for registration optimization. It uses iter-
ative line search minimizations to find optimal values of individual
variables i and determine the next step with a scalar variable a;.

Xepl = X — E ;S
i

Termination criterions similar to GD convergence criteria are applied
to stop the optimization process [290]. Without the need for derivations,
Powell’s method is significantly more efficient than gradient-based
methods like GD and Quasi-Newton. It is often used for the optimiza-
tion of image registration problems [291]. Powell’s method is inherently
limited in its degrees of freedom; to mitigate this limitation, alternative
gradient-free methods have been developed, e.g., the Nelder-Mead
method.

The gradient-based and gradient-free methods discussed above are
the most classical and generic algorithms available for opti-
mization—more modern approaches, like evolutionary algorithms,
model biological processes. Genetic algorithms (GA) are a popular
branch of evolutionary algorithms inspired by natural selection. In GA,
solutions are modeled as individuals within a population. Each solution
contains a number of parameters modeled as genes, which are used to
evaluate the individual’s fitness using a fitness function. Using the
concept of ‘survival of the fittest,” pairs of individuals combine their
genes to produce new individuals or solutions, known as offsprings.
Other concepts like mutation and termination are also present in most
GA. Compared to GD-derived methods and Powell’s method, GA is a
global optimization method.

Another new approach is the use of universal approximators, like
neural networks. Depending on the depth of the neural network used,
this approach is also known as deep learning [292]. By reformulating the
registration problem as supervised transformation or unsupervised
transformation estimation based on similarity metrics, we can incor-
porate the iterative optimization procedure into the training and opti-
mization of neural networks, opening a range of new methodologies for
registration and alignment of biomedical data [293]. Studies have
shown that deep learning methods can outperform standard registration
and alignment in multiple fields. By formulating neural network outputs
into registration metrics, studies have performed deformable registra-
tion of neonatal brain MRI and showed better performance compared to
mutual information-based methods [293]. Similarly, deep learning has
also been applied for unsupervised registration without ground truth
references, where a twin translation and transformation network also
outperformed a range of standard registration methods [294]. Apart
from standard applications of neural networks in a reformulation of the
similarity optimization problem, deep learning also includes

(24)
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reinforcement learning and generative models. Reinforcement learning
involves a trained agent, typically composed of a policy and value
network, which explores the space of transformations for registration.
Generative models are neural networks that can generate new data from
the provided source; these models include the previously mentioned
GAN and cyclic-GAN. These models can either be used as an improved
similarity measure optimization framework, unsupervised registration
method, or as a means to convert multimodal registration to unimodal
registration. More detailed descriptions of these methods, along with
examples, can be found in the survey by Blessy and Sulochana [295].

5.6. Quality Assessment

Quality assessment is an essential part of the registration and
alignment, especially for data fusion, where the quality of the registered
and aligned images directly impacts fusion quality. Quality assessment
can be done on two bases: with ground truth reference and without a
ground truth reference. The ground truth reference, or optimal solution,
can be used to directly calculate registration accuracy and robustness. In
recent studies of applying deep learning for registration, classical algo-
rithmic registration results were used as the optimal solution, while the
neural networks were used to increase efficiency significantly [296].
However, in most cases, the ground truth reference is not available.
Conventional methods include the use of fiducial markers [296], i.e.,
extrinsic landmarks detailed in Section 5.4, and visual inspection based
on morphology. Phantom studies have also been used for quality
assessment in intra-modality registrations, especially in thorax imaging
[297]. Apart from the previously introduced use of mutual information
for unsupervised registration, alternative quality assessment metrics
have also been applied, including MSE, peak signal-noise ratio (PSNR),
gradient smoothness, and redundant information estimation. Another
alternative quality assessment method for registration without ground
truth references is consistency analysis, which involves registering im-
ages in reverse order from the registered data to source data [298,299].
This process directly compares the reconstructed sample and the ground
truth original, which allows for computations and optimizations based
on consistency measures. The quality assessment procedure in the
registration and alignment of biomedical data provides a basis for
evaluating fusion quality and is therefore essential to the fusion process.

5.7. Practical Applications

5.7.1. Neuroimaging — MRI-PET Registration

A typical application of registration among modalities is in the fusion
of MRI and PET data in neuroimaging. The fusion of MRI and PET data
usually requires the registration of MRI data and the co-registration of
PET data. MRI registration usually requires B;-field and gradient
nonlinearity correction, which corrects magnetic field inhomogeneities
in the imaging apparatus [300]. This correction is usually followed by
intensity normalization with histogram peak sharpening and removing
the skull and cerebellum components from the brain images with
bootstrapping threshold approximations. MRI images are then regis-
tered to a brain template for spatial normalization, usually through
linear intensity-based registration. Brain templates are the spatial
standards for the human brain, generated from neuroimaging or au-
topsies of a single individual, e.g., Talairach or Collin-27, or a group of
subjects, e.g., MNI-152. In many studies, PET images are taken with MRI
images. The PET images are then aligned to the corresponding registered
MRI images through rigid alignment [301,302]. Through the process of
co-registration, spatial alignment and normalization are inherited by the
co-registered PET images. The two modalities’ fusion can then be per-
formed from the feature-level to voxel-level [303]. Many studies also
performed brain segmentation into specific anatomical regions, where
ROI-specific features like volume or cortical thickness can be obtained.
With co-registered PET images, ROI-specific features of MRI and PET can
be combined to expand feature space.
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Table 8
Summary of references in Section 5 Alignment and Registration
Reference Year Task/Summary Type Application
Cohenand Cohen 1993  Active contour Curve- Various
[224] models with balloon based
models.
Maurer, et al. 1997  Head volume Point- Neuroimaging
[215] registration with based
fiducial markers
Studholme, et al. 1999  Entropy measure for  Intensity- Neuroimaging
[310] regional mutual based
information (MI)
Maksimovic, 2000  Active contour Curve- Head trauma
et al. [222] models for 3D based CT
reconstruction and
segmentation
Christensen and 2001  Consistence Surface- Neuroimaging
Johnson [247] registration through based
both forward and
reverse
transformations
Jenkinson, et al. 2002  Brain image linear Intensity- Neuroimaging
[311] registration and based
motion correction
Vemuri, et al. 2003  Level-sets of Surface- Neuroimaging
[312] contours for image based
registration
Hellier and 2003  Hybrid of Hybrid Neuroimaging
Barillot [313] photometric and
landmark-based
registration
Houhou, et al. 2005  Hierarchical atlas for ~ Hybrid Neck CT
[234] image registration
Greve and Fischl 2009  Brain image Surface- Neuroimaging
[205] alignment based
Loizou, et al. 2007  Active contour Curve- Cardiac
[225] segmentation of based ultrasound
intima-media
(carotid artery)
Almhdie, et al. 2007  ICP algorithm with Point- Lung and heart
[217] lookup matrix based data
Xiao-chun, et al. 2007  Lucas-Kanade Intensity- Neuroimaging
[237] algorithm based on based
gradient descent
Postelnicu, et al. 2008  Combination of Hybrid Neuroimaging
[314] volumetric and
surface registration
Geback and 2009  Edge detection with Curve- Microscopy
Koumoutsakos curvelets based images
[220]
Danilchenko and 2010  Quality assessment Point- Neuroimaging
Fitzpatrick with fiducial based
[245] markers
Dietzel, et al. 2011 Fusion of DCE-MRI Hybrid Breast DCE-
[65] and X-ray MRI and X-ray
mammograms
De Nigris, et al. 2010  Hierarchical model Hybrid Neuroimaging
[236] with adaptive local
mutual information
Freiman, et al. 2011  Abdominal CT Hybrid Abdominal CT
[255] registration with
local-affine
diffeomorphic
demons
Gorbunova, etal. 2012  Mass preserving Intensity-  Lung CT
[208] registration for lung based
CT
Hu, et al. [221] 2012  Hierarchical image Curve- Neuroimaging
registration based on  based
multi-scale and
contour line
Lazar, et al. 2013  Batch-effect removal  Intensity- Gene
[256] for gene expression based expression data
data
Kim and Tai 2014  Hierarchical model Hybrid Neuroimaging
[235] with feature-based

registration

(continued on next page)
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Table 8 (continued)
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Table 8 (continued)

Reference Year Task/Summary Type Application Reference Year Task/Summary Type Application
Suk, et al. [250] 2014 Hierarchical Hybrid Neuroimaging Sun and Feng 2020 Registration for Curve- Liver DCE-MRI
registration and [227] intensity changes in based
fusion for deep dynamic contrast
learning enhanced (DCE) MRI
classification of AD/ He and Razlighi 2020  Volumetric Surface- Neuroimaging
MCI [229] registration of brain based
Khallaghi, et al. 2015  Surface registration Surface- Prostate MRI cortical regions via
[230] with biomechanical based and transrectal landmarks and
prior for image ultrasound deformation
fusion diffeomorphisms
Khallaghi, et al. 2015  Surface registration Surface- Prostate MRI Haskins, et al. 2020  Application of deep Various Various
[230] with statistical based and transrectal [240] learning in medical
biomechanical prior ultrasound image registration
for image fusion Arar, et al. [244] 2020  Unsupervised multi- Intensity- General
Simonovsky, 2016  Similarity measure Intensity- Neuroimaging modal image based
et al. [243] modelling as neural based registration with
network task-specific three
classification task for neural networks
image registration
Zhang, et al. 2016 Quality assessment Feature- Various
[248] based on backward based 5.7.2. Chest and Abdominal Imaging
X L 2541 2016 ;egl_s“a“f’“ Vari Abdominal CT For various conditions and diseases involving the chest and
u, et al. [: egistration arious lominal . . . .
N m:ho ds for abdominal region, combinations of X-ray, ultrasound, CT, PET, and MRI
Abdominal CT are often used for diagnosis. Spatial or temporal registration of samples
Che, etal. [201] 2017  Ultrasound-to- Feature- Ultrasound or multiple modalities can provide better bases for fusion. Unlike the
ultrasound based images registration of relatively non-elastic neuroimaging data, chest and
registration . s . . .
abdominal imagin ver multiple easil formable organs an
Liu, et al. [252] 2017 Multi-level fusion of Hybrid Neuroimaging do a . ging cove . u.tp ¢ cas y defo .a . organs 4 d
features for therefore require more sophisticated nonlinear registration methods.
classification of Feature-based registration with extrinsic landmarks of skin markers has
Alzheimer’s disease been studied for thorax CT and SPECT registration [304]. The registra-
Mahapatra, etal. 2018  Deformable Intensity-  Retinal images tion of MRI with real-time ultrasound was applied for better biopsy
[209] registration with based & Cardiac MRI . .
generative procedures in potential breast cancer cases [305]. Talas, et al. [306]
adversarial networks combined 2D X-ray mammograms with 3D MR mammograms with a
(cyclic GAN) nonlinear deformation model. Goodfellow, et al. [307] adapted multiple
Li, et al. [226] 2018 Active contour Curve- Liver MRI image registration pipelines, e.g., FSL, ANTs, designed for neuroimaging
motion based data for abdominal CT, while non-rigid techniques based on local affine
segmentation that Surface- . h b lied d ioid
preserves based assumptions have been applied to CT and DTI [308]. In most cases, rigi
discontinuities transformations cannot adapt to the abdominal and chest regions’ elastic
Raposo and 2018  Registration of 3D Hybrid Orthopedic and deformable physiology,
Barreto [232] curves with 3D models
surfaces .
Liu, et al. [315] 2018  Multi-modal Hybrid Neuroimaging 5.7.3. Genetic dqta . X . X
registration for deep Although registration and alignment are primarily targeted at neu-
learning roimaging data, similar methods are also applied in 1D or sequential
classification of data. A prime example is gene expression data, where data from multiple
) Alzheimer’s disease ) ) studies are often combined to increase sample size, or perform the meta-
Mohammadian, 2019 Microscopy image Point- Correlative lvsi h P ltiple id i P inel heref
et al. [204] registration with based Microscopy anal y§1s. T e;re are often I.nu tiple identifiers (?r a single gene. Therefore,
fiducial markers gene identifiers from a single source or multiple sources often contain
Xu, et al. [210] 2019  Multi-modal Intensity-  Various platform-specific identifiers like Illumina Gene ID or Affymetrix Gene
reg‘Str;‘F“’f“ with based ID, which must be aligned into a single framework, e.g., Entrez Gene,
tu t o . L
?;/IIID & information Ensemble Gene Identifiers. Due to the use of multiple studies, it is
Alfano, et al. 2019  Breast tumour Surface- Breast CT common for a study to contain gene expression data from multiple
[316] localisation with based platforms, which have inherently different methods for the measure-
pose registration ment of gene expression. This combination will result in batch effects
based on breast and differences in scale within the genetic data, which need to be
surface point cloud d li diff di h £ th
Wei, et al. [214] 2019  MRI-CT intra- Intensity-  Liver MRI and removed to align different studies [309]. The summary of the recent
procedural based CT Alignment and registration research is shown in Table 8.
registration with
cycle-GAN for 6. Preprocessing for small size dataset: Data Augmentation
tumour thermal
ablation . X
de Vos, et al. 2020  Mutual information Intensity-  Breast MRI and Medical data are normally of small size [319]. The successes of deep
[317] with unsupervised based Cardiac MRI learning algorithms fuel the interest in applying deep neural network
deep learning _ models to medical image analysis, classification, segmentation, data
Bhavana [318] 2020 Landmark Point- CT and MRI fusion, etc. However, a small-size dataset will impair the generalization
registration for based images

medical image
registration and
fusion
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ability of deep neural network models. This generalization means the
performance gap of a model evaluated on the test set and training set.
This section will give a brief survey on data augmentation, which is an
efficient image-domain solution to overfitting.
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Fig. 18. Training and test performance: (a) Overfitting; (b) Desired

6.1. Background

Fig. 18(a) shows the overfitting curves, where the test error increases
after epoch 6 as training error continues to decrease. Fig. 18(b) presents
a pair of desired curves, where both training and test error decrease until
convergence.

Traditional solutions to small-size dataset problems consist of data
generation (DG), regularization, and ensemble approaches (EA). DG
creates data from a sampled data source. The synthetic minority over-
sampling technique (SMOTE) [320] is a typical algorithm for DG. Reg-
ularization is mainly for the weights of models. Large weights will make
the models unstable because minor variations on the inputs will yield
large differences in the output for large weights. Smaller weights are
regarded to be more regular (i.e., less specialized). Hence, this type of
technique is called weight regularization. EA methods use multiple
models to obtain better predictive performance than any model alone
[320].

Data augmentation (DA) is an approach that solves overfitting by
addressing the root of the problem, the training set. The augmented data
represent a more comprehensive set of training data, thus minimizing
the distance between the training set and test set. Fig. 19(a) shows the
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distance between the training and test set, where each dot means a
sample image. It shows training set cannot cover the characteristics of
the test set, so the trained model may overfit. Fig. 19(b) shows the
training set zone is enlarged and covers the test set zone; hence, now the
distance between the augmented training set and the test set is
minimized.

It should be noted that data augmentation is mainly used for image
recognition, particularly medical image classification. This is because
medical image collection is quite expensive and labor-intensive. Medical
images are usually generated by positron emission tomography (PET),
computer tomography (CT), ultrasound (US), single photon emission
computed tomography (SPECT), magnetic resonance imaging (MRI),
functional MRI (fMRI), Magnetic resonance spectroscopy imaging
(MRSI) scanning, etc. Other factors also complicate medical image
collection, such as expensive and laborious imaging scanning, patient
privacy concerns, disease rarity, and the requirement of radiologists’
delineation. However, data augmentation can also be used in object
detection carried out by R-CNN [321], fast FCNN [322], and faster
RCNN [323], YOLO [323], YOLO9000 [324], YOLOV3 [324], etc. Se-
mantic segmentation is a rising application field of data augmentation.

The safety of a type of data augmentation is another important fac-
tor. Suppose an image I, and its corresponding label is C. A safe data
augmentation D is defined as

C[Due(D)] = C(I) (25)

Namely, the data augmentation is label-preserving. In some cases,
the unsafe data augmentation method will change the labels as

C [Dno(—safe (I)] # C(I)

Note that “safety” is domain-dependent [325], and its certification
needs expert knowledge. For example, rotation is safe for vehicle clas-
sification (See Fig. 20(a)) but not safe for digit recognition since 9 will be
rotated to 6 (See Fig. 20(b)). The injection of a small amount of noise is
safe for lung disease recognition (See Fig. 20(c)), but adding a large
amount of noise unsafe for the same task (See Fig. 20(d)).

(26)

6.2. Data Augmentation versus other methods

In the context of deep learning, particularly convolutional neural
network (CNN) models, there are some special methods to solve small-
size dataset problems, such as batch normalization, dropout, pretrain-
ing and transfer learning (which will be discussed in the following sec-
tions), zero-shot learning, and one-shot learning.

The motivation of batch normalization (BN) is to solve the “internal

O Aug Train
O  Test

(b) With DA

Fig. 19. DA help reduce the distance between training and test set
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(a) A safe data augmentation for rotating vehicle image

ib: An unsafe data auirnentation for rotating digit image

el
a small amount of noise

—

3

(c) A safe data au%mentation by adding

L

S

=] £03 B
(d) An unsafe data augmentation by adding a large amount of noise

Fig. 20. Realistic samples of safe and non-safe data augmentations

covariant shift (ICS)”, which means the effect of the randomness of the
distribution of inputs to internal CNN layers during training. The exis-
tence of ICS will worsen the CNN’s performance [326]. Suppose that we
have N minibatch samples, BN normalizes the internal layer’s inputs B =

(a) Original Image

(b) Horizontal flipping
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{p;} over every mini-batch, in order to make sure the batch normalized
output V = {v;} has a uniform distribution. Mathematically, BN involves
the learning of a function of the form

fri=1,2-N§ < {v,i=12N @7

B \4

During training, the empirical mean a,, and empirical variance a, can
be computed as

ey

(28)
a= > an)
The input §; € B was first normalized to éi

where a; in denominator in Eq. (29) is stability factor, used to enhance

the numerical stability. Now the g; have zero-mean and unit-variance
characteristics. In order to have a more expressive deep neural
network [327] (here expressive means the network’s expressive power,
i.e., the ability to express functions), a transformation is usually carried
out as

Vi=by X i+ by i =12 N (30)

where the parameters b; and by are two learnable parameters during
training. The transformed output v; € V is then passed to the next layer

and the normalized f; remains internal to the current layer.

Fan, et al. [328] proposed the concept of dropout neurons (DNs) by
randomly dropping neurons and setting their neighboring weights to
zero during training. The selections of DNs are random with a retention
probability (y,). Suppose we have a neuron N(i,j) and its corresponding
original weights are t(i,j), and the collection of DNs is é.

.o (i) N(i,j)es
1(i.J) f{ o NG gs €3]

where t;(i,j) means the weights of neuron N(i,j) during training. y, has a
default value of 0.5, viz., y, = 0.5. During inference, we run the entire
CNN without dropout, but the weights of FCLs using DNs are down-
scaled (viz., multiplied) by y,:

ti(i,j) = v, x t(i,j) (32)

where t;(i,j) denotes the weight of neuron N(i,j) during inference.
One-shot learning or few-shot learning is to learn information about

7 —=
ea

ol

(c) Vertical flipping

Fig. 21. Horizontal flipping versus vertical flipping
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(c) -30 degree

Fig. 22. Rotation results

P —mm————

k g

(a) Original image with grid

-

(b) Horizontal shear

\

(c) Vertical shear

Fig. 23. Shear transform results

object classes from one or only a few training samples, respectively.
Their motivation is given by humans’ ability to learn object classes from
few examples. One-shot learning is now successfully applied in medical
image registration [329], hand gesture recognition [330], expert-aided
systems [331], etc. Two commonly-used methods are Siamese net-
works (which learn a distance function) [332] and memory-augmented
networks [273]. Zero-shot learning [333] is an extreme paradigm where
at test time, the trained classifier needs to predict samples from classes
that were not observed during training.

6.3. Geometric Transforms

Flipping. Flipping in geometry means the image is reflected along a
line, leading to a mirror image of the original one. Vertical flipping is
less common than horizontal flipping. The flipping is one of the simplest
and most straightforward data augmentation methods [275]. Experi-
ments on ImageNet, CIFAR-10, and other biomedical datasets prove the
effectiveness of flipping. Note that on datasets such as SVHN or MNIST,

. i

1
(a) Translations
various directions

3

along (b) Translation
[20 30]

which involve texts and digits, flipping is unsafe. Fig. 21(a) shows an
original lung window image, and Fig. 21(b and c) present the corre-
sponding horizontal and vertical flipping results.

Rotation. Rotation is a motion of an image around a point. Usually, a
clockwise rotation is a negative magnitude, while a counterclockwise
rotation is a positive magnitude. In a data augmentation situation, the
image is rotated around the central point [334]. Slight rotation such as
within [—15°,15°] are usually safe for digit recognition and text recog-
nition, but a wide rotation such as within [-90°,90°] may be unsafe, i.e.,
the label is no longer preserved. Fig. 22(a) shows the original lung image
with grid lines colored in red. Fig. 22(b and c) present the rotation re-
sults with rotation angles of 30 degrees and —30 degrees, respectively.

Shear. Shear mapping displaces each point in a fixed direction by an
amount that is proportional to its signed distance from the line passing
through the origin and parallel to that direction [277]. If we suppose the
original pair of coordinates is [x1,y1], and the pair of coordinates after
shear transform is [x2,y2], then horizontal shear is defined as

3
|
with  (¢) Translation with

[-30 -20]

Fig. 24. Translation schematic and results
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green rectangle of (a)

Fig. 25. Crop results

1 0 0
2,2, 1] = [, y1,1] X [ aps 10
0 0 1

(33)

where ay; is the horizontal shear factor. Similarly, for vertical shear we
can define as

Ay

1 a; O
X2, ¥2,1] =[x, 3,1 x |0 1 0 (34)
0 0 1
where ay; is the vertical shear factor. Fig. 23(a) presents the original lung
image with red grids, and Fig. 23(b and c) present the corresponding
horizontal and vertical shear results, respectively.

Translation. Translation in geometry is to move every pixel in the
image by the same distance along the same direction. The translation is
commonly used in face recognition. Face images are typically collected
in almost perfectly centered positions, which will necessitate the AI
classifier to be tested on similarly centered images. Using the translation
data augmentation method, the dataset will be filled with other trans-
lated images (face not in the center), so the classifier will become more
robust and can work efficiently on images where faces are not centered.
There will be “missing” values when images are translated outwards of
the original image size, so we need to fill in those missing values with
either a constant such as 0 (black) or 255 (white) or random noise [335].
Fig. 24(a) presents a schematic showing the translation can move the
image along the same direction. Fig. 24(b-c) provides two translation
results of [20,30], and [-30, -20], respectively.

Cropping. In traditional image processing and computer vision tasks,
cropping is an efficient tool to extract patches from a large image or a
mixed-size image set [336,337]. Then algorithms are run on the patches
instead of the images themselves. In the data augmentation domain,
cropping cuts a patch with a predefined size out of the original image.
The difference between cropping and translation is that cropping re-
duces the spatial size while translation preserves the spatial size. For

example, if the original size is [Wy, Hy, then the size after cropping is
[W., H,] and the size after translation is [W;,H;|, we have

Fig. 25(a) shows the crop schematic where two rectangles (red and
green) delineating the regions to be cropped. Fig. 25(b and c) show the
cropped images from red and green rectangles, respectively.

Geometric transformations are popular data augmentation solutions
to increase the amount of training data [337]. The advantage of geo-
metric transforms is that they are easy to carry out. The disadvantage is
additional computation cost and storage memory, and extra training
time. The geometric transformation must be observed carefully since
some of them may alter the image labels.

w, WO?HI =H,
W. < Wy,H. < Hy

(35)

6.4. Noise Injection

Gaussian Noise. Noise injection means adding noise to the inputs of a
deep neural network model during training. The noise is usually set as a
Gaussian noise, which is statistical noise having a probability density
function (PDF) equal to normal distribution. The description of Gaussian
noise is illustrated n section 3.2.1. Noise injection has proved successful
in robot speech commands [338], fruit classification [339], plant leaf
disease recognition [340], etc.

Salt-and-pepper Noise. Salt-and-pepper noise, as described in sec-
tion 3.2.3 is another common noise to be added to input images. Cal-
deroni, et al. [341] used salt and pepper noise for the identification of
early esophageal cancer.

Speckle Noise. Speckle noise mentioned in section 3.2.5 is a granular
interference that inherently exists in medical ultrasound (US) images,
active radar, synthetic aperture radar, etc. Data augmentation with
speckle noise has been proved efficient in radar images [342] and
neonatal hip US images [343].

Noise added in other layers. All the previous methods inject noises at

(c) Subtract 30

Fig. 26. Simple photometric transform by adding and subtracting a constant value
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Fig. 27. Gamma correction

the input layer; however, noises can be added at other layers. For
example, Davatzikos, et al. [344] added noise, interpolated and
extrapolated in learned feature spaces. Gothelf, et al. [345] added noise
to the loss layer and presented a novel method, “DisturbLabel”, which
randomly replaced a part of labels as an incorrect categorical value in
each iteration. Their experiments demonstrated that DistrubLabel could
prevent the network training from overfitting.

6.5. Photometric Transforms

Photometric transforms, also known as color space transform, is to
manipulate the gray values of a grayscale image or to manipulate RGB

Information Fusion 76 (2021) 376-421

color values of a color image [346]. A simple method is to add or sub-
tract a constant value to increase or decrease the gray values of the
image, making it brighter or darker. Fig. 26 gives a simplistic example,
where (a) shows the raw image and (b-c) present the result by adding 30
to and subtracting 30 from the raw image, respectively.

Gamma Correction. Gamma correction is a nonlinear operation to
adjust the luminance values of the images. It is defined by the power-law
expression:

f=Axf (36)

where f; and f, denote the input and output gray values, and their values
are normalized into the range of [0, 1] so A =1 will preserve the gray
scale range. Two important ideas exist: (i) gamma compression associ-
ated with y < 1; and (ii) gamma expansion associated with y > 1 [338].
The top row in Fig. 27 presents two samples of gamma compression, i.e.,
y = (0,5,0.75) respectively. The bottom row in Fig. 27 presents two
other samples of gamma expansion with y equivalent to 1.5, and 2,
respectively.

Color Jittering. Color jittering (CJ) [347] shifts the color values in
original images by adding or subtracting a random value. The benefit of
CJ is that it can help bring in randomness change to the color channels,
so it can aid the production of fake color images. Fig. 28 shows six color
jittering examples on the raw image in Fig. 26(a).

PatchShuffle. Kang, et al. [293] presented a new PatchShuffle
method. In each minibatch, images are split into nonoverlapped patches,
and each patch undergoes a transformation such that pixels within that
patch are shuffled. They conducted experiments with different filter
sizes n and different swapping probabilities €. Suppose that the original
image is X with size of N x N, and X is partitioned into a block matrix
with non-overlapping patches X = {a;}, a; means the patch at i-th row
and j-th column within the patch matrix.

ap ap AiN/n
x=| @ e @7
azv'/n,l aN./n,Z aN/r.l.N/n
The PatchShuffle transformation acts on each patch by
@ = pjj X ag X p; (38)

Fig. 28. Color jittering examples
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(e) n=6

Fig. 29. PatchShuffle results

(a) Raw image (b) Blurry image (c) Sharpened image

Fig. 30. Blurring and sharpening results

Category 1 Category 1
Image C » PatchE
Randomly
Selected » PatchF
Image D
£ Category 2

Category 2 (Label unused)

Category 1

Mixed N Network
Patch G Training

Fig. 31. Schematic of SamplePairing

where a; denotes the transformed patch, pj; and pj; denote the row and
column permutation matrixes, respectively. Their experiments showed
the optimal hyperparameter is n = 2 and ¢ = 0.05. Fig. 29 shows the
PatchShuffle results withn = 2,3,---,7. In their paper, Tibshirani [348]
reported PatchShuffle could be applied not only on images but also on
feature maps.

403

Sharpening and blurring. Kernel filters can be used to sharpen and
blur images. The kernel filters slide an n x n kernel across the image
with either a Gaussian blur filter [294] or an unsharp masking [349].
The former yields a blurry image, while the latter yields a sharpened
image. Fig. 30(a) shows a raw cloud image, while Fig. 30(b and c) show
the blurry and sharpened images, respectively.
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(a) House

(b) Dam
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(c) Mixed Image (House)

Fig. 32. A SamplePairing example of missing house and dam images

Fig. 31.

Intuitively, blurring images can help classifiers better resist the blur
(Gaussian, motion, average, etc.) during the test, and sharpened images
bring about more edge and contrast details for object category classifi-
cations. Both sharpening and blurring operations are quite common in
data augmentation.

6.6. Image Mixing

Sample Pairing. The afore-mentioned transformation methods are
single-image augmentation methods. Now we will discuss more novel

methods working on two or more images. McIntosh and Lobaugh [350]
proposed SamplePairing technique, which synthesizes a new training
sample from one image by overlaying another image randomly chosen
from the training data. That is, to take an average of two images in a
pixel-wise way.

Suppose there is an image C of category 1, and another randomly
selected image D of category 2. SamplePairing method first generates
two patches E and F from the image C and D, respectively, by random
cropping method and random horizontal flipping. The category 2 label is
discarded. Then the two patches E and F are mixed to generate the mixed
patch G by averaging intensities of two patches pixelwise.

—

1=07

Mixup results
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D
(1) Random pixel

Fig. 34. Nonlinear mixing method

(39

Gli.j) = [E(i,j)+F(i,j):| / 2
I A

where C1 and C2 mean the category labels. Then the mixed patch G is
used for network training. The authors claimed using their Sample-
Pairing method can generate N> new samples from N training sample
dataset [351]. Fig. 32(a-b) presents the house and dam images,
respectively. Fig. 32(c) shows the mixed image with a label of “house”.

Mixup. A data-agnostic augmentation routine, mix-up, was proposed
by Yan, et al. [352]. In their paper, a hyperparameter 1 € [0,1] was
introduced, and one-hot label encoding was used to use the information
of categories of both images. Suppose (E,F) mean the two randomly
selected samples, and t the label of corresponding categories, we can get
the mixup sample and labels G and ¢; as

{

where (tg,tr) are labels of two samples randomly selected from the
training set. Briefly, mixup extends the training dataset by linearly
interpolating two randomly selected images. Fig. 33(a-b) gives two
randomly selected images: House and Swan, photographed from
Leicester botanic garden and Abbey park, respectively. Fig. 33(c-i)
presents the mixup results with 2 = 0.2,0.3, ---,0.8, respectively.
Nonlinear mixing. Vounou, et al. [353] expanded linear combination
to nonlinear mixing methods. The authors proposed novel nonlinear

G=AxE+(1—A)xF

tc=AXtg+(1—2) xtp (40)
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mixing methods. Suppose 1 € [0,1] is a random variable, the vertical
concatenation (VC) combines the top A fraction of image E and the
bottom (1 —4) fraction of image F, instead of pixelwise average. Suppose
(W, H) are the width and height of the input image, and (w,h) are the
width and height index, we have

ve _ [E(wh) h<MH
G (w,h) = {F(W7 h) otherwise “n
And the horizontal concatenation (HC) is described as
HC _ [E(wh) w<iW
G w,h) = {F(w, h) otherwise 42)

Mixed concatenation (MC) is an application of horizontal concate-
nation to the vertical concatenation of two input images. Namely, sup-
pose we have 0 < 41,4, < 1 two random variables, then

E(w,h) h<MLHAw< LW

MC o F(W,h) h<AHAw>LW

GEO M) =3 Flwoh) h> WHAw< oW (43)
E(W,h) h>AMHANw> LW

Random column interval selects a random column interval, and that
interval part of the image E is replaced with image F. Random row in-
terval does the same thing on row direction. The random row method
selects each row at random either from image E or F. The random row
method can be regarded as a higher frequency of vertical concatenation.
Similarly, we can deduce the random column method. Random square is
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(a) Arboretum

(b) 1st sample of RE

(c) 2nd sample of RE

Fig. 35. Example on random erasing

(a) ‘rivr”, 7.8 confidence

() Perturbation by eepFol (c) ‘Hse”, 99.8% confidence

Fig. 36. Adversarial training examples

to cut out a random square in image E with that corresponding region in
image F. Random pixel samples each pixel separately from both images.
Fig. 34 shows nine nonlinear mixing methods.

Random Erasing. Kohannim, et al. [354] introduced a new random
erasing (RE) method, which randomly selects a rectangle region and
erases its pixels with random values. This RE method is useful to combat
image recognition tasks on account of occlusion, which means some
parts of the object are blocked. RE forces the model to learn more global
features from other unblocked parts.

In practice, RE randomly selects an n x m patch of an image and
masks it with either Os (black), 255s (white), mean pixel values, or
random values. The best patch fill method was proven to be random
values. Two hyperparameters in RE are the fill method and the size of
the masks [300]. Fig. 35(a) shows one arboretum picture photographed
in Shady Lane Arboretum, Leicester. Fig. 35(b-c) shows the two random
erasing samples, which we can still observe this is an arboretum.

It should note that RE is not always “safe”. In digit recognition tasks,
if the top bar was erased, then “7” may look like “1”. In other fine-
grained tasks [355], such as tumor grade classification, the random
erasing method may block the tumor itself. Therefore, some intervention
strategies should be performed to guarantee the “safety” of the
augmented dataset. Also, identifying the makes of vehicles may be
impaired since RE may block the brands of vehicles.

6.7. Deep learning-based Methods

Adversarial Training. Originally, adversarial machine learning at-
tempts to fool models with deceptive inputs. The adversarial attacking
consists of a rival network that learns deceptive augmentation of images
that cause misclassification in its rival classification network. Suppose
we have an image A of category C1, and now we add a small amount of
noise to it eN, in which the noise is designed strategically. The sum-
mation B will fall into another category C2.

A +exN_B (44)
C1 Cc2

where ¢ is a small value, usually ¢ < 0.01. Fig. 36(a) shows an image
labelled as “river” with 77.8% confidence. After adding the perturbation
by DeepFool [356], this image will be labelled by AI models as “House”
with 99.8% confidence.

The adversarial training can be used as an effective data augmen-
tation method to fix weak spots in the traditional Al model. Hence, those
trained models will be more robust and resistant to attackers. Adversa-
rial training may not increase the test performance, but it will improve
the performance of adversarial examples, i.e., improving the security
and robustness of trained Al models. It is noteworthy to add, though,
that high-dimensional deep learning models may become inherently
unstable to perturbations with high probability as works [303,304]
demonstrate.

Real Images

Real

Discriminator

Random
Noise

—» Generator —»| Fake Images

Fake

Fig. 37. A schematic of GAN
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Table 9
Summary of various DA types and operations
Type Operation Description
Geometric Flip The image is reflected along a line,
Transform leading to a mirror image of the original
one. Horizontal flipping is more popular
than vertical flipping [275].

Rotation Rotation [276] is a motion of an image
around a point. The image is rotated
around the central point

Shear Shear mapping [277] displaces each point

Translation

Cropping

Gaussian Noise
(Input layer)

Noise Injection

Salt-and-pepper
Noise

(Input Layer)
Speckle Noise
(Input Layer)

Noise added in
other layers

Gamma
Correction

Photometric
Transform

Color Jittering

Patch Shuffle

Sharpening
Blurring

Image Mixing SampleParing

Mixup

Nonlinear mixing

Random Erasing

DL-based Adversarial
Methods Training
GAN

in a fixed direction by an amount that is
proportional to its signed distance from
the line passing through the origin and
parallel to that direction.

Translation [278] is to move every pixel
in the image by the same distance along
the same direction

Cropping [279, 280] extracts patches
from a large image or a mixed-size image
set

Gaussian noise [282-284] is statistical
noise having a PDF equal to normal
distribution

It is a type of image noise commonly seen
during transmission [285].

It is multiplicative noise [286, 2871,
which is usually caused by bad
information channels.

Noises can be added at other layers, such
as learnt feature spaces [288] and loss
layers [289].

Gamma correction [291] is a nonlinear
operation to adjust the luminance values
of the images.

CJ [292] shifts the color values in original
images by adding or subtracting a random
value.

Images are split into nonoverlapped
patches, and each patch undergoes a
transformation such that pixels within
that patch are shuffled [293].

Kernel filters of unsharp masking [295]
Gaussian blur filters [294]

SampleParing [296] synthesizes a new
training sample from one image by
overlaying another image randomly
chosen from the training data.

Mixup [297] extends the training dataset
by linearly interpolating two randomly
selected images.

Nonlinear mixing [298] includes vertical
concatenation, horizontal concatenation,
mixed concatenation, random column
interval, random row interval, random
row, random column, random square,
random pixel, etc.

RE [299] randomly selects a rectangle
region and erases its pixels with random
values.

Adversarial training is used as an effective
DA method to fix weak spots in the
traditional AI model. Those trained
models will be more robust and resistant
to attackers [303, 304].

GAN [305] consists of two neural
networks contesting with each other in a
zero-sum game, where one network’s gain
is the other network’s loss.

Generative adversarial network. The Generative adversarial network
(GAN) consists of two neural networks contesting with each other in a
zero-sum game [357], where one network’s gain is the other network’s
loss. There are many generative models that currently exist, but GAN is
leading the performances in computation speed and quality. An intuitive

407

Information Fusion 76 (2021) 376-421

anecdote for GAN is a competition between police (Discriminator) and a
counterfeiter (Generator), or a predator and prey [358]. Both sides are
improving their techniques, so finally, the counterfeiter can make tickets
that are hard to recognize as real or fake by the police, see Fig. 37.

The success of the generator makes it powerful for generative
modeling. GANs have been proved to be effective in data augmentation.
Rao, et al. [359] proposed the first GAN based on multilayer perceptron
to handle MNIST handwritten digit image, the size of which is only 28 x
28 x 1 = 784 pixels. Nowadays, the images in recent biomedical data-
sets are finer resolution and more complicated than MNIST images.
Hence some important variants of GANs were commonly used in data
augmentation in the biomedical field.

For example, Wan, et al. [360] proposed a new attribute-preserving
GAN (APGAN), that provides both attribute-preserving and good visual
qualities after style transfer. Marquand, et al. [361] presented a new
modified generator GAN (MG-GAN). The difference between MG_GAN
and the basic GAN is that the generator in MG-GAN is fed with original
data and multivariate noise to produce data with Gaussian distribution.
The authors reported MG-GAN improved accuracy by 18.8% and 11.9%
compared to KNN and basic GAN, respectively. Krishnan, et al. [362]
compared deep convolutional GAN (DCGAN) with auxiliary classifier
GAN (ACGAN) for liver lesion classification. The authors found DCGAN
provided better results and showed that the GAN-generated CT images
could serve as synthetic data augmentation, thus improving the per-
formance of CNN. Using classic data augmentation, the classifier yielded
78.6% sensitivity and 88.4% specificity. While adding synthetic data
augmentation, the classifier improved to 85.7% sensitivity and 92.4%
specificity.

In summary, we have discussed five types of data augmentation
methods: geometric transforms, noise injection, photometric transforms,
image mixing, and deep learning-based methods. In practical Al model
designing and training, the AI users will try to test one or several
different data augmentation methods and combine them together to
attempt to achieve better performance. The problem of choosing
appropriate data augmentation is still an active research topic. Due to
the page limit, the above DA types and operations are itemized in
Table 9.

7. Preprocessing for high dimensionality

Dimensionality reduction (DR), or feature reduction, the process to
remove noisy and redundant data, is a crucial pre-processing step in data
fusion to improve the accuracy of the subsequent modules. If proper
methods are applied, the overfitting issue can be avoided while the ac-
curacy and generalization can be greatly improved by the fused data.
Dimensionality reductions techniques are implemented through feature
selection and feature extraction, where feature selection aims at
selecting features from the original features, while feature extraction
focuses more on creating new features based on the original features.
Broadly, DR techniques can be divided into supervised and unsupervised
techniques, respectively. Common supervised techniques include filter
techniques, wrapper techniques, and embedded techniques. Unsuper-
vised techniques include data-driven-based techniques such as Principal
Component Analysis (PCA) and domain knowledge-driven techniques.
These dimensionality reduction methods can also be integrated with
deep learning models to improve the performance of those models.

The advent of deep learning introduces new solutions to traditional
computer vision tasks such as image classification and detection. Given
the advantages such as high robustness and high performance with the
help of Graphical Processing Unit (GPU), deep learning has been the
main focus in some areas of computer science and can avoid trivial
image preprocessing procedures. However, data reduction, as an
important preprocessing step, can be integrated into machine learning
models, especially for high-dimensional data analysis. According to the
information of features, features can be divided into three classes,
including suitable, unnecessary, and repeated. Therefore, what data
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Fig. 38. Classification that introduced data reduction

reduction aims at is to refine the features by utilizing all the available
information and contribute to the improvements of models’ perfor-
mance. Data reduction can be implemented in two ways through feature
selection and feature extraction, respectively. In feature selection, only
essential features are selected from the input data set. On the other hand,
feature extraction creates new features from the original features. Both
feature extraction and selection methods can be isolated or combined for
the performance improvement of machine learning models. A classifi-
cation example that introduces data reduction is shown in Fig. 38.

For feature selection, there are usually three key steps, including
subset generation, subset evaluation, and termination, as shown in
Fig. 39.

Subset generation aims at specifying a candidate subset for evalua-
tion in each state. This process is determined by two key elements,
including the search starting point and search strategy. To begin with
the process, the search starting point, which indirectly determines the
search direction, must be predefined. The search point could be an
empty set where features are successively added to the set until the
desired output is found. Inversely, the search point could also start from
a full feature set where features can be successively removed from the
set to produce the final feature output. Also, the search points could start
with both ends and then add and remove features simultaneously until
the desired output is generated. The second key element is the search
strategy. Given a data set with N features, 2 candidate subsets can be
chosen from the data set. The search space makes it a challenging task to
implement an exhaustive search even when N is moderate. Different
search strategies, including sequential search, random search, and com-
plete search, therefore, have been explored. Sequential search methods
add or remove features once at a time to find the subset. However,
completeness is therefore abandoned, and no optimal subsets can be
guaranteed. To facilitate the searching process, p features can be added
in one step while g features are removed in the next step (p>q) [363].
The random search starts with a randomly selected subset where the
search can proceed in two different ways. One is to introduce random-
ness into the classical sequential approaches such as simulated annealing
and random-start-hill-climbing [362]. The other is known as the Las Vegas
algorithm that produces the next subset in a random manner. Never-
theless, randomness in these methods helps avoid local optima in the
search space, although the optimality of the subset selection is

Original

feature set Subset
_

No
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resource-dependent.

Subset evaluation is a procedure to evaluate the newly generated
feature subset by specific evaluation criteria, which can be broadly
classified into two groups, independent criteria, and dependent criteria,
regarding the dependency on the mining algorithms. Independent
criteria are commonly used for the evaluation of feature subsets gener-
ated by the filter models. Popular independent criteria are information
measures, dependency measures, distance measures, and consistency mea-
sures [364]. Information measures are used to measure the information
gain from a feature. The definition of the information gain from a feature
is the difference between the prior uncertainty and the expected pos-
terior uncertainty. For two given features A and B, we prefer A if the
information gain from A is greater than that from B. Dependency mea-
sures, also known as correlation measures, measure the capability of
predicting the value of one variable from the value of another. These
measures depict the association between a feature and the class. In a
classification problem, feature A turns out to be more preferable if the
association between A and class Z is higher than the association between
feature B and class Z. Distance measures are also known as discrimination
measures. For a two-class classification problem, if feature A produces a
larger difference between two-class conditional probabilities than B,
then A has a higher priority than B. Consistency measures aim at finding a
minimized number of features that can separate classes consistently, just
like the full set of features can. Inconsistency is to describe the phe-
nomenon of two instances with the same feature values but having
different class labels. In the wrapper models, which can be interpreted as
a black box for feature selection by classification, predetermined mining
algorithms are required for feature selection. Then the dependent
criteria measure the performance of the mining algorithms applied on
the selected subset and therefore determine which features to be
selected. The drawback of these measures is that the computational cost
is expensive as predetermined mining algorithms are introduced.

Stopping criteria determine when the feature selection process
should stop. There are usually four popular stopping criteria. The first
one is the completed search. It is quite straightforward that the search
should stop when the search space has been completely explored. The
second criterion is when some given bound is reached. Here the bound
could be a specified number of features such as the minimum number of
features or the maximum number of features. The third criterion is that
feature selection should stop when the addition of any feature does not
lead to a better subset. The last one is that an acceptable subset is
selected in terms of the acceptable performance of a subsequent
classifier.

Result validation could be directly implemented by using prior
knowledge about the data. If the relevant features are known to us be-
forehand, we can then compare the known set of features with the
selected features. The irrelevant and redundant features can also help
remove unwanted features. However, we don’t have such prior knowl-
edge in practice and have to rely on some indirect methods instead.
When considering a feature selection for a classification problem, the
indirect method for validation of the selected features is to compare the
performance of the models trained by the subset features and the full set
features.

Feature extraction uses some transformation to map the original
features to more significant features with possibly lower dimensionality,

Scores

Fig. 39. Three key modules of feature selection
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Fig. 40. Feature extraction

as is shown in Fig. 40. Finding a suitable representation of multivariate
data is crucial for artificial neural networks and other classifiers [365].
Feature extraction can be used to reduce the complexity of data by
representing each variable in feature space by linear combinations of
original variables. Principal component analysis (PCA), a simple
nonparametric method that extracts the most relevant information from
redundant and noisy data, has been used as the most popular approach
in feature extraction. Hence, many variants of PCA have also been
proposed in the field. The choice of feature selection and feature
extraction should be careful, but feature extraction shows advantages on
computational cost [366]. In [367], the authors compared data reduc-
tion methods implemented in feature subset selection and feature
extraction on the classification of two different types of datasets,
including email data and drug discovery data. Information gain (IG) and
wrapper methods were used to select features when implementing
feature selection. However, it was found the wrapper shows better
performance than IG in terms of classification accuracy. Compared to
feature extraction methods, wrapper methods tend to produce the
smallest features subsets while the classification accuracy is quite
competitive to that of the feature extraction methods. Admittedly, the
computational cost of wrapper methods is much more expensive
compared to feature extraction methods. Also, some works integrate
feature selection and feature extraction [368]. In the work of Ref. [369],
features are firstly selected in the first level of dimensionality reduction
based on mutual correlation. In the second level, PCA is used to extract
features in the first level. Experiments on several standard datasets
showed that the proposed method is more advantageous than
single-level dimensionality reduction techniques.

Also, data reduction, which is referred to as feature reduction
henceforth, can be implemented through supervised and unsupervised
techniques depending on the learning patterns of these methods. In the
following sections, we will introduce feature reduction techniques that
are supervised and unsupervised in a sequence.

7.1. Supervised feature reduction techniques

Supervised feature reduction techniques require high-dimensional
data input and output labels for the selection of relevant features
while removing redundant features and noise. These techniques can be
subdivided into three -categories, including filter, wrapper, and
embedded methods. There are three main differences between these
three categories. Firstly, for filter techniques such as t-tests and Pearson
correlation coefficient, simple statistical measures are used to measure
the relevance of features when detecting group-level differences. Fea-
tures are then ranked based on relevance. Secondly, an objective func-
tion from a machine learning model is used in wrapper techniques to
rank features regarding their relevance to the model. Finally, embedded
methods yield a small subset of relevant features by enforcing penalties
on a machine learning model for feature selection. In the following
sections, we will introduce filter techniques, wrapper techniques, and
embedded techniques one by one.

7.1.1. Filter techniques

Pearson correlation coefficient (PCC) is one of the representative
filter feature reduction techniques. PCC calculates the linear correlation
between individual features and labels and ranks the features regarding
the linear correlations [370]. If we assume a group classification prob-
lem with predictors variables X and class labels Y. Then X; denotes the m
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dimensional vector of the ith variable for the training examples while y
is the m dimensional vector containing all the target values. The Pearson
correlation coefficient between predictor variables and the labels can be
expressed as:

- (xk‘,- - 76:’) (v —¥)

po
Pi= 2
\/kal (Xk.i - x,-) S =)’

where the bar notion denotes the average over the index k. The higher
values of the correlation coefficient P;, the greater relevance of the
feature in discriminating between the classes. Users have to manually
predefine a threshold to select relevant features for the following ma-
chine learning analysis. Therefore, cross-validation procedures and a
varied range of thresholds have to be carried out for the exploration of
the optimal threshold that gives the best generalization of the method.
The advantage is that PCC filters can be applied to situations when there
are multi-group tasks but only linear dependencies between features and
targets can be found, which becomes the major drawback of PCC espe-
cially when high-dimensional data with multivariate relationships must
be considered. Numerous studies have used PCC filters for relevant
feature selection. In the work [371], the authors calculated PCC between
genes. Highly correlated genes that are considered to be dependent or
coregulated form a cluster. The signal-to-noise ratio (SNR) method is
then used to rank the correlated genes. Genes with the highest SNR are
used as the representatives of each group. Besides, PCC filters have been
widely used in gender classification and Alzheimer’s disease (AD) clas-
sification [372,373].

T-test, as one of the typical statistical hypothesis testing techniques,
has been widely used in feature reduction as well. Let X; and X, be the
mean values of the two groups of the observed samples, s; and s, denote
the corresponding standard deviations. Then the t-score of a feature is
calculated as:

(45)
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where N; and N, are the numbers of subjects in each group. After
calculation, a user-defined threshold of significance, e.g., p-value, that
statistically shows whether or not the probability is greater in magnitude
than t under the null hypothesis is introduced. Similar to PCC, the se-
lection of the optimal threshold can be achieved by the cross-validation
process [374]. Application of t-test in feature extraction allows fast
computation and scalable to high-dimensional data. However, there are
still several limitations of t-test based feature reduction techniques. One
is that these methods are univariate in that no interactions between
multiple features and spatial patterns are considered. Another is that
t-tests are only to explore the difference between two groups, although
this can be compensated by the equivalent analysis of variance (ANOVA)
technique. Nevertheless, several studies have used t-test to select rele-
vant features for machine learning [375,376]. An improved version of
the t-test called ANOVA technique is usually used to select features in
multiple groups. There is also extensive utilization of ANOVA technique
in the field of feature reduction and selection [377-379]. Notably,
ANOVAs provide the same benefit as t-tests, while the process of
choosing the optimal threshold is the same. Another multivariate
extension of ANOVA, which is named MANCOVA, has also been widely
used in numerous feature selection tasks [379,380].

(46)
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7.1.2. Wrapper techniques

Wrapper techniques select feature subset through the classification
technique. The selected feature subset is evaluated by the objective
function through search algorithms. Wrapper techniques can be classi-
fied into two categories, including Sequential Selection Algorithms
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(SSA) and Heuristic Search Algorithms (HSA). SSA starts with a proper
subset and includes or removes one feature at a time. The selection ends
when the subset meets the output requirement according to predefined
criteria. SSA is simple to implement and is fast to generate results as the
size of the search space is usually low. Therefore, SSA gives up the
compactness to find the best subsets [346]. HSA, which uses heuristic
information to guide the search, can neither ensure the best subset to be
found but usually finds an acceptable subset in a reasonable time [365,
381]. HSA can also be subdivided into two types: specific heuristics and
general-purpose metaheuristics. The former is designed to solve a
certain problem, while the latter aims at solving more general problems.
According to the search direction, wrapper approaches can be further
divided into the forward selection and backward elimination. In forward
selection, the search starts with an empty feature set while features are
added into the feature set step by step until the optimal subset with the
optimal number of features found. By contrast, backward elimination
starts with full features and iteratively removes a few features at each
step until the optimal feature subset found. In this section, we will
introduce recursive feature elimination (RFE) method, which is a pop-
ular backward elimination technique.

Given a two-class classification task, we have a set of features x; and
corresponding target labels y;. And the training data is subdivided into
two subsets, including ‘Training’ and ‘Evaluation’. The observation
weights q; is then obtained from a machine learning algorithm. Feature
relevance weights are then calculated through:

W= Z a;yiXi

Xi€nzo

(47)

where nzo stands for objects with non-zero weights. The absolute values
of the weights W are then ranked based on their importance, where the
lowest-ranked features at a predefined percentage are removed. In the
following step, the model is trained with features that have excluded the
most irrelevant features, and the accuracy on the evaluation set is re-
ported by the newly trained model. This process iterates until a stopping
criterion is met or until the feature set is empty. Finally, the subset of
features that results in the highest accuracy is chosen for the training of
the final machine learning model while the rest of the features are
discarded.

RFE requires two predefined parameters, which could be trouble-
some. One is the stopping criteria. When keeping removing low ranking
features iteratively, it’s likely the empty subset will be generated.
However, when this happens, the iteration that gives the highest accu-
racy on the evaluation set is selected. Another scenario is that the per-
formance of the model in the current iteration is not significantly better
than that of the previous iteration. Then the procedure should be
terminated as explored by De Martino et al. [382]. Another parameter
that needs to be predefined is the percentage of the removal of the
features in each step. There are studies used varied parameter such as
2%, 8%,10% [383-385]. However, the impact between the choice of the
parameter and the overall performance of the model remains to be an
open research question. Besides, the computational cost increases
significantly if a very small percentage of features is removed at each
iteration, while relevant features could be removed when the percentage
is chosen to be a relatively large one.

RFE has two main benefits. The first is that RFE considers multi-
variate interactions between spatial patterns in the data. The second is
REF might lead to better generalization ability as it uses a predictive
model to remove redundant features. However, the drawback of RFE is
also obvious that high computational cost is usually as it performs a
completely heuristic search of the feature input space [386]. Never-
theless, there are still popular usage of RFE in different areas including
ASD [387-389], AD [390], psychosis [391], schizophrenia [392], MDD
[331], MCI [387], mood disorder [393].
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7.1.3. Embedded techniques

The least absolute shrinkage and selection operator (LASSO) [348,
3511, the Elastic Net [349], and the partial least square (PLS) method
[350] are the three most popular embedded methods. In LASSO tech-
niques and Elastic Net, both machine learning and feature reduction
procedures are integrated into a regularization framework that produces
a selected subset. However, PLS selects features by analyzing associa-
tions between the variables, either independent or dependent. We next
describe these feature reduction methods.

7.1.3.7. LASSO. Assume that we have a binary classification task with a
set of features x’l and corresponding target labels y;, wherei=1,2, ..., N
andj=1,2,..., M. N and M stand for the number of observations and the
dimensionality of features, respectively. Furthermore, each feature is
assumed to be normalized by subtracting its mean and dividing by its
standard deviations. Then, the coefficients 7 are computed by mini-
mizing the function [351]:

i<y,»—;w>z+alilw

i=

(48)

where «a is a predefined parameter that controls the balance between
sparsity and high predictive accuracy. When a approaches 1, the model
becomes sparser, which means few relevant features. On the other hand,
the model is less sparse when a approaches 0, which means more rele-
vant features. The selection of the most optimal a involves cross-
validation procedures that test a range of a. Then the one that contrib-
utes to the highest model accuracy is selected. To solve the LASSO
function, usual optimization procedures such as the coordinate descent
algorithm can be used.

There are two main benefits of this method in the feature reduction
process. One is that the majority features are discarded as the majority of
the coefficient 7 are set to zero. The second one is that LASSO can handle
the situation where the number of observations is fewer than the number
of predictor variables. There are numerous successful applications of
feature selection using LASSO including AD classification [352-354],
gender classification [394], autism spectrum disorder (ASD) classifica-
tion [355] and so on [356,395].

7.1.3.8. Elastic Net. Elastic net is quite similar to LASSO but with an
additional quadratic term [349]. If we consider the two-class classifi-
cation task like the one in LASSO, then Elastic net computes model co-
efficients 7 by minimizing the objective function [357,358]:
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where a7 and a; are two user-defined parameters that control the degree
of penalty. The penalty Eﬁ 1 |¥|? leverage the sparsity by resulting in
few features with non-zero weights. These two parameters are usually
selected via an objective parameter grid-search process which de-
termines the best parameters from a range of parameters in the two
dimensions domain. However, grid-search can be computationally
expensive. Previous applications of feature reduction implemented
through the Elastic Net include AD classification [359,360], and treat-
ment response prediction in ADHD [361].

7.1.3.9. Partial Least Squares. Partial least squares correction (PLSC,
[362]) and partial least squares regression (PLSR, [363]) are two main
categories of the partial least squares feature reduction method.
Compared to PLSR, PLSC is usually more popular in the medical imaging
area. Therefore, we will discuss PLSC in this section.

Let consider the previous two-class classification example with the

normalized features x’l with the corresponding target y;. Then PLSC starts
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with the computation of cross product of the features and the target
vectors as follows:

P=Y"'X (50)

The resulting matrix P is then decomposed by singular value
decomposition (SVD) [362], which is:

P=USV" (51)

P, therefore, can be decomposed into two singular vectors (U and V)
and a diagonal matrix S containing the ‘singular values’ in the diagonal.
Weights in U identifies the variables in X that contribute the most in
explaining the relationship between features and the targets. Finally,
latent variables of X and Y are reconstructed based on the following two
equations:

{

P, and P, stand for the reduced latent variables of original features in X
and the latent variables for the target variables, respectively. By doing
so, the original features of high-dimensionality are now represented by
low-dimensional latent variables. The applications of feature reduction
using the partial least squares method include Age classification (young
vs. old) [364], multimodal feature reduction tasks [365], and so on so
forth [366].

P, =XV

P, =YU 52)

7.2. Unsupervised feature reduction techniques

Unsupervised feature reduction techniques, also known as feature
extraction techniques, extract relevant features through linear or
nonlinear combinations of the original features. Principal component
analysis (PCA) and independent component analysis (ICA) are the two
most popular unsupervised dimensionality reduction techniques. We
start this section with PCA and ICA and end with Coordinate-Based
Mate-Analysis (CBMA) techniques, a technique that relies on existing
‘domain knowledge’ for feature reduction.

7.2.1. Principal component analysis

PCA linearly transforms the correlated variables into unrelated var-
iables with reduced dimensionality [367]. In essence, these principal
components are the linear combinations of the original features while
keeping most of the variance in the features. The first step to construct
principal components from high-dimensional features is to normalize
the original features by subtracting the sample mean, and the resultant
features are then divided by the standard deviation. Secondly, eigen-
decomposition is performed based on the covariance matrix, which is
calculated from the standardized features. The eigenvalues are sorted in
a decreasing order that indicates the decreasing variance of the features.
By multiplying the original normalized features with the most signifi-
cant eigenvectors, the features are then mapped into a
lower-dimensional space. The number of eigenvectors is predefined by
the user to meet certain requirements.

PCA has been extensively used in reducing relevant features in
medical data classification tasks such as schizophrenia [368,369], AD
[370], face recognition [371], and psychosis [372]. Notably, there are
also regression studies that involved PCA such as age prediction [373]
and AD clinical scores prediction[374].

PCA contributes two major benefits to dimensionality reduction in
medical data analysis. The first one is the easy implementation and
computational efficiency. The second is that this technique is unsuper-
vised so that the categorical labels or annotations are not required for
the extraction of relevant features. However, PCA also has some short-
comings. First, users are required to predefine the number of principal
components, which leads to repetitive experiments before the best
number can be found. Though there are some attempts at simplifying the
procedures [375], it remains a big challenge of PCA. Second, the
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interpretability is poor since principal components are linear combina-
tions of the original features. Lastly, classical PCA may not adequately
explore more complex nonlinear feature interactions as principal com-
ponents are built through a linear transformation [376]. Having said
this, various nonlinear generalizations of the PCA have now been pro-
posed to alleviate some of these issues [377].

7.2.2. Independent Component Analysis

ICA, a multivariate data-driven technique, falls into the category of
blind-source separation methods, which separate features into underlying
independent information components. ICA separates the mixed signals or
features into independent and relevant features. ICA assumes that source
signals are independent and unknown but linearly mixed [378].

Let the feature matrix be X € R™", where m and n stand for the
number of observations and number of attributes (dimensionality),
respectively. The source matrix is denoted by S € R™*", where m’ is the
expected number of independent components. Another matrix A €
R™™ is defined as the mixing matrix whose columns contain the
associated n components. Based on the above variables, X can be
expressed as [379]:

X =AS (53)
Additionally, we can have:
Y =WX (54)

Therefore, ICA focuses on estimating the unmixing matrix W € R™™,
which renders Y to be a good approximation of the true signal sources S.

In fMRI, most of the ICA dimensionality reduction studies extracted
relevant independent components from the spatial dimension. But there
is another category of ICA that subdivides the methods into individual-
level ICA and group-level ICA. Briefly, each subject’s features are input
into individual ICA analysis while sets of components for the groups are
estimated and reconstructed to obtain individual-subject independent
components in group-level ICA.

The advantages of ICA mainly come from two aspects. Firstly, unlike
univariate methods, no regressors of interest need to be specified in ICA
as the specification of regressor may require prior knowledge and as-
sumptions. The second advantage of ICA mainly comes from brain sig-
nals processing that has been proved to be successful in disentangling
the brain signals such as separating motion, scanner related, and phys-
iological components [379]. However, ICA also has some drawbacks.
One is the expensive computational cost of ICA algorithms [380].
Another is that ICA remains to be improved as ICA algorithms may not
be able to adequately separate default mode networks and respiration
signals in fMRI.

Nevertheless, there are numerous ICA studies in the medical image
feature reduction field [346,365,381-385]. Note that there is a signifi-
cant difference between PCA and ICA. In PCA, features that could be
correlated are mapped into sets of uncorrelated features. In ICA, how-
ever, original features are statistically transformed into a set of inde-
pendent features. The common between PCA and ICA is that both of
these two techniques are unsupervised and require no labeled data.

7.2.3. Coordinate-based meta-analysis

CBMA techniques are different from the other unsupervised methods
in that CBMA techniques rely on existing domain knowledge for feature
reduction while the other unsupervised methods are mainly data-driven.
Meta-analysis techniques have been involved in the studies of modeling,
analyzing, and reporting brain activations [386]. Representative
meta-analysis techniques include multi-level kernel density estimation
[387], kernel-density estimation [388], and activation likelihood esti-
mation (ALE) [389].

CBMA has been widely used in feature reduction in medical imaging.
For example, a CBMA technique is applied in [390] to select features for
the classification of working memory, emotion, and pain using fMRI.



[373]

412

S. Wang et al. Information Fusion 76 (2021) 376-421
Table 10
Summary of feature reduction method in recent research
Reference Task Mode Technique FET
L. Goh et al. [326] Classification of gene expression data Supervised Filter (PCC PCC between genes calculated for the classification task.
based)
Z. Dai et al. [327] Analysis of early Alzheimer’s disease Supervised Filter (PCC PCC was calculated for the measurement of the functional
based) connectivity among regions.
Y. Fan et al. [328] Gender classification Supervised Filter (PCC PCC is used to measure the relevance of each feature to the
based) classification
B. Mwangi et al. Diagnostic classification of depressive disorder Supervised Filter (T-test The optimal threshold is obtained by a cross-validation process for
[329] based) T-test
R. Chaves et al. Diagnosis of Alzheimer’s disease Supervised Filter (T-test T-test feature selection for classification by SVM
[3301] based)
C. Chu et al. [331] Effectiveness of feature selection Supervised Filter (T-test Common feature selection methods are compared
based)
S.G. Costafredaetal.  Exploration of diagnostic specificity Supervised Filter (ANOVA) ANOVA for modeling of diagnostic group effect
[332]
S.G. Costafredaetal.  Analysis of the structural neuroanatomy of Supervised Filter (ANOVA) ANOVA for selection of areas of maximum group differences
[396] depression between observations and
J. H. Yoon et al. Deficits in distributed representations in Supervised Filter (ANOVA) Voxelwise ANOVA applied in the study
[333] schizophrenia
E. A. Allen et al. Multivariate comparison of resting-state Supervised Filter Applied MANCOVA for interpretability of variability in the
[397] networks (MANCOVA) multivariate response
S. Calderoni et al. ASD analysis Supervised Wrapper (RFE) RFE and SVM are combined to identify the most discriminating
[341] voxels in gray matter segments (SVM-RFE).
C. Ecker et al. [342] Investigation of the predictive value of whole- Supervised Wrapper (RFE) SVM-REFE for detection of subtle differences in brain networks
brain structural MR scans in autism between ASD patients and healthy subjects.
M. Ingalhalikar etal. ~ Constructing abnormality markers of pathology Supervised Wrapper (RFE) Features are ranked and then selected.
[343] based on diffusion
C. Davatzikos et al. Detection of prodromal Alzheimer’s disease via Supervised Wrapper (RFE) RFE is used to find the minimal set of features to be fed into the
[344] pattern classification classifier.
D. Gothelf et al. Developmental changes in multivariate Supervised Wrapper (RFE) 30% of worst-discriminating voxels are removed at a time until the
[345] neuroanatomical patterns performance started deteriorating
E. Castro et al. Characterization of groups using composite Supervised Wrapper (RFE) The RFE algorithm is based on the calculation of discriminative
[346] kernels and multi-source fMRI analysis data weights
K. Nho et al. [347] Automatic prediction of conversion from mild Supervised Wrapper (RFE) SVM-RFE algorithm, which returns a ranking of all the features and
cognitive impairment to probable AD then selects features accordingly.
J. Mourao-Miranda Risk assessment of mood disorders from low-risk  Supervised Wrapper (RFE) RFE is used to determine the optimal subset of brain voxels that
[398] adolescent results in the best discrimination accuracy.
Also, RFE helps to accurately localize the most discriminative
brain voxels.
J. Yan et al. [352] Multimodal neuroimaging predictors based on Supervised Embedded Modeled the interrelated structure within the predictor variables
structured sparse learning (LASSO) by incorporating LASSO
M. Vounou et al. Sparse reduced-rank regression detects genetic Supervised Embedded Proposed the application of a penalized multivariate model, sparse
[353] associations (LASSO) reduced-rank regression (SRRR).
O. Kohannim et al. Discovery and replication of gene influences on Supervised Embedded The gene effects in genome-wide association studies (GWAS) of
[354] brain structure (LASSO) brain images are evaluated by LASSO.
R. Casanova et al. Gender classification Supervised Embedded Random Forest and LASSO are combined for classification.
[394] (LASSO)
E. Duchesnay et al. ASD classification Supervised Embedded Feature selection is used to predict the clinical status of a highly
[355] (LASSO) imbalanced dataset.
L. Rish et al. [356] Predicting temporal lobe volume Supervised Embedded The proposed feature selection method helped to predict a tensor-
(LASSO) based morphometry-derived measure of temporal lobe volume.
A. Rao et al. [359] Classification of AD Supervised Embedded A sparsity penalty is introduced into the log-likelihood and served
(Elastic Net) feature selection algorithm.
J. Wan et al [360] Hippocampal Surface Mapping Supervised Embedded The association between single nucleotide polymorphisms (SNPs)
(Elastic Net) and quantitative traits (QTs) is examined by Elastic Net.
A.F.Marquand etal.  Treatment response prediction in ADHD Supervised Embedded Sparse multinomial logistic regression (SMLR) with an elastic net
[361] (Elastic Net) penalty is proposed.
K. Chen et al. [364] Age classification Supervised Embedded A partial least square (PLS) algorithm is used to form a covariance-
(PLSC) maximized combined latent variable.
J. Sui, T. et al. [365] Analysis of multimodal feature reduction tasks Supervised Embedded Numerous multivariate methods have been reviewed and
(PLSC) analysed.
L. Menzies et al. Analysis of obsessive-compulsive disorder Supervised Embedded PLSC is used to measure the correlation between the grey matter
[366] (PLSC) systems and stop-signal reaction time (SSRT).
P. Alvarado-Alanis Abnormal white matter integrity in psychosis Unsupervised ~ PCA The white manner tracts are grouped into four factors by PCA.
et al. [368]
P.-R. Loh et al. Fast variance-components analysis of Unsupervised = PCA Features are obtained by PCA for bivariate analyses.
[369] schizophrenia
L. Khedher et al. Early diagnosis of AD Unsupervised ~ PCA Multivariate approaches for feature selection including PCA
[370]
L. C. Paul et al. Face recognition Unsupervised ~ PCA PCA method performed worse than PLS feature extraction and
[371] linear SVM classifier.
A. B. Bendixen et al. Psychosis Unsupervised ~ PCA PCA is conducted on Geriatric Anxiety Inventory (GAI) for
[372] disorders differentiation.
K. Franke et al. Age prediction Unsupervised ~ PCA Training a relevance vector machine based on PCA-reduced

features.

(continued on next page)
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Table 10 (continued)
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Reference Task Mode Technique FET
Y. Wang et al. [374]  AD clinical scores prediction Unsupervised ~ PCA The Relevance Vector Machine (RVM) is built for regression based
on PCA-reduced features.

P. K. Douglas et al. fMRI decoding Unsupervised  ICA Six different machine learning algorithms are evaluated on the
[381] ICA-reduced features.

J. R. Sato et al. ADHD prediction Unsupervised  ICA Evaluation of three different feature extraction methods while the
[382] classifiers showed almost the same performance.

E. P. Duff et al. Prediction using fMRI Unsupervised  ICA A task-specific Independent Component Analysis (ICA) procedure
[383] is proposed.

A. Hyvarinen et al. Feature extraction Unsupervised  ICA Novel time-contrastive learning model combined with linear ICA.
[384]

C. Zhao et al. [385] Anomaly detection in hyperspectral imagery Unsupervised  ICA Improved ICA for feature extraction.

T. Yarkoni et al. Synthesis of human functional neuroimaging Unsupervised ~CBMA No heavy reliance on the automatically extracted information.
[390] data

T. M. Mitchell et al. A tool for the automated synthesis of fMRI data Unsupervised ~ CBMA A CBMA technique in multicenter studies with a good
[391] generalization performance.

Another CBMA feature reduction framework is known as Neurosynth,
which is a tool for the automated synthesis of fMRI data [391]. To
classify AD subjects, Dukart et al. applied a CBMA technique in multi-
center studies with a good generalization performance reported [392].
In the work [331], Chu et al. reported that ROIs selected via a prior
domain knowledge lead to better generalization ability compared to
features selected through data-driven approaches such as RFE and t-test.
The benefit of CBMA techniques is a posteriori certainty can be
improved and makes neuroimaging studies less sensitive to type II errors
[387]. But CBMA techniques may suffer from information loss as well
because features are represented with a high degree of sparseness [393].

7.2.4. Summary and Discussion

This section introduced popular data reduction techniques that can
be divided into two categories, namely supervised and unsupervised. In
supervised techniques, we further introduced three subsets of methods,
including filter, wrapper, and embedded. Filter techniques discard
redundant features according to statistical feature ranking, as shown in
Table 10. There are two common drawbacks of these methods. One is
that no interactions between multiple features are considered as they are
not multivariate. The second is the difficulty in predefining a proper
feature threshold value. By contrast, wrapper techniques are multivar-
iate but computationally expensive. The performance of embedded
feature reduction methods highly relies on penalization parameters that
are generally chosen by cross-validation. The major difference between
supervised methods and unsupervised methods is obviously the infor-
mation using that supervised methods select relevant features in aim at
group-level differentiation while unsupervised methods consider fea-
tures independent of the final interest.

The performance of feature reduction techniques, as mentioned
before, is determined by several factors. One is the annoying optimal
threshold values, either for the number of features to be chosen or the
number of parameters to be determined in the process. The second one is
the randomness in the process of training, and testing models as the
reduced features may vary from fold to fold.

In summary, feature reduction techniques have been widely used in
the medical imaging area to improve predictive accuracy in spite of
curse-of-dimensionality or small sample problems. While numerous
studies compared different feature reduction methods, no method
emerged as optimal in all medical imaging machine learning tasks.

8. Conclusion
Advances in sensor technologies have made it possible to leverage

modern machine learning and AI methods, with the aim of harnessing a
multitude of data sources for biomedical information analysis. The
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diverse nature of such data makes it unrealistic to ignore the in-
terdependencies between the different data sources. It is commonly
known that integrating a multitude of data from different imaging mo-
dalities can produce more consistent, accurate, robust to equipment and
measurement induced noise and functional information than that
generated by a single data source. However, the fusion of multi-sourced
data may bring various challenges, such as higher complexity in
denoising the data, missing data values, data scarcity, larger costs in
sensor hardware and data processing, and high dimensionality. This
paper has reviewed these challenges and discussed state-of-the-art
methodologies to effectively tackle them.

Although Al broadens the already existing large spectrum of sensor
fusion methodologies, a number of research frontiers and caveats still
persist. Sensor fusion methods, especially when incorporating Al, have
lower interpretability than classical approaches and may suffer from
generalization problems when the data is scant or not fully representa-
tive of the problem at hand - thus, human intervention and monitoring
are still necessary. This is even more true for the case of biomedical
applications, where the cost of algorithmic errors can be prohibitive.
Hence, research efforts must be focused on increasing the interpret-
ability of multi-source data pipelines processing biomedical data and on
strengthening the level of integration with medical personnel. Although
the level of automation in biomedical decision-making is expected to
massively increase in the short term, little research is being directed
towards establishing how these intelligent systems will interact with
human experts. A new research frontier is that of establishing the effi-
cacy of these algorithms when they act in a symbiotic manner with the
medical personnel. It is conceivable that the algorithms that yield
maximum performance in autonomous decision-making tend to induce
human error in actual biomedical operations.

Another exciting research frontier is that of finding new ways to
tackle model drift effects such as data and concept drift. For example, is
it possible to make these intelligent systems adaptive to situations such
as data drift produced by wear in the data logging equipment, concept
drift resulting from environmental factors — which may make some
conditions more likely than others, essentially changing the baseline
priors — while also adaptive to the different biases of the medical
personnel involved? The ultimate goal is to make these systems less
expensive to maintain as to reduce the cost of the medical treatments.

Despite these constraints, this is an ever-expanding subject that
shows great promise beyond the already existing numerous applications,
and many of the surveyed techniques are already applicable if care is
taken according to the above considerations.
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Table 11
Abbreviations
Abbreviation Representation
AADF Adaptive anisotropic diffusion filtering
AD Alzheimer’s disease
ADHD Attention deficit/hyperactivity disorder
AFM Atomic force microscopy
AIP Artificial identification points
ALE Activation likelihood estimation
ANOVA Analysis of variance
ANTs Advanced normalization tools
ASD Autism spectrum disorder
CBMA Coordinate-based mate-analysis
CCD Charged-coupled device
CLAD Chambolle-lions anisotropic diffusion
CT Computed tomography
DR Dimensionality reduction
DTI Diffusion tensor image
DWT Discrete wavelet transform
EEG Electroencephalogram
EM Expectation maximization
ET Electron tomography
FEM Finite element method
FSL FMRIB software library
GA Genetic algorithms
GAN Generative adversarial network
GD Gradient descent
GIP General iterative principal
GPU Graphical processing unit
HSA Heuristic search algorithms
ICA Independent component analysis
ICP Iterative closest point
1G Information gain
ILSVRC ImageNet large-scale visual recognition challenge
KDD Knowledge Discovery from Databases
LASSO Least Absolute Shrinkage and Selection Operator
MANCOVA Multivariate analysis of covariance
MAR Missing at random
MCAR Missing completely at random
MCI Mild cognitive impairment
MDD Major depressive disorder
MDITs Missing data imputation techniques
MEG Magnetoencephalography
MI Multiple imputation
MNAR Missing not at random
MPI Magnetic particle imaging
MR Magnetic resonance
MRF Markov random field
MRI Magnetic resonance imaging
MSE Mean squared error
NI Non-ignorable
NLM Non-local means
OASIS Open access series of imaging studies
OMT Optical microscopy and tomograph
OSRAD Oriented speckle reducing anisotropic diffusion
PAT Photoacoustic tomography
PCA Principal component analysis
PCC Pearson correlation coefficient
PDF Probability density function
PET Positron emission tomography
PLS Partial least square
PLSC Partial least squares correction
PLSR Partial least squares regression
PMMs Pattern mixture models
PMRI Parallel MRI
RF Radio frequency
RFE Recursive feature elimination
RML Raw maximum likelihood
ROAD Rank-ordered absolute difference
ROIs Regions of interest
RST Rough set theory
SAD Sum of absolute differences
SMs Selection models
SNR Signal-to-noise ratio
SPECT Single photon emission computed tomography
SPMs Shared parameter models
SRBF Speckle reducing bilateral filter
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Table 11 (continued)

Abbreviation Representation

SRPI Similar response pattern imputation

SSA Sequential selection algorithms

SSD Sum of squared differences

WSVODP Weight sum variance of digital number probability
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