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Generating graphical representations is an essential skill for productive student engagement in physics labo-
ratory settings, and is a key component in developing representational competency (RC). As physics lab courses
have been reformed to prioritize student engagement in authentic scientific skills and practices, students expe-
rience additional freedom to decide what data to include in graphs and what types of graph(s) would allow for
appropriate sensemaking towards answering experimental questions. With this, however, there is a dearth of
PER literature highlighting the strategies students use while working to generate graphs using their own experi-
mental data. This paper presents a case study analysis of a student group’s lab investigation to call attention to
how students enact various productive strategies when working towards generating graphical representations in
an introductory physics laboratory course. Results of this case study analysis identify three productive strategies
students enact when working to generate graphs in lab settings, each of which is related to aspects of representa-
tional competency (RC): 1) identifying (potential) covarying quantities; 2) choosing representative data subsets
suitable for representation; and 3) iteratively reducing data and generating graphs to assess graph’s viability in
answering research questions. Our analysis also shows how students frequently refer back to their experimental
goals and hypotheses when deciding what strategies to enact to generate graphs.



I. INTRODUCTION

Visually representing scientific data is a central component
of scientific inquiry [1, 2]. Stakeholders across STEM dis-
ciplines describe representing experimental data as an inte-
gral component of laboratory experimentation (e.g., Refs. [3—
5]). Students should gain representational competency (RC)
in multiple aspects of experimental data representation, in-
cluding generating graphs and diagrams, identifying relevant
features, and sensemaking with representations [5-8]. Gen-
erating graphical representations, a component of RC, is a
scientific practice commonly utilized by professional physi-
cists and is an essential skill associated with “thinking like
a physicist." While a significant body of literature in the
PER community has historically focused on student interpre-
tation and sensemaking of graphical representations in lec-
ture/studio settings (e.g., Refs. [9-13]), less scholarship fo-
cuses on how students generate graphs in laboratory settings
using self-collected data [14]. To more effectively guide stu-
dents in developing skills associated with generating graphi-
cal representations, instructors and researchers jointly require
additional insight into the productive strategies students enact
when working to generate graphical representations in labo-
ratory courses, settings most closely associated with authentic
scientific experimentation. In this paper, we ask the following
research question: What productive strategies might students
enact when working to generate graphical representations of
self-collected data in physics laboratory course settings?

A. Generating Representations: A Component of
Representational Competency

The ability to generate appropriate graphical representa-
tions is one component of representational competency (RC),
which is defined as the “ability to appropriately interpret and
produce a set of disciplinary-accepted representations of real-
world phenomena and link these to formalised scientific con-
cepts" [15]. Summarized from Kozma and Russell (2005),
students should be able to generate appropriate representa-
tions and effective describe and use representations for a spe-
cific scientific purpose [16].

The ability to appropriately generate graphical represen-
tations has been shown to have numerous benefits to stu-
dent learning of concepts and skills, though the extent of
these benefits is still under scrutiny. For example, generat-
ing representations has been shown to increase conceptual
learning and transfer in mathematics more than simple in-
teraction with pre-generated representations [17]. As well,
several studies have shown that generating representations
within scientific domains leads to more productive mental
model formations of the domain, leading to greater scien-
tific inferencing and reasoning (e.g., [18, 19]). Conversely,
Nitz et al. (2014) results suggest a negative gain relation-
ship between students generating representations and build-
ing conceptual knowledge [20], which refutes earlier stud-

ies (e.g., [21, 22]). Apparent is the lack of a conclusive un-
derstanding of how student-generated representations impact
students’ science conceptual and technical learning [23-26].
Due to this lack of clarity, in this study we treat development
of graph generation RC as an individual component of learn-
ing to “think like a physicist", distinguishable from learning
other RC components or scientific concepts [20].

B. Generating Representations in PER

Historically, the PER community has focused on identi-
fying and understanding how students interpret and sense-
make with pre-generated representations (e.g., [9-11]). For
example, McDermott, Rosenquist, and van Zee (1987) high-
lighted how undergraduate physics students commonly expe-
rience difficulty connecting graphs to physics concepts and
to the real world [9]. More recently, relevant PER studies
have broadened to focus on how students engage with multi-
ple representations (e.g., [27, 28]), how students’ use of rep-
resentations varies in specific learning contexts (e.g., [29, 30],
or how students choose and shift between different modes of
representations (e.g., [31-33] [34]). However, few studies in
PER have focused explicitly on understanding how students
generate graphical representations, either manually (i.e., pa-
per and pencil) or with computer software, even when this
scientific practice is paramount to the field of physics. Eshach
(2020) used intuitive rules theory [35] to develop a concep-
tual framework to understand challenges students encounter
when generating graphical representations of kinematic phe-
nomena [36]. They showed that students use simple intuitive
rules, such as “same A - same B," to identify salient features
of existing representations to make new representations for
different purposes. Most closely related, Nixon et al. (2016)
studied students’ abilities to manually generate (by hand with
paper and pencil) and interpret graphs during lab instruction
[14]. Researchers scored students’ hand-drawn graphs from
lab activities to assess their quality and interpretation via best-
fit lines. Their analysis showed that students in introductory
physics lab courses could successfully generate and interpret
graphs using best-fit lines, though this often occurred without
connection to underlying physics concepts.

Our study moves beyond prior PER studies in several ways.
First, to highlight a lesser-studied aspect of students’ RC, we
investigate students’ generation of graphical representations
using self-collected data, rather than their interpretations of
pre-generated graphs. By situating this study observationally
in a laboratory course setting, we aim to better understand
students’ graph generation RC as it would naturally occur in
authentic scientific inquiry. Second, our study occurs in a
learning setting where students collect and maintain a large
data corpus and use spreadsheet software to organize, ma-
nipulate, and represent their data, rather than using manual
graphing techniques. Use of computer software for visual
representation is a more common representational technique
for students and professionals alike.



II. CASE STUDY: SELECTION AND METHODOLOGY

We provide a case study analysis of a student group’s ac-
tivity in a Fall 2019 (in-person) introductory physics for life
sciences (IPLS) lab course at a research-intensive university
in the western United States. In this course, students are ex-
pected to generate research questions and conduct two- or
three-week independent investigations with minimal direct
instruction from teaching or learning assistants (TAs or LAs,
respectively). This case study comes from a larger project in-
vestigating the nature of student engagement with experimen-
tal data in physics laboratory settings [37]. To identify this
case study group, we reviewed previously collected research
data, including: 1) observational data from student groups,
which included screen capture, video, and audio data; 2) stu-
dents’ submitted pre-investigation design plans, where they
outline their plans for conducting their investigations’ and
3) students’ individual lab reports. The chosen group com-
prises four students: Pam, Andy, Neesha, and Chloe [38]. All
four were non-freshmen students majoring in life or behav-
ioral sciences and intended to enroll in post-graduate health
science programs. We chose this group for several reasons.
First, the group exhibited consistent verbal discussion related
to graphical representations throughout their investigation.
Second, students’ interactions with TAs/LAs only involved
general support and guidance, not direct instruction. Third,
by comparing final lab reports with other students, the quality
of this group’s final graphical representations and experimen-
tal results was representative of the course population.

We focus on the group’s Lab 1 investigation, which in-
volved studying the biological kinematics of five confined
zebrafish. The group was provided a video of five zebrafish
swimming in a roughly 1f#? tank; they qualitatively observed
that the fish may be swimming faster when closer together.
Their experiment focused on testing a hypothesis that con-
fined zebrafish are antisocial; this hypothesis relied on ob-
servations of an inverse relationship between fish swimming
velocity and fish-to-fish (f2f) distance (the closer two fish are
to each other, the faster they will swim). Our analysis used
screen-capture data collected from the group’s Lab 1 investi-
gation, which had been previously coded for instances when
students engaged in various experimental actions, including
creating and modifying representations [37]. Subsequent nar-
rative analysis focused on truncating the group’s investigation
into natural excerpts where students discussed and enacted
strategies to generate graphs.

III. RESULTS

Our analysis begins after the group finished collecting
data. Using manual tracking software, the group collected x-
y position-tracking data for all fish for the length of the video
(~ 10s), distance traveled per frame, instantaneous veloci-
ties, and various irrelevant data. The group spent roughly 1
hour per week engaging in active experimentation.

1. Identifying (potential) covarying quantities

Choosing (potential) covarying quantities to represent was
the group’s first strategy in moving towards generating a
graph that would effectively test their hypothesis. The follow-
ing narrative comes from a group conversation that occurred
35 minutes into Week 1 experimentation (Week 1 - 35min).

After the group finalizes data collection, Neesha shifts
the group’s attention to determining what they are graph-
ing, including what data they should compare in their graph
(Neesha: “What are we graphing? Are we doing the same
thing from [the warm-up], or distance versus time or ...7").
The group’s discussion quickly revisits their hypothesis’ im-
plied quantities (f2f distance and fish swimming velocity):

1 Pam: We can do distance ... versus ... we’re trying to ultimately
compare distance versus ...

2 Chloe: Velocity.

3 Pam: ... velocity. But the problem is that the distance on there
is like how ...

4 Chloe: ... far it travels ... in just the one frame alone. It’s not
saying ... how far it’s traveling close to [inaudible].

In lines 3 and 4, Pam and Chloe acknowledge that their
collected data’s distance values are not the f2f distances they
need. Neesha and Pam then respond that they need to identify
an equation that can convert their x-y position tracked data
into f2f distances:

5 Neesha: ... we need to figure out what equation we’re going to
use to convert a certain set of data points, then we’ll ... graph.

6 Pam: We need to somehow include data that shows how close
or far away they are from each other.

Here, the group implicitly agrees they need to determine
Jf2f distance for various fish pairings and corresponding fish
swimming velocities. After further discussion, the group cal-
culates f2f distances for their first fish pairing (fish A and B),
chosen based on observations that fish A and B were the clos-
est two fish at any point in time.

Overall, this excerpt highlights students’ immediate efforts
to identify (potential) covarying quantities they would need
to test their hypothesis. Immediately after collecting data,
students identified appropriate (potential) covarying quanti-
ties, even though their raw data did not include these quan-
tities. Enactment of this strategy occurred without prompt-
ing from instructional staff, suggesting that students chose to
identify these quantities of their own volition. Students were
able to backward-plan from their needed covarying quantities
to identify initial data to manipulate (e.g., via equations) to
obtain the desired quantities.

2. Choosing appropriate data samples for representation

After calculating f2f distances for the A-B fish pairing, the
group’s next strategy was to choose appropriate data samples
from their large dataset to include in their graph.



Upon completing their calculations (Week 1 - 51min), the
group recognizes that further calculations could result in thir-
teen unique fish pairings in their analysis. Likely hesitant
to engage with what they perceive as a large amount of data
(Pam: “I just want to ... start over!"), the group begins dis-
cussing which fish pairings would be best to include in their
representations. The group consults the TA, who says they
can choose a representative sample that shows variation in f2f
distances and velocities. The group takes this as permission
they can reduce their dataset as long as they appropriately jus-
tify their decisions. Further discussion ensues, with students
negotiating potential strategies of reducing their data to a rep-
resentative subset to include in their graph. Andy suggests
postponing selection of further pairings until they complete
calculations and generates graphs for the first pairing (A-B)
(Andy: “I think we can do the main ones and see what we
get."). Chloe and Neesha propose using extreme cases, fish
pairings that are closest and farthest at any point in time:

7 Neesha: If we were just concerned about them being close to-
gether and them being far ... does that make sense? Cause our
claim [39] was kind of like, if they’re closer, they’re faster ...

8 Chloe: B and E are the farthest ...

9 Neesha: The farthest and slowest, does that make sense?

Andy rebuts by proposing they could use a single pairing
of interest and a “control” pairing to directly compare against
(Andy: “Okay, I think we should do B and C and then a con-
trol of either ..."). Pam advocates they can use the minimal
amount of data necessary to test their hypothesis effectively
(Pam: “... we could actually just take two fish, we could
analyze just two fish, and how their velocities change when
they’re farther versus when they’re closer ..."). Likely recog-
nizing the numerous potential strategies being offered with-
out clear direction, Neesha reintroduces the group’s initial hy-
pothesis to reorient the discussion, using this to again argue
for her choice of the extreme case fish pairings (Neesha: “So
let’s go back, so our claim is that if they’re closer, they’ll move
faster; if they're apart, they’ll move slower. So, if we just an-
alyze the fishes that are closer together and the fishes that
are farthest, then we can compare whatever we find, right?").
The group comes to an agreement on this strategy. Their final
strategy was to identify which fish were closest and farthest to
the original fish pairing (A-B); this culminated in their inclu-
sion of four fish pairings, representing the fish pairings they
observed closest and farthest to fish A and B.

Notable in this excerpt is how the group self-identified and
negotiated several different strategies for choosing a repre-
sentative subset of their large (~3,300 unique data points and
thirteen potential covarying quantity comparisons) dataset
that they could reasonably include in their graphical repre-
sentation. These potential strategies included: 1) choosing
two extreme case subsets of data that bookend all other data;
2) choosing the most representative data subset and a control
subset with which to compare; and 3) choosing the minimal
amount of experimental data necessary to create a graphical
representation to test the hypothesis. Again, the group fre-

quently revisited their initial experimental goal throughout
discussion and used this to determine a productive strategy,
eventually deciding to use a larger representative subset that
included multiple extreme cases. Also notable is how all four
students advocated for different potential strategies and made
a consensus decision based on all potential strategies.

3. Reducing data and iteratively generating graphs

Beginning their Week 2 investigation time (Week 2 - 3min),
the group’s next enacted strategy was to further organize and
reduce their large dataset to prepare to generate their final
graph. To orient readers, the group chose to limit their analy-
sis to only the velocities of each fish at specific points in time
—when it was at its maximum and minimum distance from its
partner fish — not each fish’s velocity throughout the video.

The group begins by identifying maximum and mini-
mum f2f distances and corresponding velocity values in their
dataset and copying them to a new data table in Excel. During
this, the group again refers back to how they should represent
their organized data on a graph to test their hypothesis:

10 Andy: ... do you guys want to figure out how to graph that?

11 Chloe: Yeah, we can put that in one table, so ... so like, uh ...
distance, so, first column [in the table] would be fish, and the
distance ... between ... oh that’s fine. Do we want to do farthest
distance on one graph and closest distance on another graph?

12 Pam: I feel like we can do both the same since we’re just look-
ing at the relationship between distance and velocity ...

At this point, the group’s organized data table includes
a column of fish pairings (fish_pair, see [40]) and two
columns of their maximum (d,,4.) and minimum (d,,;,,) dis-
tance separations, respectively. Without explicit group agree-
ment on the graphing method, Chloe highlights this data and
clicks “Line Chart," creating the graph shown in Figure 1.
Chloe recognizes that the graph is not appropriately repre-
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FIG. 1: Group’s initial f2f distance calculations and graph.

senting the covarying quantities they identified, since the x-
axis is categorically organized by fish_pair, not numerically
by distance (Chloe: “Uh ... it’s not graphing how I want it.
I want these [fish pairings on x-axis] to be here [in the leg-
end]."). Pam reiterates that they are attempting to generate a
graph of (f2f) distance and velocity (Pam: “... and then we’d
have a chart of distance against velocity."). This prompts the



group to recognize that they omitted fish velocities from their
data table. The group locates the velocities that correspond
to when each fish was closest or farthest from its paired part-
ner and adds these values to their data table as two respec-
tive columns (v1,mq. and v1,min). They then create a second
version of their line graph incorporating fish_pair, dmyqz,
and vy . Their resultant graph again has fish_pair as the
categorical x-axis, with two lines plotting dp,az and v1 max
with respect to fish_pair. Chloe again recognizes the error
of fish_pair on the x-axis, and the group begins to itera-
tively generate graphs using trial-and-error (Chloe: ‘‘We’re
kinda getting there. Pressing every button we need!"), choos-
ing different subsets of their data table and different types of
representations (e.g., line, bar).

Still without success after several iterations of generating
different graphs, they seek guidance from the LA. During dis-
cussion, the LA asks what type of graph and data would sup-
port their hypothesis (LA: “Now, picture, if we had a graph
that supported that, what would it look like?"), then prompts
the group to consider using a scatterplot. The students then
guide the LA as he roughly sketches their data by hand, with
each fish velocity (y-variable) and its associated f2f distance
(x-variable) as a point on the scatterplot. The group agrees
that a scatterplot would be an appropriate representation but
has hesitancy that it removes information about the fish pair-
ing relationships. Additional discussion ensues and the group
eventually decides the resultant graph outweighs the loss of
the fish labels (Pam: “That would, like, I know we wouldn’t
label the fish, but that might still get us ... somewhere."). After
reorganizing their data to have all f2f distances in one column
and all corresponding velocities in another column, the group
creates a final scatterplot, shown in Figure 2.

Distance vs. Speed
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FIG. 2: Group’s final graphical representation.

This segment highlights how students utilized several
strategies to organize their chosen data and create an appro-
priate graphical representation. Most apparent was their use
of “trial-and-error" methods to iteratively organize and select
different subsets of data for subsequent generation of graphi-
cal representations. Students’ initial unsuccessful “trial-and-
error” graph generation prompted the transition to a new pro-
ductive strategy, introduced by an LA, where students dis-
cussed and helped sketch a simplified graph that would align
with their hypothesis. By sketching what they expected their
graph to look like if proving their hypothesis correct, the
group was able to clarify how to organize their data and uti-
lize the computer software to generate an appropriate graph-

ical representation. This process also prompted students to
omit some features (i.e., fish pairing labels) of their data at
the expense of other features (i.e., scatterplot graph type) that
better aided in answering the research question.

IV. DISCUSSION

This study identified three productive strategies students
use when generating graphical representations with their col-
lected data: 1) identifying appropriate (potential) covarying
quantities; 2) choosing representative data subsets suitable for
representation; and 3) iteratively reducing data and generat-
ing graphs. Overarching these enacted strategies, the group
continually referred back to their hypothesis when determin-
ing what strategies would support their representational goals.
Through numerous experimental steps to create an appropri-
ate (but not necessarily ideal) graphical representation, the
group’s productive progression is evidence of students’ RC
[6, 41]. We emphasize that these are not the only productive
strategies enacted by students in these contexts, nor are they
necessarily the most effective. This work brings up new re-
search questions about whether there are larger connections
between the strategies students enact to generate graphical
representations and how the representation can foster sense-
making about the represented scientific phenomena.

This study shows how students may utilize productive
strategies to generate graphical representations of data from
large complex datasets collected in undergraduate physics
lab settings. Productive engagement with large datasets in
physics lab courses is a new but growing learning goal in
introductory physics lab courses; this analysis suggests that
students maintain degrees of competency in this crucial skill,
but still face challenges navigating large datasets in com-
puter software when generating representations. Second, as
has been described in prior literature, informal representa-
tional drawing may be productive in moving students along in
their generation of formal scientific graphical representations.
When the group struggled to create an appropriate representa-
tion during their iterative graphing, the LA prompted them to
draw their hypothesized graph’s general trend, allowing them
to determine a more appropriate type of representation. Ped-
agogically, it may be beneficial to prompt students to create
informal drawings of their intended graphs, as this may pro-
vide a more natural generative space while potentially limit-
ing technological hindrances from computer software.
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