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Abstract: This work aimed to assist physicians by improving their speed and diagnostic accuracy
when interpreting portable CXRs as well as monitoring the treatment process to see whether a patient
is improving or deteriorating with treatment. These objectives are in especially high demand in the
setting of the ongoing COVID-19 pandemic. With the recent progress in the development of artificial
intelligence (AI), we introduce new deep learning frameworks to align and enhance the quality of
portable CXRs to be more consistent, and to more closely match higher quality conventional CXRs.
These enhanced portable CXRs can then help the doctors provide faster and more accurate diagnosis
and treatment planning. The contributions of this work are four-fold. Firstly, a new database
collection of subject-pair radiographs is introduced. For each subject, we collected a pair of samples
from both portable and conventional machines. Secondly, a new deep learning approach is presented
to align the subject-pairs dataset to obtain a pixel-pairs dataset. Thirdly, a new PairFlow approach is
presented, an end-to-end invertible transfer deep learning method, to enhance the degraded quality
of portable CXRs. Finally, the performance of the proposed system is evaluated by UAMS doctors in
terms of both image quality and topological properties. This work was undertaken in collaboration
with the Department of Radiology at the University of Arkansas for Medical Sciences (UAMS) to
enhance portable/mobile COVID-19 CXRs, to improve the speed and accuracy of portable CXR
images and aid in urgent COVID-19 diagnosis, monitoring and treatment.

Keywords: COVID-19; CXR; chest X-ray; portable CXR; conventional CXR; alignment; enhancement;
deep learning; artificial intelligence

1. Introduction

Chest radiography, also known as chest X-ray or CXR, is among the most common
forms of medical imaging. Typically, portable CXR is performed on acutely ill patients
whose conditions are too critical or unstable to be transported to a radiology facility
for a conventional chest X-ray. However, in the setting of the COVID-19 pandemic, the
American College of Radiology guidelines now list portable CXRs as the preferred imaging
modality for the investigation of novel coronavirus patients [1,2]. This involves a portable
X-ray machine being brought into the patient’s room, and subsequently decontaminated,
which reduces the risk of disease transmission compared to having the patient come to
the radiology department for conventional CXR. The existence of portable CXR systems
aims to acquire images within an isolation room, thus significantly reducing the risk of
COVID-19 transmission during transport to fixed systems such as CT scanners, as well as
within the rooms housing the fixed imaging systems [3]. Furthermore, some have found
portable CXRs to be highly valuable for critically ill COVID-19 patients [4]. Portable CXR
is used to monitor patients in intensive care units (ICUs) which are more than 5% of the
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total known cases of COVID-19. The potential drawbacks and difficulties of portable CXRs
have been recognized and discussed elsewhere [5,6].

Portable CXRs, as shown in Figure 1 right, have reduced diagnostic accuracy when
compared to conventional radiographs, as shown in Figure 1 left, with inconsistent patient
positioning, suboptimal anatomic alignment, and unpredictable beam penetration, all
reducing image quality [7]. Conventional CXR studies are ideally performed with the
patient in standing position, with the X-ray source and a long distance behind the patient
(posterior-to-anterior or PA projection), while portable radiographs are obtained with the
patient sitting or lying and with the X-ray source close in front of them (anterior-to-posterior
or AP projection). This commonly results in artifacts such as geometric magnification of
the heart. Moreover, as described in [8,9], the degradation of image quality occurs most
frequently in chest imaging as a result of improper collimation, a problem to which portable
radiographs are particularly prone. This results in a large percentage of the photons
entering the chest engaging in Compton interactions and resulting in forward-scatter,
causing a noise-laden, low-frequency background signal that creates a visible haze. Thus,
portable radiographs typically demonstrate reduced contrast and spatial resolution. This
creates the potential for obscured vasculature, infiltrates and other pathologies [8,10].
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Figure 1. Comparison of conventional (left) vs. portable (right) CXR acquisition. The conventional CXR (left) is shown
with high-quality details in lung tissue, well-defined structures behind the heart, and a sharp angle between the ribs and
diaphragm. The portable CXR (right) shows degraded features, with blurred lung tissues, obscured structures behind the
heart, a blurred angle between ribs and diaphragm, and an artificially wide appearance of the heart.

An illustration comparing conventional CXRs and portable CXRs is given in
Figures 1 and 2. As shown in Figures 1 left and 2d, the radiographs from the conventional
machine are shown in high quality with fine details in lung tissues, well-defined struc-
tures behind the heart, and a sharp angle between the ribs and diaphragm. The portable
radiographs in Figures 1 right and 2a are shown in lower quality with blurred lung
tissues, structures obscured behind the heart, and blurred angle between the ribs and
diaphragm. Furthermore, patient positioning also affects the image quality and diagnosis
results. As shown in Figure 1 right, the heart appears artificially wider with anterior-to-
posterior beam orientation used in portable imaging, when compared to conventional
posterior-to-anterior projection, and is worsened by the closed proximity of the source
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in portable imaging. Enhancing portable radiographs quality is a desirable task not only
used for the imaging of COVID-19 patients, which is expected to continue increasing
in the coming months, but is also applicable to other patients in an ICU, nursing home,
corrections facility, or another location where portable radiography is frequently used [7].

Figure 2. An example of an enhanced quality portable CXR, of the kind used for COVID-19 patients: (a) original portable
CXR; (b) aligned CXR from (c); (c) quality-enhanced CXR from (b); and (d) a reference of high-quality CXR captured from a
conventional machine.

Deep neural networks (DNNs) are a recent development in Artificial Intelligence
(AI), and have set the state-of-the-art performance in many tasks in computer vision and
biomedical imaging. In this work, we intended to develop a new DNN-based domain
translation network, named PairFlow as a generative model to exploit and learn the
images from conventional radiograph machines (target domain), and use this to align and
enhance the images from portable radiograph machines (source domain). The goal of
our proposed DNN-based domain translation network is to learn a conditional mapping
function, which is able to transfer the knowledge, i.e., presented by image quality, from a
good quality domain to a degraded quality domain. In addition, our proposed DNN-
based approach also contains a alignment model which aims at transforming portable
radiograph alignment to conventional radiograph alignment to prevent topological errors.
Both components, namely the alignment network and the PairFlow knowledge translation
network, are trained in deep learning frameworks. Given a degraded portable CXR
(Figure 2a), our proposed network first performs an alignment to obtain the aligned
CXR through the first component (Figure 2b). Then, the CXR quality is enhanced by the
second enhancement component, i.e., the knowledge translation network (Figure 2c), while
(Figure 2d) is considered a preferred high-quality CXR from the conventional machine.

Contributions of this work: In this paper, we developed a novel deep learning
approach to align and enhance the quality of portable CXRs to an appearance consistent
with conventional CXRs. Our work aimed to help physicians to improve their speed and
diagnostic accuracy when reading portable CXRs, which are in especially high demand in
the current context of COVID-19 pandemic, in which the number of imaging studies can
dramatically increase in a matter of days. The contributions of this work are four-fold:

• Firstly, we introduce a novel database collection of subject-pairs radiographs. For
each subject, we collect a pair of samples which are from both portable machines
(source domain) and conventional machines (target domain).

• Secondly, we introduce a new deep learning-based approach to align a subject-pairs
dataset to obtain pixel-pairs dataset. In order to learn the knowledge correlation
between two different domains, it is important to have a pixel-wise pair dataset. Thus,
alignment is an important step that helps to perform knowledge transferring from the
source domain to target domain.

• Thirdly, we propose a new PairFlow approach, an end-to-end invertible transfer of
a deep learning method, to enhance the degraded CXRs from the portable machine.
High-quality knowledge is then transferred to a degraded domain to increase the
portable CXRs quality.
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• Finally, we evaluate the system performance at both image-quality enhancement and
topological properties.

2. Related Works and Background

In medical imaging and computer vision, the task of producing a high-quality image
from a low-quality image is called an image-to-image translation. Image-to-image trans-
lation has recently gained attention in the medical imaging community, where the task
is to estimate the corresponding image in the target domain from a given source domain
image of the same subject. Generally, image-to-image translation methods can be divided
into two categories including: generative adversarial networks (GANs) and flow-based
generative networks, as summarized in the following subsections.

2.1. Generative Adversarial Networks

Generative adversarial networks (GANs) are a class of latent variable generative mod-
els that clearly identify the generator as deterministic mapping. The deterministic mapping
represents an image as a point in the latent space without regarding its feature ambiguity.
Several different GAN-based models have been used to explore image-to-image translation
in a literature study [11–13]. For example, Zhu et al. [13] proposed a cycleGAN method for
mapping between unpaired domains by using cycle-consistency dependence to constrain
the optimal solutions provided by the generative network. Chen et al. [11] proposed a
3D cycleGAN network to learn the mapping between CT and MRI. The drawback of 3D
cycleGAN is its high memory consumption and loss of global information due to working
on small patch sizes.

2.2. Flow-Based Generative Networks

Flow-based generative networks are a class of latent variable generative models that
clearly identify the generator as an invertible mapping. The invertible mapping provides a
distributional estimation of features in the latent space. Recently, many efforts making use
of flow-based generative networks have been proposed to transfer between two unpaired
data [14–18]. For example, Grover et al. [15] introduced a flow-to-flow (flow2flow) network
for unpaired image-to-image translation. Sun et al. [18] introduced a conditional dual
flow-based invertible network to transfer between positron emission tomography (PET)
imaging and magnetic resonance imaging (MRI) images. By using invertible properties,
the flow-based methods can ensure exact cycle consistency in translation from a source
domain to the target and returning to the source domain without any further loss functions.

2.3. Comparison between GANs (cycleGAN) and Flow-Based Generative Networks

Let {ci}N
i=1 and {di}M

i=1 be unpaired data samples for two domains, i.e., the source
domain P (CXRs from portable machines) and the target domain C (CXRs from conven-
tional machines), respectively. Denote D and G as a discriminator network and a generator
network, respectively. The cycleGAN model [13] solves unpaired image-to-image trans-
lation between these two domains by estimating two independent mapping functions
GP→C : P → C and GC→P : C → P. The two mapping functions GP→C and GC→P per-
formed by neural networks are trained to fool the discriminators DP and DC, respectively.
The discriminator DP, and DC encourage the transferred images and the real images to be
similar, as given in Figure 3a.
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Figure 3. A comparison between (a) cycleGAN and (b) flow-based generative model. Double-headed arrows denotes
invertible mapping.

Flow-based generative models [19–21] are a class of latent variable generative models
that clearly identify the generator as an invertible mapping h : Z → P between a set of
latent variables Z and a set of observed variables P. Let pP and pZ indicate the marginal
densities given by the model over P and Z, respectively. Using the change-of-variables
formula, these marginal densities are defined as

pP(x) = pZ(z)
∣∣∣∣det

∂h−1

∂P

∣∣∣∣
P=p

(1)

where z = h−1(x) because of the invertibility constraints. In particular, we use a multivari-
ate Gaussian distribution pZ(z) = N (µ, 0, I). Unlike in adversarial training, flow models
trained with maximum likelihood estimation (MLE) explicitly require a prior pZ(z) with
a tractable density to evaluate model likelihoods using the change-of-variables formula
(Equation (1)).

Based on a flow-based method [14], Grover et al. [15] proposed a flow2flow method for
unpaired image-to-image translation. In the method, the mapping between two domains
from X → Y can be represented through a shared feature space of latent variables Z by the
composition of two invertible mappings [15]:

GP→C = GZ→CGP→Z, and GC→P = GZ→PGC→Z (2)

where GP→Z = G−1
Z→P and GC→Z = G−1

Z→C, as given in Figure 3b. Due to the fact that the
composition of invertible mappings is invertible, both GP→C and GC→P are invertible [15].
On the other hand, we can obtain G−1

P→C = GC→P.
Figure 3 illustrates the difference between cycleGAN and flow-based methods. Unlike

cycleGAN, the flow-based method is the full invertible architecture that guarantees the
cycle-consistency translations between two unpaired domains. Our proposed PairFlow
network is an improvement of flow-based deep learning method.

More details about the comparison between GAN and flow-based generative model
networks are reported in [22].

2.4. Deep Learning for COVID-19 on CXR

At present, CXR is extensively used for the detection of the COVID-19 cases compared
to the CT image as it takes longer for imaging, and CT scanners are not available in many
underdeveloped countries [23]. In last couple of months, a large number of researchers have
investigated and analyzed CXR images using deep learning algorithms to detect and diag-
nose COVID-19. In this section, we discuss some recent advanced deep learning techniques
for both COVID-19 detection and COVID-19 classification. COVID-19 detection using
CXR has been well studied in [24–29]. Furthermore, the classification of COVID-19 from
CXR has been well studied in [30–33]. Most of these methods use off-the-shelf networks,
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including VGG-16 or VGG-19 [34,35], ResNet [36] variants such as ResNet-18, ResNet-50,
ResNet-101, ResNet-151 [30,37,38], Inception [33], EfficientNet [39,40], DenseNet [41,42].
While other networks show promising results, ResNet and DenseNet obtain better perfor-
mance than the others, with accuracies ranging from 88% to 99%. There are three common
classes considered, i.e., COVID-19, non-COVID-19 pneumonia and normal in such research.
Most of the reported work in the literature has used CXR images to detect and diagnose
COVID-19, and this highlights the importance of CXR image analysis as a positive tool for
doctors and specialists.

There have been important recent efforts to push for open access and open source solu-
tions for CXR-driven COVID-19 case detection and classification [29,43–46]. Among these
datasets, COVID-Net [29], which is considered as one of the largest CXR datasets for the
pandemic study, leverages the human–machine collaborative design strategy to conduct
the dataset.

Recent guidelines [1,2] of the North American Radiology Scientific Expert Panel
have assessed that portable CXR has to be considered as the main imaging approach in
evaluating COVID-19 patients. Using portable CXR does not only reduce radiation for
patients, but also prevents the need to transport them. Furthermore, portable CXR is also
used to monitor patients in intensive care units (ICUs) which are more than 5% of the total
known cases of COVID-19. However, the image degradation problem in the portable CXR
imaging compared to conventional CXR imaging has not been studied well in the literature
review. In this work, we tackle this problem by proposing a FairFlow network architecture,
a flow-based network for enhancing portable CXR images.

3. Our Proposed Method

In order to help doctors provide fast and highly accurate COVID-19-related diagnostic
information from portable CXRs, as well as monitor the treatment process, this work aims
to enhance the quality of portable CXRs to be approximately equal to the quality of the
conventional CXRs. Therefore, this section will include two main tasks, i.e., radiograph
alignment and radiograph quality enhancement via two new deep learning networks.
In our proposed network, we used the following notations:

• C: target domain—CXR from conventional machines;
• IC: each CXR in the target domain C;
• P: source domain—CXR from portable machines;
• IP: each CXR in the source domain.

3.1. Portable Radiograph Alignment

Figure 4 illustrates the presented framework of portable radiograph alignment. We
aimed to align the portable image (IP) to the conventional diagnostic (IC) with a large
transformation; hence, it is difficult to obtain a good alignment with a single-stage transfor-
mation. In this paper, we addressed the problem using two-stage transformations: affine
and thin-plate spline (TPS) transformations [47].

We obtained the affine transformation between two images by estimating six degree-
of-freedom linear transformation φAFF = [α1, α2, α3, α4, t1, t2] from extracted features by the
Resnet network [36]. The affine transformation is capable of modeling translation, rotation,
non-isotropic scaling and shear between two images, IP and IC, and can be formulated
as follows:

IAFF =

[
α1 α2
α3 α4

]
IP +

[
t1
t2

]
(3)



Diagnostics 2021, 11, 1080 7 of 19

IP: From portable radiographs machine

Stage 1:
Affine Transformation Stage 2:

Homography Transformation

Matching
Affine 

regression

IP

IC

IAFF

IC

Matching
TPS 

regression
!!"#

IC: From conventional radiographs machine

CNN !$%% CNN

Figure 4. The flowchart of training portable radiograph alignment. The input is a pair-subject dataset and the model output
is affine transformation (six degrees-of-freedom) θAFF and homography transformation θTPS.

The aligned image IAFF then passed through the second thin-plate spline (TPS) trans-
formation to obtain IAFF+TPS. It performs a smooth 2-D interpolation of a given set of
k (k = 10 in this work) of landmark points PM = [PM1, , . . . , PMk] in the portable image
and CM = [CM1, , . . . , CMk] in the conventional diagnostic. Our landmarking scheme
is illustrated in Figure 5 the TPS can be parametrized by a 18 dimensional vector of the
aligned source portable image IAFF by φTPS = [xPM1 , yPM1 , . . . , xPMk , yPMk ].

1

2

3

4

5

6

7

8
9

10

Figure 5. Our proposed CXR landmarking scheme. There are 10 keypoints defined in our landmark-
ing scheme.

3.2. Portable Radiograph Quality Enhancement

Let I ⊂ RC be the radiograph domain and {xP, xC} ∈ I be observed variables
encoding in P and C, respectively, In order to embed the flow transformation between the
conventional domain (C) and portable domain (P), a bijection mapping function is defined
to map from the radiograph space I to a latent space Z and then model the relationship
between these latent variables. Mathematically, let F : I → Z denote a bijection from
an given radiograph variable x to its corresponding latent variable z and G : Z → Z be
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an radiograph transformation function modeling the radiograph relationships between
variables in the latent spaces. As shown in Figure 6a, our PairFlow network consists of
three main components: Two bijection functions F1,F2 : X → Z present the mapping
from observed radiograph variables xC, xP to their latent variables zC, zP, respectively; and
a radiograph transformation function G : Z → Z between variables in the latent spaces.
The relationships between variables can be defined as follows:

zC = F1(xC; θ1)

zP = H(zC, xP; θ2, θ3)

= G(zC; θ3) +F2(xP; θ2)

(4)

In Equation (4), F1,F2 denote the mappings of xC and xP to their latent variables
of radiographs, respectively. H is the summation of G(zC; θ3) and F2(xP; θ2). Given a
conventional diagnostic CXR xC, the probability density function can be formulated as in
Equation (5):

pXP(xP|xC; θ) = pXP(xP|zC; θ)

= pZP(zP|zC; θ)

∣∣∣∣∂H(zC, xP; θ2, θ3)

∂xP

∣∣∣∣
= pZP(zP|zC; θ)

∣∣∣∣∂F2(xP; θ2)

∂xP

∣∣∣∣
(5)

Figure 6. Our proposed PairFlow deep network for image enhancement between the source domain (P) and target domain
(C): (a) invertible CNN-based PairFlow Network for portable radiograph enhancement; and (b) a mapping unit f whose
transformations S and T are represented with a one-residual-block CNN network.

In Equation (5), pXP(xP|xC; θ) and pZP(zP|zC; θ) denote the distribution of xP condi-
tional on xC and the distribution of zP conditional on zC, respectively. The second equality

in Equation (5) can be computed using the change of variable formula, and ∂F2(xP ;θ2)
∂xP is

the Jacobian. In this formulation, the assigned task can be accomplished by computing
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the density of its corresponding latent point zP given zC associated with the Jacobian

determinant
∣∣∣ ∂F2(xP ;θ2)

∂xP

∣∣∣.
Such a bijection function can produce a large Jacobian matrix, thus its computation is

extremely expensive. In order to achieve the tractable property at a lower computational
cost, we construct F as a composition of tractable mapping units fF . Each mapping unit is
built from multiple convolution layers that will form a deep convolutional neural network
of the bijection function F . The details of the bijection function are introduced in the
following section.

3.2.1. Mapping Function via ResNet Layers

In general, F is presented as a composition tractable mapping unit f where each unit
can be represented as a combination of several convolutional layers. Then, the bijection
function F can be formulated as a deep convolutional neural network (CNN).

ResNet-based Mapping Unit: In order to make the model tractable and computation-
ally efficient, a bijection unit f is defined as follows. Given an input x, a unit f : x → y
defines a mapping between x and an intermediate latent state y as in Equation (6):

y = x′ + (1− b)�
[
x� exp(S(x′)) + T (x′)

]
(6)

In Equation (6), x′ = b� x; b = [1, · · · , 1, 0, · · · , 0] is a binary mask where the first
d elements of b is set to one and the rest is zero; S and T represent the scale and the
translation functions, respectively; and � denotes the Hadamard product. The Jacobian of
this transformation unit can be computed as

∂ f
∂x

=

[ ∂y1:c
∂x1:c

∂y1:c
∂xc+1:C

∂yd+1:C
∂x1:c

∂yc+1:C
∂xc+1:C

]

=

[
Ic 0

∂yc+1:C
∂x1:c

diag(exp(S(x1:c)))

] (7)

where diag(exp(S(x1:c))) is the diagonal matrix such that exp(S(x1:c)) is their diagonal
elements. The above equation introduces two important features for the mapping unit f .
The form of Jacobian matrix ∂ f

∂x can be well defined as triangular, and the determinant of
this matrix can be computed shortly. The tractable feature is also guaranteed for f . The
Jacobian of two functions S and T are also not required in the computation of

∣∣∣ ∂ f
∂x

∣∣∣. Thus,
S and T can be formulated with any non-linear function. In this work, the functions S
and T are formulated as a composition of residual networks in ResNet. This ResNet-style
framework therefore allows high-level radiograph features to be efficiently extracted in
the mapping, as shown in Figure 6b. On the other hand, apart from other traditional deep
learning frameworks, the inverse function f−1 : y→ x in this work can be simply derived
as follows:

x =y′ + (1− b)�
[
(y− T (y′))� exp(−S(y′))

]
(8)

where y′ = b� y.
Bijective Mapping Function: The bijective mapping F can be derived as a com-

bination of the sequence of mapping units { f1, f2, · · · , fn}, i.e., F = f1 ◦ f2 ◦ · · · ◦ fn.
In order to derive the Jacobian of F , its units are simply computed with the guarantee of
tractable property:

∂F
∂x

=
∂ f1
∂x
· ∂ f2

∂ f1
. . .

∂ fn

∂ fn−1
(9)
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In this framework, each mapping unit is set up as a composition of CNN layers.
Therefore, the bijection F as shown in Figure 6a can be formulated as a CNN network to
map the observed radiograph variable x ∈ I to a latent variable z ∈ Z .

3.2.2. The Radiograph Enhancement Embedding

In Section 3.2.1, the invertible mapping function F is presented between a radiograph
data distribution pX and a latent distribution pZ. In this subsection, pZ is presented as a
Gaussian distribution to model the variations in radiographs, but our proposed model is
able to work well with any type of prior distributions. In addition, we further assume that
the joint distribution of zC and zP embedding the relationship between the variables is also
a Gaussian. The transformation G : zP → zC can be formulated as follows:

G(zP; θ3) = WzP + bG (10)

where θ3 = {W, bG} is the transform parameters representing connecting weights of
latent-to-latent interactions and the bias.

3.2.3. Enhancement Model Learning

The parameters θ = {θ1, θ2, θ3} of the model are optimized to maximize the log-
likelihood as follows:

log pXP (xP|xC; θ) = log pZP (zP|zC, θ) + log
∣∣∣∣ ∂F2(xP; θ2)

∂xP

∣∣∣∣
= log pZP ,ZC (zP, zC; θ)− log pZC (zC; θ1) + log

∣∣∣∣ ∂F2(xP; θ2)

∂xP

∣∣∣∣
where the first two terms denote the two density functions. The third term, i.e., the
determinant, can be computed efficiently. The optimal parameter values in this framework
can be solved using the stochastic gradient descent (SGD) algorithm.

Although the proposed PairFlow shares some similar features with RBM and its
family such as TRBM, i.e., a probabilistic graphical model with log-likelihood optimization,
the log-likelihood estimation of PairFlow is tractable while that in RBM is intractable and
requires some approximations during the training process. Compared to other methods,
PairFlow also shows its advantages as a high-quality synthesized radiograph avoiding the
`2 reconstruction error which occurs with the Variational Autoencoder and efficient training
process, i.e., avoiding finding a balance between the generator and discriminator as in
GAN-based algorithms.

4. Experimental Results
4.1. Database

We collected a subject-pair X-ray dataset from 123 patients with both negative and
positive tests for COVID-19, each of whom had portable and conventional images acquired
either (i) within 24 h of each other and reported by a board-certified radiologist as not
having changed in that span; or (ii) within 12 months of each other and both having been
read as normal. Only AP and PA projection views were included. Portable images were
acquired using Philips MobileDiagnost series at 90 keV, and conventional images were
acquired on a Philips SRO 33100 ROT 360 at 125 keV. The images used in our experiments
have the resolution of 0.148 mm× 0.148 mm and size of 2846× 2198 pixels. We randomly
divided the dataset into 40 subjects for training and five subjects for validation.

4.2. Implementation Details

Our proposed network was implemented using the Pytorch framework and trained on
a 48GB GPU machine. The input image was resized to 512× 512 and normalized to [−1, 1].
The Adam optimizer with a batch size of two was used to train the network. The initial-
ization learning rate was set to 0.0002 and was decreased ten times every 20 epochs. We
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trained the model for 60 epochs. We set the scale number to 2, and the number of blocks
was 4.

4.3. Results and Discussion

In this section, we provide the experimental results together with the discussions. Our
proposed network contains two components corresponding to the alignment network and
the enhancement network. The results of each component and the results from the entire
system are discussed as follows:

4.3.1. CXR Alignment Network

As shown in Figure 1, in contrast to the conventional imaging acquisition process
where the patient is standing up, portable CXR is obtained when the patient is lying down.
One of the big issues is the topological change between portable CXR and conventional CXR
while fluids diffuse themselves across the surface of the lung. Our proposed alignment net-
work aims at aligning portable CXRs. Some empirical results are given in Figures 7 and 8.
Figure 7 shows landmark points detected on both portable CXR and aligned CXR in the first
and second columns where the last column shows the landmark points on conventional
CXR used as a reference. The aligned CXR together with its landmark points were obtained
by applying our alignment process (Section 3.1). In Figure 8, there are two subjects. For each
subject, we make two comparisons between the original portable CXR (the first column),
the conventional CXR (the third column) and our aligned results (the second column) in
terms of topological properties. The comparison on local topological information is given
in the first row (subject 1) and the third row (subject 2) whereas the comparison of global
topological information is given in the second row (subject 1) and the fourth row (subject 2).
The comparison of local topological property is considered as the difference in individual
lung (right lung is used to demonstrated in Figure 8) whereas the comparison of global
topological property is measured as the difference in both lungs (the most top margin and
the most bottom margin are used to demonstrated in Figure 8). Quantitative results of CXR
alignment is evaluated using the mean absolute error (MAE) metric. The MAE between
two images I1 and I2 is defined as

MAE(I1, I2) =
1
k

k

∑
i=0
||IMi

1 − IMi
2 ||l1 (11)

where IMi
1 and IMi

2 are the landmark points on images I1 and I2, respectively. k is the
number of landmark points and k = 10 in our work. In Table 1, the first column provides the
MAE values between the original portable CXR and conventional CXR whereas the second
column provides the MAE values between the aligned portable CXR and conventional CXR.
The MAE score is both locally evaluated for each individual lung and globally evaluated
for both lungs. MAE illustrates the mis-alignment between the two sets of landmark points,
thus, the smaller value of MAE(I1, I2) shows that landmark points on I1 are more similar
to the landmark points on I1. The MAE score in Table 1 demonstrates that our alignment
network provides an aligned portable CXR, whose topological properties are quite close to
those of conventional CXR.
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Portable CXR Conventional CXRAligned CXR

Figure 7. Some illustrations of our aligning results. From left to right—the first column: portable
radiographs; the second column: aligned radiographs by our model; and the third column: conven-
tional radiographs which are used for comparison.
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Portable CXR Aligned CXR Conventional CXR Alignment Comparison

Figure 8. Some illustrations of our aligning results. From left to right—the first column: portable
radiographs; the second column: aligned radiographs by our model; the third column: conventional
radiographs which are used to compare; the fourth column: comparison between the original portable
CXR, the conventional CXR and our aligned results in terms of topological information. From top to
bottom—the first and second rows are the aligning results of the first subject and the third and fourth
rows are the aligning results of the second subject. The first and third rows are for local topological
comparison and the second and fourth rows are for global topological comparison.

Table 1. MAE of CXR alignment on left lung, right lung and both lungs.

Portable CXR vs.
Conventional CXR

Aligned CXR vs.
Conventional CXR

Left Lung 203.03 42.02

Right Lung 239.31 38.86

Entire CXR 221.17 40.44

4.3.2. Portable Radiographs Quality Enhancement

In medical images, especially in our present radiograph work, degradation is irregular
and does not follow any specific distribution, thus a benchmark enhancement technique of
the entire image may not be appropriate. In this work, the enhanced image quality was
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evaluated within some particular regions of interest (RoI) as given in Figure 9. The peak
signal-to-noise ratio (PSNR) metric defined in Equation (12) and the structural similarity
index [48] defined in Equation (13) are two metrics used to quantitatively benchmark our
degradation enhancement performance. PSNR and SSIM metrics between images I1 and I2
are given as follows:

PSNR(I1, I2) = 10log10

(
(L− 1)2

MSE(I1, I2)

)
MSE(I1, I2) =

1
H ×W

H

∑
i=0

W

∑
j=0
||I1(i, j)− I2(i, j)||l2 ,

(12)

where L is the number of maximum possible intensity levels. H and W are the height and
width of the images I1, I2:

SSIM(I1, I2) =
(2µ12µ2 + c1)(2σ12 + c2)

(µ2
1 + µ2

2 + c1)(σ
2
1 + σ2

2 + c2)
, (13)

µ1, µ2 are average pixel intensities of image I1 and I2. σ1 and σ2 are the variance of image
I1 and I2, respectively. σ12 is the covariance matrix of images I1 and I2. The values of PSNR
range from 0 to 100 and when the quality of I1 and I2 are the same, PSNR reaches 100.
The values of SSIM range from 0 to 1 and when the quality of I1 and I2 are the same, PSNR
reaches 1.

(a) (b) (c) (d)

Figure 9. Visualization of region of interest in image quality evaluation. From left to right (a): inner lung region (Rl
i and Rr

i );
(b): outer lung region(Rl

o and Rr
o); (c) overlapping between inner and outer lung regions; and (d): area around landmark

points (Ri
p, i ∈ [1, .., 10]).

These metrics are used to evaluate the enhancement performance at regions of interest
defined in Figure 9. Figure 9a presents the inner lung as an RoI which is defined as a
polygon formed by landmark points. Denote Rl

i and Rr
i as the inner left lung and the inner

right lung. Figure 9b presents the outer lung which is defined by stretching the inner lung
and it is implemented by applying the dilation morphological operation. Denote Rl

o and Rr
o

as the outer left lung and the outer right lung. Figure 9c visualizes overlapping between the
inner lung and the outer lung regions. In addition to the lung areas, we also consider the
quality of the areas around the landmark points as given in Figure 9d. Corresponding to 10
landmark points, the areas around them are denoted as Ri

p, where i ∈ [1, .., 10]. For each
RoI, both the mean and standard deviation (std) of PSNR and SSIM are computed and
reported in Tables 2 and 3. Table 2 reports the mean/std of PSNR and SSIM on the lung
areas, i.e., Rl

i , Rr
i , Rl

o, Rr
o, whereas Table 3 reports the mean/std of PSNR and SSIM on

the areas around the landmark points, i.e., Ri
p. On lung areas, the PSNR values between

the portable CXRs and the conventional CXRs ranges from 28.0 to 29.0 while the PSNR
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values between our enhanced CXRs and the conventional CXRs are improve to above 30.
On the areas around landmark points, the PSNR values between the portable CXRs and
the conventional CXRs ranges from 27.9 to 28.6 where as the PSNR values between our
enhanced CXRs and the conventional CXRs have been increased to the range from 28.5.0 to
31.0. The high PSNR implies that the image quality from our enhanced CXRs is close to
that of the conventional CXRs. Not only on PSRN, but our enhanced CXRs also obtain a
higher averaging SSIM score with a lower std SSIM score compared to the potable CXRs
as shown in the last two columns in Tables 2 and 3. Generally, compared to portable CXR,
the enhanced aligned portable CXR obtains a higher PSNR and SSIM, which implies that
the quality of the enhanced aligned CXR is quite close to that of the conventional CXR.

Table 2. Mean/std of PSNR and SSIM for the inner left lung Rl
i , inner right lung Rr

i , outer left lung
Rl

o, and outer right lung Rr
o between the portable CXR (Por.CXR) and conventional CXR (Con.CXR)

and between enhanced the CXR (Enh.CXR) and conventional CXR (Con.CXR).

RoIs
PSNR ↑ SSIM ↑

Por.CXR vs.
Con.CXR

Enh.CXR vs.
Con.CXR

Por.CXR vs.
Con.CXR

Enh.CXR vs.
Con.CXR

Rl
i 28.019/0.245 30.273/1.798 0.936/0.018 0.960/0.011

Rr
i 28.003/0.236 30.437/1.707 0.748/0.047 0.787/0.045

Rl
o 29.009/0.229 30.474/1.724 0.919/0.021 0.955/0.013

Rr
o 28.006/0.227 30.522/1.662 0.729/0.050 0.780/0.047

Rl
i ∪ Rr

i 28.011/0.205 30.407/1.670 0.873/0.035 0.920/0.021

Rl
o ∪ Rr

o 28.009/0.198 30.498/1.629 0.839/0.044 0.910/0.026

Table 3. Mean/std of PSNR and SSIM on the areas surrounding landmark points between the portable
CXR (Por.CXR) and conventional CXR (Con.CXR) and between the enhanced CXR (Enh.CXR) and
conventional CXR (Con.CXR).

RoIs
PSNR ↑ SSIM ↑

Por.CXR vs.
Con.CXR

Enh.CXR vs.
B

Por.CXR vs.
Con.CXR

Enh.CXR vs.
Con.CXR

P1 27.995/0.970 28.780/3.338 0.675/0.195 0.723/0.086

P2 28.079/1.126 29.911/2.783 0.756/0.065 0.763/0.062

P3 28.196/1.290 30.025/3.031 0.669/0.187 0.736/0.101

P4 27.960/0.672 30.519/2.453 0.706/0.076 0.795/0.051

P5 27.898/0.538 29.007/2.444 0.683/0.077 0.736/0.084

P6 28.159/1.097 28.523/3.328 0.699/0.153 0.720/0.098

P7 28.407/1.143 29.576/2.354 0.733/0.070 0.778/0.059

P8 28.595/1.786 31.005/2.201 0.776/0.063 0.802/0.052

P9 28.075/0.826 30.485/3.503 0.721/0.079 0.737/0.134

P10 27.940/0.676 30.738/2.589 0.713/0.070 0.767/0.067

Figure 10 illustrates an enlarged view of the lung regions of original portable X-ray
images and corresponding regions of our enhanced portable CXR images. It demonstrates
that the proposed method produces high contrast between soft-tissue masses and normal
lung compared against the original portable CXR as shown in Figure 10 (top). In addition,
our enhancement network is able to provide more visible and conspicuous opacity in the
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lower lobe as given in Figure 10 (middle) which illustrates the right lower lobe. One of the
most challenging problems of degraded portable CXR is the costophrenic angle between
ribs and diaphragm. Compared to the original portable CXR, our enhanced CXR shows
more sharply-pointed costophrenic angle as demonstrated in Figure 10 (bottom). Figure 11
illustrates the performance of our proposed networks where each subject is shown in
one column. The portable CXRs are given in the first row whereas our enhanced CXRs
are shown in the second row. The last row is the conventional CXRs that are used as
groundtruth to train our proposed network.

Original portable chest X-Ray Enhanced portable chest X-Ray

Figure 10. Illustrations of our radiograph enhancing results. From to top bottom—(Top): our enhanced CXR (right)
improves contrast between the soft-tissue masses and normal lung compared to the original portable CXR (left); (Middle):
opacity in the right lower lobe is much more conspicuous for our enhanced CXR (right) compared to the original portable
CXR (left); (Bottom): our enhancement algorithm is able to sharpen the angle between the ribs and diaphragm. Our
enhanced result is on the right, whereas the original portable CXR is on the left.
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Figure 11. Examples of our alignment and enhancement results. From top to bottom—first row: portable CXR; second row:
enhanced CXR from aligned portable CXR; third row: conventional CXR(d). Each column presents one subject. The last
column is a COVID-19 case and there is no conventional CXR for this subject.

5. Conclusions

In this paper, we proposed a deep learning framework to assist physicians improve
their speed, treatment monitor performance, and diagnostic accuracy when using portable
CXRs, which are in especially high demand in the setting of the ongoing COVID-19
pandemic. Our proposed deep neuron network consists of two components, i.e., the
alignment network and PairFlow enhancement network. The experimental results have
shown that our alignment network, which learns affine transformation and thin-plate
spline transformation, is able to align the portable radiographs. The result is images
obtained from a portable radiograph machine which are quite close to those of conventional
radiographs in terms of both local topological properties and global topological properties.
Our proposed PairFlow enhancement network has demonstrated its ability to enhance at
least some diagnostic findings, including contrast between masses and normal lung, with
better appreciation of the costophrenic angles, and improved conspicuity of opacities in
the lower lobes, the latter of which is a hallmark feature of COVID-19.
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