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ABSTRACT

Temporal action proposal generation is an essential and chal-
lenging task that aims at localizing temporal intervals con-
taining human actions in untrimmed videos. Most of existing
approaches are unable to follow the human cognitive process
of understanding the video context due to lack of attention
mechanism to express the concept of an action or an agent
who performs the action or the interaction between the agent
and the environment. Based on the action definition that a hu-
man, known as an agent, interacts with the environment and
performs an action that affects the environment, we propose
a contextual Agent-Environment Network. Our proposed
contextual AEN involves (i) agent pathway, operating at a
local level to tell about which humans/agents are acting and
(ii) environment pathway operating at a global level to tell
about how the agents interact with the environment. Com-
prehensive evaluations on 20-action THUMOS-14 and 200-
action ActivityNet-1.3 datasets with different backbone net-
works, i.e C3D and SlowFast, show that our method robustly
exhibits outperformance against state-of-the-art methods re-
gardless of the employed backbone network.

Index Terms— Action Proposal Generation, Contextual
Agent-Environment Network

1 Introduction

Temporal action proposal generation (TAPG) aims at
proposing video temporal intervals that likely contain an
action in an untrimmed video with both action categories
and temporal boundaries. This task has promising applica-
tions, such as action recognition [1], summarization [2, 3],
captioning [4, 5], and video recommendation [6]. A robust
TAPG method should be able to (i) generate temporal propos-
als with boundaries covering action instances precisely and
exhaustively, (ii) cover multi-duration actions, and (iii) gener-
ate reliable confidence scores to retrieve proposals properly.
Despite many recent endeavors, TAPG remains an open prob-
lem, especially when facing real-world complications such
as action duration variability, activity complexity, camera
motion, and viewpoint changes.

The limitations of the existing TAPG can be summarized
as follows:

e Most of existing work [7], [8, 9], [1] extracts video vi-
sual representation by applying a backbone model into whole
spatial dimensions of video frames. This tends predictions
over-biased towards the environment rather than agents com-
mitting actions because the agents together with their actions
usually occupy a small region compared to the entire frame.
 Existing approaches treat everything in a video frame in
the same manner and does not pay attention to the difference
among three key entities, i.e., agent, action, and environment,
for temporal action proposal. Attention mechanism that en-
ables us to capture such different key entities as well as to
express the relationship between them is missing.

* Most of the existing approaches are unable to follow the
human cognitive process of understanding the video content.
In the human cognitive process, a person focuses on deciding
what an agent is doing through the observation of agent ac-
tivities and the environment around the agent. Nevertheless,
such a process is not taken into account at all. Instead, exist-
ing work just applies a backbone network into entire spatial
dimensions of video snippets of frames (8-frame snippets or
16-frame snippets, etc.).

To address the above drawbacks, we propose a novel
contextual AEN to semantically extract video representa-
tion. Our proposed AEN contains two semantic pathways
corresponding to (i) agent pathway and (ii) environment
pathway. The contribution of contextual AEN is two-fold:

e AEN includes (i) Agent-Environment representation net-
work (AERN) to extract rich features sequence from an
untrimmed video and (ii) boundary matching networks to
evaluate confidence scores of densely distributed proposals
generated from the extracted feature.

* A novel video contextual Agent-Environment (AE) visual
representation is introduced. Our semantic AE visual repre-
sentation involves two parallel pathways to represent every
snippet of the video: (i) agent pathway, operating at a local
level to tell what the agents in the snippet are doing and which
agents deserve to be concentrated more on; (ii) environment
pathway, operating at a global level to express the relationship
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Fig. 1. The architecture of our proposed contextual Agent-Environment (AE) representation network (AERN).

between the agents and the environment. These two pathways
are fused together by our attention mechanism for the video
representation where a feature may focus more on either lo-
cal or global levels entirely depending on the context of its
corresponding snippet.

2 Related Work

TAPG [8, 1, 10, 11, 12, 13, 14, 15, 16, 17] aims at propos-
ing intervals so that each of them contains an action instance
with its associated temporal boundaries and confidence score
in untrimmed videos. There are two main approaches in
TAPG: anchor-based and boundary-based. The anchor-based
methods [10, 11, 12, 13, 14] are inspired by anchor-based
object detectors in still images like Faster R-CNN [18], Reti-
naNet [19], or YOLO [20]. These methods deal with the
proposal task as a classification task where multiple prede-
fined anchors with different lengths are regarded as classes
and a class that best fits the ground truth action length is used
as ground truth true class for training. Although this approach
helps to save computational costs, it lacks the flexibility of
action duration. The boundary-based methods [15, 16, 17],
on the other hand, break every action intervals into starting
and ending points and learn to predict them. In the inference
phase, starting and ending probabilities at every timestamp in
the given video are predicted. Then, points with local peak
in probability are chosen as potential boundaries. The po-
tential starting points are paired with potential ending points
for a potential action interval when their interval fits in the
predefined upper and lower threshold, along with a confi-
dence score being a multiplication of the starting and ending
probabilities. As one of the first boundary-based methods,
[15] defined actionness scores by grouping continuous high-
score regions as a proposal. Later, [16] proposed a two-stage
strategy where boundaries and actionness scores at every
temporal point are predicted in the first stage and fused to-
gether, filtered by Soft-NMS to get the final proposals at the
second stage. [17] improved [16] by generating a boundary-
matching matrix instead of actionness scores to capture an
action-duration score for more descriptive final scores.

3 Proposed Method

Given an untrimmed video V = {z;}/, with L frames,
our goal is to generate a set of temporal segments, each of
which possibly and tightly contain an action. Let us denote F'
as the visual representation of video V, which is firstly divided
into T = L%J non-overlapping J-frame snippets. Let ¢ be a
feature extraction function which is applied to each §-frame

snippet, the visual representation F' is then defined as follows:

F={fi ?:1 = {¢($5-(i—1)+17 -'-7555-1‘)}?:1 D

In the next two subsections, we discuss how we devise
Agent-Environment Representation Network (AERN) as a
function ¢ and how we integrate it with an action proposal
generation module, respectively.

3.1 AE Representation Network(AERN)

Our proposed AERN extracts contextual AE visual repre-
sentation of a 4-frame snippet at both global and local levels,
which plays a key role in temporal action proposals genera-
tion. Considering our goal is extracting features for a §-frame
snippet from frame ¢ to frame ¢ + ¢, the AERN is illustrated
in Fig.1(a) and consists of following steps:

Step 1: Backbone Feature Extraction: In action recogni-
tion, a 3D convolutional backbone network is usually used to
encode global semantic information of a §-frame snippet. In
this work, we employed C3D [7] and SlowFast [1] pre-trained
on Kinetics-400 [21] as our backbone feature extractor. In
order to capture enough semantic information of the snippet
while keeping enough resolution in spatial domains, we dis-
card the last fully connected layers to use the feature map Sy
from the last convolutional block, which is crucial in Step 3.
Step 2: Environment Feature Extraction: To extract the en-
vironment feature, feature map Sy is passed through average
pooling and several fully connected layers until the softmax
layer, outputting a vector containing semantic information of
the overall scene, namely, environment feature ¢.. This path-
way captures the information at the global level of the scene,
however, it may not capture small details like the motions of
humans.
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Fig. 2. An overview architecture of our proposed AEN for ac-
tion proposal generation where AE Representation Network
is in Fig.1 and described in section 3.1

Step 3: Multi-Agent Feature Extraction: An agent in a §-
frame snippet is denoted as a human appears in it. To de-
tect all agents existing in a d-frame snippet, we start with the
center frame by applying a human detector. These bounding
boxes around agents are then used to guide the RolAlign [22]
to extract local features from Sp. Each local feature corre-
sponds to an agent and all local features from multiple agents
are fused into a single multi-agent feature ¢, via an attention
model based on Transformer Encoder [23]. Thus, we obtain
an agent ¢, from multiple agents of d-frame snippet.

In this step, we adopt a Faster R-CNN [18] pre-trained on

MS-COCO [24] as our human detector because of its good
performance and popularity.
Step 4: Feature Fusion: In our proposed AEN, environ-
ment feature ¢, plays at the global level while multi-agent
feature ¢, plays at the local level. After simultaneously ex-
tracting these features, Transformer Encoder [23] is employed
to re-weight them by a proper ratio, which helps the overall
model to know which information to consider while reason-
ing the action proposals, i.e. deciding whether to emphasize
on detailed information of agents or overall information of the
scene.

3.2 Deployment with Action Proposal Network

Our proposed AEN is easily deployed and incorporated
with any TAPG network in an end-to-end framework as
shown in Fig. 2. In this paper, Boundary-Matching Net-
work (BMN) is employed because of its impressive per-
formance. BMN is a fully convolutional network with 3
modules, namely, Base Module (BM), Temporal Evaluation
Module (TEM), and Proposal Evaluation Module (PEM). BM
processes the input features through several 1D convolutional
layers, producing output features that are fed into TEM and
PEM simultaneously. TEM aims to produce the probabilities
for every temporal point in the features set being a starting or
ending boundaries. Meanwhile, PEM produces two matrices,
each of which densely contains the confidence scores of ev-
ery possible duration at every starting temporal point, but are
trained by two different types of loss functions as suggested
by [25].

3.3 Training Phase

Label Generation: We follow [25, 16] to generate the ground
truth labels for the training process including starting labels,
ending labels for TEM training and duration labels for PEM
training. The starting and ending labels are generated for ev-
ery snippet of the video, which are called Lg = {I$}1_, and
Lr = {I&}L_,, respectively. A label point I (or I£) is set to
1 if its corresponding timestamp in the video is the nearest to
any ground truth starting (ending) timestamp.

The duration labels for a video are gathered into a ma-

trix Lp € [0,1]P*T where D is the maximum length of
proposals being considered in number of snippets, as sug-
gested in [25], we set D = T and D = T'/2 for experiments
on ActivityNet-1.3 [31] and THUMOS-14 [32], respectively.
With an element at position (¢;, ;) stands for a proposal ac-
tion ap = (ts = ti;T,te = W), it is assigned by 1
if its Interaction-over-Union with any ground truth action in
A = {a;}M, reach a local maximum, or 0 otherwise.
Loss function: As mentioned in section 3.2, TEM generates
probabilities vectors of starting and ending boundaries (Pg
and Pg), while PEM generates two actionness scores matri-
ces P and P§. These four outputs are trained simultane-
ously by different loss functions as following:

ETEM’ = cbﬁnary(PS: LS) + fcbina'ry (PE: LE) {2)
Lpem = Loinary(Pp, Lp) + Areg - L2(P7 . Lp)  (3)
L=M -Lrem+X2-Lpem “)

We follow [25, 16] and set Argg = 10 and Ay = Ay =
1. Furthermore, Lyinary is a weighted binary log-likelihood
function to deal with imbalanced number of negative and pos-
itive examples in groundtruth labels:

N
1
fcbina'ry = ﬁ Za+ -l 'IOEpi +a - (1 - lz) ']0gph (3)

i=1
where [; and p; are label and probability of the output, respec-
tively. ot = % anda— = %, with N, N~ and N+ are

total number of examples and total number of positive and
negative examples, respectively.
3.4 Inference Phase:

During inference, four outputs are generated by BMN
model [25] from features set extracted by our AEN, including
Ps, Pg, Pj’, and P. Peaking probabilities of starting and
ending boundaries from Ps and Pg, which are local maxi-
mums, are selected to form initial proposals by pairing every
peak starting point with peak ending points behind them and
within a pre-defined range. For a proposal formed by ¢, and
t. boundaries with duration dp, = t. — ¢, its score score, are
computed by the following formula as proposed in [25]:

scorey = Pslte] - Pylte] -/ Pldp,to] - P ldp,t] (6)

Then, with a list of proposals and their scores, we apply a
Soft-NMS [33] to eliminate highly overlapped proposals be-
fore outputting the final list of proposals.



Table 1. Comparison in terms of AR@AN and AUC on validation set and test set of ActivityNet-1.3 dataset

TCN | MSRA | Prop-SSAD | CTAP | BSN SRG | MGG | BMN Our AEN
[26] [27] [28] [29] [16] [30] [17] [25] SlowFast | C3D
AR @100 (val) - - 73.01 73.17 | 74.16 | 74.65 | 74.54 | 75.01 75.62 75.65
AUC (val) 59.58 63.12 64.40 65.72 | 66.17 | 66.06 | 6643 | 67.10 67.78 68.15
AUC (test) 61.56 64.18 64.80 - 66.26 - 66.47 | 67.19 68.45 68.99

4 Experiments

4.1 Datasets
ActivityNet-1.3 [31] is a large scale dataset for human activ-
ity understanding, containing roughly 20K untrimmed videos
which are divided into training, validation and test sets with
the ratio of 0.5, 0.25 and 0.25, respectively.
THUMOS-14 [32] is primarily a dataset for action recogni-
tion, yet, it also opens the action localization track, which is
held on a portion of its validation set for training and another
portion of test set for testing, with each comprised of 200 and
214 videos, respectively; and captures 20 different actions.
For comparability purposes, we follow the same settings
as it was in [25] for both datasets.

4.2 TImplementation Details

For ActivityNet-1.3, we benchmark our proposed AEN
with both C3D [7] and SlowFast [1] backbone, whereas, for
THUMOS-14, we only benchmark our method on C3D back-
bone. All backbones are pre-trained on Kinetics-400 [21].
Following [25, 16], we trained our proposed network with
Adam update rule is employed with the initial learning rate
of 0.0001 and 0.001 for ActivityNet-1.3 and THUMOS-14,
respectively.
4.3 Experimental Results

Table 1 shows the comparison in terms of AR@AN (AN
=100) and AUC between our AEN against other SOTA meth-
ods on both validation and test sets of ActivityNet-1.3 dataset.
Compared to SOTA approaches, our AEN obtains better per-
formance with large margins on both AR@AN and AUC met-
rics regardless of the backbone networks. Likewise, our AEN
also gives a superior performance on THUMOS-14 in Table
3 when compared to SOTA approaches on this dataset.

Generalization is also an important aspect to be evaluated
in TAPG. We conduct experiments on ActivityNet-1.3 [31] to
evaluate this property, in which videos in two non-overlapped
action class subsets of Sports, Excercise, and Recreation”
and “Socializing, Relaxing, and Leisure” are collected into
Seen and Unseen subsets, respectively. Table 2 delivers two
training settings, results evaluated on Unseen subset does not
drop significantly when training only on Seen subset compar-
ing to training on Seen+Unseen sets, which implies that our
AEN achieves high generalizability in generating proposals.

Table 2. Generalization evaluation on ActivityNet 1.3.

Seen Unseen
Training Data AR@100 AUC AR®@100 AUC
Seen+Unseen 74.58 66.96 75.25 67.49
Seen 74.40 66.69 73.66 65.92

Table 3. Comparison on THUMOS-14 test set (AR@AN).

Methods @50 @100 @200 @500 @1000
SCNN-prop [13] 17.22  26.17 37.01 51.57 58.20
SST [34] 1990 2836 3790 51.58 60.27
TURN [14] 19.63 27.96  38.34  53.52 60.75
MGG [17] 29.11 3631 4432  54.95 60.98
BSN [16] 29.58 37.38 4555  54.67 59.48
BMN [25] 3273 40.68 4786 5642 60.44
Our AEN 33.36 4293 5034 59.10 64.03
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Fig. 3. Qualitative results by BMN [25] and our proposed
AEN on ActivityNet-1.3 [31] on C3D backbone network.

Conclusion

This paper proposed a novel AEN for the TAPG prob-
lem. Different from existing work applying a backbone net-
work into an entire video frame, AEN involves two paral-
lel pathways in the video visual representation: (i) the agent
pathway, which plays at the local level and tells about where
agents are and what the agents are doing; (ii) the environ-
ment pathway, which plays at the global level and tells about
how the environment affects after receiving the actions from
the agents as well the relationship between the agents, ac-
tions, and the environment. Our experiments demonstrated
that AEN outperforms the SOTA methods with C3D back-
bone on THUMOS-14 and with both C3D and SlowFast back-
bones on ActivityNet-1.3.
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