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Abstract—The automatic classification of electrocardiogram
(ECG) signals has played an important role in cardiovascular
diseases diagnosis and prediction. Deep neural networks (DNNs),
particularly Convolutional Neural Networks (CNNs), have ex-
celled in a variety of intelligent tasks including biomedical and
health informatics. Most the existing approaches either partition
the ECG time series into a set of segments and apply 1D-CNNs or
divide the ECG signal into a set of spectrogram images and apply
2D-CNNs. These studies, however, suffer from the limitation that
temporal dependencies between 1D segments or 2D spectrograms
are not considered during network construction. Furthermore,
meta-data including gender and age has not been well studied
in these researches. To address those limitations, we propose a
multi-module Recurrent Convolutional Neural Networks (RC-
NNs) consisting of both CNNs to learn spatial representation
and Recurrent Neural Networks (RNNs) to model the temporal
relationship. Our multi-module RCNNs architecture is designed
as an end-to-end deep framework with four modules: (i) time-
series module by 1D RCNNs which extracts spatio-temporal
information of ECG time series; (ii) spectrogram module by
2D RCNNs which learns visual-temporal representation of ECG
spectrogram ; (iii) metadata module which vectorizes age and
gender information; (iv) fusion module which semantically fuses
the information from three above modules by a transformer
encoder. Ten-fold cross validation was used to evaluate the ap-
proach on the MIT-BIH arrhythmia database (MIT-BIH) under
different network configurations. The experimental results have
proved that our proposed multi-module RCNNs with transformer
encoder achieves the state-of-the-art with 99.14% F1 score and
98.29% accuracy.

Index Terms—ECG Classification, CNNs, RNNs, LSTM, En-
coder, Transformer, MIT-BIH

I. INTRODUCTION

Cardiovascular diseases are the leading cause of death in the
USA [7]. An electrocardiogram (ECG) records the electrical
activity of the heart, thereby providing the summative evalua-
tion of the cardiac electrical activity. It has been estimated that

up to 300 million ECGs are recorded annually in Europe alone
[23], these enormous amounts of ECG data highlights the
importance of computer-aid interpretation. A high-accuracy
computer-aid interpretation can save expert clinicians consid-
erable time and efforts, as well as reducing the number of
misdiagnoses.

Deep neural networks (DNN) [37], inspired by information
processing and distributed communication nodes in biological
systems, has been receiving massive interest in both academia
and industry for a decade. They are computational models
comprising of multiples layers, in which output of a layer is the
input of the successive layer. The hierarchy of layers enables
the network to learn the increasingly abstract, higher-level rep-
resentations of the input data. DNNs have been showing their
dominating performances in various intelligent tasks including
biomedical [8] and health informatics [3] [17]. In the last
decade, various DNNs-based methods have been employed in
ECG-based automatic arrhythmia classification. Convolutional
Neural Networks (CNNs) is the most favorable method [4] and
could be categorized into 2 main groups: 1D CNNs in time
series and 2D CNNs on time-frequency spectrograms. The
former uses raw ECGs as the input [2] [25] [15] [16], split each
ECG signal into multiple smaller segments which are then
classified into labels in prediction step. The second approach
focuses on frequency characteristic of the ECG signal, using
its time-frequency spectrogram as the input of a 2D CNN
for classification [12] [14] [36] [35]. Although the CNNs-
based approaches have proven to be effective for arrhythmia
classification, they suffer following limitations
Lack of temporal relationship: Either 1D CNN on time series
or 2D CNNs on spectrogram first partitions an ECG signal
into a set of 1D segments or 2D spectrograms at different time.
Then, a CNN-based network is applied into each 1D segments



or 2D spectrograms. There is no mechanism to model the
temporal relations between these segments or spectrograms
within the same sample coming from one patient.
Meta-data is not taken into consideration: ECG signal is
presented in a high dimensional space while meta-data is given
in a binary number (i.e. gender) or scale (age). Combining a
high dimensional space of ECG signal (either times series or
spectrogram) and very low dimensional space of meta-data is
challenging. Most existing works do not take meta-data into
account.
Single module: Most of the existing works is single module,
i.e. they target at either time series with 1D CNNs frameworks
or spectrogram with 2D CNNs frameworks. None of the
previous works explores how to fuse multiple modules to
inherit the merits from both time series and spectrogram.

To address the aforementioned limitations, we proposed a
multi-module Recurrent Convolution Neural Networks (RC-
NNs) with transformer encoder. Our network makes use of
LSTM [11] as a RNNs and contains four modules as follows.
(i) time series module by a 1D RCNNs: In this module, 1D
CNNs is first utilized to extract spatio-information from time
series segment and LSTM then is used to model the temporal
relations between 1D segments. (ii) spectrogram module by a
2D RCNNs: Given an ECG signal, spectrograms at different
times are extracted by Short Time Fourier Transform (STFT).
A 2D CNNs is used to learn visual representation in spatial
domain and a LSTM network is applied to model the tempo-
information between spectrograms within an ECG signal;
(iii) meta-data module: An autoencoder to featurize/vectorize
the metadata to learn semantic information from both sex
and gender; (iv) fusion module: the information from three
modules is then fused under a transformer encoder. The entire
network is illustration in Fig. 1, each module is presented in
one colored block.

II. RELATED WORK

Recently, researchers have made major efforts in using DL-
based techniques to outperform specialist cardiologist in ECG
interpretation. Various ideas have been proposed and Convo-
lutional Neural Network (CNN) has been widely implemented
in automatic arrhythmia diagnosis. Yildirim in [39] proposed
a novel approach to classify 10-second ECG signal fragments
involving 17 classes. Hannun [2] also proposed an end-to-end
DL approach to classify 12 rhythm classes using single-lead
ECG recordings. Although the work achieved good results,
it raised a question if DNN would be useful in a realistic
clinical setting, where 12-lead ECGs are the clinical standard.
Ribeiro [25] partially addressed the question by presenting
a DNN model using 12-lead ECG recordings to classify 6
types of abnormalities. Recurrent neural network (RNN) is
also widely applied for arrhythmia diagnosis due to their
highly dynamic behavior. Wang [33] proposed a global and
updatable classification scheme named Global Recurrent Neu-
ral Network (GRNN). Zhang [40] introduced a patient-specific
ECG classification using RNN to learn time correlation among
ECG signal points. Long short-term memory (LSTM) and its

improved version, gated recurrent unit (GRU) are among best
DNN candidates in ECG classification [6], [26] and [31].

The aforementioned studies show that an end-to-end DNN
can successfully learn complex representative features of ECG
signals with less or without excessive dependencies on manual
feature extraction. Although the end-to-end approach extracts
the ”deep features” automatically along the network layers,
it neglects one important feature of ECG, the frequency
response. The importance of ECG frequency content was
recognized from the beginning of the 20th century [5] [34],
and has been studied in various medical research nowadays,
such as [28] and [29]. There are various time-frequency trans-
formation methods used for ECG feature extraction, Short-
time Fourier Transform (STFT) is extensively used to achieve
ECG’s spectral content. To exploit frequency characteristic
of ECGs, several efforts have been made. Huang [12] used
STFT-based spectrogram and 2D CNN for ECG arrhythmia
classification. Each ECG signal is transformed into 2D-image
of spectrogram to be subsequently fed into 2D CNN for
image classification. Xia [36] [35] proposed using STFT and
stationary wavelet transform (SWT) transformations to obtain
two-dimensional (2-D) matrix input suitable for deep CNNs.
Yildirim [38] proposed a novel wavelet sequence based on
deep bidirectional LSTM network model.

The work mentioned above merely focused on ECG sig-
nal characteristics. Other important characteristics such as
patients’ physical state (e.g. age, gender) are not considered
[4]. Macfarlane [20] showed that ECG interval measurements,
including QRS duration, heart rate, QT dispersion, and se-
lected Q-wave durations are highly influenced by patients’
gender, age and race. Therefore, age and gender differences in
the ECG should be incorporated into a variety of criteria for
ECG interpretation [21]. In this paper, we propose an ECG
arrhythmia classification method using multimodality - ECG
signal, its frequency response and demographic factors (age
and gender).

III. PROPOSED MULTI-MODULE RCNNS WITH
TRANSFORMER ENCODER

Our proposed network consisting of four modules, i.e. Time
Series Module, Spectrogram Module, Metadata Module and
Fusion Module is detailed as follows:

A. Time Series Module: 1D RCNNs

This module aims to extract spatio-temporal information
given an ECG time series signal. Let X be a recording ECG
signal, X is partitioned into n segments i.e. X = {xi}i=n

i=1 .
Each segment length is set as l. There are two steps in this
module. At the first step, the spatio-feature of each segment
is extracted by 1D CNNs. We use function F to represent 1D
CNNs, which transforms input segment {xi}i=n

i=1 into spatial
representation vector:

{fi}i=n
i=1 = F({xi}i=n

i=1 ) (1)

In the second step, a bidirectional LSTM (BLSTM) [9] is
applied to model the temporal relations between 1D segments.
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informationfrombothsexandgender;(iv)fusionmodule:theinformationfromthreemodulesisthenfusedunderatransformerencoder.

LetdenoteRasthetemporalmodelingfunctionofBLSTM
andhiistheBLSTM’soutput.

{hi}
i=n
i=1 =R({fi}

i=n
i=1) (2)

wherefi∈R
L.Inourexperiments,wesetl=360,n=

10,Resnet-20[10]ischosenasbackbonenetworkfor1D
CNNs.Theoutputofthismodule{hi}

i=n
i=1 isthenpassedto

transformerencodermodule.

B.SpectrogramModule:2DRCNNs

Thismoduleuses2Dtime-frequencyresponsesofECGas
aninput.ShortTimeFourierTransform(STFT)isutilized
toextracttime-frequencyresponsesofECG.The method
involvesslidingasmallwindowoverthesignalandthen
performingdiscreteFouriertransformforeachcorresponding
window.TheequationforSTFTisshowninEq:3whereSis
STFTfunctionandg(n−m)isthewindowfunction.Usuallya
HannoraGaussianwindowisusedandthewidthofwindow
isspecifiedbym.

{si}
n
i=1=S({xi}

n
i=1)

S({xi})(k,m)=
N−1

n=0

x(n)g(n−m)e
j2πkn
N

(3)

wherekandmareknownastimeindexandfrequencyindex.
Thetime-frequencyresponses{si}

i=n
i=1 ispassedthrougha

2DRCNNsnetwork.Similarto1DCNNs,2DRCNNsis
designedwitha2DCNNsfollowedbyaBLSTMnetwork.
Let{hi}

i=n
i=1 ∈R

Lbedenotedastheoutputfrom2DRCNNs
moduleanditispassedtotransformerencodermodule.

C. MetadataModule:Autoencoder

InadditiontoECGsignal,metadataisstudiedinournet-
work.DifferentfromECGsignalwhichispresentedinalong
timeseries,metadataispresentedbytwoscalescorresponding
togender(g)andagea.Inordertofeaturizemetadata,wefirst
utilizeword2vectechniquetoconvertmetadataintovectors.
WeusefunctionW topresentword2vecwhichtransformsan
inputxintoavector

fwa =W(a)andf
w
g =W(g) (4)

Inordertoextractsemanticinformationfrom metadata,
wealsoapplyanautoencoderA intoconcatenatedvector
[fwaf

w
g].Theoutputd∈R

L fromthemetadatamoduleis:
d=A([fwaf

w
g])

D.FusionModule:TransformerEncoder

Inourproposedmulti-module,theoutputs{hi}
i=n
i=1 from

timeseriesmodule,{hi}
i=n
i=1 fromspectrogrammoduleand

dfrom metadata modulearethenfusedbyatransformer
encoder.TransformerEncoder[32]isemployedtore-weight
thesefeaturesbyaproperratio.Thishelpstheoverallmodel
toknowwhichinformationshouldbemoreemphasizedto
bettersemanticallyfusethesefeatures.Thefinalfeaturefis
generallycomputedasfollows

f=w0d+{wi}{hi}
i=n
i=1++{wi}{hi}

i=n
i=1 (5)

wherew0,{wi}and{wi}arelearntbyTransformerEncoder
[32].
Finally,weemployafullyconnectedlayerwithsoftmaxto
converttheoutputsf∈RLintointocategoricalprobabilities



TABLE I
COMPARISON BETWEEN CNNS AND RCNNS ON MIT-BIH

Features F1 score Accuracy

Time series CNNs 98.76 97.86
RCNNs 98.71 98.09

Spectrogram CNNs 98.67 97.07
RCNNs 98.66 97.22

TABLE II
PERFORMANCE OF DIFFERENT MODULES ON MIT-BIH

Feature F1-score Accuracy
Time Series 98.71 98.09
Spectrogram 98.66 97.22
Time Series - Metadata 98.84 97.91
Time Series-Spectrogram-Metadata 99.14 98.29

K classes. Let θ represents the linear mapping to RK of
the fully connected layer and φ denotes the softmax function
performed on the classes.

φ(f̃) =
ef̃i∑K

k=1 e
f̃k

, where f̃ = θ(f) and f̃ ∈ RK (6)

IV. EXPERIMENTAL RESULTS

Datasets MIT-BIH Arrhythmia dataset consists of 48 thirty
minutes long two-lead ECG recordings of 47 subjects. The
recordings are digitized using a sampling frequency of 360Hz.
The database consists of a total 20 labels. In our experiments,
we follow similar experiment setup in [12], i.e. we choose
five most common labels i.e. Normal beat (N), Left bundle
branch block beat (L), Right bundle branch block beat (R),
Premature ventricular contraction (V), Atrial premature beat
(A) and Others ( ) as all the other beats. This dataset has 2
leads and lead V5 is used. The split of training:validation is
90:10 and label that occurs most was used as the sample class.
Metrics F1-score is computed as the harmonic mean of the
precision and recall:

F1 = 2 · precision · recall
precision+ recall

=
TP

TP + 1
2 (FP + FN)

(7)

Accuracy is the measure of how well the model could perform
classification. It is the fraction of correct predictions among
the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

A. Performance Comparison

In this section, we first examine the effectiveness of RCNNs
compared to CNNs as show in Table I. In this table, both
time series and spectrogram features conducted on CNNs
and RCNNs are investigated. The Table I demonstrated both
CNNs and RCNNs obtain quite competitive F1-score while
RCNNs outperforms CNNs in accuracy. Take time series as
an instance; CNNs perform better than RCNNs in F1-score by
a small margin of 0.05% but worse in accuracy by 0.23%.

We then evaluate the effectiveness of our proposed multi-
module as shown in Table II. In this experiment, we conduct

TABLE III
PERFORMANCE COMPARISON BETWEEN OUR PROPOSED MULTI-MODULE
RCNNS WITH TRANSFORMER ENCODER AND OTHER SOTA APPROACHES

ON MIT-BIH DATASET. ACC. IS FOR ACCURACY

Module Framework Classes F1score ↑ Acc. ↑
[22] Time series SVM 6 – 91.67
[14] ECG images 2D CNNs 8 97.00 98.81
[13] ECG images 2D CNNs 5 – 97.42
[24] Time series 1D CNNs 7 – 93.60
[39] Time series 1D CNNs 17 – 91.33
[18] Time series 1D CNNs 4 – 97.50
[1] Time series 1D CNNs 5 – 94.03
[27] Time series RNNs 2 94.10 95.00
[33] Time series RNNs 2 – 97.40
[6] Time series RNNs 1 – 98.51
[12] Spectrogram 2D CNNs 5 – 99.00
[19] Spectrogram 2D CNNs – 84.94 97.96
[30] Spectrogram 2D CNNs 8 98.00 98.92
Ours multi-module RCNNs 6 99.14 98.29

the performance on each individual module i.e. time series,
spectrogram, time series & metadata and the combination of
time series & spectrogram & metadata. While time series and
spectrogram provide competitive performance, metadata (age
and gender) is proven to play importance role to improve the
classification performance. Combination of three modules i.e.
time series, spectrogram, metadata provides the best perfor-
mance at both F1-score and accuracy.

The performance comparison with other SOTA approaches
on MIT-BIH dataset is given in Table III. In this Table, F1-
score and accuracy are obtained by various modules (e.g. time
series, spectrogram, 2D ECG images) with different machine
learning techniques e.g Support Vector Machine (SVM), 1D
CNNs, 2D CNNs, RNNs. In this experiment, different meth-
ods are conducted on different number of classes while our
approach is conducted on the most common classes i.e. five
most common classes and 1 class other for all the other 15
labels.

CONCLUSION

In this paper, we proposed an ECG arrhythmia classification
method based multi-module Recurrent Convolutional Neural
Networks (RCNNs). The experiment has been conducted on
six classes (five most common classes and the other classes)
from MIT-BIH arrhythmia database. Our network takes all
time-series, spectrogram and metadata into consideration. The
proposed multi-module RCNNs is able to model both spatial
information through CNNs and temporal information through
LSTM. Our experiments have shown that metadata plays an
important role to improve the classification performance. Our
multi-module network outperforms most SOTA approach on
the same dataset, with F1-score = 99.14%, and accuracy =
98.29%.
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