A Study of Work Distribution and Contention in Database
Primitives on Heterogeneous CPU/GPU Architectures

Michael Gowanlock

Northern Arizona University
School of Informatics, Computing, and Cyber Systems
Flagstaff, AZ, US.A.
michael.gowanlock@nau.edu

Ben Karsin
Université libre de Bruxelles
Department of Computer Science
Brussels, Belgium
bkarsin@gmail.com

ABSTRACT

Graphics Processing Units (GPUs) provide very high on-card mem-
ory bandwidth which can be exploited to address data-intensive
workloads. To maximize algorithm throughput, it is important to
concurrently utilize both the CPU and GPU to carry out database
queries. We select data-intensive algorithms that are common in
databases and data analytic applications including: (i) scan; (if)
batched predecessor searches; (iii) multiway merging; and, (iv)
partitioning. For each algorithm, we examine the performance of
parallel CPU/GPU-only, and hybrid CPU/GPU approaches.

There are several challenges to combining the CPU and GPU for
query processing, including distributing work between architec-
tures. We demonstrate that despite being able to accurately split
the work between the CPU and GPU, contention for memory band-
width is a major limiting factor for hybrid CPU/GPU data-intensive
algorithms. We employ performance models that allow us to explore
several research questions. We find that while hybrid data-intensive
algorithms may be limited by contention, these algorithms are more
robust to workload characteristics; therefore, they are preferable to
CPU/GPU-only approaches. We also find that hybrid algorithms
achieve good performance when there is low memory contention
between the CPU and GPU, such that the GPU can perform its
operations without significantly reducing CPU throughput.

KEYWORDS

GPGPU, Heterogeneous Systems, Hybrid Algorithms, In-memory
Database, Memory-Bound Algorithms, Multiway Merge, Partition-
ing, Predecessor Search, Scan

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC °21, March 22-26, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8104-8/21/03...$15.00
https://doi.org/10.1145/3412841.3441913

311

Zane Fink
University of Illinois at Urbana-Champaign
Department of Computer Science
Urbana, IL, US.A.
zanef2@illinois.edu

Jordan Wright
Northern Arizona University
School of Informatics, Computing, and Cyber Systems
Flagstaff, AZ, US.A.
jaw566@nau.edu

ACM Reference Format:

Michael Gowanlock, Zane Fink, Ben Karsin, and Jordan Wright. 2021. A
Study of Work Distribution and Contention in Database Primitives on Het-
erogeneous CPU/GPU Architectures. In The 36th ACM/SIGAPP Symposium
on Applied Computing (SAC °21), March 22-26, 2021, Virtual Event, Republic of
Korea. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3412841.
3441913

1 INTRODUCTION

Graphics processing units (GPUs) have been exploited to improve
data-intensive algorithm throughput. Algorithms can now be de-
signed to use the CPU or GPU [12, 26], in addition to hybrid
CPU/GPU approaches that exploit both architectures [21]. In shared-
memory systems, the distribution of work and tasks between CPU
and GPU architectures has to be carefully considered to optimize
resource utilization and algorithmic efficiency.

GPU global memory bandwidth is an order of magnitude higher
than the CPU-GPU interconnect (e.g., PCle v3.0 has 32 GiB/s bidirec-
tional bandwidth [23] and Nvidia Volta has 900 GiB/s global mem-
ory bandwidth [22]). For data-intensive algorithms, the CPU-GPU
interconnect is a bottleneck [26]; however, there is an opportunity
to exploit the GPU’s high on-card memory bandwidth.

A recent study by Gowanlock et al. [12] proposed a work splitting
strategy to assign work to the CPU and GPU for hybrid memory-
bound database primitives. However, their paper made several sim-
plifying assumptions about work distribution between the CPU
and GPU which we believe are unable to adequately capture the
performance of their examined hybrid database primitives. In par-
ticular, contention for memory bandwidth can be detrimental to
hybrid CPU/GPU algorithm performance, thus we fundamentally
disagree with the approach taken by Gowanlock et al. [12].

While we disagree with the modeling approach used to split
the work between the CPU and GPU in Gowanlock et al. [12], the
authors proposed a comprehensive testbed of database primitives.
In particular, the authors proposed hybrid batched predecessor
searches, multiway merging, and k-way partitioning. We summa-
rize each of these algorithms in Section 4. The algorithms use a
significant fraction of available main memory bandwidth in the sys-
tem. Therefore, these primitives provide a good testbed of common


https://doi.org/10.1145/3412841.3441913
https://doi.org/10.1145/3412841.3441913
https://doi.org/10.1145/3412841.3441913

--® - Hybrid: TVrrer 5 - @~ Hybrid: TUPer
—=— CPU-only °| —m—cPu-only
11 —4—GPU-only 21 —4— GPU-only

1 5 2 3 1 5
Input Size (n)

3
Input Size (n)

(a) Even Split (b) Uneven Split

Figure 1: Synthetic example with an (a) near-even split and
(b) uneven split of work between the CPU and GPU. TUPPer
is the upper bound on performance derived by the combined
throughput of the CPU-only and GPU-only algorithms.

database workloads that can be used for examining the impacts of
contention on hybrid CPU/GPU algorithm performance.

To elaborate on the prior work and pitfalls of Gowanlock et al. [12],
as an illustrative example, we show that there are two major limi-
tations that may hinder hybrid CPU/GPU algorithms.

First limitation: Splitting the Work. This limitation was con-
sidered by Gowanlock et al. [12]. The upper bound on the speedup of
a hybrid algorithm over both CPU-only and GPU-only approaches
is when the work is evenly split between the two architectures
(i.e., each architecture computes half of the total work). Figure 1(a)
shows a synthetic example of the response time vs. input size, n,
where the CPU-only and GPU-only algorithms achieve nearly the
same performance, and where TUPP€T is the modeled upper bound
throughput. TUPP€" is simply the combined throughput of the
CPU-only and GPU-only algorithms. In this case, there is signifi-
cant potential for a hybrid algorithm to outperform its CPU-only
and GPU-only counterparts. In contrast, Figure 1(b) shows the case
where the GPU-only algorithm performs much worse than the
CPU-only algorithm. In this case, the upper bound on performance
is similar to the CPU-only performance, indicating that at most, a
hybrid algorithm will only achieve negligible performance gains'.

Second limitation: Contention for Resources. This limita-
tion was not considered by Gowanlock et al. [12]. In the case where
an even distribution of work between architectures is possible, mem-
ory bandwidth contention can significantly reduce performance.
This is a major concern for data-intensive algorithms. Figure 2(a)
shows the best case for a hybrid CPU/GPU algorithm where there
is a near-even split of work, and low contention for main memory
bandwidth. Here, the measured hybrid algorithm response time
is close to the upper bound on performance (TUPP€T). Figure 2(b)
shows that despite a near-even split in work between the CPU
and GPU, contention for main memory bandwidth limits the per-
formance of the hybrid algorithm over the GPU-only algorithm.
Figure 2(c) shows that when there is an uneven split, the perfor-
mance gain of the hybrid algorithm over the CPU-only algorithm is
minimal despite low memory contention. And lastly, in Figure 2(d),
we find that the hybrid algorithm has worse performance than
the CPU-only algorithm due to both the uneven work split and
Note that if the CPU-only algorithm performs much worse than the GPU-only algo-

rithm then this would yield the same upper bound performance and have the same
implications.

312

6 6
- @~ Hybrid: TV @~ Hybrid: TUPr
—e— Hybrid: Measured —e— Hybrid: Measured
» 4] —8—CPU-only o 4] —8— CPU-only
o | —4—GPU-only © | —4—GPU-only
E E -
2y = e - =2 = - -
—————— o
0 0
1 2 3 1 5 2 3 1 5
Input Size (n) Input Size (n)
(a) Even Split: Low Contention (b) Even Split: High Contention
18 18
15] @ Hybrid: T 15| &= ybrid: 7V
—®— Hybrid: Measured | —®@— Hybrid: Measured
@ 12] —#— CPU-only » 121 —m—CPU-only
@ o] —4—GPU-only —4—GPU-only
£
= 6
3
0
2 3 1 5 1 2 3 4 5

Input Size (n) Input Size (n)

(c) Uneven Split: Low Contention (d) Uneven Split: High Contention

Figure 2: Synthetic example with even and uneven even
splits of work between the CPU and GPU for low and high
contention scenarios.

high contention. Consequently, the hybrid algorithm should not be
employed in this case.

Due to these limitations, hybrid CPU/GPU approaches do not
perform well across all workloads. However, we show that we can
selectively employ hybrid algorithms by using performance models
that quantify: (i) the upper bound on performance; (ii) contention;
and (iii) memory bandwidth saturation.

Major Benefit of Hybrid Algorithms: Depending on workload char-
acteristics, hybrid algorithms only achieve performance gains in
certain cases. Despite this, they are more robust as they can improve
performance in scenarios where the CPU/GPU-only algorithms do
not perform well.

Research Questions Answered by the Models: Models are used
to answer the following questions: (i) Are common data-intensive
workloads amenable to heterogeneous architectures? (ii) Is main
memory bandwidth saturated by canonical data-intensive algo-
rithms? (iii) New architectures are heterogeneous and require dif-
ferent algorithms to achieve peak performance. What algorithm
properties indicate that they will yield good performance when
executed in a hybrid fashion? (iv) To what extent does memory
contention degrade the performance of a hybrid algorithm?

As a demonstration of the potential improvement over CPU/GPU-
only database primitives, we efficiently compute: (i) scan; (ii) batched
predecessor searches; (iii) multiway merging; and, (iv) k-way par-
titioning. These four data-intensive algorithms are used in sev-
eral canonical database applications [13, 15, 28, 29, 32]. Follow-
ing Gowanlock et al. [12], to reduce the memory pressure of the
CPU/GPU-only and hybrid approaches, we employ algorithms that
are optimal in the well-known external memory (EM) model [1].
This paper makes the following major contributions:

o We employ database primitives that are optimal in the EM model
to minimize memory accesses and contention. We show that con-
tention for resources between the CPU and GPU can degrade the



performance of hybrid algorithms; thus, I/O efficient algorithms
are of paramount importance.

e We propose three models: (i) the upper bound on hybrid algo-
rithm performance; (ii) a model that includes contention to be
compared with the upper bound model; and (iii) a model for the
CPU-only algorithm that assumes memory bandwidth saturation.

e We show that our upper bound model is very accurate at splitting
the work between CPU and GPU architectures. This is impor-
tant, as an inaccurate split can degrade performance due to load
imbalance between architectures.

We summarize the major differences between this paper, and the
prior work proposed by Gowanlock et al. [12] as follows:

e Prior work developed a model to split the work between the CPU
and GPU, which completely ignored the cost of computation and
assumed that all algorithms saturate main memory bandwidth. In
this paper, we consider the cost of computation and show that this
cost is not always negligible as previously assumed. Additionally,
in contrast to prior work, we show that main memory bandwidth
is not saturated in all of the hybrid algorithms.

Prior work did not constrain the upper bound on performance

of the hybrid approaches. This paper quantifies the upper bound

based on the throughput of the CPU/GPU-only algorithms.

e Prior work assumed a contention-free scenario, where the use of

the CPU and GPU did not compete for memory bandwidth. In

contrast, this paper focuses on contention and demonstrates that
it can degrade the performance of hybrid CPU/GPU algorithms.

Thus, prior work made unsatisfactory model assumptions.

Prior work lacked experimental evidence to support model as-

sumptions. This paper supports assumptions using a set of hy-

pothesis testing experiments.

o Prior work assumed that all algorithms are suitable for a hybrid
CPU/GPU execution. Using our models, we are able to detect
whether an algorithm should be executed using the CPU and GPU,
or whether it should use one of the CPU/GPU-only approaches.

This paper addresses several of the major limitations of the pio-
neering work of Gowanlock et al. [12]. While the efforts of the prior
work showed the potential of hybrid CPU/GPU database primitives,
this paper provides a thorough treatment of contention, which has
several implications for the design of in-memory database systems
that exploit emerging architectures.

Paper organization: Section 2 outlines related work. Section 3
describes the performance models. Section 4 describes the hybrid
algorithms. Section 5 demonstrates the effectiveness of the hybrid
algorithms and utility of the models. Section 6 concludes the paper.

2 BACKGROUND & RELATED WORK

In this section, we describe the problem statement and constraints
considered in this work, and discuss this paper in the broader con-
text of the related literature.

Problem Statement & Constraints: We consider CPU/GPU-only
and hybrid CPU/GPU algorithms. The total response time of an
algorithm includes all data transfers to and from the GPU and re-
lated overheads. The final result set is stored in main memory. The
input and output sizes can exceed the GPU’s global memory capac-
ity, which is enabled by partitioning the input data and executing
several independent batches. Most GPU algorithms proposed in the

313

literature only include GPU computation time and do not account
for data transfers in their evaluations [2, 5, 14, 17, 25]. We account
for all data transfers. In many cases, the cost of computation is mi-
nor relative to the cost of PCle data transfers and other host-to-host
memory operations that support GPU computation.
GPU-Accelerated Databases & Modeling: Several studies model
the execution of workloads on GPUs [3, 18, 19, 24]. Schaa and Kaeli [24]
model application latency considering network bandwidth, disk ac-
cess throughput, and multi-GPU PCle contention, and achieve good
accuracy across six applications. Kothapalli et al. [19] propose a
general model of GPU computation that employs other well-known
models (BSP [30], PRAM [7], and QRQW [9, 10]). Boyer et al. [3]
focus on modeling data transfers, rather than kernel execution time,
which is particularly important for data-intensive workloads. Van
Werkhoven et al. [31] focus on modeling data transfers between the
CPU and GPU where communication can be overlapped in CUDA
streams to hide data transfer overhead.

We employ a model used by Shanbhag et al. [26] that assumes
main memory bandwidth saturation (this same model assumption
was also proposed by Gowanlock et al. [12]).

In contrast to previous work that examines largely GPU-only
approaches or compares GPU-only to CPU-only approaches, this
paper is focused on understanding splitting the work between CPU
and GPU architectures. Therefore, previous work does not consider
models that distribute the work between architectures.

Karnagel et al. [16] explore the limitations of splitting workloads

between the CPU and GPU, and discuss the effects of resource
undersaturation, synchronization overhead, and merging interme-
diate results into the final result set. They propose a model for split-
ting the workload, and caution the reader that hybrid CPU/GPU
approaches need to be carefully designed if they are to achieve
performance gains over CPU-only approaches. Similarly to our
approach, they partition the data to be executed on the CPU and
GPU and assume that the data resides in main memory at the end
of the computation. In contrast to Karnagel et al. [16], this paper
examines the impact of memory bandwidth contention and models
several scenarios not considered in their work.
Data Transfer Optimizations: Several studies have optimized
data transfers between the host and GPU [8, 11, 20]. We employ
several data transfer optimizations in Gowanlock and Karsin [11],
which include reusing small pinned memory buffers to transfer
data between the host and GPU using several CUDA streams.

3 GENERAL OUTLINE FOR MODELING
ALGORITHMS

Our models that apply to all algorithms. Let T, and T, denote
the CPU-only and GPU-only execution time for a given algorithm
in seconds (with input size n), respectively. The CPU-only and
GPU-only throughput is denoted as r. = n/T; and ry = n/Tg,
respectively; we assume the throughput is independent of input
size, n.

We assume that the upper bound throughput of a hybrid CPU/GPU
algorithm that splits the work between architectures is the total
throughput given by the CPU-only and GPU-only algorithms, de-
noted as ryo¢ = r¢ + rg. In practice, the upper bound throughput is
not achievable, unless there is no contention for resources.



3.1 The Fraction of Work Assigned to the CPU
and GPU

The total throughput of the CPU-only and GPU-only algorithms is
given by ryo;. We compute the fraction of work assigned to the CPU
(f) and GPU (1 — f) such that we evenly split the work between
the CPU and GPU, as follows:

f=relreor. (1)

This assumes that the throughput ratio of the CPU to the GPU

components of the hybrid algorithm are identical to the ratio of the

CPU-only and GPU-only algorithms (r¢/rg). Since the hybrid algo-

rithm components are the same as the CPU/GPU-only algorithms,

but they work on different data partitions, these throughput ratios
are expected to be equal.

3.2 Hybrid Model: Upper Bound

Let TUPPET be the modeled upper bound on performance of a hybrid
algorithm (with a throughput of r;4;), given in seconds as follows:

TUPPEr — . f o= (1= )t @)

where f and 1 — f is the fraction of work assigned to the CPU
and GPU, respectively. Since both the CPU and GPU are execut-
ing concurrently, the model assumes the upper bound throughput
Ttot = Tc + g is achieved.

3.3 Hybrid Model: Including Contention

Since the upper bound throughput, r;,, is unachievable in practice
due to contention for resources in the system, we quantify the dif-
ference between the expected time given by r;; and the measured
hybrid algorithm time using f, denoted as Tj,. The contention factor,
¢, is given as follows:

¢ =T,/ TVPPCT 3)

Since TUPPCT is the modeled upper bound on performance,

T, > TUPPer. therefore, ¢ > 1. We modify TUPPEr 4 include
the contention factor as follows:

THybrid = c.TUpper.

©
3.4 Should the Hybrid Algorithm be Used?

Observe in Equation 4 that depending on the values of f, r¢ (or
rg), and c, the model may yield a response time greater than the
CPU/GPU-only algorithms. Since deriving the contention factor
(Equation 3) requires measuring T}, it can be compared to deter-
mine whether T, > min(T, Tg), If this is the case, then the hybrid
algorithm should not be used as it leads to performance degradation
relative to the CPU/GPU-only algorithms.

3.5 CPU-only Model: Saturated Memory
Bandwidth

Gowanlock et al. [12] and Shanbhag et al. [26] model CPU data-

base algorithms assuming they saturate main memory bandwidth.

We use the external memory model to ensure that our algorithms

minimize loads and stores (Section 1).

314

This model gives an indication of how memory-bound an al-
gorithm is. If the model accurately captures the performance of
the CPU-only algorithm, then this indicates that the algorithm is
largely memory-bound and computation is negligible. Otherwise,
a non-negligible fraction of the time is spent doing computation.

The generalized model is:
TCPU—anly _ l-n-8 4 m-n-8
o

, ©)

where ¢ and w are the read and write memory bandwidth in
bytes/s. In all algorithms, I and m are coefficients of n that describe
the number of 8-byte data elements that are read and written. Thus,
the modeled time is the total size read (written) divided be the read
(write) memory bandwidth. On our platform o = 43.93 GiB/s and
® = 19.14 GiB/s.

We do not include a similar GPU-only model that examines
whether the GPU saturates on-card global memory bandwidth. Be-
cause we require the final result set to be stored in main memory,
such a model would not capture memory bandwidth saturation
as the algorithms are limited by the PCle v.3 interconnect. Con-
sequently, regarding the primitives that we examine, we assume
that computation is (nearly) free on the GPU. In the evaluation, we
quantify the time spent performing GPU work.

«w

4 HYBRID ALGORITHMS

There does not exist a standard set of benchmarks for hybrid data-
base primitives. Therefore, we use the algorithms proposed by
Gowanlock et al. [12] that introduced hybrid batched predecessor
search, multiway merge, and k-way partitioning algorithms. In
addition, we have implemented scan as it provides an example of
an algorithm that is unlikely to perform well on the GPU when
accounting for data transfers. We describe several assumptions
below.

Mapping Threads to Tasks: We employ multiple CPU threads for
reading/writing data, such that we can saturate memory bandwidth
if a given algorithm is memory-bound. We use ny; CUDA streams
to saturate PCle bandwidth and overlap data transfers, where CPU
threads orchestrate memory transfers between the host and GPU.
We use the data transfer methods of Gowanlock and Karsin [11]
that examined the impact of data transfers on hybrid CPU/GPU
sorting.

I/0 Optimality: All of the algorithms (CPU/GPU-only and hy-
brid) are optimal in the external memory model. Consequently, the
minimum amount of data is transferred between main memory and
the CPU/GPU. Since database operations are data-intensive, using
the EM model allows for I/O-efficient hybrid CPU/GPU algorithms.
Using Batches: We parallelize the algorithms by partitioning the
input into several batches to be executed on the CPU or GPU. We
denote the number of batches as ny, and set nj, to avoid the negative
effects of load imbalance. For scan, batched predecessor search, and
partitioning we set n;, = 400. For the multiway merge primitive,
np is a function of k to mitigate overheads (batches may be so
small that overheads are non-negligible). Batches enable parallel
computation and fit within GPU global memory capacity. Since
we examine large input sizes (up to the maximum main memory
capacity of the platform), the overhead required to partition the
data into batches is negligible.



4.1 Algorithm Test Suite

We rely on algorithms from the literature. For convenience, we
describe the hybrid algorithms presented in Gowanlock et al. [12],
but refer the reader to that work for more information. Also, we
describe the scan algorithm that was not employed in that work.

4.1.1  Scan. Scan is an operation used extensively by database
systems, such as finding the minimum or maximum value in a
table. We define scan as follows, and use the max function, which
requires reading all n elements in a list to find the maximum value
(alternatively, we could use a different function, such as min, but the
complexity is the same). Let A be an unordered array of n elements.
We find x € Asuch that forally € A, x > y, i.e. x = max(A). We
selected scan as it has a high memory access to compute ratio, which
makes it a poor candidate for acceleration on the GPU; therefore, it
may indicate the limits of hybrid CPU/GPU computation.
CPU-Only Algorithm: The algorithm iterates over array A to
find max(A). This loop is trivially parallelized using the maximum
reduction in OpenMP [4], where n elements are read from main
memory to the CPU, and O(1) elements are transferred to main
memory.

GPU-only Algorithm: We split A into nj, batches of equal size and
transfer each batch from the host to the GPU (HtoD) using ny CUDA
streams. Then, the maximum of each batch B;, i = 1,2,...,n,
is found. Each CUDA stream is assigned a local maximum on

the device in global memory denoted as M ]l.oc“l, and temporary

storage for the current maximum being computed M;emp , where
i=1,2,... n.

Each CUDA stream computes 'rll—l; batches?. At each kernel in-
vocation that executes a batch in a stream, the maximum value
in B; is stored in MiemP Then, MEE™P g compared to the local
maximum found in the stream thus far, and is updated accordingly,
ie., MJI.OC“I = max(M;emp,M]l."C“l). Once this has been done for

all batches across all streams, the array of local maximums, MJI.OC“I,
are transferred to the host where the global maximum is computed.
Therefore, max(A) = max(M{ocal, Mé"cal, .. ,Mfl‘zc“l). Thus, n el-
ements are transferred to the GPU, and since ns ~1, O(1) elements
are transferred back to the host.

Hybrid Algorithm: To combine the CPU and GPU algorithms,
we utilize the batching scheme to split A into several batches,
which allows us to split the total work between architectures.
Each batch contains - elements. Since max(A) = max(max(By),
max(Bz), ..., max(By,)), queries can be executed independently
on both architectures.

4.1.2  Batched Predecessor Search (BPS). Let A be keys and B be
queries both of which are sorted in non-decreasing order. Each key
is denoted as a;, where i = 1,2, ..., n, and each query is denoted
as bj, where j = 1,2, ..., n. The batched predecessor search (BPS)
finds the largest value of i for each b; € B, such that a; < bj. In our
evaluation, we assume |A| = |B| = n.

CPU-Only Algorithm: For each b; € B, the algorithm executes a
merge find which finds the index in A without merging [6]. A and
B are partitioned into ny, batches, where each processor computes

?In each algorithm, for illustrative purposes, we assume without the loss of generality
that ng evenly divides ny,.

315

batches of size n/ny, to find the predecessor of each query. The
algorithm reads and writes a total of 2n and n elements in main
memory, respectively.

GPU-only Algorithm: An upper bound binary search is executed
on each b; € B. Unlike the CPU-only algorithm, the GPU algorithm
must be able to independently compute the queries, which is not
possible with the CPU-only approach using the merge find. The
BPS algorithm reads and writes a total of 2n and n elements in main
memory, respectively.

Hybrid Algorithm: Similarly to scan, we split the work between
each architecture using batches. In the case of BPS, A and B are
partitioned into nj value-disjoint batches that can be computed
on either architecture. We denote each batch as B;, where i =
1,2,...,np. Based on a given value a € A, we find the pivots in B
that split the data. Each batch contains roughly n—”b elements in A
and B.

4.1.3  Multiway Merging (MWM). Takes as input a list, A, of k
sublists sorted in non-decreasing order, denoted as S;, where j =
1,2,...,k, where each sublist is of size %3. The output contains
n sorted elements. Furthermore, we assume that k is small such
that elements loaded from each sublist do not negatively impact
CPU cache utilization (e.g., for very large k, cache utilization may
degrade).

CPU-Only Algorithm: We use the MWM provided by the GNU
parallel mode extensions [27]. A total of n elements are read and
written to/from main memory (2n total).

GPU-only Algorithm: A is divided into nj, batches that contain
elements from all k lists. Pivots divide A into value-disjoint batches.
Each batch is transferred to the GPU to generate a sorted list, which
is transferred back to main memory. Merging on each batch is
performed by performing a pairwise merge k — 1 times. The output
is the concatenation of the output of each batch.

Hybrid Algorithm: As with the previous algorithms, we split the
work between CPU and GPU, by assigning a fraction of the ny
batches to each architecture.

4.1.4  Partitioning. Let A be an unsorted list of n elements, that is
partitioned into k nearly equal sized value-disjoint buckets (A1, Az,
..., Ag). The lower bounds for partitioning n elements into k buck-
ets is O(nlogk) in the RAM and O(§ logy/p k) EM models. Re-

peatedly partitioning n into % buckets (which can be done in a
single I/O-efficient scan) achieves the external memory bound.

To enable I/O efficiency, we assign a local cache to each bucket
while reading the data. The caches are written to main memory
when they reach capacity. Each bucket requires a cache of a size
B such that it is partitioned into % buckets during a single scan.
Multiple scans are required if k > %.  is the number of buckets
partitioned at each scan.

CPU-only Algorithm: The CPU algorithm performs a series of
passes; at each pass, each partition is further split into y sub-
partitions. [logy k] passes are needed. Since the ideal choice of
1t depends on the size of the CPU cache system, we empirically de-
termine the choice of y in Section 5.5. During each pass, each CPU
thread computes a subset of the input, A, and stores a thread-local

3For illustrative purposes, and without the loss of generality, we assume k evenly
divides n.



cache for each bucket. As A is scanned, threads write their buckets
to shared output in main memory. Each thread maintains y small
caches at each scan (we select 1024 elements per cache). Each of
the p threads reads 2 elements and writes £ elements back at each
pass, for a total of 2n elements across all threads.

GPU-only Algorithm: k-way partitioning is simplified on the
GPU by sorting batches rather than bucketing, as there are efficient
sorting libraries for the GPU. First, k pivots are transferred HtoD.
Next, A is partitioned into nj batches that are sorted. Then, the
GPU determines which portions of the batch belong to each bucket
using a binary search. When the sorted batch is copied DtoH, the
data is copied into the associated bucket in main memory.
Hybrid Algorithm: As with the other algorithms, the CPU and
GPU are assigned independent batches to compute. The GPU com-
ponent writes the final buckets after each DtoH transfer of a batch
has completed. This eliminates overhead from merging two sets of
buckets (one for the CPU and GPU) at the end of the computation.

5 EVALUATION

5.1 Experimental Methodology

Our platform contains 2X Intel Xeon E5-2620 v4 CPUs, with 16
total physical cores, at a clock rate of 2.1 GHz, and 128 GiB of main
memory, equipped with a GP100 with 16 GiB of global memory.
Host code is compiled with the O3 optimization flag using the GNU
compiler. CPU code is parallelized using OpenMP [4]. GPU code is
written in CUDA 9.

The selected primitives span a large range of values of f (0.34 —
0.71). The throughput of all algorithms is independent of n, and
MWM and k-way partitioning algorithms are dependent on k. These
properties provide a good testbed for examining a range of data-
intensive workloads. We use 8-byte data elements and all results
are averaged over 5 trials. All preprocessing work, such as gen-
erating batches is included in the response time. For the batched
predecessor search, scan, and partitioning algorithms, n;=400 is
selected. MWM uses a batch size as a function of k; otherwise, the
batches may be too small which would add unnecessary overhead.

Configurations of the CPU-only, GPU-only, and hybrid algo-
rithms are described as follows. «CPU-only: 16 threads are exe-
cuted corresponding to the number of physical cores on our plat-
form. If an algorithm is memory-bound this allows it to saturate
main memory bandwidth, and if an algorithm is compute-bound, it
allows it to utilize all of the CPU cores. «GPU-only: ns==8 streams
with 8 CPU threads are used to enable saturating bi-directional
memory bandwidth over PCle. Each stream uses pinned memory
as a staging buffer of size 8 MiB to copy the data HtoD or DtoH.
The small size of the buffer reduces allocation costs [11]. «Hybrid:
The combined CPU/GPU-only algorithms above with 24 total CPU
threads. We oversubscribe the system with more threads than phys-
ical cores to permit memory bandwidth saturation and to exploit
all CPU cores.

5.2 Scan

We use scan as an example of a memory-bound algorithm that when
executed using the CPU and GPU may not offer any performance ad-
vantage over the CPU-only algorithm. Using the recipe in Section 3,
we obtain T,=3.313 and Ty=8.263 for n=4 x 10°. From Equation 1,

316

Total Memory Footprint 3n (GiB)

22.35 44.70 67.06 89.41 111.76
14 . - - 0.30
—&— CPU-only Model: 7OPU-only
121 —#—GPU-only -+ ®-+ Model: T4 0.25 1
—@—Hybrid —®— Model: TVPrer ’
101 3
= (.20
> <
5 200
g €015
= <
30.101
-
0.051
0.00 T T T
1 2 3 4 5
Size x107 (n) Size x10° (n)

Figure 3: Left: Response time vs. input size (n) comparing
CPU-only, GPU-only, and hybrid BPS algorithms, THYb71d,
TUPrer  and TCPU-0nly ywhere the total memory footprint,
3n, is plotted in GiB on the top horizontal axis. Right: Load
imbalance of the hybrid algorithm on the left.

we obtain f=0.71. Executing the hybrid algorithm with f=0.71, we
obtain Tj,=3.449 and c¢=1.47. Therefore, since Ty, > min(T, Tg), the
hybrid algorithm offers no performance gain over the CPU-only al-
gorithm. Consequently, we do not show response times and models
for scan, since the hybrid algorithm does not offer a performance
advantage. Scan is similar to that shown in Figure 1(b), where either
the CPU or GPU performs most of the computation, which limits
the potential of a hybrid algorithm.

5.3 Batched Predecessor Search

Using the recipe in Section 3, we model BPS using TUPPer THybrid
and T€PU-0nly We measure the CPU-only and GPU-only algo-
rithms for n=3 x 10° (the median value of n examined). The CPU-
only and GPU-only execution time is T,=7.122 s, and T4=7.804 s,
respectively. Using Equation 1, and computing r, and rso¢, we ob-
tain f=0.52. Using Equation 3, and executing the hybrid algorithm
with f=0.52, we obtain Ty, =4.750, yielding c=1.28. The values of
f and c are used in Equations 2 and 4 to compute TUPP¢T and
THYbrid for varying n. Since T, < min(Tg, T4) we expect that the
hybrid algorithm outperforms the CPU/GPU-only algorithms.

The CPU-only algorithm reads 2n elements and writes n ele-
ments from main memory, and in Equation 5 we set /=2 and m=1;
therefore, TCPU—O”ly:¥ + %8.

Figure 3 plots the response time vs. n for BPS, illustrating the
CPU-only, GPU-only and hybrid algorithm response times, the
hybrid modeled upper bound, hybrid model with contention, and
modeled CPU-only algorithm assuming saturated memory band-
width. We observe that there is a non-negligible difference between
THybrid and TUPPET Since the contention factor c=1.28, we expect
that contention would negatively impact performance. Interestingly,
comparing the measured CPU-only execution time to the model,
TCPU-only e find that the model significantly underestimates
the response time. This indicates that the algorithm performs sig-
nificant computation. Also, it explains why the hybrid algorithm
is able to achieve a speedup over the CPU-only algorithm (of up
to 1.56x), as memory bandwidth must not be fully saturated to



allow the GPU to perform its memory operations and achieve rea-
sonable performance gains. Furthermore, observe that the load
imbalance between the CPU and GPU components is fairly low
(< 25%), indicating that the model yields a good value of f*.

Note that the load imbalance varies with n in Figure 3 due to
non-uniform memory accesses (NUMA) that cause variation in
response times. For example, at n=10°, the response time is 1.71 s
with ¢ = 0.071 across the time trials. However, if we disable NUMA
and only use a single CPU socket (8 cores), the response time is
2.59 s with o = 0.019; thus, the standard deviation decreases at the
expense of reduced performance. We omit showing the performance
with NUMA disabled and associated standard deviation in future
experiments, as results are similar.

5.4 Multiway Merge

To develop the models, we use the recipe in Section 3 . Since the com-
plexity of MWM is O(nlogk), we need separate time measurements
for each value of k. For the following, we use n = 4 X 10° and set
np = &koo due to the amount of memory required to perform MWM
on the device®. For k=2, T,=4.532, T4=5.663, f=0.56, T,,=3.458, and
¢=1.36. For k=8, T,=9.072, Ty=5.949, f=0.40, T;,=4.631, and c=1.28.
For k=32, T,=14.093, Ty=7.304, f=0.34, T,=6.026, and c=1.26. For
all values of k, since T, < min(T, T;), we expect that the hybrid
algorithm outperforms the CPU/GPU-only algorithms.

The CPU-only algorithm reads and writes n to and from main
memory. Therefore, using Equation 5, we set [I=m=1, and obtain
TCPU—only _ns8 + n_%l

(o2 w

Figure 4 shows runtimes for our CPU-only, GPU-only, and hybrid
algorithms along with the modeled values TCPU-only THybrid
and TUPPET We show k € {2,8,32} in Figure 4(a), (b), and (c),
respectively. When k=2 we find the runtimes of the CPU-only and
GPU-only algorithm are quite similar. Thus, we expect that an
even split of the work between architectures will yield a moderate
speedup over either of the single-architecture algorithms. The low
load imbalance shown in Figure 4(a) shows that this is the case.
Consequently, we find an average speedup of 1.39x over the CPU-
only algorithm, and an average speedup of 1.69x over the GPU-only
algorithm. Despite this, we observe the non-negligible impact of
contention (¢ = 1.36) means T"¥?7%d js much larger than TUPPe",
and peak performance cannot be achieved.

In Figure 4(b), the results for k=8 are shown. We note the degra-
dation in CPU-only performance due to the non-constant factor in
the complexity of MWM. T€PU-0nY jllystrates the impact of this
factor; our generalized CPU-only model assumes that computation
is free, yielding fixed values of TCPU=9"1Y across different values
of k. The performance of the GPU-only algorithm is independent
of k, indicating the bandwidth of the PCle interconnect is a bottle-
neck for performance. Observe the low load imbalance across each
value of n, demonstrating that our model’s value of f=0.40 evenly
distributes the batches across different architectures. We observe
that the hybrid algorithm achieves an average speedup of 1.82x

4Load imbalance is computed as: | Tcpy — Tgpu |/T, where Tepy and Tgpy are
the times when the CPU and GPU finish executing their batches, respectively, and T
is the total response time.

SBecause we do pairwise merging, for each CUDA stream we allocate memory for
2-k- % 64 bit integers. Therefore, the value of ny, is a function of k rather than a

constant.

317

Total Memory Footprint 2n (GiB)
14.9 29.8 44.7 59.6 74.5 89.4 104.3119.2

14 0.30
—=— CPU-only Model: TCPU=omly
121 —4—GPU-only - @+ Model: T*vbrid 0.951
—e—Hybrid — ®— Model: TVrrer :
101 809
_ £ 0.201
L 8 ©
g £ 0.151
= 5
n 3010
21 0.051
0 - — 0.00 +—¥—————
1 2 3 4 5 6 7 8 123456738
Size x107 (n) Size x10° (n)
(a)
Total Memory Footprint 2n (GiB)
14.9 29.8 44.7 59.6 74.5 89.4 104.3119.2
25 0.30
—=— CPU-only Model: 7CPU=omly
—4— GPU-only -~ @-+ Model; 774"t 0.251
201 —e—Hybrid - ®— Model: TUrer :
_ £ 0.201
=151 2
2 £0.157
= 101 2
1 8010
4 ,_O"—.—
0 - 0.051
0F— - 0.00 +——————
1 2 3 4 5 6 7 8 123456738
Size x107 (n) Size x10° (n)
(b)
Total Memory Footprint 2n (GiB)
14.9 29.8 44.7 59.6 74.5 89.4 104.3119.2
35 0.30
—=— CPU-only Model: 7CPU=orly
301 —#—GPU-only -- ®-- Model: T"rid 0.254
—@—Hybrid  —®= Model: 77" ’
B £ 0.20
2201 ©
2 £0.157
F 159 5
3 0.101
10 _.___._,—4 -~
51 — —-e—" 0.054
0= B 0.00 44—
1 2 3 4 5 6 7 8 123456738
Size x107 (n) Size x10° (n)
(©

Figure 4: Left: Response time vs. input size (n) compar-
ing CPU-only, GPU-only, and hybrid MWM algorithms,
THybrid TUpper and TCPU-0nly ywhere the total memory
footprint, 2n, is plotted in GiB on the top horizontal axis.
Right: Load imbalance of the hybrid algorithm on the left.
In (a), (b), and (c), we show k=2, 8, and 32, respectively.

over the CPU-only algorithm, and an average speedup of 1.28x
over the GPU-only algorithm. Similar to when k=2, contention
is a non-negligible factor in runtime performance; thus, optimal
performance, TVPP€"  is not achieved.



Table 1: Measured times and computed parameters for par-
tition with n=3 x 10°, and ;=32 for the CPU algorithm.

Kk T, Ty F Th 3
256 12.07 8.97 0.426 6.86 1.33
1024 12.51 9.11 0.421 6.91 1.32
4096 12.97 9.26 0.419 7.03 1.34

When k=32, the O(nlog k) complexity further degrades CPU-
only performance, and our model yields f=0.34. With a large major-
ity of the work being done on one of the architectures, MWM resem-
bles an algorithm shown in Figure 1(b), and a negligible speedup
over the GPU-only architecture is to be expected. However, since
T, < min(T, Ty), we expect that the hybrid algorithm outperforms
the CPU-only and GPU-only algorithms, as shown in Figure 4(c).
Across all values of n, an average speedup of 2.26x over the CPU-
only algorithm, and an average speedup of 1.20x over the GPU-only
algorithm is shown. The low load imbalance indicates that f=0.34
determines an appropriate batch distribution between the CPU and
GPU. As the memory contention factor c=1.26 is large, there is a
notable difference between THY7id ang TUPPET

5.5 Partitioning

As discussed in Section 4.1.4, our CPU partitioning algorithm relies
on the additional parameter, y, that determines the number of
rounds (and therefore amount of work) that the CPU must perform.
Since the ideal choice of i depends on the CPU hardware features,
we measure this value empirically on our platform and determine
that y=32 provides the best average performance on a range of k
values. Thus, on our platform we use p=32 for all experiments.

As with MWM, the complexity of partition depends on k (the
CPU-only algorithm is O(nlog " k)). Thus, we measure execution
times and compute parameters for several values of k, using n=3 X
10° and y = 32 for all measurements, with results listed in Table 1.
We see that the GPU performs partitioning somewhat faster across
all values of k. The ratio of CPU to GPU performance remains
somewhat consistent, so f and c are approximately the same for
all values of k (f ~ 0.42 and ¢ ~ 1.32).

For more detailed analysis, we focus on the case where k=1024
and compute T€PU=0n1Y ysing Equation 5. For this case, I=m=
log,, k=2, therefore TCPU-only _ % + % Figure 5 plots the
CPU-only, GPU-only, and hybrid response times vs. n for this case.
We observe a substantial difference between the modeled CPU-
only (TCPU-onlY) and measured response times, indicating that
partitioning is not memory bound on the CPU. Additionally, the
measured hybrid response time achieves a respectable fraction of
the upper bound throughput given by TUPPe",

5.6 GPU Computation Time: Effect of
Contention and Validation of Model
Assumptions

We have made several model assumptions in Section 3 that are used

to examine the research questions in Section 1. We describe and

validate two assumptions as follows.
Assumption 1: The ratio of the CPU-only to GPU-only throughput
is the same as the ratio of the CPU to GPU throughput of the hybrid

318

Total Memory Footprint 3n (GiB)

22.35 44.70 67.06 89.41  111.76
25 * - - 0.30
—&— CPU-only Model: TPV =only
—4— GPU-only - @-+ Model: T/vtrd 0.251
201 —e—Hybrid  — @~ Model: TV ’
[
£ 0.20
<
3
EO 15>—\//
o
8 0.101
-
0.051
0.00

1 2 3 4 5
Size x10° (n)

Size x107 (n)

Figure 5: Left: Response time vs. input size (n) comparing
CPU-only, GPU-only, and hybrid partitioning algorithms,
THybrid TUpper and TCPU-only yhere the total memory
footprint, 3n, is plotted in GiB on the top horizontal axis.
Right: Load imbalance of the hybrid algorithm on the left.

algorithm. This assumption allows us to select the fraction of work
assigned to the CPU and GPU (f), and develop the upper bound
hybrid model (TUPPT). It is possible that the throughput ratios
are not the same, due to unexpected performance behavior that
arises with contention for memory bandwidth (e.g., one hybrid
component is more resilient to contention than the other).

We hypothesize that contention from the CPU component of the
hybrid algorithm should decrease the rate at which GPU kernels
can be launched, as each kernel requires memory operations be
performed before execution (i.e., copying data into pinned memory
buffers, sending the data to the GPU, and copying data back to the
host). By comparing the total fraction of time executing kernels be-
tween the GPU-only and GPU component of the hybrid algorithm,
we can observe whether contention is decreasing the fraction of
time spent executing kernels in the hybrid algorithm.

The fraction of the total time executing kernels for the hybrid
algorithm is Ty /Tgpy, where Ty is the total time executing ker-
nels and Tgpy is time total time executing the GPU component
of the hybrid algorithm. Regarding the GPU-only algorithm, the
fraction is simply Ty /T, where T is the total algorithm response
time. Table 2 shows the fraction of time performing computation
across all algorithms for median values of n in the experiments. The
fraction of time performing computation in the hybrid algorithm
is less than the GPU-only algorithm. This is because memory con-
tention decreases the rate at which kernels can be launched. Thus,
contention reduces the GPU’s ability to perform computation.

Observe that the ratio of time performing computation in the
GPU-only to hybrid algorithms is roughly consistent with the mod-
eled values of ¢ in all algorithms (i.e., for BPS, the ratio is 1.25 and
¢=1.28). We expect these to be consistent if the assumption was
correct; therefore, we believe that this model assumption is verified
through this experiment.

Assumption 2: Computation on the GPU is assumed to be nearly
negligible because the cost of transferring data to and from the GPU
dwarfs GPU computation cost. This assumption can be validated
by simply examining the fraction of time computing on the GPU
relative to the total execution time of the GPU-only algorithm.



Table 2: Fraction of time spent executing kernels comparing
GPU-only to hybrid algorithms for each primitive (exclud-
ing scan), the ratio of the GPU-only to hybrid computation
times, and the modeled values of ¢ that indicate contention.

Algorithm n (x10°) | GPU-only | Hybrid | Ratio c
BPS 3 0.065 0.052 | 125 | 1.28
MWM (k=2) 4 0.030 0024 | 125 | 136
MWM (k=8) 4 0.077 0.065 | 1.18 | 1.28
MWM (k=32) 4 0.295 0235 | 1.26 | 1.26
Partition (k=1024) 3 0.096 0063 | 153 | 132
8
6 .
= Figure 6: Total BPS response
g4 time vs. the number of batches,
[ np, for n=4.0 x 10°. We omit
2 . .
showing the other algorithms
(e as results are similar.

T

o
m B o o
I3

—

=)
<

Number of Batches ()

T
o o
S OO
0 © O
—

Table 2 supports this assumption, as GPU computation is a small
fraction of the total response time in each algorithm.

5.7 Performance Impact of Batching

We split the work into several independent batches. Each batch
computes some fraction of the total work, and as explained in
Section 4, we set n, =400 in all experiments except for MWM, where
we set nb:’ﬂkﬁ (Section 5.4). Figure 6 plots the response time of
BPS vs. ny,. The response time roughly decreases with increasing
np. Thus, a small number of batches degrades performance due
to load imbalance. The response time is roughly independent of
np when n; > 400 indicating that the use of many independent
batches does not degrade performance.

5.8 Accuracy of Splitting the Work

Figure 7 illustrates how well the model splits the work between the
CPU and GPU by executing each primitive that should employ the
hybrid algorithm (BPS, MWM, and partitioning) for varying values
of the fraction of work computed on the CPU (f). We use n=4 x 10°
for all algorithms. In the figure, Tcpy and Tgpy correspond to
the times at which the CPU and GPU complete computing their
batches. We find that across all algorithms, the value of f shown
by the vertical dashed line, yields an efficient distribution of work
between architectures, as each architecture completes its work at
roughly the same time. Additionally, this experiment validates our
model assumption that the ratio of the throughput achieved on
CPU-only to GPU-only algorithms is consistent with the ratio of
the CPU and GPU components of the hybrid algorithms.

5.9 Discussion: Comparison with Prior Work

As discussed in Section 1, the prior work of Gowanlock et al. [12]
only considered a model that splits the work between the CPU and
GPU, which (i) assumed that algorithms saturate main memory
bandwidth; (ii) assumed that computation was free; and (iii) did not
consider contention. In contrast, we find the following: (i) memory

319

Table 3: Speedup of the hybrid over CPU/GPU-only algo-
rithms averaged across all values of n in Figures 3-5.

Algorithm f ¢ | CPU-only | GPU-only
BPS 0.52 | 1.28 1.44x 1.68%
MWM (k=2) 056 | 136 1.39% 1.69%
MWM (k=8) 0.40 | 1.28 1.82x 1.28x
MWM (k=32) 0.34 | 1.26 2.26X 1.20%
Partition (k=1024) 0.42 | 132 1.79% 1.36%

bandwidth was not saturated on the three hybrid database primi-
tives explored in their work; (ii) computation has a non-negligible
cost; and, (iii) contention plays a significant role in degrading hy-
brid algorithm performance.

To elaborate on the above, Figure 6 in Gowanlock et al. [12]
shows high load imbalance in the multiway merge algorithm due to
their assumption that computation is free. In contrast, our proposed
model is able to accurately predict the response time of the multiway
merge algorithm. From our analysis, we know that computation
is minimal when k=2, but has a significant impact when k=32;
therefore, this explains the poor load imbalance in their work.

Comparing Figure 7 in our paper to Figure 9 in Gowanlock et al. [12],
we find that their model achieves a good distribution of work be-
tween CPU and GPU. We believe that their model is accurate for
the wrong reasons. Overall, comparing the load imbalance of the
individual algorithms between our work and Gowanlock et al. [12],
we find that our algorithms typically achieve lower load imbalance.

6 CONCLUSIONS

We conclude by answering the questions outlined in Section 1.

Are data-intensive workloads amenable to heterogeneous archi-
tectures? We examined four data-intensive algorithms that are at
first glance unsuitable for execution on the GPU. Our results show
that there are substantial performance benefits to using a hybrid
CPU/GPU approach (see Table 3).

Is main memory bandwidth saturated by canonical algorithms?
The BPS, MWM, and partitioning primitives did not saturate mem-
ory bandwidth. The scan algorithm is able to saturate main memory
bandwidth, but it is unsuitable for a hybrid execution.

What algorithm properties indicate that they will yield good perfor-
mance when executed in a hybrid fashion? From Table 3, MWM with
k=32 has the lowest value of f and has the smallest contention fac-
tor ¢, indicating that it is highly amenable to execution on the GPU.
In contrast, MWM with k=2 yields the highest value of f in Table 3
and has the largest contention factor ¢, which indicates that it is
more amenable to the CPU. Therefore, f and c are correlated. We
find that algorithms with random memory accesses, that perform
significant computation, and that have low contention, are able
to best exploit the GPU. Algorithms with linear memory accesses,
such as scan perform best on the CPU. Hybrid algorithms require
relatively low memory contention, such that the GPU can perform
its operations without substantially reducing CPU throughput, and
we observe this occurs when f < 0.5. If f is too low, then the
contribution of the CPU to the hybrid algorithm is minimal.

To what extent does memory contention degrade the performance
of a hybrid algorithm? Excluding scan, we found that the average
slowdown across all values of n of the hybrid algorithm relative



1 1 1 .
E E E ,,rt‘ﬂm —— Total time
=10 ! ! ! od r
2 L e | e Tery
E = i ;s’-""" L Trprr
=5 vt “"“-o-o'ﬁ-s i’ GPU
i i
0 H !
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
/ f i
(a) BPS (b) MWM (c) Partitioning

Figure 7: Accuracy of splitting the work shown as the total response time vs. the fraction of work assigned to the CPU, f. A
value of f=0 indicates that all work is assigned to the CPU, whereas f=1 indicates that all work is assigned to the GPU. The
modeled value of f is shown as the vertical dashed line. Tcpy and Tgpy correspond to the times at which the CPU and GPU
complete computing their batches. MWM is configured with k=8; partitioning is configured with =32 and k=1024.

to the upper bound modeled throughput was 0.73x-0.80%. Thus,
contention has a non-negligible impact on performance.

Future work includes examining new host-device interconnects
and multi-GPU systems. Only two GPUs are needed to saturate
main memory bandwidth with NVLink 2.0 [20] which will increase
memory pressure, and thus contention. This will limit the efficacy
of using multi-GPU systems for data-intensive workloads. Given
the heterogeneous nature of emerging computing systems, new
techniques need to be considered to overcome these performance
limitations. Other future work includes comprehensively examining
the impact of NUMA on the performance of the hybrid algorithms.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grant No. 1849559 and Fonds de la Recherche
Scientifique-FNRS under Grant no MISU F 6001 1.

REFERENCES

[1] Alok Aggarwal and Jeffrey Vitter. 1988. The input/output complexity of sorting
and related problems. CACM 31, 9 (1988), 1116-1127.

Kyle Berney, Henri Casanova, Alyssa Higuchi, Ben Karsin, and Nodari Sitchinava.
2018. Beyond Binary Search: Parallel In-Place Construction of Implicit Search
Tree Layouts. In Proc. of the 32nd IEEE Intl. Parallel and Distributed Processing
Symp. (IPDPS). 1070-1079.

Michael Boyer, Jiayuan Meng, and Kalyan Kumaran. 2013. Improving GPU
performance prediction with data transfer modeling. In IEEE Intl. Symp. on Parallel
& Distributed Processing, Workshops and Phd Forum. 1097-1106.

Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff
McDonald. 2001. Parallel programming in OpenMP. Morgan Kaufmann.

Abdul Dakkak, Cheng Li, Jinjun Xiong, Isaac Gelado, and Wen-mei Hwu. 2019.
Accelerating Reduction and Scan Using Tensor Core Units. In Proc. of the ACM
Intl. Conf. on Supercomputing (Phoenix, Arizona) (ICS ’19). 46-57.

Shuai Ding, Jinru He, Hao Yan, and Torsten Suel. 2009. Using Graphics Processors
for High Performance IR Query Processing. In Proc. of the 18th Intl. Conf. on
World Wide Web. 421-430.

Steven Fortune and James Wyllie. 1978. Parallelism in random access machines.
In Proc. of the tenth annual ACM Symp. on Theory of Computing. 114-118.
Henning Funke, Sebastian Bref3, Stefan Noll, Volker Markl, and Jens Teubner.
2018. Pipelined Query Processing in Coprocessor Environments. In Proc. of the
2018 Intl. Conf. on Management of Data (Houston, TX, USA). 1603-1618.

Phillip B Gibbons, Yossi Matias, and Vijaya Ramachandran. 1996. The queue-read
queue-write asynchronous PRAM model. In European Conf. on Parallel Processing.
Springer, 277-292.

Phillip B Gibbons, Yossi Matias, and Vijaya Ramachandran. 1997. The Queue-Read
Queue-Write PRAM model: Accounting for contention in parallel algorithms.
SIAM J. Comput. (1997), 638—648.

Michael Gowanlock and Ben Karsin. 2019. A Hybrid CPU/GPU Approach for
Optimizing Sorting Throughput. Parallel Comput. 85 (2019), 45-55.

Michael Gowanlock, Ben Karsin, Zane Fink, and Jordan Wright. 2019. Accel-
erating the Unacceleratable: Hybrid CPU/GPU Algorithms for Memory-Bound

[10

[11

[12]

320

Database Primitives. In Proc. of the 15th Intl. Workshop on Data Management on
New Hardware. Article 7, 11 pages.

Steffen Heinz and Justin Zobel. 2003. Efficient single-pass index construction
for text databases. Journal of the American Society for Information Science and
Technology 54, 8 (2003), 713-729.

[14] Justin Hensley, Thorsten Scheuermann, Greg Coombe, Montek Singh, and
Anselmo Lastra. 2005. Fast summed-area table generation and its applications.
In Computer Graphics Forum, Vol. 24. 547-555.

Yannis Ioannidis. 2003. Approximations in database systems. In Intl. Conf. on
Database Theory. Springer, 16-30.

Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2016. Limitations of intra-
operator parallelism using heterogeneous computing resources. In East European
Conf. on Advances in Databases and Information Systems. Springer, 291-305.
Ben Karsin, Henri Casanova, and Nodari Sitchinava. 2015. Efficient batched
predecessor search in shared memory on GPUs. In 2015 IEEE 22nd Intl. Conf. on
High Performance Computing (HiPC). 335-344.

Andrew Kerr, Gregory Diamos, and Sudhakar Yalamanchili. 2010. Modeling GPU-
CPU workloads and systems. In Proc. of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units. 31-42.

Kishore Kothapalli, Rishabh Mukherjee, M Suhail Rehman, Suryakant Patidar, PJ
Narayanan, and Kannan Srinathan. 2009. A performance prediction model for
the CUDA GPGPU platform. In IEEE Intl. Conf. on High Performance Computing.
463-472.

Clemens Lutz, Sebastian Bref3, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Intercon-
nects. In Proc. of the ACM SIGMOD Intl. Conf. on Management of Data. 1633-1649.
Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous
Computing Techniques. ACM Comput. Surv. 47, 4, Article 69 (2015), 35 pages.
NVIDIA. 2017. Volta. http://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf Accessed: 31-01-2019.

PCI-SIG. 2017. PCI-SIG DevCon 2017 Update. https://pcisig.com/sites/default/
files/files/PCI-SIG%20DevCon%202017%20Press%20Deck.pdf Accessed: July 16,
2020.

D. Schaa and D. Kaeli. 2009. Exploring the multiple-GPU design space. In IEEE
Intl. Parallel & Distributed Processing Symp. 1-12.

Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D Owens. 2007. Scan
primitives for GPU computing. In Graphics hardware. 97-106.

Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Funda-
mental Performance Characteristics of GPUs and CPUs for Database Analytics
(Extended Version). arXiv preprint arXiv:2003.01178 (2020).

Johannes Singler and Benjamin Konsik. 2008. The GNU libstdc++ parallel mode:
software engineering considerations. In Proc. of the 1st Intl. workshop on Multicore
software engineering. 15-22.

David Taniar and ]. Wenny Rahayu. 2002. Parallel Database Sorting. Inf. Sci. 146,
1-4 (2002), 171-219.

Vassilis ] Tsotras and Nickolas Kangelaris. 1995. The snapshot index: an I/O-
optimal access method for timeslice queries. Information Systems 20, 3 (1995),
237-260.

Leslie G Valiant. 1990. A bridging model for parallel computation. Commun.
ACM 33, 8 (1990), 103-111.

Ben Van Werkhoven, Jason Maassen, Frank ] Seinstra, and Henri E Bal. 2014.
Performance models for CPU-GPU data transfers. In IEEE/ACM Intl. Symp. on
Cluster, Cloud and Grid Computing. 11-20.

Sai Zhang and Yuyin Sun. 2013. Automatically synthesizing SQL queries from
input-output examples. In 2013 28th IEEE/ACM Intl. Conf. on Automated Software
Engineering (ASE). IEEE, 224-234.

[13]

[15]

[16]

(17]

(18]

(19]

)
—

™
2

(28]

[29

(30]

(31]

[32


http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://pcisig.com/sites/default/files/files/PCI-SIG%20DevCon%202017%20Press%20Deck.pdf
https://pcisig.com/sites/default/files/files/PCI-SIG%20DevCon%202017%20Press%20Deck.pdf

