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Abstract—In recent years, deep neural networks have achieved
state-of-the-art performance in a variety of recognition and
segmentation tasks in medical imaging including brain tumor
segmentation. We investigate that segmenting a brain tumor is
facing to the imbalanced data problem where the number of pixels
belonging to the background class (non tumor pixel) is much
larger than the number of pixels belonging to the foreground
class (tumor pixel). To address this problem, we propose a multi-
task network which is formed as a cascaded structure. Our model
consists of two targets, i.e., (i) effectively differentiate the brain
tumor regions and (ii) estimate the brain tumor mask. The first
objective is performed by our proposed contextual brain tumor
detection network, which plays a role of an attention gate and
focuses on the region around brain tumor only while ignoring the
far neighbor background which is less correlated to the tumor.
Different from other existing object detection networks which
process every pixel, our contextual brain tumor detection network
only processes contextual regions around ground-truth instances
and this strategy aims at producing meaningful regions proposals.
The second objective is built upon a 3D atrous residual network
and under an encode-decode network in order to effectively seg-
ment both large and small objects (brain tumor). Our 3D atrous
residual network is designed with a skip connection to enables the
gradient from the deep layers to be directly propagated to shallow
layers, thus, features of different depths are preserved and used
for refining each other. In order to incorporate larger contextual
information from volume MRI data, our network utilizes the
3D atrous convolution with various kernel sizes, which enlarges
the receptive field of filters. Our proposed network has been
evaluated on various datasets including BRATS2015, BRATS2017
and BRATS2018 datasets with both validation set and testing
set. Our performance has been benchmarked by both region-
based metrics and surface-based metrics. We also have conducted
comparisons against state-of-the-art approaches.1

I. INTRODUCTION

With an estimation of 86,970 brain tumor patients in the
United States (US) in 2019 and about 700,000 people in the
US are living with a primary brain tumor. Brain tumor has
become the highest per-patient initial cost of care for any
cancer group. They can be deadly, significantly impact quality
of life, and life-altering for a patient and their loved ones.
Magnetic resonance imaging (MRI) and computed tomogra-
phy (CT) scans are two popular imaging tests for brain or
spinal cord tumor diagnosis. Different from CT scans which
focus on skulls, MRI scans are very good for looking at the
brain and spinal cord, which are considered the best way

1Code and models will be available upon the request

to look for tumors in these areas. Current recommendations
for standardized brain tumor MRI contrast modes are: Fluid
attenuation inversion recovery (FLAIR) which pronounces
whole tumor, spin-lattice relaxation T1-weighted (T1), pin-
spin relaxation T2-weighted (T2) which pronounces tumor
core, T1-weighted contrast-enhanced (T1c) which pronounces
enhancing tumor structures. From large amounts of MRI
images generated during clinical routine, manually detecting,
segmenting brain tumors for cancer diagnosis is costly and
time consuming. In addition to being diffused, poorly con-
trasted, and extended tentacle-like structures, brain tumors can
appear anywhere in the brain and vary in their shape, size
and structure. Furthermore, tumor mass effect [1] caused by
the variety of appearance of surrounding normal tissues also
makes the problem of brain tumor segmentation become more
challenging. Thus, the task of automatically segmenting brain
tumor is very challenging.

Our proposed multi-task network for automatically
detecting & segmenting brain tumor is based on the
following observations:

• Brain tumor regions only occupy small parts of the
brain image, thus, it is computationally expensive and
unproductive if segmentation task is preformed at every
single pixel over the entire brain image because the
segmentation task is a pixel-level processing.

• Brain tumor segmentation is considered as a binary
classification at pixel level where each pixel is classified
as either tumor pixel (foreground) or not tumor pixel
(background). Under this problem setting up, the number
of pixels belonging to foreground class is quite small
compared to the number of pixels belonging to back-
ground class. This imbalanced data problem makes the
requirement of high accurately segmenting brain tumor
become more difficult.

• Brain tumor contains three components i.e. Whole tumor
(WT), Tumor Core (TC), Enhancing Tumor (ET). These
components are nested and structured with strong corre-
lation.

• Most existing deep networks cannot directly propagate
the gradient information from deep layers to shallow
layers because of the convolutional layer between features
of different resolutions.
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• The existing networks [2]–[7] have been successfully
applied to medical imaging but may face to the vanishing
problem once going too deep.

Our contribution can be summarized as follows:
• Propose a multi-task network where the first task aims at

localizing the region of interest in order to solve the class
imbalanced data problem by eliminating redundant
background pixels which are less correlation with brain
tumor region.

• Propose a contextual detection network which only
processes contextual regions around the ground-truth of
brain tumor instances instead of processing every single
pixel in an image pyramid. The proposed contextual
detection network helps to effectively generate more
meaningful region proposals with less time consuming.
Our contextual detection network plays a role of an
attention gate that pays attention to the brain tumor region
and its near neighbors whereas its far neighbors like black
background will be ignored.

• To learn larger contextual information, our network
makes use of 3D atrous convolution, which controls the
field-of-view and finds the best trade-off between accurate
localization and context assimilation.

• In order to extract higher feature with deeper network,
our network is designed with skip connections under a
residual network to avoid the vanishing problem as well
as enable the gradient from the very deep layers to be
directly propagated to shallow layers.

II. RELATED WORK

Brain tumor segmentation is the division and classifi-
cation of brain tumor tissue into four tumor components:
edema (whole tumor), non-enhancing solid core (tumor core),
necrotic/cystic core, and enhancing core.

Machine learning and image processing have been used
to solve the problem of brain tumor segmentation. Support
Vector Machines was effectively used to segment brain tumor
in [8] whereas [9] incorporates Conditional random fields to
refine the segmentation. K-means is also a productive method
to address this issue such as in [10]. Among many image
processing approaches, Level Sets(LS) is one of the most
classic methods to segment brain tumor as in [11], [12].

In the last couple years, we have seen great deal of
deep learning which has become one of the most productive
methods in many areas [13]–[17], including segmenting brain
tumor [2], [3], [7], [18]–[22]. Havaei, et al. [18] proposed
one of the first deep network architecture for segmenting
brain tumors in the BRATS 2015 challenging. In order to
improve the performance and overcome the limitation of
training data, Convolutional Neural Networks (CNNs) are
designed in a fashion which combines with other classification
methods or clustering methods [19]. Later, Pereira, et al.
[20] evaluated a 11-layered CNN architecture on BRATS
dataset by implementing small 3 x 3 sized filters in the
convolutional layers, thereby reducing the total number of
network parameters. Kamnitsas, et al. [22] were the first to

propose a patch-based 3D CNN for brain tumor segmentation.
Instead of processing MRI scans slice-by-slice as in previous
2D methods, 3D patches are extracted from each MRI channel
and fed through four 3D convolutional layers. Recently, Le, et
al. [7] made use of Gated Recurrent Unit to reform Level Set
curve evolution to successfully segment brain tumor. Their
network is built upon Fully Convolutional Network (FCN)
under recurrent network defined by Level Set curve evolution.
Cascaded network is classic yet powerful architecture network
that has boosted performance on various tasks and Wang, et
al. [23] proposed a cascaded anisotropic convolutional neural
networks where the whole tumor is segmented in the first step
and the bounding box of the result is used for the tumor core
segmentation in the second step. The enhancing tumor core is
then segmented based on the bounding box of the tumor core
segmentation result. Later, Wang, et al. [5] has demonstrated
the usefulness of using test-time augmentation which help to
improve CNNs’ performance for brain tumor segmentation. In
their proposed method, they also use different underpinning
network structures and augmented the image by 3D rotation,
flipping, scaling and adding random noise at both training and
test time. In order to robustly perform through aggregation
of predictions from a wide range of methods, Kamnitsas,
et al. [6] made use of Ensembles of Multiple Models and
Architectures (EMMA). This approach aims at reducing the
influence of the meta-parameters of individual models and the
risk of overfitting the configuration to a particular database.

One of the most successful deep network in medical
imaging is Unet proposed by Ronneberger, et al. [2]. Unet
consists of a downsampling FCN followed by an upsampling
FCN known as the network’s contractive and expansive paths.
Because of the U-Net’s success on BRATS, many other brain
tumor segmentation methods such as [4] and [3] further
modified the U-Net architecture for 3D convolution. 3D CNNs
with residual connections were also proposed in Deep Medic
[22] which is an another successful deep learning approach
in brain tumor segmentation. These 3D U-nets were shown to
outperform current 2D medical imaging segmentation models
in prostate and kidney segmentation, respectively.

III. PROPOSED NETWORK

Our proposed network is designed as a cascade structure
with two targets, namely, (i) reduce effect of the imbalanced
data problem by localizing the brain tumor region and re-
moving redundant background pixels which are far from the
tumor region and less correlated to the brain tumor region; (2)
effectively extract brain tumor pixels out of the background
and classify the tumor pixels as either enhancing tumor (ET)
or tumor core (TC) or whole tumor (WT). The first task
is performed through our proposed Contextual Detection
Network(in section III-A) whereas the second task is done
by our 3D Atrous Residual Network (in section III-B).

A. Contextual Detection Network

Our proposed contextual detection network is an extension
of SNIPER [24], which is based on Faster-RCNN implemen-



tation. Therefore, we first revise the well-known region-based
object detection networks including R-CNN, Fast-RCNN and
Faster-RCNN in section III-A1. We then detail our proposed
contextual detection network for detecting brain tumor region
in section III-A2.

1) Object Detection Networks: A revise: One of the most
important approaches to the object detection and object clas-
sification problems is Region-based CNNs [25], [26], [27],
[28]. R-CNN detector [25] is considered one of the primary
deep learning based object detection algorithms. In general,
R-CNN contains three steps: (i) generate a set of object
proposals; (ii) resize these proposals to fixed size; (iii) compute
object score for each proposal. This model is scale invari-
ant, but the computational cost for training and inference
is high. To address the computational bottleneck, Girshick
Ross [27] proposed Fast-RCNN to project region proposals
to a high level convolutional feature map and use the pooled
features as a semantic representation for region proposals.
In this approach, the convolutional layers are shared and
only lightweight fully connected layers are applied on each
proposal. Furthermore, to deal with objects of different sizes,
Fast-RCNN [27] performs an inference process at multiple
scales and the detecting results from multiple scales are com-
bined. Different from R-CNN where all proposal is resize to a
fixed size regardless large object or small object, Fast-RCNN
upsamples and downsamples every proposal in the image in
multiple scales. The Fast-RCNN is not only computationally
effective thanks to sharing the convolutional features, but also
better capture more contextual information at different scales.
It has become a well-known approach for object detection.
Fast R-CNN accelerates the detection network using the ROI-
pooling layer. However the region proposal step is designed
out of the network hence still remains a bottleneck.

Faster R-CNN [28] addresses this problem by introducing
the Region Proposal Network (RPN). A RPN is implemented
in a fully convolutional style to predict the object bounding
boxes and the object probability scores. In addition, the
anchors are defined with different scales and ratios to achieve
the translation invariance. The RPN shares the full-image
convolution features with the detection network.

Based on the aforementioned observations that brain tumor
regions occupy only a small part of the brain image, our target
is to process meaningful contextual regions instead of working
on every pixel of the whole image. In general, our detector
is an extension of Faster-RCNN [28] together inherits the
merits of both R-CNN [25] and Fast-RCNN [27] by generating
scale specific context-regions that cover maximum proposals
at a particular scale. Like Fast-RCNN, our detector classifies
all the proposals inside context-regions. Different from Fast-
RCNN which does not care about proposal size and performs
upsampling and downsampling at every proposal, our detector
does not upsample the image where there are large objects
and ignore all easy background regions like black region
surrounding brain for example. By doing those, our detector
is significantly faster than Fast-RCNN detector trained on an
image pyramid.

G
roundtruth

Fig. 1: Illustration of contextual detection. From left to right:
Given an image with groundtruth (left), positive window is
defined as contextual around groundtruth (middle) and nega-
tive windows which are not covered in the positive windows
(right). Each red circle is corresponding to center of each
proposal.

2) Contextual Detection Network: Working in similar fash-
ion to Faster-RCNN, our proposed network assign each pro-
posal generated by RPN five values corresponding to object
score, bounding box position (x, y, w, h). However, different
from Faster-RCNN which processes every pixel in a given
image, our detector targets to obtain more ”meaningful” pro-
posals as well as reduce time consumption during training
procedure by employing SNIPER detector [24]. There are
two components in the contextual detection network, namely,
proposals generation and label assignment as follows:

In order to generate positive proposals and negative pro-
posals, we first narrow down the searching space based on
groundtruth instances i.e. the brain tumor. In our detection
network, we focus on the brain tumor region and its near
neighbors instead of far neighbors which are less correlated to
the brain tumor or brain. At each scale si, a given image is first
resized to wi × hi, then partitioned into k1 × k2 pixel region
windows with the intervals of K = 4 pixels. As a result, we
obtain a two-dimensional array of windows at each scale. In
our contextual detection network, the positive proposals are
assumed to be in a positive windows and negative proposals
are assumed to be in a negative windows.

Positive windows generation: Different from p positive
chips selection in SNIPER [24], groundtruth proposals in our
detection network are created by union regions of whole tumor
(WT), tumor core (TC) and enhance tumor (ET). Thus, the
positive window is defined as a contextual region around the
groundtruth and the size of the positive window is as twice
as brain tumor groundtruth. An example of positive windows
generation is given in Fig.1(middle) where the groundtruth is
presented in green box and the positive window is presented
in blue box.

Negative Windows Generation: Although the positive
windows cover all the positive proposals, a significant portion
of the brain, which is not lesion and maybe considered to
be background, is not covered by them. Compare to the
lesion region, the background including brain background and
black background is much bigger. In order to avoid high
computation, a simple approach is to employ object proposals
to identify regions where objects are likely to be present. In
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Fig. 2: The architecture of our proposed multi-task contextual atrous residual network. There are 2 atrous convolutions i.e.
2× 2× 2, 3× 3× 3, are used. In this network, −−−−− represents a residual connection.

this step, we eliminate regions that does not contains any
object, simply the almost black background will be ignored.
Notably, object in this scenario is brain background but not
brain tumor. In order to obtains negative windows, we first
train a RPN which is setup as same as Faster-RCNN [28] for
small number of epoches over the entire training set to roughly
guide us in selecting regions which are likely to contain false
positives. If no proposals are generated in a major portion
of the image by RPN, then it is unlikely to contain an object
instance. At each scale, to generate negative windows, we first
eliminate all the proposals which have been covered in the
positive windows in the previous step, then greedily select all
the windows which cover at least P proposals (P is chose
as 2 in our experiments). An example of negative windows
generation is given in Fig.1(right) where the groundtruth is
presented in green box and the negative window is presented
in red box which are not covered in the positive windows.
Each red circle is corresponding to center of each proposal.

Training Detection Network: Our contextual detection net-
work is trained on aforementioned positive/negative windows
and based on the implementation of Faster-RCNN. During
training, we ignore proposals, which do not fall in either
positive windows or negative windows. That helps to remove
a large of number redundant proposals and just keep a small
number of valid proposals. Like Faster-RCNN, any proposal
which has an overlap greater than 0.5 with a ground-truth
box is marked as positive and assign bounding-box targets
for the proposal. In experiment, we generate 300 proposals
for each positive/negative window. For classification, we use
simple softmax cross-entropy loss.

B. 3D Atrous Residual Segmentation Network
This section describes how we design the proposed 3D

atrous residual network. The segmentation network takes the
detected result from our previous detector component which
is first extended on each direction an offset f = 6 and
then resized to W × H as the input. In the experiment, we
choose W = H = 64 as the width and the height of the
input. Let W × H × C × N as the input of segmentation
network, where C is the number of modalities and C = 4
corresponding to Flair, T1, T1ce, T2 and N is the batch size
and we choose N = 4 in our experiment. The entire proposed
network with two sub-networks corresponding to detection and
segmentation is given in Fig.2. There are four main basic
components in the segmentation network including vanilla
convolution layers, atrous convolution layers (a.k.a dilated
convolution), pooling layers and feature map concatenation.
Because the input of the network is 3D volumetric data, all
the convolution filters are 3D convolution filters. Particularly,
in the proposed segmentation network, the highest resolution
and half resolution layers are designed with vanilla convolution
whereas the quarter resolution layers are designed with 2× 2
and 3 × 3 atrous convolutions in order to learn long-range
representation. In the proposed deep learning framework, the
vanilla convolutions with small receptive field are used in
the shallower layers to learn local feature whereasthe atrous
convolutions with larger receptive field are used in the deeper
layers to learn longer range contextual information (global
feature) without the need for pooling. Atrous convolution
layers have been shown to decrease blurring in semantic
segmentation maps [29], [30].
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Fig. 3: The original ResNet block architecture (A), The
proposed resnet block (B)

The final feature map is a combination of intermediate
feature maps at different resolution. The depth of the feature
maps (at each resolution) keeps increasing (32, 64, 128, 256)
as shown in Fig.2 where the channel size of the final feature
map is = 32 + 64 + 128 + 256 = 480).

In computer vision, image segmentation is known as pixel-
level tasks which require large feature maps to keep the
resolution. Up-sampling strategy has been successfully ap-
plied to address the issue of high resolution in the pixel-
level task. The series of works including U-Net [2] CRLS
[16], CRRN [15], DRLS [7], 3D-Unet [22] have all shown
their capability in pixel-level tasks. However, such network
architectures still use convolution between features of different
scales (resolutions), which cannot preserve the representations.
Besides, they do not provide an up-sampling pathway to enable
features with large resolution and more semantic meaning. In
order to communicate between different resolution, features
from different depth are usually combined by concatenate
[31], residual connection [13]. However, features from deep
layers and shallow layers were not used for refining each other
in concatenating mechanism. Whereas residual blocks with
addition has problem when directly propagated from the very
deep layers to shallow layers. This problem is caused by the
convolutional layer between features of different resolutions.
As shown in Fig.3 (A), the skip connection in Resnet [13]
contains a convolutional layer with stride 2 to deal with the
inconsistency between the numbers of input channels and
output channels. In our proposed network, we concatenate
features of very different depths to the final output as shown in
Fig.3 (B). By concatenating features from different scales, the
semantic meaning of features are also preserved throughout
the whole network.

For the loss function, we make use of Dice coefficient which
is essentially a measurement of overlap between two samples.
This measure ranges from 0 to 1 where a dice coefficient of
1 denotes perfect and complete overlap. The dice loss can be
calculated as:

L(P,Y ) = 1− 2|P ∩ Y |
|P |+ |Y |

(1)

where 2|P∩Y |
|P |+|Y | is known as a dice coefficient. 2|P ∩ Y | rep-

resents the common elements between predicted mask P and
groundtruth mask Y . In our proposed method, we imperially
make use of soft dice loss which directly computes on the
predicted probabilities instead of thresholding and converting
them into a binary mask.

IV. EXPERIMENTS

A. Datasets

We evaluate the proposed method on three most recent
publicly available brain tumor datasets, i.e., BRATS 2015,
BRATS 2017 and BRATS 2018. The BRATS 2018 database
includes 68 validation MRI scans and 285 3D training MRI
scans, which are composed of 210 HGG scans and 75 LGG
scans. The BRATS 2017 database includes 47 validation MRI
scans and 285 3D MRI scans, which are simmilar the training
set in BRATS 2018. The BRATS 2015 database includes
110 validation MRI scans and 274 training MRI scans which
as composed of 220 HGG scans and 54 LGG scans. For
each scan, there are 4 available modalities, i.e., T1, T1C,
T2, and Flair. Each image is registered to a common space,
sampled to an isotropic 1mm × 1mm × 1mm resolution by
the organizers and has a dimension of 240 x 240 x 155 [32].
In the BRATS 2015 database, the tumor tissues are divided
into four classes, i.e., necrotic, edema, non-enhancing tumor,
and enhancing tumor. In the BRATS 2017, BRATS 2018
databases, the necrotic and non-enhancing tumors are grouped
into one category; therefore, there are only three tumor classes
in this database. To evaluate the effectiveness of the proposed
methods, we setting up the following experiments on both
validation and testing sets, namely, (i) BRATS 2018 online
testing set; (ii) BRATS 2017 online testing set; (iii) BRATS
2015 online testing set; BRATS 2017/2018 testing set. For the
experiments on validation set, we randomly select 67 scans
(42 HGG scans and 15 LGG scans) from all the 285 cases in
the BRATS2017/BRATS 2018 database to construct a local
validation subset. The remaining scans are utilized as the
training set.

B. Evaluation Metrics

The simplest evaluation metrics are True Positive, True
Negative, False Positive and False Negative. However, it is
hard to infer percentage of overlap between predicted seg-
mentation and ground truth images from the above metrics.
In this work, we evaluate the performance of the proposed
method using the following standard metrics as suggested
in BRATS challenge [32], [34]. The following metrics focus
on both area-based evaluation and surface-based evaluation.
The first evaluation, which makes use of area-based metrics,
compares the difference between the area of segmentation and
the groundtruth area. The second evaluation, which makes use
of surface-based metrics, compares the difference between the
contour of segmentation results and the groundtruth



Metrics BRATS 2018 BRATS 2017 BRATS 2015
WT TC ET WT TC ET WT TC ET

Area based

Dice score 86.4 82.5 78.2 85.9 82.2 74.2 90.4 82.3 72.4
Sensitivity-TPVF 95.4 88.0 82.8 95.8 85.8 79.3 92.1 83.4 76.2
Specificity-TNVF 98.7 99.6 99.8 98.5 99.6 99.8 91.3 82.2 73.1

Precision 87.8 86.9 84.9 86.7 85.3 78.3 88.4 86.5 74.3

Surface based Hauf 4.7 6.3 5.2 8.8 10.1 11.2 5.1 12.8 6.8
ASSD 1.03 1.93 2.48 1.06 2.23 2.94 0.95 2.35 3.46

TABLE I: The evaluation (%) of our proposed network with both area-based evaluation and surface-based evaluation on online
testing set of BRATS 2018, BRATS 2017, BRATS 2015 with all area-based metrics and surface-based metrics. WT: Whole
Tumor, TC: Tumor Core, ET: Enhancing Tumor.

Dice Hauf
WT TC ET WT TC ET

[3] 86.38 76.58 73.44 12.00 10.37 9.37
[23] 90.05 83.78 78.59 3.89 6.47 3.28
[7] 85.87 88.61 77.08 - - -
[6] 90.1 79.7 73.8 4.23 6.56 4.50
[5] 90.50 83.80 78.60 3.89 6.48 3.28
[33] 90.44 84.94 80.52 6.38 6.37 2.78
[3] 88.76 82.57 78.09 12.63 13.33 7.74

Ours 90.95 88.88 81.41 3.73 5.92 2.70

TABLE II: Performance of the proposed 3D Atrous Residual
Network with Contextual Detection and comparison to
state-of-the-art methods on BRATS 2018 validation set with
Dice score and Hausdorff (Hauf) distance. WT: Whole Tumor,
TC: Tumor Core, ET: Enhancing Tumor.

1) Area-based metrics: The similarity between pre-
dicted segmentation results and manual segmentation results
(groundtruth) can be assessed using overlap measures as
follows:
• Dice Score (DSC): The algorithm generates a predictions
P which is the segmentation of a tumor region from a
modality. P ∈ {0, 1} for each of the three tumor regions.
The corresponding experts’ consensus truth T ∈ {0, 1}
is obtained from ground truth images for each of the
regions. Evaluation metric Dice score is calculated as:
DSC(P, T ) = 2×|P1∧T1|

(|P1|+|T1|) , where ∧ is the logical AND
operator, | | is the size of the set (i.e., the number of
voxels belonging to it), and P1 and T1 represent the set
of voxels where P=1 and T=1, respectively. The Dice
score normalizes the number of true positives to the
average size of the two segmented areas. It is identical
to the F score (the harmonic mean of the precision recall
curve) and can be transformed monotonously to the
Jaccard score.

• Sensitivity(Sens): or the true positive rate is the value
representing the percentage of recognition of actual

value. This metrics is equivalent to Recall as well as is
know is true positive (TPVF), Sens(P, T ) = |P1∧T1|

|T1| .

• Specificity(Spec): or true negative rate is the value
representing the percentage of recognition of actual
negatives. Accuracy is the degree of closeness of
measurements of a quantity to its actual (true) value.
Specificity score is also known as true negative (TNVF),
Spec(P, T ) = |P0∧T0|

|T0| , where P0 and T0 represent
voxels where P = 0 and T = 0, respectively.

• Precision (Pre): Precision normalizes the volume of the
correctly segmented region over the volume of the result
of the segmentation, Pre(P, T ) = |P1∧T1|

|P1| .
Dice score, Sensitivity (TPVF), Specificity(TNVF), and

Precision are measures of voxel-wise overlap of the segmented
regions which are also known as area-based metrics.

2) Surface-based metrics: There are two common surface
metrics, namely, Hausdorff distance and ASSD (Average sym-
metric surface distance) as follows:
• Hausdorff distance (Hauf) is an evaluation metric that

calculates the distance between segmentation boundaries,
i.e., the surface distance. As shown by [32] Hausdorff
distance calculated for all points p on the surface δP1

of a given volume P1 the shortest least-squares distance
d(p,t) to points t on the surface δT1 of the other given
volume T1, and vice versa, finally returning the maximum
value over all d as defined below:

Hauf(P, T ) = max{ sup
p∈∂P1

inf
t∈∂T1

d(p, t), sup
t∈∂T1

inf
p∈∂P1

d(t, p)}

(2)
Hausdorff measure is highly sensitive to small outlying
subregions(outliers) because it returns maximum over
’all’ surface distances.

• ASSD (Average symmetric surface distance): ASSD is
calculated using surface voxels from two segmentations
P and groundtruth T . For each surface voxel from
segmentation P , the Euclidean distance to the closest
surface voxel of T is calculated. The ASSD is the average
of all distances calculated from P to T i.e. d(sp, ST ) and



Methods Dice Score Sensitivity
WT TC ET WT TC ET

Pereira et al [20] 78.0 65.0 70.0 - - -
Pavel et al [19] 83.0 75.0 77.0 - - -
Chang et al [35] 87.0 81.0 72.0 - - -
Deep Medic [21] 89.6 75.4 71.8 90.3 73.0 73.0

DMRes [22] 89.8 75.0 72.0 89.1 72.1 72 .5
Improved Unet [36] 85.0 74.0 64.0 91.0 73.0 72.0

DRLS [7] 88.0 82.0 73.0 91.0 76.0 78.0
FSENet [37] 85.0 72.0 61.0 86.0 68.0 63.0

Multi task [38] 87.0 75.0 65.0 89.0 85.0 63.0
Our 90.4 82.3 72.4 92.0 83.4 76.7

TABLE III: Comparison of our proposed 3D Atrous Residual Network against other methods on BRATS 2015 online testing
sets with Dice and Sensitivity metrics. WT: Whole Tumor, TC: Tumor Core, ET: Enhancing Tumor.

Dice Hauf
WT TC ET WT TC ET

Without Detection,
Only 3D Atrous Residual Network 90.25 85.78 79.59 3.81 6.14 2.98

Contextual Detection &
3D Atrous Residual Network 90.95 88.88 81.40 3.73 5.92 2.70

TABLE IV: Comparison between with and without contextual detection network on BRATS 2018 validation set: An ablation
to study the contribution of detection network. WT: Whole Tumor, TC: Tumor Core, ET: Enhancing Tumor.

from T to P i.e. d(st, SP ), where sp, st are points on
the surface and SP , ST are the total surface voxels in P
and T , repsectively.

ASSD =

(∑
sp∈SP d(sp, S

T ) +
∑

st∈ST d(st, S
P )
)

|SP |+ |ST |
(3)

C. Experimental Results

Our proposed 3D atrous residual network with contextual
detection is designed under a cascade structure and is evaluated
on both validation set and testing set of BRATS 2015, BRATS
2017, and BRATS 2018. There are four different experiments
conducted in this section: (i) BRATS 2017/BRATS 2018
validation set; (ii) BRATS 2017 online testing set; (iii) BRATS
2018 online vatestinglidation set; (iv) BRATS 2015 online
testing set. For each experiment, we consider three types of
tumors: whole tumor (WT), tumor core (TC), enhanced tumor
(ET) which are extracted from dataset at different modalities,
namely Flair, T2, T1c respectively.

Table I summarizes the performance of our proposed net-
work on three different online testing sets, i.e. BRATS 2018,
BRATS 2017, and BRATS 2015 on both area-based met-
rics and surface-based metrics. Table II provides the com-
parison between our performance against state-of-the-art on
BRATS2017/BRATS2018 validation set. In this table, the best
and second best scores are highighted. Compared to the state-

of-the-art, our proposed network achieve the best score in
most of the metrics. The comparison on BRATS 2015 online
testing set is given in Table III where the best and second
best are highlighted. In this test set, our proposed network
obtains competitive results compared against the state-of-the-
art networks. In this experience, we also conduct an ablation
to study the contribution of the detection network by reporting
the results on BRATS 2018 validation set in two cases: with
and without using the contextual detection network as shown
in Table. IV.

V. CONCLUSION

In this paper, we have proposed a novel cascaded deep
learning network approach for brain tumor detection and
segmentation. Our network contains two targets, namely, brain
tumor localization via our proposed contextual detection net-
work and brain tumor segmentation via our proposed 3D
atrous residual segmentation network. The proposed detector
is able to effectively generate more meaningful proposals
by only searching within the context-regions around ground-
truth instances instead of entire an image pyramid. Our
proposed network inherits the merits from both local and
global information by making use of 3D atrous convolution
with various kernel sizes without increasing the network size.
Furthermore, it enables the gradient from the deep layers
to be directly propagated to shallow layers through residual
connections. The experimental results have proved that our



proposed network outperforms other state of the art networks
and can be considered to be a cutting-edge solution.
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