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Abstract— Reinforcement learning (RL) is a technique to
learn the control policy for an agent that interacts with a
stochastic environment. In any given state, the agent takes
some action, and the environment determines the probability
distribution over the next state as well as gives the agent
some reward. Most RL algorithms typically assume that the
environment satisfies Markov assumptions (i.e. the probability
distribution over the next state depends only on the current
state). In this paper, we propose a model-based RL technique for
a system that has non-Markovian dynamics. Such environments
are common in many real-world applications such as in human
physiology, biological systems, material science, and population
dynamics. Model-based RL (MBRL) techniques typically try
to simultaneously learn a model of the environment from the
data, as well as try to identify an optimal policy for the learned
model. We propose a technique where the non-Markovianity
of the system is modeled through a fractional dynamical
system. We show that we can quantify the difference in the
performance of an MBRL algorithm that uses bounded horizon
model predictive control from the optimal policy. Finally, we
demonstrate our proposed framework on a pharmacokinetic
model of human blood glucose dynamics and show that our
fractional models can capture distant correlations on real-world
datasets.

I. INTRODUCTION

Reinforcement learning (RL) [1] is a technique to syn-
thesize control policies for autonomous agents that inter-
act with a stochastic environment. The RL paradigm now
contains a number of different kinds of algorithms, and has
been successfully used across a diverse set of applications
including autonomous vehicles, resource management in
computer clusters [2], traffic light control [3], web system
configuration [4], and personalized recommendations [5]. In
RL, we assume that in each state, the agent performs some
action and the environment picks a probability distribution
over the next state and assigns a reward (or negative cost).
The reward is typically defined by the user with the help
of a state-based (or state-action-based) reward function. The
expected payoff that the agent may receive in any state can
be defined in a number of different ways; in this paper,
we assume that the payoff is an discounted sum of the
local rewards (with some discount factor v € [0,1]) over
some time horizon H. The purpose of RL is to find the
stochastic policy (i.e. a distribution over actions conditioned
on the current state), that optimizes the expected payoff for
the agent. Most RL algorithms assume that the environment
satisfies Markov assumptions, i.e. the probability distribution
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Fig. 1. Non-Markovian Model Based Reinforcement Learning setup. The
model based predictions are used to select actions, and then iteratively
update the model dynamics.

over the next state is dependent only on the current state
(and not the history). In contrast, here, we investigate an RL
procedure for a non-Markovian environment.

Broadly speaking, there are two classes of RL algo-
rithms [6]: model-based and model-free algorithms. Most
classical RL algorithms are model-based; they assume that
the environment is explicitly specified as a Markov Decision
Process (MDP), and use dynamic programming to compute
the expected payoff for each state of the MDP (called its
value), as well as the optimal policy [7], [8]. Classical RL
algorithms have strong convergence guarantees stemming
from the fact that the value of a state can be recursively
expressed in terms of the value of the next state (called
the Bellman equation), which allows us to define an oper-
ator to update the value (or the policy) for a given state
across iterations. This operator (also known as the Bellman
operator) can be shown to be a contraction mapping [1].
However, obtaining exact symbolic descriptions of models
is often infeasible. This led to the development of model-
free reinforcement learning (MFRL) approaches that rely
on sampling many model behaviors through simulations and
eschew building a model altogether. MFRL algorithms can
converge to an optimal policy under the right set of as-
sumptions; however, can suffer from high sample complexity
(i.e. the number of simulations required to learn an optimal
policy). This has led to investigation of a new class of
model-based RL (MBRL) algorithms where the purpose is to
simultaneously learn the system model as well as the optimal
policy [2]. Such algorithms are called on policy, as the
policy learned during any iteration is used for improving the
learned model as well as optimizing the policy further. Most
MBRL approaches use function approximators or Bayesian
models to efficiently learn from scarce sample sets of system
trajectories. MBRL approaches tend to have lower sample
complexity than MFRL as the learned model can accelerate
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the convergence by focusing on actions that are likely to be
close to the optimal action. However, MBRL approaches can
suffer severely from modeling errors [9], and may converge
to less optimal solutions.

In both MFRL and MBRL algorithms, a fundamental
assumption is that the environment satisfies Markovian
properties, partly to avoid the complexity of dealing with
the historical dependence in transitions. To overcome this
challenge, we propose a non-Markovian MBRL framework
that captures non-Markovian characteristics through a frac-
tional dynamical systems formulation. Fractional dynamical
systems can model non-Markovian processes characterized
by a single fractal exponent and commonly arise in mathe-
matical models of human physiological processes [10], [11],
biological systems, condensed matter and material sciences,
and population dynamics [12]-[15]. Such systems can ef-
fectively model spatio-temporal properties of physiological
signals such as blood oxygenation level dependent (BOLD),
electromyogram (EMG), electrocardiogram (ECG), etc. [12],
[16]. The advantage of using fractional dynamical models
is that they can accurately represent long-range (historical)
correlations (memory) through a minimum number of pa-
rameters (e.g., using a single fractal exponent to encode
a long-range historical dependence rather than memorizing
the trajectory itself or modeling it through a large set of
autoregressive parameters). Though fractional models can
be used to perform predictive control [17], problems such
as learning these models effectively or obtaining optimal
policies for such models in an RL setting have not been
explored.

In this paper, we develop a novel non-Markovian MBRL
technique in which our algorithm alternates between in-
crementally learning the fractional exponent from data and
learning the optimal policy on the updated model. We show
that the optimal action in a given state can be efficiently
computed by solving a quadratic program over a bounded
horizon rollout from the state. The overview of our model-
based reinforcement learning algorithm is shown in Fig. 1.
In this algorithm, we use on-policy simulations to gather
additional RL data that is then used to update the model. Our
model learning algorithm is based on minimizing the distance
between the data’s state-action distribution and the next state
distribution induced by the controller. The fractional dynamic
model is then retrained using the cumulative dataset. The
MBRL procedure is run for a finite number of user-specified
iterations.

The rest of this paper is constructed as follows. We
present our problem statement in Section II. Section III
contains our proposed non-Markovian MBRL algorithm. We
demonstrate our experimental results in Section IV. In the
end, we conclude this paper with discussion and conclusion
in Section V.

II. PROBLEM FORMULATION

The reinforcement learning deals with the design of the
controller (or policy) which minimizes the expected total
cost. In the setting of a memoryless assumption, the Markov

Decision Process (MDP) [18] is used to model the system
dynamics such that the future state depends only on the
current state and action. For a state s; € R"™ and action
a; € RP, the future state evolve as s;1 ~ P(S¢11|st,a¢),
and a cost function r, = c(s;,a;). However, the Markov
assumption does not work well with the long-range memory
processes [19]. In this work, we take the non-Markovian
setting, or History Dependent Process (HDP), and hence,
the future state depends not only on the current action but
also the history of states. The history at time ¢ is the set
H: = {(sk)k<t}> and for a trajectory h € H;, we have
P(st41]h,as), or alternatively, Pp(s¢i1|st,a:), where the
terminal state of the trajectory h is written as h(t) = s;. We
consider a model-based approach for reinforcement learning
in a finite-horizon setting. A non-Markovian policy 7(.|h)
provides a distribution over actions given the history of
states until time ¢ as h € H,. For a given policy, the value
function is defined as V;7 = E(|p Ztl_ol c(st,at), where
the expectation is taken over state trajectories using policy
7 and the HDP, and T is the horizon under consideration.
We formally define the non-Markovian MBRL problem in
the SectionII-B.

A. Fractional Dynamical Model

A linear discrete time fractional-order dynamical model is
described as follows:

“s|k + 1] = As[k] + Balk], (D

where s € R” is the state, a € RP is the input action. The

difference between a classic linear time-invariant (or Marko-

vian) and the above model is the inclusion of fractional-

order derivative whose expansion and discretization for any
ith state (1 <14 < n) can be written as

k
A%is; Z

where «; is the fractional order corresponding to the ith
state dimension and 1 (ay, 5) % with T'(.)
denoting the gamma function. The system dynamics can also

be written in the probabilistic manner as follows:

(i, J)silk — j], 2

Po(s[k +1][s[0],.. ., s[k], a[k]) = N (e, 2),

Z;,:: V(ay, j)solk — j] + al's[k] + bf alk] + po

Y1 ¥, g)si[k — j] + af's[k] + bl alk] +
He = |:

Z] 1¢(O‘17 )Sn— 1[k—j]+a,TL_1s[k]

+bn—1a[k] + Hn—1
€)]

where 0 = {a,A,B,u, X}, and A = [ag,...,a,-1],

B = [bg,...,b,_1]. The fractional differencing operator
in (3) introduce the non-Markovianity by having long-range
filtering operation on the state vectors.
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B. Non-Markovian Model Based Reinforcement Learning

The actions in MBRL are preferred on the basis of
predictions made by the undertaken model of the system
dynamics. For many real-world systems, example blood
glucose [17], [20], ECG activities [11], the assumption of
Markovian dynamics does not hold and hence the predictions
are not accurate, leading to less rewarding actions selected
for the system. As we note in the previous section II-A that
non-Markovian dynamics can be effectively and compactly
modeled as fractional dynamical system, we aim to use this
system model for making predictions. The non-Markovian
MBRL problem is formally defined as follows.

Problem Statement: Given non-Markovian state transitions,
and actions dataset in the time horizon k € [0,7 — 1]
as D = {(s[0],...,s[k],a[k]),s[k + 1]}. Let Po(s[k +
1]|s[0],...,s[k],a[k]) be the non-Markovian system dy-
namics parameterized by the model parameters 6. Estimate
the optimal policy which minimizes the expected future
discounted cost
T—1
7% = argmin E Z vEe(s[k], a[k]), 4)
4 k=0

where ~ is the discount factor satisfying v € [0,1], and T is
the horizon under consideration.

III. NON-MARKOVIAN REINFORCEMENT LEARNING

The MBRL comprises of two key steps, namely (i) the
estimation of the model dynamics from the given data D, and
(if) the design of a policy for optimal action selection which
minimizes the total expected cost using estimated dynamics.
We discuss the solution to the non-Markovian MBRL as
follows.

A. Non-Markovian Model Predictive Control

The Model Predictive Control (MPC) aims at estimating
the closed-loop policy by optimizing the future discounted
cost under a limited-horizon H using some approximation of
the environment dynamics and the cost. In this work, we are
concerned with HDP using non-Markovian state dynamics.
In MPC, the policy could be a deterministic action, or a
distribution over actions, and we sample the action at each
time-step in the latter. The MPC problem to estimate the
policy at time-step k for a given h € Hj can be formally
defined as

. k+H-1
Inin D, el all)
subject to )

s[l+ 1] = f(h,a[l],e[l]), VI =k

The approximation of the environment dynamics f could
be non-linear in general, and e[l] is the system perturbation
noise following some distribution e ~ g.. The presence of e
provides randomness in the action sampling through policy,
and the sampled action at each step is a[k]. The performance
of the non-Markovian MPC based policy is bounded within
the optimal policy using the following result.

Theorem 1. Given an approximate HDP with || Py (s'|s, a)—
Pn(s'|s,a)|l1 < O(t?), Yh,h' € H; with h(t) = W' (t) = s,
and ||c(s,a) — ¢(s,a)||ew < €. The performance of the non-
Markovian MPC based policy 7 is related to the optimal
policy ™ as

T ¥ 1- ’YH Cmaz — Cmin
W%—%Ju<21_7( 5 >HOG%
1—~H 14T
yoe- 7 T 6)
1= 1-v

where, hg € Hq is the initial history given to the system.

The proof of Theorem 1 is provided in the full version
of the manuscript. The assumption of model approximation
is critical here, and the error increases if the exponent g
increases. For the MDP setting, the approximation is taken
as ¢ = 0. However, for a HDP with the history of length ¢,
we scale the approximation gap with ¢. The MPC horizon
also plays a role in the error bound, and the error increases
for larger H.

The non-Markovian MPC could be computationally pro-
hibitive (expensive) in the general setting. Consequently, we
now discuss the fractional dynamical MPC approach which
is non-Markovian but computationally tractable.

B. Fractional Model Predictive Control

The linear discrete fractional dynamical model as dis-
cussed in (1) is used as an approximation to the non-
Markovian environment dynamics. Formally, for our pur-
pose, the fractional MPC problem using (5) is defined as

. ktH-1

i D, e, al)

S.t. (7)

A“S[l + 1] = As[l] + Ball] + e[l],
s[k'] = s[k], V&' < k,Smin <5[l] < Smaq, V1,

where S,,in, Smas are feasibility bounds on the problem ac-
cording to the application, and the model noise e ~ A/(0, X).
Note that (7) provides a policy using fractional MPC. The
action a[k] is sampled from this policy by first sampling e ~
N(0,%), and then solving (7). The non-Markovian fractional
dynamics would introduce the computation complexities in
optimally solving the problem in (7). However, since the
constraints in (7) are linear, for cost approximations ¢ that
are quadratic, a quadratic programming (QP) solution can be
developed to solve the fractional MPC efficiently. We refer
the reader to the full version of the paper for the QP version
of the fractional MPC. Further, a convex formulation of the
costs ¢ also enables efficient solution of the fractional MPC
using convex programming solvers, for example, CPLEX and
Gurobi [21], [22].

Next, we discuss the methodologies required to make
an approximation of the non-Markovian environment using
fractional dynamics.
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C. Model Estimation

The fractional dynamical model as described in the Sec-
tionII-A is estimated using the approach proposed in [12]
by replacing the unknown inputs with known actions at
any time-step. For the sake of completeness, we present
estimation algorithm as Algorithm 1. We note that in [12]
the input data is obtained only once, and hence in this work
appropriate modification in Algorithm 1 is performed to work
with recursively updated dataset as we see in Section III-D.

Algorithm 1 Fractional_ Dynamics_Estimation
Input: D = {(s[0],...,s[k],a[k]),s[k + 1]} in the time-
horizon k € [0,T — 1]
Output: 0 = {o, A, B, u, 3}
1: Estimate o using wavelets fitting for each state dimen-
sion
2: fori=1,2,...,n do
3:  Compute z[k] = A% s[k + 1] using «;
4:  Aggregate z;[k], s[k], alk] as Z;, S, U
5. [al )b, u] =argrrgn||Zi—Sa—Ub—u|\§ with 3
a,b,u

> Eq.2

as squared error
6: end for

The Markovian model assume memoryless property and
hence lacks long-range correlations for further accurate
modeling. The existence of long-range correlations can be
estimated by computing the Hurst exponent H. For long-
range correlations, the H lies in the range of (0.5,1]. The
fractional coefficient o in our model is related with H as
a = H — 0.5. The Hurst exponent can be estimated from
the slope of log-log variations of the variance of wavelets
coefficients vs scale as noted in [23]. In the experiments
Section IV-B, we show log-log plot to observe the presence
of long-range correlations in the real-world data.

D. Model Based Reinforcement Learning

The non-Markovian MPC exploiting the fractional dynam-
ical model formulation in SectionIII-B utilizes a dataset of
the form D = {(s[0],...,s[k],a[k]),s[k + 1]} in the time-
horizon k € [0,7 — 1]. We note that the performance of
such MPC can be further improved by using reinforcement
learning. The selected actions by the MPC a[k]| can be used
to gather new transitions s[k + 1][s[0],...,s[k],a[k], or
acquiring data using on-policy. The aggregated data is now
used to re-estimate the model dynamics, and then perform
MPC. Specifically, the MBRL proceeds as follows: Using
the seed dataset, a parameterized fractional dynamics model
is learned as Py(s[k + 1]|s[0],...,s[k],a[k]). This model
is used to minimize the discounted future cost as MPC in
eq. (7). The selected action along with the history of states
s[0],...,s[k] is used to gather the next transition using on-
policy as s[k + 1]|s[0],...,s[k], a[k]. The seed dataset is
updated with the gathered on-policy data Dgy, to get aggre-
gated dataset. The fractional dynamics are updated using the
new dataset, and the aforementioned steps are repeated for
a given number of iterations. These steps are summarized as

Algorithm 2. The Algorithm 2 utilizes Algorithm 1 iteratively
for the fractional model estimation. Next, we discuss the
numerical experiments validation in SectionIV.

Algorithm 2 Fractional Reinforcement_Learning

Input: Seed dataset D, = {(s[0],...,s[k], a[k]),s[k + 1]}
in the time-horizon k € [0,7 — 1]

Output: 6

Initialize: Dpy, «— ¢

1: for iter = 1,2,...,iter_mazx do

2: O < Fractional Dynamics_Estimation(Ds U Dgr,)

3:  Set initial state S[0] <« s[0]

4 for k=0,1,...,T—1do

5: Sample action a[k] from the fractional MPC based

policy using s[I],VI < k > Eq.7

6 Get §[k + 1] by executing a[k]

7: Drr, < Drr, u{(§[O],...,é[k],a[k]),é[k+1]}
8 end for

9: end for

IV. EXPERIMENTS

We test the fractional MBRL on a blood glucose (BG)
control case study. BG control seeks to maintain the BG
within 70 — 180mg/dL range. BG control is crucial in the
treatment of T1 diabetes patients which have inability to
produce the required insulin amounts. The low levels of
glucose in the blood plasma is termed as hypoglycemia,
while the high levels is termed as hyperglycemia. For the
application of reinforcement learning, the cost function is
taken as risk associated with different levels of BG in the
system. In [24] a quantified version of risk is proposed as
function of BG levels which is written as follows.

f(b) = 1.509 x (log(b)*%* — 5.381),
R(b) = 10x (f(b)*. ®)
Next, the cost for the transition instance s[k +
1]1s[0], ..., s[k], a[k]) is written as
c(s[k], alk]) = R(s[k + 1]) — R(s[k]), 9)

where the state s[k] € R represents the BG level at time
instant k, and a[k] represents the insulin dose and R(.) is
from (8). In rest of the section, we experiment with simulated
and real-world dataset, respectively.

A. UVa TIDM Simulator

The UVa/Padova T1DM [25] is a FDA approved T1
Diabetes simulator which supports multiple virtual subjects(
we used an open-source implementation [26]). We take
similar simulation setup as in [27]. Each subject is simulated
for a total of 36 hours starting from 6 a.m. in the morning.
The meal timings/quantity are fixed as 50g CHO at 9 a.m.,
70g at 1 p.m, 90g at 5:30 p.m, and 25¢ at 8 p.m. On day
2, 50g at 9 a.m., and 70g at 1 p.m. The continuous glucose
monitor (CGM) sensor measures the BG at every 5 mins.
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Fig. 2.

Blood Glucose (BG) level with time, by implementation of fractional Reinforcement Learning Scheme as Controller, of two Adults in (a) and

(b). For each subject, the BG level trajectories are shown from left-to-right in the increasing number of RL iterations with leftmost, middle, and rightmost
are outputs at 5, 10, and 15 iterations. As RL iterations increase the MBRL scheme learns better policy and the BG level stays more in the desired level
of 70 — 180mg/d L. The percentage of time spend in different BG level zone is shown in tables below each plot.
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Fig. 3. Log-log plot of wavelet coefficients variance vs scale of two subjects
in (a) and (b). Slope « lies in (0, 0.5], indicating long-range memory.
For applying Algorithm2, we set the horizon length H
in MPC be 100 samples, discount factor v = 0.99. The
Smin, Smaz 11 MPC problem (7) are set as 70, 180 respec-
tively. The maximum number of RL iterations iter_mazx are
set as 30. We show the BG output of the simulator using Al-
gorithm 2 as controller in Fig. 2. We observe that the fraction
of time BG stays in the desired zone 70—180mg/dL increase
with increasing the learning iterations in the Algorithm 2.
The data gathered using on-policy helps the model making
better prediction, and with as few iterations as 15 we have
more than 90% of time BG stays in the desired levels.

B. Real-World Data

Testing the controllers on real-world systems is difficult
because of the health risks associated with the patients. We
take the Diabetes dataset from UCI repository [28] which
records the BG level and insulin dosage for 70 patients.
While testing controller is not possible here, hence we
present the analysis regarding the modeling part. The long-
range memory in the signals exist if the associated fractional
exponent lies in the range of (0, 0.5] as noted in Section III-
C. In Fig.3, we show the log-log plots of the variance
of wavelets coefficients at various scales, for two subjects.
We observe that the estimated value of « lies in (0,0.5]

which indicates presence of long-range memory, and hence
fractional models can be used to make better predictions.

V. CONCLUSION

There are many important learning control problems that
are not naturally formulated as Markov decision processes.
For example, if the agent cannot directly observe the envi-
ronment state, then the use of a partially observable Markov
decision process (POMDP) [29] model is more appropri-
ate. Even in presence of full observability, the probability
distribution over next states may not depend only on the
current state. A more general class can be termed as History
Dependent Process (HDP), which can be looked as infinite-
state POMDP [30]. Another non-MDP class for model-free
is Q-value Uniform Decision Process (QDP) [31]. The non-
Markovianity in the rewards structure is explored in [32],
[33] which utilize model-free learning, and RL for POMDP
is explored in [34] which is also model-free. MBRL is used
for various robotics application [35] in the MDP setting. The
deep probabilistic networks using MDP is used in [6].

In this work, we constructed a non-Markovian Model
Based Reinforcement Learning (MBRL) algorithm consisted
with fractional dynamics model and the model predictive
control. The current Reinforcement learning (RL) approaches
have two kinds of limitations: (i) model-free RL models
can achieve a high predict accuracy, but these approaches
need a large number of data-points to train the model; (ii)
current models don’t make latent behavioral patterns into
considerations which can affect the prediction accuracy in
MBRL. We show that our non-Markovian MBRL model can
validly avoid these limitations. Firstly, in our algorithm, we
gather additional on-policy data to alternate between gather-
ing the initial data, hence it needs less sample points than
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the general model-free RL approaches. Secondly, fractional
dynamical model is the key element in our algorithm to
improve/guarantee the prediction accuracy. The experiments
on the blood glucose (BG) control to dynamically predict
the desired insulin amount show that the proposed non-
Markovian framework helps in achieving desired levels of
BG for longer times with consistency.

The richness of complex systems cannot be always mod-
eled as Markovian dynamics. Previous works have shown
that the long-range memory property of fractional differen-
tiation operators can model biological signals efficaciously
and accurately. Thus, we have modeled the blood glucose as
non-Markovian fractional dynamical system and developed
solutions using reinforcement learning approach. Finally,
while the application of non-Markovian MBRL open venues
for real-world implementation but proper care has to be taken
especially when we have to deal with the healthcare systems.
The future investigations would involve more personalized
modeling capabilities for such systems with utilization of
the domain knowledge. Nonetheless, we show that the use
of long-range dependence in the biological models is worth
exploring and simple models yield benefits of compactness
as well as better accuracy of the predictions.
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