
6250 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

Learning From Demonstrations Using
Signal Temporal Logic in Stochastic and

Continuous Domains
Aniruddh Gopinath Puranic , Jyotirmoy V. Deshmukh , and Stefanos Nikolaidis

Abstract—Learning control policies that are safe, robust and
interpretable are prominent challenges in developing robotic sys-
tems. Learning-from-demonstrations with formal logic is an arising
paradigm in reinforcement learning to estimate rewards and ex-
tract robot control policies that seek to overcome these challenges.
In this approach, we assume that mission-level specifications for
the robotic system are expressed in a suitable temporal logic such
as Signal Temporal Logic (STL). The main idea is to automatically
infer rewards from user demonstrations (that could be suboptimal
or incomplete) by evaluating and ranking them w.r.t. the given STL
specifications. In contrast to existing work that focuses on deter-
ministic environments and discrete state spaces, in this letter, we
propose significant extensions that tackle stochastic environments
and continuous state spaces.

Index Terms—Learning from demonstration, probabilistic
inference, formal methods in robotics and automation.

I. INTRODUCTION

L EARNING-FROM-DEMONSTRATIONS (LfD) is an ex-
citing algorithmic paradigm in which control policies for

robots can be extracted from human demonstrations [1], [2].
LfD can also address the issue of manually designing rewards or
cost functions for robotic missions. The main areas of research
in LfD are: behavior cloning via supervised learning [3] and
inverse reinforcement learning (IRL) [4], [5]. Behavior cloning
uses supervised learning to model/mimic the actions of a teacher
by mapping states to actions. In IRL, a reward function is derived
from a set of human demonstrations for reinforcement learning
(RL) tasks. Apprenticeship learning (AL) aims to extract control
policies from rewards inferred using IRL [6]. Designing rewards
for RL is a non-trivial task and typically requires domain expert
knowledge [7]. Learning noisy or incorrect reward functions can
lead to the agent performing unintended or unsafe behaviors [8].

Practically, there are some limitations to the LfD paradigm: (i)
a demonstration is seldom optimal and is always susceptible to

Manuscript received February 23, 2021; accepted June 1, 2021. Date of
publication June 25, 2021; date of current version July 13, 2021. This letter
was recommended for publication by Associate Editor L. Peternel and Editor
D. Kulic upon evaluation of the reviewers’ comments. This work was supported
by the National Science Foundation under the CAREER Award SHF-2048094,
Awards CCF-1837131 and CNS-1932620, and Toyota R&D. (Corresponding
author: Aniruddh Gopinath Puranic.)

The authors are with the Computer Science Department, University of
Southern California, Los Angeles, CA 90007 USA (e-mail: puranic@usc.edu;
jdeshmuk@usc.edu; nikolaid@usc.edu).

This letter has supplementary downloadable material available at https://doi.
org/10.1109/LRA.2021.3092676, provided by the authors.

Digital Object Identifier 10.1109/LRA.2021.3092676

noises or disturbances due to motions of the user or uncertainties
in the environment. The control policy inferred from such a
demonstration may thus perform unsafe or undesirable actions
when the initial configuration is slightly perturbed [9]. Thus, LfD
lacks robustness; (ii) demonstrations are not always equal: some
are a better indicator of the desired behavior than others, and
the expertise of the demonstrator determines the quality of the
demonstration [7]; and (iii) safety conditions for the robot cannot
be explicitly specified by demonstrations, and safely providing
a demonstration requires skill [7], [9].

To address some of these challenges, previous work [10]
proposed a framework to integrate formal logic with LfD.
Demonstrations implicitly convey intended behaviors of the user
and robot, i.e., demonstrations can be interpreted as partial spec-
ifications for the robot behavior, as well as a representation of the
partial (possibly sub-optimal or incorrect) control policy. On the
other hand, temporal logic specifications represent high-level
mission objectives for the robot, but do not indicate how to
achieve the objectives. They can also encode information about
the environment such as rules to be obeyed by the agent. Our
proposed approach seeks to use both, the user demonstrations
and the specifications to learn rewards from which a control
policy can be extracted via RL. In this framework, the user
explicitly provides demonstrations and high-level specifications
in a mathematically precise and unambiguous formal language
- Signal Temporal Logic (STL). An STL formula evaluates a
temporal behavior of a system (in our case, a demonstration or
agent’s policy) and provides a quantity that indicates how well
this system satisfied the formula via a fitness quantity called
robustness [11], [12] that is then used to define rewards. In
general, the STL specifications tell the agent “what to do,” while
the rewards obtained by evaluating the quality of demonstrations
tell the agent “how to do it”. STL does not define the entire
reward function, but only some parts or sub-spaces of it and
hence our framework uses demonstrations for learning rewards.
Existing work focuses on deterministic agents and environ-
ments, however, in the real-world there may be uncertainties
in the agent’s motion/actions and environment. In this letter, we
significantly extend the existing LfD-STL [10] framework to
stochastic environments. Existing work also assumes discrete
state spaces, which allows the use of tabular reward functions
and tabular RL methods. In this letter, we extend our approach to
continuous state spaces which necessitates continuous approx-
imations for reward functions and the concomitant continuous-
space RL algorithms.

Similar to [10], we use STL specifications (i) to evaluate and
automatically rank demonstrations based on their robustness,
and (ii) to infer rewards (considering environment stochasticity)

2377-3766 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on April 14,2022 at 22:22:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0010-9789
https://orcid.org/0000-0003-4683-5540
https://orcid.org/0000-0002-1081-250X
mailto:puranic@usc.edu
mailto:jdeshmuk@usc.edu
mailto:nikolaid@usc.edu
https://doi.org/10.1109/LRA.2021.3092676

GOPINATH PURANIC et al.: LEARNING FROM DEMONSTRATIONS USING SIGNAL TEMPORAL LOGIC 6251

to be used in an RL procedure used to train the control policy.
While we also use the directed acyclic graph-based ranked re-
wards from [10], we propose a new technique to handle stochas-
ticity and continuous state spaces. The intuition is to create a
“tube” around the trajectory represented by a demonstration.
This tube represents the possible states the demonstrator could
have been in, i.e., we devise a mechanism to propagate the
rewards to nearby states. In this letter, our main goal is to learn
a reward function from which an RL policy can be derived. The
main contributions of our work are as follows:

1) We propose a novel mathematical way of inferring
temporal/non-Markovian rewards for a system under
probabilistic transition dynamics without the necessity
for optimal or perfect demonstrations. We develop a re-
ward approximation and prediction method applicable for
continuous and higher dimensional spaces. These rewards
can be used with appropriate RL methods such as policy
gradients or actor-critic algorithms.

2) We show that this method can learn from a handful of
demonstrations even in the presence of uncertainties in
the environment.

3) We validate our method on several discrete-world envi-
ronments and also on a custom 2D driving scenario.

II. BACKGROUND AND PROBLEM DEFINITION

A. Background

Definition 1 (Environment): An environment is a tuple E =
(S,A) consisting of the set of states S defined over Rn and set
of actions A.

Definition 2 (Demonstration): A finite sequence of state-
action pairs is called a demonstration. Formally, a demonstra-
tion d of length L ∈ N is d = 〈(s1, a1), (s2, a2), . . ., (sL, aL)〉,
where si ∈ S and ai ∈ A. That is, d is an element of (S ×A)L.

Signal Temporal Logic (STL) is a real-time logic, generally
interpreted over a dense-time domain for signals whose values
are from a continuous metric space (such as Rn). The basic
primitive in STL is a signal predicate μ that is a formula of
the form f(x(t)) > 0, where x(t) is the tuple (state, action)
of the demonstration x at time t, and f maps the signal domain
D = (S ×A) to R. STL formulas are then defined recursively
using Boolean combinations of sub-formulas, or by applying
an interval-restricted temporal operator to a sub-formula. The
syntax of STL is formally defined as follows: ϕ ::= μ | ¬ϕ |
ϕ ∧ ϕ | GIϕ | FIϕ | ϕUIϕ. Here, I = [a, b] denotes an arbi-
trary time-interval, where a, b ∈ R≥0. The semantics of STL
are defined over a discrete-time signal x defined over some
time-domain T . The Boolean satisfaction of a signal predicate
is simply True (�) if the predicate is satisfied and False (⊥) if it
is not, the semantics for the propositional logic operators ¬,∧
(and thus ∨,→) follow the obvious semantics. The following
behaviors are represented by the temporal operators:
� At time t, if GI(ϕ) holds then ϕ holds ∀t′ in t+ I .
� At time t, if FI(ϕ) holds then ϕ holds at some t′ ∈ t+ I .
� At time t, if ϕUIψ holds then ψ holds at some time t′ ∈
t+ I , and ∀t′′ ∈ [t, t′), ϕ holds.

Definition 3 (Quantitative Semantics for Signal Temporal
Logic): Given an algebraic structure (⊕,⊗,�,⊥), we define
the quantitative semantics for an arbitrary signal x against an
STL formula ϕ at time t as in Table I .

TABLE I
QUANTITATIVE SEMANTICS OF STL

Fig. 1. Weights on nodes (specifications) in a DAG.

A signal satisfies an STL formula ϕ if it is satisfied at time
t = 0. Intuitively, the quantitative semantics of STL represent
the numerical distance of “how far” a signal is away from the
signal predicate. For a given requirement ϕ, a demonstration or
policy d that satisfies it is represented as d |= ϕ and one that
does not, is represented as d �|= ϕ. In addition to the Boolean
satisfaction semantics for STL, various researchers have pro-
posed quantitative semantics for STL, [12], [13] that compute
the degree of satisfaction (or robust satisfaction values) of STL
properties by traces generated by a system. In this work, we use
the following interpretations of the STL quantitative semantics:
� = +∞, ⊥ = −∞, and ⊕ = max, and ⊗ = min, as per the
original definitions of robust satisfaction proposed in [12], [14].

Similar to [10], we make use of the two classes of temporal
logic requirements: (i) hard requirements ΦH which are partic-
ular properties of a system that are required to be invariant,
such as requiring the system to follow the workspace rules
or operate within its constraints at all times. These properties
can be regarded as safety requirements for the system and they
typically are of the form G(ϕ); and (ii) soft requirements ΦS ,
that are generally concerned with the optimality of a system
such as performance, efficiency, etc. Hard requirements always
need to be satisfied by a system before being able to satisfy
the soft requirements. These requirements are arranged using a
directed acyclic graph (DAG) G = (V,X), where each node in
V represents a specification. Directed edgesX inG correspond
to the relative order/preferences of specifications and the weight
on each node indicates the relative priority of its corresponding
specification by analyzing number of nodes it is dependent on,
i.e., for a nodeu in the DAG, its corresponding weight is given by
w(u) = |V | − |ancestors(u)| as shown in Fig. 1. The ancestors
of a node u are the set of all nodes in V that have a path to u,
i.e., u is dependent on its ancestors.

Demonstration Types: Based on the 2 classes of logic re-
quirements, we obtain 2 types of demonstrations: (i) a demon-
stration is labeled good if it satisfies the specifications Φ =
ΦH ∪ ΦS ; (ii) a demonstration is considered bad if it violates
any hard specification of ΦH . A bad demonstration d consists
of at least one state or state-action pair that violates a hard
specification ψ, i.e., sbad = {sj | (sj , aj) �|= ψ}.

Authorized licensed use limited to: University of Southern California. Downloaded on April 14,2022 at 22:22:34 UTC from IEEE Xplore. Restrictions apply.

6252 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

DAG-based Rewards: As per the arrangement of specifi-
cations Φ = ΦH ∪ ΦS in a DAG, we obtain the weight vec-
tor wΦ = [w(ϕ1), . . ., w(ϕ|Φ|)]T ; where, hard requirements are
given by ΦH = {ϕ1, ϕ2, . . ., ϕp} and soft requirements are
given by ΦS = {ϕp+1, ϕp+2, . . ., ϕq}. For each demonstration
d, we also obtain the corresponding robustness vector, �ρd =
[ρ1, . . ., ρ|Φ|]T , where ρi is the robustness of that demonstration
w.r.t. ϕi. Finally, the DAG-based robustness for d is given by
the weighted-sum 1ρ̂d = wΦ

T · �ρd.
Definition 4 (Markov Decision Process (MDP)): An MDP is

given by a tuple M = (S,A, T,R) where S is the state space
of the system; A is the set of actions that can be performed on
the system; A = {a1, a2, . . ., aN}; T is the transition function,
where T (s, a, s′) = Pr(s′ | s, a); R is a reward function that
typically maps either some s ∈ S or some transition δ ∈ S ×
A× S to R.

In RL, the goal of the learning algorithm is to find a policy
π : S → A that maximizes the total (discounted) reward from
performing actions on a MDP, i.e., the objective is to maximize∑∞

t=0 γ
trt, where rt is the output of the reward function R for

the sample at t and γ is the discount factor. In this letter, we
assume full observation of the state space for agents operating
in known environments.

B. Problem Formulation

We seek to infer rewards from user demonstrations and STL
specifications while considering the environment’s uncertainty.
Given a reward-free MDP M = {S,A, T}\R, a finite set of
high-level specifications in STL Φ = ΦH ∪ ΦS and a finite
dataset of human demonstrations D = {d1, d2, . . ., dm} in an
environment E, where each demonstration is defined as in
Definition 2, the goal is to infer a reward functionR forM such
that the resulting robot policy π obtained by an RL algorithm,
satisfies all the requirements of Φ2.

Assumptions: Our main focus is on extracting rewards for
agents operating in probabilistic and continuous domains and
we assume that any appropriate existing RL algorithm would
be able to learn an optimal policy from the inferred rewards.
We require that at least one good, but not necessarily optimal
demonstration is provided to the agent, while other demonstra-
tions can be incomplete or bad. The states in the demonstration
are expected to be unique/distinct, i.e., the demonstration does
not contain repeated states. We will investigate demonstrations
with repeated states and repeated task specifications as part of
future work.

III. METHODOLOGY

A. STL-Based Rewards for Stochastic Dynamics

To address stochasticity in environments, we provide a
stochastic reward definition for the agent and show that the
rewards inferred for deterministic transitions as in [10] are a
special case of the new reward function. Rationally, one would
expect an agent to perform a given task correctly by following
the good demonstrations and hence the rewards would be based
on such demonstrations. Initially, we follow the DAG-based

1To ensure the robustness values of different specifications can be combined,
they are normalized using tanh or piece-wise linear functions.

2The rewards and resulting policies are empirically verified.

procedure to obtain the cumulative robustness ρ̂d for a demon-
stration d as described in Section II-A. Given a demonstration
d = 〈si, ai〉Li=1 and the final DAG robustness ρ̂d, we derive a
procedure to estimate the “true” rewardRd of the demonstration
as if the transitions were deterministic. In other words,Rd = ρ̂d
is the reward that the agent would maximize if it were in a
deterministic environment. When the environment is stochastic,
Rd should increase along the demonstrations to prevent the agent
from moving away from the states seen in such demonstrations,
i.e., the rewards for a demonstration behave as attractors be-
cause they persuade the agent to follow the good demonstration
as much as possible. Hence, as the environment uncertainty
increases, Rd also increases. Here, we consider the states and
actions as observed in a demonstration d - the agent starts in
state s1 and executes the corresponding action a1 as seen in
d. Assuming Markovian nature of the environment’s stochastic
dynamics, for subsequent state-action tuples in d we have,

Pr(sL | τ = (si)
L−1
i=1 , aL−1) =

L−1∏
l=1

Pr(sl+1 | sl, al) (1)

where each ai is the action indicated in the demonstration and
τ is the (partial) trajectory/demonstration till a particular state3.
Hence, the true reward Rd can be expressed as follows:

Pr(sL | τ = (si)
L−1
i=1 , aL−1) ·Rd = ρ̂d

Rd =
ρ̂d

L−1∏
i=1

Pr(sl+1 ∈ d | sl ∈ d, al ∈ d)

(2)

This equation reflects that Rd increases as uncertainty in-
creases, i.e., as Pr(s′ | s, a) → 0 in the environment. In order
to account for the stochasticity, we define R(s, as) as the set
of all states that are reachable from a given state s in one step
(since it is an MDP) by performing all actions other than its
corresponding action as appearing in a demonstration.

B. Reward Assignments for Demonstrations

We first present the reward assignments for the discrete-state
case and then describe the procedure for continuous state spaces.
The rewards for all states are initially assigned to 0.

1) Good Demonstrations: For all state-action pairs occurring
in a demonstration d, rd(sl) describes the reward assigned to
state sl ∈ d. The reward function is given by Equation (3).

rd(sl) = Pr(sl | sl−1, al−1) · l
L

·Rd

∀ sl−1, sl, al−1 ∈ d

rd(s
′) = Pr(s′ | sl−1, a) · rd(sl)
s′ ∈ R(sl−1, al−1)− {sl}; a ∈ A− {al−1} (3)

where l ∈ [1, L]. When, l = 1 (initial or base case), Pr(s1 |
s0, a0) represents the probability of the agent starting in the
same state as the demonstrations and (s0, a0) is introduced for
notational convenience. Good demonstrations have strictly non-
negative rewards as they obey all specifications. The rewards in
such demonstrations behave as attractors or potential fields to

3In the above derivation, τ = (si) implicitly means τ = (si, ai) since it rep-
resents a trajectory/demonstration. The ai notation was dropped for simplicity.

Authorized licensed use limited to: University of Southern California. Downloaded on April 14,2022 at 22:22:34 UTC from IEEE Xplore. Restrictions apply.

GOPINATH PURANIC et al.: LEARNING FROM DEMONSTRATIONS USING SIGNAL TEMPORAL LOGIC 6253

persuade the agent to follow the good demonstrations as much
as possible. The shape of this reward function resembles a “bell
curve”.

2) Bad Demonstrations: A bad demonstration will have
strictly negative robustness, that is amplified as the true reward
Rd as per (Equation (2)).

rd(sl) = Pr(sl | sl−1, al−1) ·Rd, if sl ∈ sbad

rd(s
′) = Pr(s′ | sl−1, a) · rd(sl),
s′ ∈ R(sl−1, al−1); a ∈ A− {al−1} (4)

The rewards in other all states are zero. The rewards in such
demonstrations behave as repellers to deflect the agent from
bad states. The shape of this reward function resembles an
“inverted bell”.

For a demonstration d, the induced reward rd(s) is the reward
induced by demonstration d for any state s in the state space,
computed via Equations (3) and (4). Let rd(s′) ≺ rd(s) denote
that rd(s) < rd(s

′) if d is a bad demonstration and rd(s) >
rd(s

′) if d is a good demonstration, for s ∈ d and s′ /∈ d.
Lemma 1: For any demonstrationd,∀sl ∈ d, rd(s′) ≺ rd(sl).
Proof Sketch: The sum of transition probabilities in a state

over all actions is 1. Hence, the product of 2 of these probabilities
(as for rd(s′) in Equations (3) and (4)) is less than either of them
and is a positive quantity. Therefore, in good demonstrations, the
neighbor states s′ have lower rewards than the observed state sl,
thereby influencing the agent to not prefer states not seen in
good demonstrations and also that there is a possibility that the
neighbors are bad states. For bad demonstrations, the neighbors
s′ have higher rewards than the bad states and are still negative,
which influence the agent to move away from bad states and also
that there is a chance these neighbors could be good states. �

Finally, once each demonstration is assigned rewards, they are
ranked by their respectiveRd values and a rank-based weighted
sum is computed to obtain the final reward for the MDP, similar
to [10].

C. Special Cases

In this section, we show how the deterministic rewards from
the prior LfD-STL framework is a special case of our reward
formulation. We also describe a stochastic model used in our
experiments.

1) Deterministic: In the case of deterministic transitions, the
agent follows the selected action (i.e., Pr(s′ | s, a) = 1) while
all other actions have probability of 0. As a result, the probability
of transitioning to the neighbor states in 1-step via the other
actions is 0. Therefore, this reduces to the same equations
described in [10]. By Equation (1), Rd = ρ̂d. The rewards for
each type of demonstration are as follows:
� Good demonstration:

rd(sl) =
l

L
·Rd,

∀sl, al ∈ d; l ∈ [1, L] (5)
� Bad demonstration:

rd(sl) =

{
Rd, if sl ∈ sbad
0, otherwise

(6)

2) Stochastic: Let p ∈ [0, 1) denote the uncertainty of the
environment: the agent follows or executes a selected action

a ∈ A with probability Pr(s′ | s, a) = 1− p and due to the
uncertainty, randomly follows/chooses one of the remaining
N − 1 actions uniformly, i.e., with probability p/(N − 1). The
sum of probabilities of all transitions or actions is 1. Thus,
for a demonstration d, the agent follows d with probability
(1− p)L−1, by Equation (1). Substituting this in Equation (2),
the true reward is:

Rd =
ρ̂d

(1− p)L−1
(7)

With regards to the “attractor-repeller” intuition stated earlier,
as the uncertainty p increases, Rd also increases, influencing
the agent to follow along the demonstrations. For each type of
demonstration, the rewards are described below:

Good demonstrations

rd(sl) = (1− p) · l
L

·Rd; ∀sl ∈ d

rd(s
′) =

p

N − 1
· (1− p) · l

L
·Rd,

s′ ∈ R(sl−1, al−1)− {sl}; a ∈ A− {al−1} (8)

where l ∈ [1, L]. For the initial state, Pr(s1 | s0, a0) could be
1− p or simply 1 if the agent is known to always start from
that state. From the above equations and Lemma 1, rd(s′) is
guaranteed to be lower than rd(sl) since 0 < p < 1 ⇒ 0 <
p/(N − 1) < 1/(N − 1) < 1. By applying simple inequality
rules, we can show that (1− p) · p/(N − 1) < (1− p), which
is the guarantee that reward is propagated in a decreasing manner
to neighboring states not seen in the demonstrations.

Bad demonstrations.

rd(sl) = (1− p) ·Rd; if sl ∈ sbad

rd(s
′) =

p

N − 1
· (1− p) ·Rd,

s′ ∈ R(sl−1, al−1); a ∈ A− {al−1} (9)

A similar guarantee for reachable states holds here as well. The
rewards in other all states are zero. We use this model for all our
stochastic discrete environment experiments.

The case of p = 1 or as p→ 1 represents that the agent is
completely non-deterministic (i.e., it never transitions to the
desired state or performs the action chosen). In this case, by
computing the limits, we can see that the rewards for all states
tend to either +∞ in the case of good and to −∞ in the
case of bad demonstrations. In such scenarios, the demonstrator
may adapt and provide adversarial actions so that the agent
performs the originally intended behavior. We will investigate
such adversary-influenced demonstrations for future work.

We emphasize that our approach is generic to any Pr(s′ |
s, a) ∈ [0, 1) and non-uniformity in transition probabilities. The
description of all these cases shows that our reward mechanism
is complete for stochastic environments. The probabilistic re-
warding scheme described above can possibly assign positive
rewards in the case of good demonstrations (and negative in bad
demonstrations) to bad (and good, respectively) states, leading
to a reward discrepancy. However, this is compensated for when
the STL-based RL algorithm [10] uses the robustness of the
partially learned policy w.r.t. hard specifications while learning,
to detect and rectify any violations. Alternatively, providing
more demonstrations would also overcome discrepancies in
rewards, but are not required.

Authorized licensed use limited to: University of Southern California. Downloaded on April 14,2022 at 22:22:34 UTC from IEEE Xplore. Restrictions apply.

6254 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

D. Continuous Domain Rewards

For continuous state-spaces, defining rewards for states only
encountered in a demonstration is very restrictive and due to
the continuous nature of the state and/or action spaces, and
numerical accuracy errors, the demonstrations observed will
rarely have the same state and/or action values. Additionally,
providing demonstrations in this space is already subject to
uncertainties. We can first compute the demonstration rewards
from DAG-specifications and then assign rewards to the demon-
stration states as described in the previous section. We then
rank the demonstrations and scale the assigned rewards by the
corresponding demonstration ranks. The next step is to show
how rewards from different demonstrations are generalized and
combined over the state space. Since the states in the demonstra-
tions are not exactly the same, simply performing a rank-based
weighted sum of state rewards would be tedious due to the
large state space. To address this, we collect the rank-scaled
state rewards in a data set and perform regression. For each
demonstration, we have a collection of tuples in the form of
(state, reward) or (state, action, reward) and we can then
parameterize the rewards as r(s, θ) or r(s, a, θ) respectively.
Finally, we organize these points in a dataset to learn a func-
tion approximation fθ : S → R or fθ : S ×A → R. Function
approximations can be learnt via regression techniques like
Gaussian Processes, neural networks (NN) such as feed-forward
deep NN, convolutional NN, etc., that take as input, the features
of a state or state-action pair and output a single/scalar reward.

For discrete actions, it is straight-forward to compute the
reachable set. But for continuous actions, in order to compute
the reachable set from a given observed state with bounded time
and actions, we model each observed state using a (multi-variate)
Gaussian distribution and generate samples. These samples cor-
respond to the reachable set and we can compute the probability
of each sample belonging to that distribution, which gives us
the transition probabilities. Specifically, instead of using each
of the tuples in their raw form as training data, we represent
them as samples of (multi-variate) Gaussian distribution with
mean s or (s, a) and having a scaled identity covariance matrix
representing the noise in the observations. We then generate k
samples from the distribution of each observed state to represent
the reachable set. For each of the k samples, we can estimate the
probability of that sample belonging to the distribution of the
observed state, which is the transition function that can be used
to assign rewards as described earlier.

IV. EXPERIMENTS

A. Stochastic Discrete Environment

We created a grid-world environment E consisting of a set of
states S = {start, goals, obstacles} of varying grid sizes such
as:5× 5,8× 8 and15× 15 and randomly choosing the obstacle
locations. We experimented with different values of the environ-
ment’s stochasticity p ∈ [0.1, 0.8]. We used Manhattan distance
as the distance metric and formulated the STL specifications:

1) Avoid obstacles at all times (hard requirement):
ϕ1 := G[0,T](dobs[t] ≥ 1), where T is the length of a
demonstration and dobs is the minimum distance of robot
from obstacles computed at each step t.

2) Eventually, the robot reaches the goal state (soft require-
ment): ϕ2 := F[0,T](dgoal[t] < 1), where dgoal is the

distance of robot from goal computed at each step. ϕ2

depends on ϕ1 in the DAG.
3) Reach the goal as fast as possible (soft requirement):

ϕ3 := F[0,T](t ≤ Tgoal), whereTgoal is the upper bound
of time required to each the goal, which is computed by
running breadth-first search algorithm from start to goal
state, since the shortest policy must take at least Tgoal to
reach the goal.ϕ3 depends on bothϕ1 andϕ2 in the DAG.

All environments are created using PyGame library and we
define and evaluate the STL specifications using Breach [15].
The users provide demonstrations in the PyGame interface by
clicking on their desired states with the task to reach the goal state
from start without hitting any obstacles. Due to the stochasticity,
unaware to the users, their clicked state may not always end up
at the desired location. The user then proceeds to click from that
unexpected state till they quit or reach the goal. 4 demonstrations
from a single user were collected, of which 2 are shown in Fig. 2
along with the inferred rewards and resulting robot policy under
20% stochastic environment. We obtained similar results for the
other larger grid sizes considered in this experiment. Details for
the OpenAI Gym [16] Frozenlake 8× 8 grid environment are
shown in the supplemental video. In all cases, we used Double
Q-Learning [17], which is appropriate for stochastic settings,
with the modifications to the algorithm at 2 steps (reward update
and termination) as described by [10]. The number of episodes
varied based on the environment complexity (grid size, number
and locations of obstacles) of the grid-world. The discount factor
γ was set to 0.8 and ε-greedy strategy for action selection with
decaying ε was used. A learning rate of α = 0.1 was found to
work reasonably well. For 100 trials, with 20% environment
uncertainty, the policy was found to reach the goal on average
≈ 81% of the time with the learned rewards.

We then compared our method with the state-of-the-art IRL
algorithm - Maximum Causal Entropy IRL (MCE-IRL) [18]
having unique features for each state, which required around
300 demonstrations in the 5× 5 grid world under identical
stochastic conditions and over 1000 demonstrations for the
Frozenlake− 8× 8. Additionally, since MCE-IRL learns a
reward for each state, it requires the demonstration set to cover
all possible states, while ours does not require this criteria and
hence can learn from few demonstrations. A ground-truth reward
function for the 5× 5 grid is shown in Fig. 3(a). Qualitatively,
from Fig. 2(c) and Fig. 3, we can observe that the rewards using
our method are more aligned with the ground truth, compared to
the others. For instance, the state at the center of the top row is an
obstacle and both the IRL methods infer positive rewards for that
state, while ours correctly computes a negative reward for the
same using fewer samples. We remark that there are other recent
works [19], [20] that learn from suboptimal demonstrations.
However, at the core, they build on the entropy-based IRL meth-
ods and can learn more accurate rewards compared to MCE-IRL
at the cost of generating additional demonstrations [19] or
manually defining an environment reward function in addition
to the learned rewards [20]. MCE-IRL offers a good balance
between performance and sample complexity compared to these
methods and since they all build on MaxEntropy-IRL [5], we
used MCE-IRL for comparison. Furthermore, MCE-IRL and
our method have the common objective of inferring rewards
from demonstrations and mainly differ in the manner features are
utilized: in MCE-IRL, features are directly used in computing
the solution, while ours indirectly accesses the features via
specifications.

Authorized licensed use limited to: University of Southern California. Downloaded on April 14,2022 at 22:22:34 UTC from IEEE Xplore. Restrictions apply.

GOPINATH PURANIC et al.: LEARNING FROM DEMONSTRATIONS USING SIGNAL TEMPORAL LOGIC 6255

Fig. 2. Results for 5× 5 grid with 20% stochasticity: Inferred rewards are shown in left figures. Right figures show the grid-world with start state (light blue),
goal (dark blue), obstacles (red) and demonstration/policy (green). Darker blues represent higher rewards.

Fig. 3. Ground-truth (GT) rewards and rewards extracted by ME-IRL and
MCE-IRL, respectively, each using 300 optimal demonstrations.

Fig. 4. The car starts at the top-left corner and the task is to navigate to the
goal (in yellow) while possibly avoiding potholes or obstacles (purple). A sample
demonstration is shown by the green trajectory.

B. Continuous-Space Environment

We used a simple car kinematic model that is governed by the
following equations:

ẋ = v · cos(θ) +N (0, σ2); ẏ = v · sin(θ) +N (0, σ2)

v̇ = u1 · u2; θ̇ = v · tan(ψ); ψ̇ = u3

where x and y represent the XY position of the car; θ is
the heading; v is the velocity; u1 is the input acceleration; u2
is the gear indicating forward (+1) or backward (-1); u3 is the
input to steering angle ψ. At any time instant t, the state of the
car is given by St = [x, y, θ, v, ẋ, ẏ, θ̇, v̇]T . Users can control
the car using either an analog Logitech G29 steering with pedal
controller or via keyboard inputs. Alternatively, one could also
use a similar setup for mobile robots using respective kinematics
and a joystick controller for acute turns.

The driving layout with goal and obstacle areas, and a sample
demonstration is shown in Fig. 4. The task is to drive from
the top-left corner to the center of the goal while avoiding any
hindrances (obstacles, potholes, etc.), denoted by H. As in any
driving scenario, the car must maintain a safe distance dSafe
from H and drive on the road/drivable surface. We collected 8
demonstrations (6 good and 2 bad) using a mixture of analog and
keyboard inputs; one of the bad demonstrations passed through
the pothole while another drove off the “road”. The distance
metric used in this space is Euclidean. The specifications for
this scenario are as follows:

Fig. 5. (a)–(d): Robustness of demonstrations w.r.t. each STL specification.
Blue trajectories indicate positive robustness and red indicate negative. (e):
Final rewards based on cumulative robustness and demonstration ranking. (f):
Reward approximation using neural networks. The yellow region represents the
workspace of the agent, i.e., it is not allowed to leave that region.

1) Avoid obstacles at all times (hard requirement):
ϕ1 := G[0,T](dobs[t] ≥ dSafe), where T is the length
of a demonstration and dobs is the minimum distance of the
car from H computed at each step t. For our experiments,
we used dSafe = 3 units.

2) Always stay within the workspace/drivable region (hard
requirement): ϕ2 := G[0,T]((x,y) ∈ Box(30,25)),
where the workspace is defined by a rectangle of
dimensions 30× 25 square units.

3) Eventually, the robot reaches the goal state (soft require-
ment): ϕ3 := F[0,T](dgoal[t] < δ), where dgoal is the
distance between centers of car and goal computed at each
step t and δ is a tolerance when the center of the car is
“close enough” to the goal’s center. ϕ3 depends on ϕ1 and
ϕ2 in the DAG.

Similar specifications can be used for manipulators and mo-
bile robots. The collected trajectories along with their robustness
for each STL specification and also for the time taken by
them to reach the goal are shown in Fig. 5. One of the bad

Authorized licensed use limited to: University of Southern California. Downloaded on April 14,2022 at 22:22:34 UTC from IEEE Xplore. Restrictions apply.

6256 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 4, OCTOBER 2021

demonstrations scraped the avoid-region and is shown in red in
Fig. 5(a). All demonstrations reached the goal and are shown
in blue in Fig. 5(b). In Fig. 5(c), 4 out of 8 demonstrations
were slow to reach the goal compared to the others. One bad
demonstration went “off track” and is shown in red in Fig. 5(d).
All these individual robustness values are combined via the
specification-based DAG for each trajectory and rewards are
assigned by modeling the states s as samples of multi-variate
Gaussian distribution N (μ, σ2I) where μ = s and σ represents
the deviations in noise levels. For each s, we generated k = 20
samples to represent the reachable set and assigned stochastic
rewards as described in Section III. The final rewards are shown
in Fig. 5(e) for low noise with σ = 0.03 (for additional details
on analysis of noise, please refer to the supplemental video). In
the continuous spaces, we can observe that there is a large area
of states with reward 0 (in white) and may not be particularly
helpful since the agent rarely encounters the same state as
seen in demonstrations due to noise. To overcome this issue,
we approximated rewards over the state space using neural
network regression. We thus combine the precision of Gaussian
distributions for reward inference and the scalability of neural
networks for predictions.

Remark 1: In all experiments, the reward plots were normal-
ized and the maximum reward was capped to a sufficiently
large value Rmax for the sake of practical/numerical imple-
mentation and visualization simplicity. Additionally, to combine
robustness from semantically different STL specifications, we
used tanh to normalize the robustness before combination. For
the driving experiment, the state space has higher dimensions
which becomes too convoluted to visualize. Instead, to show
how the neural network regression would perform with smaller
dimension inputs, we use theXY positions of the car along with
the type of the XY state as inputs to the network. The type of
the state is a one-hot encoding of whether the state represents
an obstacle/avoid region, goal, outside-workspace or traversable
region. We assume that a perception algorithm would provide
the label of each state.

The neural network contained 2 hidden layers with 100 and
200 nodes respectively; and used the Adam optimizer [21] with
batch training for 20 epochs and RMSE loss. It was trained using
PyTorch on a system with AMD Ryzen 7 3700X 8-core CPU
and Nvidia RTX 2070-Super GPU. As we see in Fig. 5(f), the
predictions are closely correlated with the locations of various
map features (boundaries, avoid regions and goal). In all the
experimental scenarios, the final rewards can be verified w.r.t.
the specifications to detect violations.

V. RELATED WORK

There is a vast literature on methods that utilize the quantita-
tive semantics of temporal logics such as STL, Linear Temporal
Logic (LTL), etc., to describe or shape reward functions in the
RL domain [22]–[25]. [26] tries to extract a stochastic policy
that satisfies the temporal logic specifications, which can be
used once the rewards are inferred using our method. LfD with
formal methods has been explored in [27] to learn complex
tasks by designing a special logic, augmenting a finite-state
automaton (FSA) with an MDP formulation and then performing
behavioral cloning to initialize policies that are later trained via
reinforcement LfD. However, this work relies on optimal/perfect
demonstrations. [28] proposes a counterexample-guided ap-
proach using probabilistic computation tree logics for safety-
aware apprenticeship learning and [10] develops a framework

for providing high-level STL specifications that evaluate and
rank the quality of demonstrations to infer rewards used by
existing RL algorithms to learn a robust control policy; both
these methods perform logic-checking during training to achieve
verification-in-the-loop and can learn from counterexamples
or demonstrations that violate hard requirements. In [29], the
authors combine LfD with LTL by converting the LTL spec-
ifications into a loss function to learn a dynamic movement
primitive that satisfies the specifications and tries to imitate
the demonstrations. This work requires manually defining loss
functions based on the quantitative semantics of LTL and it does
not seek to learn a reward function which is the main objective
of our letter. The authors in [30] integrate a learning method
with model-predictive control (MPC) to design a controller
that behaves similar to expert demonstrations while trying to
decide the trade-offs on how well to follow each STL rule
using slackness in robustness values. They assume that priorities
among the STL rules are already given and also assume that the
experts are aware of the priorities among the STL rules and
provide demonstrations accordingly. However providing such
demonstrations requires optimality and skill. LfD with high-
level side information encoded in co-safe LTL has been explored
in [31]. This method learns a reward function as well as an FSA
that is augmented with the MDP states to learn from a handful
of optimal demonstrations. Some issues with this approach are
that rewards and hence the FSA rely on demonstrations being
optimal; and the augmented state space increases exponentially
as the number and length of specifications increase. Ours on
the other hand, uses the STL specifications to evaluate and
rank the demonstrations, without increasing the state space. To
summarize, majority of the prior research uses formal logic to
verify learned policies whereas we try to infer rewards that are
consistent with the task specifications.

A survey of methods that learn from suboptimal/imperfect
demonstrations is described in [7]. In many cases, these methods
filter the sub-optimal or imperfect demonstrations or classify
such demonstrations when majority of the other demonstrations
are optimal. Recently, the authors of [19] proposed a framework
to learn the latent reward function from suboptimal demonstra-
tions by examining the relationships between the performance of
a policy and the level of noise injected to synthesize optimality-
ranked trajectories. In [20], the authors propose an approach in
which nearly-optimal demonstrations are used to learn rewards
via IRL, that are later utilized for reward shaping in RL tasks.

VI. CONCLUSION

We proposed a novel approach that significantly improved
upon the existing LfD-STL framework [10] by considering the
uncertainty in the environment to define temporal-based rewards
from suboptimal demonstrations. We also proposed a method
to learn and predict rewards in continuous and high-dimension
spaces. These rewards can be used to extract robust and in-
terpretable RL control policies. The experiments on several
stochastic discrete-worlds and in the driving scenario (continu-
ous domain) illustrate the effectiveness and scalability of our
method. We believe this letter will provide new avenues to
combine verification of rewards (such as this work) and veri-
fication of learned policies of agents [29]–[31] to develop safe
and interpretable control policies for applications in autonomous
driving, ground and aerial robot surveillance or patrol, household
and medical assistants, etc.

Authorized licensed use limited to: University of Southern California. Downloaded on April 14,2022 at 22:22:34 UTC from IEEE Xplore. Restrictions apply.

GOPINATH PURANIC et al.: LEARNING FROM DEMONSTRATIONS USING SIGNAL TEMPORAL LOGIC 6257

REFERENCES

[1] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in
Proc, Int. Conf. Mach. Learn., 1997, pp. 12–20.

[2] S. Schaal, “Learning from demonstration,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 1996, pp. 1040–1046.

[3] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from observation,”
in Proc. Int. Joint Conf. Artif. Intell., 2018, pp. 4950–4957.

[4] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning,”
in Proc, Int. Conf. Mach. Learn., 2000, pp. 663–670.

[5] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proc. AAAI Conf. Artif. Intell.,
2008, pp. 1433–1438.

[6] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement
learning,” in Proc, Int. Conf. Mach. Learn., vol. 69, 2004.

[7] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent
advances in robot learning from demonstration,” Annual Review of Control,
Robotics, Auton. Syst., vol. 3, pp. 297–330, 2020.

[8] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D.
Mané, “Concrete problems in AI safety,” 2016, arXiv:1606.06565.

[9] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation learning: A
survey of learning methods,” ACM Comput. Surv., vol. 50, no. 2, pp. 1–35,
2017.

[10] A. G. Puranic, J. V. Deshmukh, and S. Nikolaidis, “Learning from demon-
strations using signal temporal logic,” in Proc. Conf. Robot Learn., 2020,
p. (To appear).

[11] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A. Seshia,
“Robust online monitoring of signal temporal logic,” Formal Methods
System Des., vol. 51, no. 1, pp. 5–30, 2017.

[12] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic specifica-
tions for continuous-time signals,” Theor. Comput. Sci., vol. 410, no. 42,
pp. 4262–4291, 2009.

[13] S. Jakšić, E. Bartocci, R. Grosu, T. Nguyen, and D. Ničković, “Quantitative
monitoring of STL with edit distance,” Formal Methods System Des.,
vol. 53, no. 1, pp. 83–112, Aug. 2018.

[14] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-
valued signals,” in Proc. Int. Conf. Formal Model. Anal. Timed Syst., 2010,
pp. 92–106.

[15] A. Donzé, “Breach, a toolbox for verification and parameter synthesis of
hybrid systems,” in Proc. Int. Conf. Comput. Aided Verification, 2010,
pp. 167–170.

[16] G. Brockman et al., “Openai Gym,” in CoRR, 2016, arXiv:1606.01540.
[17] H. Hasselt, “Double q-learning,” in Proc. Int. Conf. Neural Inf. Process.

Syst., 2010, pp. 2613–2621.
[18] B. D. Ziebart, “Modeling purposeful adaptive behavior with the principle

of maximum causal entropy,” Ph.D. dissertation, Carnegie Mellon Univer-
sity, USA, 2010.

[19] L. Chen, R. Paleja, and M. Gombolay, “Learning from subop-
timal demonstration via self-supervised reward regression,” 2020,
arXiv:2010.11723.

[20] H. B. Suay, T. Brys, M. E. Taylor, and S. Chernova, “Learning from demon-
stration for shaping through inverse reinforcement learning,” in Proc. Int.
Conf. Auton. Agents Multiagent Syst. AAMAS, 2016, pp. 429–437.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015.

[22] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, “Q-learning
for robust satisfaction of signal temporal logic specifications,” in Proc.
Conf. Decis. Control, 2016, pp. 6565–6570.

[23] X. Li, C. Vasile, and C. Belta, “Reinforcement learning with temporal
logic rewards,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2017,
pp. 3834–3839.

[24] A. Balakrishnan and J. V. Deshmukh, “Structured reward shaping using
signal temporal logic specifications,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2019, pp. 3481–3486.

[25] Y. Jiang, S. Bharadwaj, B. Wu, R. Shah, U. Topcu, and P. Stone,
“Temporal-logic-based reward shaping for continuing learning tasks,”
2020, arXiv:2007.01498.

[26] X. Li, Y. Ma, and C. Belta, “A policy search method for temporal logic
specified reinforcement learning tasks,” in Proc. Amer. Control Conf.,
2018, pp. 240–245.

[27] X. Li, Y. Ma, and C. Belta, “Automata guided reinforcement learning with
demonstrations,” CoRR, 2018, arXiv:1809.06305 .

[28] W. Zhou and W. Li, “Safety-aware apprenticeship learning,” in Proc. Int.
Conf. Comput. Aided Verification, 2018, pp. 662–680.

[29] C. Innes and S. Ramamoorthy, “Elaborating on learned demonstrations
with temporal logic specifications,” in Robot: Sci. Syst., 2020.

[30] K. Cho and S. Oh, “Learning-based model predictive control under signal
temporal logic specifications,” in Proc. IEEE Int. Conf. Robot. Autom.,
2018, pp. 7322–7329.

[31] M. Wen, I. Papusha, and U. Topcu, “Learning from demonstrations
with high-level side information,” in Proc. Int. Joint Conf. Artif. Intell.,
2017, pp. 3055–3061.

Authorized licensed use limited to: University of Southern California. Downloaded on April 14,2022 at 22:22:34 UTC from IEEE Xplore. Restrictions apply.

