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Abstract

Modern cyber-physical systems (CPS) and the Internet of things (IoT) are data factories generating, measuring and recording
huge amounts of time series. The useful information in time series is usually present in the form of sequential patterns.
We propose shape expressions as a declarative language for specification and extraction of rich temporal patterns from
possibly noisy data. Shape expressions are regular expressions with arbitrary (linear, exponential, sinusoidal, etc.) shapes
with parameters as atomic predicates and additional constraints on these parameters. We associate with shape expressions
novel noisy semantics that combines regular expression matching semantics with statistical regression. We study essential
properties of the language and propose an efficient heuristic for approximate matching of shape expressions. We demonstrate
the applicability of this technique on two case studies from the health and the avionics domains.

Keywords Statistical regression - Pattern matching - Regular expressions - Runtime monitoring

1 Introduction

Cyber-physical systems (CPS) and Internet of things (IoT)
applications are becoming increasingly present in our every-
day life. Industry 4.0 with its smart factories and digital twins,
smart buildings that adapt heating control to the user’s habit,
intelligent transportation systems that optimize traffic based
on the continuous monitoring of the road conditions, wear-
able health monitoring devices and medical devices that fine
tune a given therapy depending on sensing a patient’s health
are few examples of modern CPS and IoT. These systems typ-
ically adopt data-driven decision making based on measuring
the dynamic behavior of the environment and the analy-
sis of its properties. This data-driven approach to control
is enabled by low-cost sensors, powerful edge devices and
cloud facilities. Therefore, CPS and IoT are becoming ver-
itable data factories that generate, measure and record time
series. Processing these huge amounts of data efficiently to
extract useful information is an extremely challenging task.
It is often the case that only specific segments of the time
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series contain interesting and relevant patterns. For instance,
an electricity provider may be interested in observing spikes
or oscillations in the voltage signals. A medical device man-
ufacturer may want to detect anomalous cardiac behavior.
A wearable device maker would like to associate specific
patterns in the measurements from accelerometer and gyro-
scope sensors to a concrete user activity, such as running or
walking.

Such patterns can be often characterized with geometric
shapes observed in the time-series data; e.g., a spike can be
specified as an “upward triangle,” i.e., a sequence of two con-
tiguous line segments with slopes that have opposite signs.
There are also instances where the time-series data are multi-
dimensional (say (x(¢), y(¢))), and the user may be interested
inknowing if a “pulse” shape in x (¢) is followed by an “expo-
nential decay” shape in y(¢).

We propose shape expressions, a novel declarative lan-
guage for specifying sophisticated temporal patterns over
(possibly multi-dimensional) time series. In essence, a shape
expression is a regular expression where atomic predicates
are arbitrary shapes with parameters (slope, offset, frequency,
etc.), and with additional parameter constraints. We associate
with shape expressions a noisy language that allows observed
data to approximately match the expression. The noisy
expression semantics combines classical regular expression
semantics with statistical regression, which is used to match
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Fig.1 Two pulse shapes

atomic shapes and infer parameter valuations that minimize
the noise between the ideal shape and the observation. We
allow either using mean squared error (MSE) or the coef-
ficient of determination (CoD), statistical measures of how
close the observed data are to the fitted regression (atomic)
shape, as our noise metric. We define shape automata as
an executable formalism for matching shape expressions
and propose a heuristic for querying time series with shape
expressions efficiently. We apply this algorithm to two case
studies from different CPS and IoT domains to demonstrate
its applicability.

This paper extends our previous work on shape expres-
sions [20] in two directions:

— We provide the detailed proofs of all the theorems that
are stated in the manuscript, and

— We extend one of the two case studies with a specifica-
tion that involves concatenation of two different signals
and its associated experimental results demonstrating the
applicability of our approach in a multi-dimensional set-
ting.

lllustrating example

We use the example depicted in Fig. 1 to illustrate the con-
cepts presented in this paper. This figure shows a raw noisy
signal that contains two pulses. The two pulses differ both
in duration, depth and offset, but have the same qualitative
shape that characterizes them as pulses. Figure 2 shows a
specification of an ideal pulse. We characterize a pulse as a
sequence of 5 segments: (1) constant segment at some b; (2)
linearly decreasing segment with slope a; < 0; (3) constant
segment at some b3; (4) linearly increasing segment with
slope a4 > 0; and (5) constant segment at b. We observe that
the above specification uses parametric shapes, where the
parameters are possibly constrained (e.g., ay < 0) or shared
between shapes (e.g., b), and describes a perfect shape with-
out accounting for noise.

Related work

Regular expressions and temporal logics are the most com-
mon general purpose specification languages for expressing
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Fig.2 Idealized Pulse shape

temporal patterns in the formal methods community. How-
ever, specifying temporal patterns in data is a problem that
has been pervasively studied. For instance, specification and
recognition of a pulse in pulse-based communications are
an IEEE standard [1] in its own right. Extracting unspeci-
fied motifs in time series has been studied in data mining
[22], and feature extraction using patterns has been stud-
ied in machine learning [12,21]. More recently, time-series
shapelets were introduced in [30] as a data mining primitive.
A shapelet is a time-series segment representing a certain
shape identified from data. Our work is partially motivated
by the concept of shapelets. In contrast to shapelets that are
extracted from unlabeled data, shape expressions provide
a more supervised feature extraction mechanism, in which
domain-specific knowledge is used to express shapes of inter-
est.

In the context of CPS, timed regular expressions (TRE) [6,
7], quantitative regular expressions (QRE) [2-4,19], Sig-
nal Temporal Logic (STL) [18] and various stream lan-
guages [10,11,15-17] have been used as popular formalisms
for specifying properties of CPS behaviors. QREs are a
powerful formalism that combines quantitative computations
over data with regular expression-based matching. An offline
algorithm for matching TREs was proposed in [23,24].
This thread of work was extended to online pattern match-
ing in [25]. Automata-based matching for TREs has been
developed in [26-28]. In contrast to our approach, pattern
matching with QREs and TREs is sensitive to noise in
data. The problem of uncertainty has been studied through
parameterized TRE specifications, either by having param-
eters in time bounds [5] or in spatial atomic predicates [8].
These approaches are orthogonal to ours—instead of hav-
ing parameters on standard TRE operators, we focus on a
rich class of parameterized atomic shapes. Finally, a sophis-
ticated algorithm to incrementally detect exponential decay
patterns in CO; measurements was proposed in [29] in
the context of smart building applications. We adapt and
extend this basic idea to a general purpose specification lan-
guage that allows combining such atomic shapes with regular
operators.
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2 Shape expressions and automata

In this section, we define shape expressions as our pat-
tern specification language. In essence, they are regular
expressions over parameterized signal shapes, such as linear,
exponential or sine segments, and with additional parameter
constraints. We then define shape automata, which provide
an executable formalism for representing shape expressions
and recognizing composite signals made of several types of
segments. This executable formalism captures exactly the
notion of shape expression and will allow us to define a fam-
ily of pattern-matching algorithms as we will see in Sect. 3.
We first give a few basic definitions necessary to our frame-
work, such as notions of signals, parameters and shapes.

2.1 Definitions

Let P = {pi1,..., pn} be a set of parameter symbols. A
parameter valuation v maps parameters p € P to values
v(p) € RU {L}, where L represents the undefined value.
We use the shortcut v(P) to denote {v(p1),...,v(pn)}. A
constraint y over P is a Boolean combination of inequal-
ities over P. We write v = y when the constraint y is
satisfied by the valuation v. Given p € P and p ~ k for
~e {<, <, >, >} and some k € R, we have that v(p) = L
implies that v = p ~ k. We denote by I'(P) the set of all
constraints over P.

Let X be a set of signal variables. A signal w over X is
a function w X x [0,d) — R, where [0, d) is the time
domain of w, which we assume to be discrete, hence a subset
of Z. We denote by |w| = d the length of w.

Given two signals w; : X x [0,d;) - Randwy : X X
[0, d») — R, we denote by w = w; - w» their concatenation
w : X x[0,d; +dr) — R, where forall x € X, w(x,t) =
wi(x,t)ifr € [0,dy) and w(x,t) = wo(x,t —dy) ift €
[di,dy + d>). Let w X x [0,d) — R be a signal, and
d; and dj be two constants such that 0 < d; < dr < d. We
denote by wldtd) - X % [0, dy — di) — R the restriction
of w to the time domain [d}, d»), such that for all x € X and
t €[0,dr —dp), w®(x 1) = wx,t + dy). We allow
signals of null duration d = 0, which results in the unique
signal with the empty time domain.!

Consider two sequences y = yi,...,Yy, and f =
f1, ..., fnof values, where y represents a sequence of obser-
vations and f the corresponding sequence of predictions given
by a model which approximates the distribution of y. The
mean squared error MSE(y, f) of f relative to y is a statistical
measure of how well the predictions of a (regression) model

! The signal with the empty time domain is equivalent to the empty
word in the classical language theory

approximate the observations and is defined as follows.

1
MSE(y, ) = - i (i = H?

Another statistical measure in aregression analysis of how
well the predictions of a (regression) model approximate the
observations is the coefficient of determination R%, defined in
terms of the mean y of the sequence y, its total sum of squares
SSior and the residual sum of squares S5, as follows:
RA(y,f) = 1 — S50 V=130
SSi(¥) = T{_ i = )7 SSpes(v. ) = T (i = fi)?

The coefficient of determination R> typically ranges from
0 to 1. An R? of 1 indicates that the predictions are a per-
fect match of the observations. On the contrary, an R* of 0
indicates that the model explains none of the variability of
the response data around its mean. Negative values of R>
can occur if the predictions fit the observations worse than a
horizontal hyperplane.

2.2 Shape expressions

We now define the syntax and semantics of shape expres-
sions defined over the set X of signals and the set P of
parameter variables. A shape o, (P’) is an expression that
maps parameter variables P’ C P and the signal variable
x € X to a parameterized family of idealized signals. To
every shape oy, we associate a special duration variable [,
that is included in the set P of parameter variables.” Consider
the basic shapes below.

liny(a,b,l) ={w | v.|Jw| =vd) A

wx,t) =t-va) +v)} (1)
expy(a, b, ¢, 1) = {w | Jv.|w| = v(d) A
w(x, 1) = v(a) + v(b)e' ") )

sing(a, b, c,d, D) = {w | v Jw| =v(l) Aw(x,1)
= v(a) 4+ v(b) sin(v(c)t + v(d))}
3

In (1), we describe a line segment parameterized by its
slope a, and intercept b. In (2), we describe an exponential
shape with parameters a, b, ¢ and [, while (3) describes a
parameterized family of sinusoidal shapes with the speci-
fied parameters.> Given a valuation v and a shape o, (P’),

2 We use [ instead of 1, . whenever its association to o, is clear from
the context and omit /. altogether when not interested in the duration
of the shape.

3 We omit the duration variable [ whenever we are not interested
in the duration of a shape—for instance, we then use the notation
sin(a, b, ¢, d).
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we denote by w(x) = o, (v(P’)) the signal w that instan-
tiates the shape o, to concrete parameter values defined
by v. We assume a finite set X of shapes, without impos-
ing further restrictions. Shape expressions (SE) are regular
expressions, where shapes with unknown parameters play
the role of atomic primitives, and which have an additional
restriction operator for enforcing parameter constraints.

Definition 1 (SE syntax) The shape expressions are given by
the grammar

pu=€loxP)lopiUp o -gle* gy
whereo € X,x € X, P’ C P,and y € T'(P).

The symbol e denotes the empty word, and the operators
01 U@, @1 - 92 and ¢* denote the classical regular expression
union, concatenation and Kleene star, respectively, while
@ : y says that ¢ is constrained by y. We write ¢ as an
abbreviation of ¢ - - - ¢ (i times). We denote by X x (P) the
set of expressions of the form o, (P’) foro € X, x € X
and P’ C P. The set of shape expressions over P and X is
denoted ® (P, X).

Example 1 Consider the visual pulse specification from
Fig. 2. We describe an ideal pulse as a shape expression @p,se
as follows:*

¢ = ling (0, D) - liny(az, by) : a; < 0O-
liny (0, b3) - liny(as, bs) : ag > 0-1lin, (0, b)

The semantics of shape expressions is given as a rela-
tion between signals and parameter valuations, which we
call a language. We associate with every shape expression
a noisy language L, for some noise tolerance threshold
v > 0, capturing the v-approximate meaning of the expres-
sion. The exact language L capturing the precise meaning of
the expression is obtained by setting v to zero.

To define the noisy language of an expression, we asso-
ciate a goodness-of-fit measure of a signal to an ideal shape,
describing how far is the observed signal from the ideal
shape. We derive this measure by combining mean squared
error (MSE) computed on atomic shapes. The overall mea-
sure gives the quality of a match to a shape expression. We
formally define the noisy language as follows.

Definition 2 (SE noisy language) Let v € R be a noise
tolerance threshold. The noisy language £, of a shape expres-

4 We abuse the notation and replace a parameter variable by a constant,
for instance, lin, (0, b), as a shortcut for lin, (a1, b) : a; = 0.
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sion is defined as follows:

Ly(e) = {(w,v) | lw| =0}

Ly (0x(P") = {(w,v) | |lw| = v() and
pn(w(x), ox (v(P))) < v}

Ly(p1 - ¢2) = {(wy - w2, v) | (wy,v) € L,(p1) and
(w2, v) € L,(g2)}

Ly(p1Uez) = Ly(@1) U Ly(@2)

cv(‘P*) = U?i() »Cv((Pl)

Ly(g:y)={(w,v) | (w,v) € L,(p)and v |= y}

where wu(y,f) is substituted by either MSE(y,f) or 1 —
CoD(y, ).

The noisy SE language is defined as the set of all sig-
nal/parameter valuation pairs, such that the distance of the
signal from the ideal shape signal defined by the shape
expression and instantiated by the parameter valuation is
smaller than or equal to the noise threshold.

Example2 Consider the shape expression gy specify-
ing a pulse, the signal w depicted in Fig. 1 and the
signal w’ = w! the restriction of w to the interval
I = [7,26). Let us consider the valuation of parameter
variables v = (v(ay), v(as), v(b), v(by), v(b3), v(by)) =
(=0.67,0.67,9, 17,7, —5) in @pyse thatinstantiates the ideal
shape (red line) of the first pulse depicted in Fig. 1. Let
wi = w12 wy = w219 s = w1518 4, = 182D
and ws = w[21’26), with:

MSE (w (x), ling (0, v(b))) = 0.04
MSE (w3 (x), liny (v(a2), v(b2))) = 0.49
MSE (w3 (x), liny (0, v(b3))) = 0.13
MSE (w4 (x), liny (v(as), v(bs))) = 0.35
MSE (w5 (x), liny (0, v(b))) = 0.10

Hence, (w’, v) € »CO.S (Qapulse) but (w/, v) ¢ 'CO.l(QDpulse)-
2.3 Shape automata

We now define shape automata, which will act as recognizers
for shape expressions. They are akin to finite state automata in
which edges are labeled by shape expressions with unknown
parameters, and parameter constraints. We then show that
shape expressions and shape automata are inter-translatable.

Definition 3 (Shape automata) A shape automaton is a tuple
(P, X, Q,A,S, F),where (1) P is the set of parameters, (2)
X is the set of real-valued signal variables, (3) Q is the set
of control locations, (4) A € Q x Zx(P) x I'(P) x Q is
the set of edges, (5) S € Q is the set of starting locations,
and (6) F C Q is the set of final locations.

Example 3 The shape automaton .4,,,,/s., shown in Fig. 3, rec-
ognizes pulse shapes specified by the shape expression @pyge.
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] any lin, (0, b) ling(az, b2)
8 q
do q1 a3 <0

lin, (0, b3)

as >0

f a5 q
any ) lin, (0, b) !

lin,(ay,byq)

Fig.3 Shape automaton A,

A state in a shape automaton is a pair (¢, v) where g
is a location and v is a parameter valuation. The runs of
shape automata are akin to those in weighted automata and
defined as follows. For a signal w, we define transitions %

between two states as follows. We have (g, v) = (q',v)
C

if there exists (g, 0x(P’),y,q’) € A such that P’ C P,
c = p(wx),ox(V'(P)), v = v, v'(p) = v(p) for all
p € P\P’ and v/(p) = v(p) also for all p € P N P’ such
that v(p) # L.

The semantics of a shape automaton are given as follows.

Definition 4 (Shape automaton run) A run of a shape automa-
ton over some signal w is a sequence of transitions

Wp

w w:
(40, v0) —> (q1, V1) —> ... = (qn, Vn)
cl 1) cn

such that go € S, vo = (L,..., 1) and g, € F, where
w1 - w3 - - - wy is a decomposition of w. Such a run p induces
cost(p) = max}_, ¢; and the parameter valuation val(p) =
Uy

The set of runs of a shape automaton A over some signal w
is denoted R(A, w). A shape automaton A associates any
given signal w to a similarity measure that is the minimum
among the similarity measures of all runs.

Definition 5 (SA language and noisy language) The noisy
language of a shape automaton for a given noise toler-
ance threshold v € R4 is £,(A) = {(w,v) | Jp €
R(A, w) s.t. val(p) = v and cost(p) < v}. The exact lan-
guage of a shape automaton is £L(A) = Lo(A).

Example 4 Consider the signal w' = wjwyw3zwiws from
Example 2 and let:

vp=(L,L,9, 14,1, 1) c1 =0.04
vy = (—0.67, 1,9,17, 1, 1) c» =049
v3 =(—0.67,1,9,1,7,1) c3=0.13
vq4 = (—0.67,0.67,9,17,7, =5) cq4 =0.35
vs = (—0.67,0.67,9,17,7, —=5) c5 =0.10

We then have, assuming vo = (L, L, L, 1, 1, 1), that
P = (g0, v0) —> (q1, V1) —> ... 2> (g5, vS)
Cl (&) (o]

is a run of Apyjse over w’ with cost(p) = 0.49 and w’ €

Los (Apulse) .

We now give a formal equivalence between shape expres-
sions and shape automata. The first direction of the theorem
allows to construct automata recognizers for arbitrary expres-
sions. The second direction of the theorem shows that shape
expressions are expressively complete relative to the class of
automata under consideration.

Theorem 1 (SE < SA) For any shape expression ¢, there
exists a shape automaton Ay, such that L, (Ay) = L, (p) for
all v > 0. For any shape automaton A, there exists a shape
expression ¢ A such that L, (¢ 4) = L,(A) for all v > 0.

Proof We show the two directions in turn.

[(=)] Automaton A, = (P, X, Qy, Ay, Sy, F,) equivalent
to the expression ¢ is defined inductively as follows, assum-
ing disjoint sets of locations.

— Empty word: A, consists of Q. = Se = Fe = {¢} and
Ae = 0.
— Basic shapes: For B = o, (P’), Ag consists of Qg =

{g.4", Sp = {q), Fp = {4}, and Ap = {(9, B,
true, ¢’)}.

— Union: Aguy is the component-wise union of A4, and
Ay

— Concatenation: Ay, consists of Qg.y = Qp U Qy,
Spp = Sy if Sy N Fy = ¥, Sy U Sy otherwise,
Fyy = Fy,and Ay.y = Ay U Ay U {(qg,0,7, q) |
39" € Fy,(q.0,v.9") € Ay, q" € Sy}.

— Kleene star: similar to concatenation.

— Constraints: Ay, consists of Qy., = QyU{gy}, Sp:y =
Sp» Fory ={qy},and Ay = Ay U{(q, 0,y A Y, qy) |
39’ € Fy,(q.0,v'.q") € Ay}

One can prove by structural induction the desired property
of A,. [(«<=)] An expression equivalent to .A can be obtained
by state elimination, as for classical regular expressions. For
this, one defines extended shape automata, whose edges are
labeled by possibly complex shape expressions. The only
form not present in classical construction is the constraint
¢ : y. For this, we simply apply all constraints to the atomic
expressions present on that edge as a preprocessing step. The
resulting extended shape automaton has the same semantics
as the original shape automaton. O

@ Springer
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3 Pattern matching

In Sect. 2.3, we introduced shape automata to recognize sig-
nals that are close to a specified shape. However, a shape
expression is not intended to represent a whole signal, but
only a segment thereof. In this section, we extend shape
automata to enable them identifying all signal segments that
match specific shapes. We first define the notion of noisy
match sets.

Definition 6 (Noisy match set) For any signal w defined over
atime domain T = [0, d), shape expression ¢ and noise tol-
erance threshold v, we define the noisy match set M., (¢, w)
as follows:

My, w) = {(t,t) e T? |t <t and w"") € £,(p)}

Given a shape automaton A4, its associated shape matching
automaton A s another shape automaton that extends .4 with
dedicated initial and final locations, which allow Ato silently
consume a prefix and a suffix of a signal. The construction
follows [9] and is given in the definition below.

Definition 7 (Shape matching automaton) We derive from
every shape automaton A = (P, X, O, A, S, F) a shape
matching automaton A = (P, X, Q, A, S, F), such that

-0=0U{ /)
- S=1
- F={/}

A~

- A=A U {@G,any,true,q) | ¢ € S} U {(g,any,
true, f) | g € F}, where any is a special shape such that
w(w, any) = 0 for all w.

Intuitively, given a signal w, a shape expression ¢ and its
associated shape matching automaton A, an accepting run

p over w decomposed into wop - Wy - - - Wy41 in A(p
(8, vo) % (g0, vo) l:—ll> f—> (Gn: vn) 1011» (f,va)

represents one potential match (associated with the seg-
ment (7,¢") in w where t = |wg| and ¢’ = |w| — |wy+1])
with one specific parameter instantiation (v, ) and its asso-
ciated similarity measure cost(p) = max}_, ¢;. We denote
by A(p) = (¢, 1) the label of run p over w in A. We first
note that there are an infinite number of runs over w in /i(p
that follow a given decomposition of w, simply due to the
parameters being valued as real numbers. We also note that

for a given signal w, there are a finite (but large) number of
its decompositions.

Example 5 Figure 4 shows three runs pj, oz and p3 over w
in A5 and the corresponding ideal shapes defined by the

@ Springer
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Fig.4 Pulse train—three runs pj, p2 and p3 over w in f\pulse

valuations computed during the runs. We can see that each
run identifies one segment of w that could be a potential
match of the shape expression ¢y With specific parameter
values and cost. In particular, we can observe that runs o
and p> decompose w in the same manner but with different
parameter valuations, resulting in cost(p;) < cost(p2).

From the above observations, we obtain that the labeling of
the set of runs associated with a shape matching automaton
A and a signal w gives us exactly the match set of £(A)
relative to w.

Theorem 2 (Computation) Let ¢ be a shape expression, A(p
the corresponding shape matching automaton, w a signal
and v a noise tolerance threshold. We have that M, (¢, w) =
{(t,1) | 3p € R(Ay, w) s.t. A(p) = (1, 1) and cost(p) <
v}

Proof In one direction, we have that if w € E(ﬁw), then
there exists a prefix of w with duration ¢ spent in the initial
state and a suffix of w in the final state of A(p, and the result-
ing infix u of w with duration ' — ¢ verifies u € L(p),
by Theorem 1. Hence, by definition of the match set we
have (z,1') € M, (@, w). In the other direction, assume
(t,1) € My(g, w). Then, w"") € £, (p) so that by Theo-
rem 1, there exists a run of ,/i<p whose label is (¢, t'). O

We observe that while this result in principle solves the SE
pattern-matching problem, the complexity in terms of signal
length is not practical. Let us define the dot-depth of some
expression ¢ the maximal number of concatenation operators
on any branch of its syntax tree.

Theorem 3 (Complexity) The size of the set of runs of a shape
matching automaton Ay, is Q(n**+2), where n is the size of
the trace, and k is the dot-depth of ¢.

Proof Let w be a signal of length n. Every split of w into
u-wj - - - wi41 -1’ induces k 42 splitting points. The number
of such splittings grows as fast as Q (n%*?) with the length
n of w. An expression ¢ with dot-depth k induces k + 2
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transitions in its shape matching automaton: one between §
and ¢, one between the last state ¢, and f and one for very
concatenation in the sub-expression with maximal nesting of
concatenations. These transitions create k + 2 splitting points
of w. There are at least as many runs in the set of runs of Aw
over w as the number of decompositions of w according to
the above. Hence, the set of possible runs is €2 (nkt2). O

The dot-depth of any expression is nonnegative, so that this
lower bound is at least quadratic in the length of the signal. (A
concatenation-free expression still has a quadratic number
of possible start/end points for its potential matches.) This
means that computing the match set exhaustively through
runs of a shape matching automaton will not scale in practi-
cal applications where typical signals are, for example, 10°
samples long.

We propose two ways to handle complexity:

1. Bound the length of matches;
2. Develop heuristics to efficiently match shape expres-
sions.

Bounding the length of matches is reflected in the following
definition.

Definition 8 (Bounded expression) A shape expression is
said to be bounded (by k) when for all words w we have
that w € L(g) implies |w| < k.

Over bounded expressions, the complexity of computing
the match set through runs of a shape matching automaton
becomes linear in the length of the signal.

Theorem 4 (Complexity of bounded expression) For an
expression ¢ bounded by k, the set of accepting runs of the
shape matching automaton can be represented by a dag of
size O (nkm?), where n is the length of the trace and m is the
length of the expression.

Proof Let w be a signal of length n. For any position0 < i <
n, there are at most k positions j < i for which there exist
signals u, u’, w’ suchthatw = u-w’-u/, lu| <i < |u|+|w’],
and w’ is a match of ¢. This is because w’ is at most of length
k. Hence, any run of the shape matching automaton derived
from ¢ that features a sequence of states g - - - gx such that
40, ..., qk ¢ {5, f}, where § and f are the initial and final
states, can be aborted. There are n positions in the word w,
and in any position i, the automaton can be in one of m
discrete states (followed by an arbitrary cost) and 2 states §,
f (followed by a zero cost). Since these 2 states, respectively,
share the same cost, prefixes or suffixes of runs in the initial
or final states can be joined. Hence, a dag representation of
the run tree does not exceed km + 2 states in width and n + 1
states in length. Transitions from every state in the dag at
any position go out to at most one of m + 1 states in the next
position.

4 Policy scheduler for shape matching
automata

In this section, we propose a heuristic in the form of a policy
scheduler that efficiently approximates the complete match
set by computing a representative subset of non-overlapping
matches.

Let w be a signal defined over X and o (P’) a shape with
x € X. We denote by reg the statistical regression with
constraints which returns the pair of the parameter values
v(P’) which minimizes MSE under the constraint y and the
associated u(w, o, (v(P'))), defined as follows:

reg(w, oy, y) = (argmin,{MSE(w, o, (v(P"))) | v E y},
w(w, ox (v(P))))

We now show that  (either MSE or CoD) can be computed
in an online fashion. Given the two sequencesy = yi, ..., ¥
and f = fi,..., f,, of observations and predictions, we
define a recursive definition of MSE and CoD as follows.

MSE(y,f,n+ 1) = n”? MSE(y, f, n)

o7 Ot — Sar1)?
Fn+1) = A750) + o yat
SSior(y. n+1) = SSior(y. n) + (yn1
—5()(nr1 — Y+ 1))
SSres(y. £.n 4+ 1) = SSres(y. £.1) + g1 — frr1)?

2 _ SSres (y.£,n+1)
Ry tn+1) =1- S5 50
We require a minimum len gth A > 1 for atomic shape
matches.> We define two auxiliary methods out, and outy
as follows:

out,(S) ={q' |3 (¢q,0x,y,9") € Aforsome g € S}
outa(S) ={8 138 =(g,0x,¥,q’) € Aforsome g € S}

The method policy_scheduler (see Algorithm 1) searches
for matches in w that do not overlap, using the method
expression_match. It reads the signal w from time O and
incrementally attempts to find non-overlapping shape expres-
sion matches, stored in the set M (initialized to an empty set,
see line 1). The incremental matching is done as long as the
procedure does not reach the end of the signal w (while loop,
lines 2 — 5). In each loop iteration, a new expression match
is attempted, starting at the current time ¢ and from the set of
initial locations § (see line 1). The matching is done by the

5 We also assume that the SMA fl, the signal w, the noise toler-
ance threshold v and the minimum match length A are given as global
parameters to the main procedure policy_scheduler and are implicitly
propagated to all the other methods
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Algorithm 1: Policy scheduler policy_scheduler

Algorithm 3: Atomic shape match atomic_match.

Qutput: Approximate match set M
t<—0;M <@, S <~ outq(ﬁ);
while ¢ < |w| do

L t' « expression_match(S, 1);

BW N -

if ' >tthen M < MU{(t,t)};t <t +1 else
t<—t+1
5 return M

Algorithm 2:
expression_match

Input: Set of locations S, current end match time ¢
Output: New end match time ¢’
t «— —00;
if SNF # (then ¢ < ¢ elseif r < |w| then
foreach § = (¢, oy, v, q’) € outa(S) do
L 7 < atomic_match(é, 1) ;

Shape expression match

B W N -

if T > —oo then t’ <« expression_match({g'}, 7);
t' < max{t’, v’}

6 return

method expression_match (line 3), which returns the end
time of the match #'. If ¢’ is strictly greater than ¢, it means
that the shape expression is successfully matched by the seg-
ment (7,1") of w and this segment as added to M (line 4).
Since our heuristic does not allow overlapping matches, the
next match attempt is scheduled at ¢’ + 1. If ¢’ is smaller than
or equal to ¢, it means that the shape expression could not be
matched from time ¢. The next matching attempt is scheduled
att + 1 (line 5).

The shape matching procedure expression_match (see
Algorithm 2) attempts in a recursive fashion to reach a final
location from a set of locations S and time index ¢. The pro-
cedure returns another time index ¢/, where ' > ¢ if a final
location can be reached in ¢’ — f steps from a location in S, or
t' = —oo (the initial value of ¢/, see line 1) otherwise. If one
of the locations is a final location, we have that ¢’ = ¢ (line
2). If none of the locations in S is final, and we have not yet
reached the end of w (line 3), the procedure does the follow-
ing. For every transition with a source location in S, labeled
by o, and y (line 4), atomic_match computes the end time
T of the longest match of oy that satisfies y and starts at ¢
(line 5). If there is no such match, 7 equals —oo, otherwise
7 > t + A.° For all the transitions that result in a match end-
ing at time 7, we recursively call expression_match with
the target location ¢’ and time t as inputs, and 7" as output
(line 6). The procedure keeps the longest from the successful
expression matches. This effectively allows the procedure to
concurrently follow multiple paths and select the one that
provides the longest match.

6 Recall that we require atomic matches of minimum length A.
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Input: Transition § = (g, oy, ¥, g), start match time index ¢
Output: End match time 7/

11t « —o0;

2 if t + A < |w| then

3 T Aw <« wlhtD; (v, ¢) « reg(w’, o (P'), y);

4 while ¢ < v do

5 t«—t+1;

6 if ' < |w| then

7 T—t+Lw «—w-wt);

8 c < p', o (w(P)));

9 if ¢ > v then (v, c¢) < reg(w’, o, (P’), y) else
break

0 return

ot

The atomic shape matching procedure atomic_match,
shown in Algorithm 3, efficiently computes the longest match
of an atomic shape starting from a given time index. It takes as
inputs a transition § = (g, oy, ¥, ¢’) and the time index ¢ and
returns the end time ¢’ of the longest o, v-noisy match [z, ']
that satisfies y. The algorithm starts by fitting the shape o, to
the segment w’ = w!"/*7) under the constraint y, using the
regression method reg, and thus estimating the parameters v
(lines 3). The procedure reg also returns the corresponding -
value c of the performed regression. If the associated p-value
c is greater than the allowed noise tolerance v, the procedure
returns ¢’ = —oo, meaning that the segment is not a good
candidate for matching the shape. Otherwise, the algorithm
iteratively extends the size t of the segment as long as the
wu-value between the extended prefix and o, (v(P’)) instanti-
ated with the fixed parameter valuation v remains lower than
or equal v (lines 4 — 10). We note that each extension of
the signal prefix updates p but not the parameter valuation.
There are two possible reasons for 1 becoming greater than
v: (i) Either the estimated parameter valuation v needs to
be updated, or (ii) the current prefix does not fit the shape
under the constraint v anymore with any valuation v. In the
first case, the procedure re-estimates the new parameter val-
uation and re-computes w (line 9). If the re-computed u is
smaller than or equal to v and we did not reach the end of
the signal, we repeat the match extension procedure. Other-
wise, we terminate the procedure and return the time index
t' where the current match (if any, otherwise ¢’ equals —o0)
ended.

5 Implementation and evaluation

We implemented Algo. 3 into a prototype tool using the
Python programming language. We employed pattern match-
ing of shape expressions to two applications—detection of
patterns in electrocardiograms (ECG) and oscillatory behav-
iors in an aircraft elevator control system. All experiments
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Fig.5 Recognizing pulses in ECG signals—RBBB characteristics on
channels v1 and v6
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Fig.6 Recognizing pulses in ECG signals—Signal on v6 channel

were run on MacBook Pro with the Intel Core 17 2.6 GHz
processor and 16GB RAM.

5.1 Detection of anomalous patterns in ECG

In this case study, we consider ECG signals from the Phys-
ioBank database [14], which contains 549 records from 290
subjects (209 male and 81 female, aged from 17 to 87). Each
record includes 15 simultaneously measured signals, digi-
tized at 1,000 samples per second, with 16-bit resolution
over a range of £16.384mV. The diagnostic classes for the
subjects participating in the recordings include cardiovascu-
lar diseases such as myocardial infarction, cardiomyopathy,
dysrhythmia or myocardial hypertrophy.

Specification of an Anomalous Heart Pulse We consider
the right bundle branch block (RBBB) heart condition, in
which the right ventricle is not directly activated by impulses
traveling through the right bundle branch. Figure 5 depicts a
visual characterization of the RBBB heart condition as it can
be observed on channels v1 and v6.” In this work, we concen-
trate on specifying the shape of the pulse depicted in v6 using

7 The figure is under copyright by A. Rad.
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Fig. 7 Recognizing pulses in ECG signals—Magnified anomalous
pulse

shape expressions. The specification ¢ of the anomalous v6
pulse consists of a sequence of 7 atomic shapes:

¢ = exp(ar,bi,c1) : by >0
-exp(az, by, c2) : br <0

lin(as, b3) : a3 >0
<lin(ag, by) : a4 <0
-lin(as, bs) : as >0

- exp(ag, be, cg) = bg >0
-exp(ay, b7, ¢7) : b7 <0

Evaluation We evaluated our SE matching procedure with
respect to the recordings of a 70-year-old patient that suf-
fers from RBBB condition. The v6 channel recording of the
patient, shown in Fig. 6, has 10,000 samples. In this experi-
ment, we use CoD as our noise metric.® With noise threshold
v = 0.02, we were able to identify all the segments that
match ¢ in 28.98s. The matches are depicted as colored ver-
tical bands in Fig. 6. Figure 7 zooms in on a single match and
shows the ideal shape that was inferred to match the pattern.
We now experimentally study how sensitive is the quality
of the procedure outcome with respect to the noise thresh-
old and the constraints on the parameters, and how well the
procedure scales with the size of the input.
Sensitivity to the noise threshold and the constraints on
the parameters Domain knowledge in a particular applica-
tion field can be used to derive more precise specifications.
In the case of anomalous v6 pulses for patients with RBBB
condition, such knowledge can be, for instance, used to refine
its specification ¢ by further constraining the slope a3 to be
greater than 0.5, resulting in specification ¢’. We demon-
strate the impact of the noise threshold to the quality of

8 We recall that v = 0 denotes zero noise tolerance and v = 1 allows

arbitrary level of noise.
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Table 1 Experimental Results

(a)Sensitivity to the noise threshold

v |H| Mo (@)l M. (@)
0.70 4 9 4
0.24 4 7 4
0.20 4 5 4
0.10 4 4 4
0.02 4 4 4
0.01 4 0 0
(b) Runtime and memory requirements

Num. Runtime Mem.

Samples (s) (MB)

1,000 0.46 33.13

2,500 1.43 48.82

5,000 3.39 70.80

7,500 6.39 72.83

10,000 10.12 89.18

pattern matching in the cases of under-specified (¢) and over-
specified (¢’) shape expressions. Table 1 shows the results
of the experiments, where column |H | denotes the number
of segments matched by the inspection of the signal by a
human with domain knowledge and columns | M, (¢)| and
M, (¢")| denote the number of the segments matching the
expressions ¢ and ¢’ by our procedure, respectively.

We first observe that domain knowledge improves the

quality of both the specification and the robustness of the
monitor. Second, our approach can result in missing patterns
or detecting false patterns. This result is expected—very low
v enables to only match shapes that are very close to the
ideal one, while very high v results in matching shapes that
are far away from the specification. Hence, our procedure
may require tuning parameters.
Scalability We now evaluate the scalability of our procedure
with respect to the size of the signal, taking into account
the computation time and the memory requirements. Table 1
summarizes the results. The computation time in this exper-
iment exhibits an almost linear behavior, while the memory
consumption appears to grow in a sub-linear fashion with
respect to the size of the input.

5.2 Detection of ringing in an aircraft elevator
control system

In many electronics applications, step response is used
to study how the system responds to sudden changes
in inputs. Ringing is an oscillation in the output signal,
which is encountered in response to a step in input. It
is considered to be an undesirable behavior, which nev-
ertheless cannot be fully avoided. It is hence important
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Fig.9 Aircraft elevator control system—Step Response

to investigate properties of the oscillations (amplitude,
frequency, etc.) to determine the quality of the output
response.

We detect and study the ringing behavior in an aircraft
elevator control system [13] with SEs. An elevator is a flight
control surface that controls movement about the lateral axis
of an aircraft. We use a Simulink model of a redundant actu-
ator control system with one elevator on the left and one
on the right side, each equipped with two hydraulic actua-
tors (see Fig. 8). The actuators can position the elevator, but
only one shall be active at any point in time. There are 3
hydraulic systems that drive the 4 actuators: the left outer
actuator (LIO), the right outer actuator (RIO), the left inner
actuator (LDL) and the right inner actuator (RDL), orga-
nized in 2 Primary Flight Control Units (PFCU). In essence,
the pilot gives a command with the intended position of the
aircraft, which must be followed by the left and right ele-
vators. When the pilot gives a step command, this results
in the ringing response by the control system, as shown in
Fig. 9.

Specification of a Ringing Behavior We are interested in
detecting both the rising and falling edge and the subsequent
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Fig. 10 Aircraft elevator control system—Segments matching ringing
pattern

Table 2 Parameters inferred from segments matching ¢

Amp aj by ap by c dy

1 1.36 —8.98 —0.40 3.03 —2.05 17.73
2 2.83 —18.55 —1.51 2.83 —3.31 25.80
3 4.75 —30.75 —2.78 —8.76 —5.21 13.09

ringing behavior. We chose to specify such behavior as a line,
followed by a sinc wave (sinc(a, b, ¢, d, t) = a—i—bw),

ct+d
letting
ringing, = liny (a1, b1) : a1 > 0.5 - sinc, (a2, ba, ¢2, da)

Inferring Parameters of Ringing Patterns Figure 10 shows
the segments in the output response of the aircraft ele-
vator control system that match the ringing pattern. We
stimulate the system with input steps of different ampli-
tudes and show how this change in inputs affects the step
response and the resulting ringing oscillations. For each
response signal, we report the inferred parameters in Table 2.
We can observe that the rising edge of the step response
becomes steeper with input steps of higher amplitude. We
can also see that both the amplitude and the frequency
of the sinc monotonically decrease with the input ampli-
tude.

Specification of a Step followed by Ringing We have spec-
ified so far the ringing behavior as a segment in the elevator
signal (x). However, this ringing behavior is usually trig-
gered by a step segment in the pilot command signal (y). We
can specify this causal relation between y and x by using
concatenation. In essence, the specification of a step in y
followed by a ringing behavior in x is formalized as fol-

Fig. 11 Aircraft elevator control system—Segments matching step fol-
lowed by ringing pattern

lows:

@ = step,, - ringing,

where

step, = liny (0, by) - liny (0, b2,1) : 1 <0.3

Figure 11 depicts the two-dimensional segments that
match the specification ¢. We note that the above speci-
fication does not discriminate between the nominal (first)
and the anomalous (second) pattern—both segments match
the expression. This happens because we do not define any
dependency between the absolute value of the step and the
mean value (the amplitude) of the sinc function defining the
ringing behavior.

6 Conclusion

In this paper, we proposed shape expressions as a language
for specification of rich and complex temporal patterns.
We studied essential properties of shape expressions and
developed an efficient heuristic pattern-matching procedure
for this specification language. We believe that this work
explores the expressiveness boundaries of declarative speci-
fication languages.

We will pursue this work in several directions. We
will apply our technique to examples from more applica-
tion domains. We will study more sophisticated matching
methods that will minimize the need of tuning parameter
constraints. We will compare more closely our approach to
the work on classical regular expression matching on the
one hand, and purely machine learning feature extraction
methods on the other hand. We will finally investigate the
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application of shape expressions in testing CPS with the
particular focus on generating test cases from such a speci-
fication language.
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