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ABSTRACT
Ground-motion time series are essential input data in seismic analysis and performance
assessment of the built environment. Because instruments to record free-field ground
motions are generally sparse, methods are needed to estimate motions at locations with
no available ground-motion recording instrumentation. In this study, given a set of
observed motions, ground-motion time series at target sites are constructed using a
Gaussian process regression (GPR) approach, which treats the real and imaginary parts
of the Fourier spectrum as random Gaussian variables. Model training, verification, and
applicability studies are carried out using the physics-based simulated ground motions
of the 1906 Mw 7.9 San Francisco earthquake and Mw 7.0 Hayward fault scenario earth-
quake in northern California. The method’s performance is further evaluated using the
2019 Mw 7.1 Ridgecrest earthquake ground motions recorded by the Community
Seismic Network stations located in southern California. These evaluations indicate that
the trained GPR model is able to adequately estimate the ground-motion time series for
frequency ranges that are pertinent for most earthquake engineering applications. The
trained GPR model exhibits proper performance in predicting the long-period content
of the ground motions as well as directivity pulses.

KEY POINTS
• Ground-motion time series are not available for uninstru-

mented sites.
• We estimate the time series at a site based on observed

ground motions at surrounding sites.
• The method can be used for estimating and understand-

ing causes of earthquake damage at uninstrumented sites.

INTRODUCTION
Although the number of available recorded earthquake ground
motions has increased in the last few decades, current sensor
networks are still sparse for various site-specific earthquake
applications. Thus, an estimation of either ground-motion
intensity measures (GMIM), for example, peak ground accel-
eration, peak ground velocity (PGV), and spectral response
ordinates, or the entire ground-motion time series is required
to evaluate the damage state or performance level of a specific
structure for post-event assessment. Because there are only
approximately 2000 ground-level stations to record the free-
field ground motions in California (Southern California
Seismic Network, Northern California Seismic Network,

California Strong Motion Instrumentation Program)
(Southern California Earthquake Data Center, 2021), site-spe-
cific structural assessments invariably require estimations
using interpolation methods.

Presently, “ShakeCast,” “ShakeMap,” and the U.S.
Geological Survey (USGS) “Did You Feel It?” platforms offer
estimates of the shaking level and GMIM after an event using
various techniques (Fraser et al., 2008; Wald et al., 2008, 2012;
Lin et al., 2018; Worden et al., 2018). Some of these techniques
involve estimating the GMIMs at target sites using the
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surrounding observations (Worden et al., 2018; Baker and
Chen, 2020; Otake et al., 2020). However, for nonlinear
response-history analyses of structural systems and analysis
of the degree and distribution of damage in a structure,
the entire ground-motion time series is needed. Therefore,
the generation of realistic time series is needed at sites
where recorded motions are not available (Petrone et al.,
2020). The generated motions should be able to capture
reasonable variations in the amplitude, phase, and frequency
content over an area (Zerva and Zervas, 2002; Zerva, 2009;
Chen and Baker, 2019) because such spatial variations can
have considerable effects, especially on distributed lifeline
structures (Jayaram and Baker, 2009; Adanur et al., 2016;
Tian et al., 2016; Todorovska et al., 2017; Zerva et al.,
2018).

There has been extensive work on “conditioned ground-
motion simulations” wherein the time series at target sites
are constructed using surrounding measurements (Kameda
and Morikawa, 1992; Konakli and Der Kiureghian, 2012;
Zentner, 2013; Alimoradi and Beck, 2015; Wu et al., 2016;
Huang and Wang, 2017; Rodda and Basu, 2018, 2019; Lu et al.,
2021). The majority of conditioned ground-motion simulations
are based on the use of cross-spectral density (CSD) and auto-
spectral density (ASD) functions to determine the covariance
between the Fourier series coefficients for neighboring stations
(Der Kiureghian, 1996; Konakli and Der Kiureghian, 2012;
Rodda and Basu, 2018). The conditioned ground-motion sim-
ulation results depend on the spatial variability of the motions
captured by CSD and ASD. The CSD is determined using coher-
ency functions, and the coefficients of these functions are
assigned empirically using data-driven methods (Abrahamson
et al., 1991). Moreover, a detailed description of the site proper-
ties and wave propagation characteristics is sometimes needed
for generating the simulated motions, which can be computa-
tionally expensive and thus time-consuming, especially when an
ensemble of ultradense sites is needed.

In this study, the Gaussian process regression (GPR)
method, also known as Kriging (Rasmussen and Williams,
2006), is employed to generate the ground-motion time series
at target sites where there are no available recording instru-
ments. This method is able to construct the entire ground-
motion time series properly at the target site using limited
input information such as geographical coordinates and the
average shear-wave velocity in the uppermost 30 m, VS30, from
each site. Therefore, it is able to estimate the motion time series
with lower computational costs in comparison with the afore-
mentioned methods. The GPR method spatially interpolates
the real and imaginary parts of the observed frequency content
of the neighboring motions using an assumed covariance func-
tion to establish the ground-motion time series at the target
site. The spatial correlation of the ground motions is computed
to estimate the entire time series at a target site using the
observed dataset.

THEORETICAL BACKGROUND
Suppose the ground-motion acceleration time series, as�t�, at
location s is constructed of N discrete data points, as�ti�,
i � 1;…;N , at equal time intervals, Δt. The accelerations,
as�ti�, are then expressed using their discrete Fourier transform
(DFT) coefficients Ak (e.g., Oppenheim et al., 1997) as

EQ-TARGET;temp:intralink-;df1;320;666as�ti� �
XN−1

k�0

Akejωkti ; �1�

in which

EQ-TARGET;temp:intralink-;df2;320;601Ak�
1
N

XN−1

i�0

as�ti��cos�ωkti�� j sin�ωkti���Rek� jImk: �2�

In equations (1) and (2), ωk is the kth natural frequency (at
equal frequency intervals) of the DFT, j � ������

−1
p

and Rek
and Imk are the real and imaginary parts of the DFT coeffi-
cient, Ak, respectively, at the kth frequency.

Here, we assume thatRek and Imk (at k
th frequency, k = 0,…,

N − 1) are randomGaussian variables for any location, s, within a
region. We also consider thatRek at location s, is spatially corre-
lated toRe′k at location s′ where s and s′ are neighbors. A similar
assumption for Imk is taken. In this study, we aim to implement
GPR as a method to estimate the values of Rek (and Imk) at
the kth frequency (k = 0, …, N − 1) using the corresponding
Re′k (and Im′

k) from the surrounding station observations. We
then reconstruct the entire acceleration time series at the target
location with all estimated Rek and Imk using equation (1).

It is assumed that there is a statistically insignificant corre-
lation between Rek (or similarly Imk) and Rej (or similarly
Imj) at the same location, s, for different frequencies k and j,
in which k ≠ j, to construct the mean estimated ground-motion
time series. It is worth noting that the mean estimated values for
multivariate Gaussian variables (hereRe and Im) are indepen-
dent of the interfrequency correlation between amplitudes at
various frequencies; yet, the interfrequency correlations of the
DFT coefficients need to be accounted for generating random
ground-motion realizations (see the Realizations of Ground
Motion section).

Gaussian process regression
GPR is a supervised learning method that has numerous appli-
cations in earthquake engineering and seismology, such as
ground-motion time-series estimation, post-earthquake dam-
age assessment, development of performance models of engi-
neering materials, and seismic fragility assessment (Landwehr
et al., 2016; Sun et al., 2018; Tamhidi et al., 2019, 2020; Gentile
and Galasso, 2020; Ghaderi et al., 2020; Sajedi and Liang, 2020;
Sheibani and Ou, 2020). A Gaussian process (GP) (Rasmussen
and Williams, 2006) is a collection of indexed random varia-
bles such that every finite subset is distributed according to a
multivariate normal distribution. In general terms, GP can be
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understood as a multivariate normal distribution for an infinite
number of random variables. More specifically, GP is a distri-
bution over function f �x� ∈ R

EQ-TARGET;temp:intralink-;df3;41;705f �x� ∼ GP�m�x�; k�x; x′��; �3�

which reads as “the function value, f �x�, at input location x
is drawn from a GP with the mean function, m�x�, and the
covariance function k�x; x′�.” As equation (3) indicates, a
GP is entirely defined by its mean, m�x�, and covariance,
k�x; x′� functions, which are

EQ-TARGET;temp:intralink-;df4;41;600m�x� � E�f �x��; �4�

EQ-TARGET;temp:intralink-;df5;41;573k�x; x′� � E��f �x� −m�x���f �x′� −m�x′���: �5�

In equations (4) and (5), E stands for mathematical expecta-
tion. The covariance function k�x; x′� indicates the degree of
similarity between function values at data points, x and x′.
In Bayesian nonparametric statistics (Hjort et al., 2010), a
GP is often used to specify a prior distribution over possible
functions. Here, we assume that the real and imaginary
parts of the DFT coefficients (compare with equation 2) are
functions of the location and possibly other geotechnical or
seismological parameters such as the local site condition.
Because the functional form is unknown and complicated,
we replace it with a GP. To estimate the DFT coefficients,
we carry out a GPR over the observed values, f , which are
either the real or imaginary parts of the DFT coefficients at
each frequency.

It is worth noting that other regression methods such
as Nadaraya–Watson kernel regressions (Nadaraya, 1964;
Watson, 1964) or the Savitzky–Golay filter (Savitzky and
Golay, 1964) are possible alternatives for interpolation purposes.
Both GPR (see the Realizations of Ground Motion section) and
Kernel regression methods (Rubin, 1981) can estimate the
uncertainty of the predicted values. The Kernel regression meth-
ods can implement adaptive kernels that change with data
(Huang et al., 2014), and the GPR is able to implement a com-
bination of multiple kernel functions (through multiplication
and summation) to estimate the covariance among observations
from a complex function. In this study, we use GPR as it simul-
taneously optimizes the covariance function parameters based
on observations and estimates GP values at target locations
without imposing a high computational cost.

One can compute the predictive distribution for function
values f * at new (target) locations (without recorded ground
motions) by conditioning on the observed data. The joint dis-
tribution of observed data and new simulated data is

EQ-TARGET;temp:intralink-;df6;41;106

�
f
f �

�
∼N

��
μ
μ�

�
;
�
Kxx � σ2yI Kxx�

Kx�x Kx�x�

��
; �6�

in which Kxx denotes the covariance matrix of the DFT
coefficients at the observed locations. The entries of Kxx are cal-
culated from the covariance function via Kxxij � k�xi; xj�, in
which k denotes the covariance function between two locations
(compare with equation 5). Correspondingly, Kxx� describes the
covariance between the observed DFT coefficients and the esti-
mated ones at the target locations, and Kx�x� are the covariances
of the DFT coefficients at the target locations. The term σy
denotes the observation noise; I is the identity matrix; and μ
and μ� are the prior mean vectors at the observed and target
locations, respectively. Here, the observed ground motions,
and subsequently their DFT coefficients, are considered noise-
free (σy � 0). The predictive distribution for the function values
f � at the target locations is then (Rasmussen andWilliams, 2006)

EQ-TARGET;temp:intralink-;df7;308;562f �jX�;X; f ∼N �μ�;Σ���; �7�

in which

EQ-TARGET;temp:intralink-;df8;308;511μ� � μ� Kx�xK
−1
xx �f − μ�; �8�

EQ-TARGET;temp:intralink-;df9;308;470Σ�� � Kx�x� − Kx�xK
−1
xxKxx� ; �9�

and X denotes the input matrix of the observations, each row of
which is one observed location’s input vector including its geo-
graphical coordinates and possibly other features. Similarly, X� is
the input matrix of all new target locations.

The GPR’s output and smoothness depend on the com-
puted covariance function, which is defined based on a kernel,
k�r�, in which r is the distance between the input vectors x and
x′ given by the following equation:

EQ-TARGET;temp:intralink-;df10;308;327r � θ

���������������������������Xd
i�1

�xi − x′i�2:

vuut �10�

In equation (10), θ is a positive normalizing factor (also known
as the inverse of length-scale, l, where θ � 1=l) and d is the size
of the input vector (number of attributes). There are several
established covariance functions such as exponential and
Matérn, which are given by

EQ-TARGET;temp:intralink-;df11;308;198kexp�r� � σ2f exp�−r�; �11�

and

EQ-TARGET;temp:intralink-;df12;308;145kMate
ˏ
rn�r� � σ2f

21−ν

Γ�ν� �
�����
2ν

p
r�νKν�

�����
2ν

p
r�; �12�

respectively. In equation (12), Γ is the Gamma function
Γ�n� � �n − 1�!; Kν is the modified Bessel function
(Abramowitz and Stegun, 1972); and ν is a positive parameter
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that controls the smoothness of the output function. In
equations (11) and (12), σ f is the variance that governs how
uncertain the GPR’s estimate is for a given input location.

In this study, a single θ value is used to normalize all attributes
within an input vector (compare with equation 10). Such a
covariance function is called isotropic. As an alternative, an
anisotropic covariance function in which each attribute has
its own specific length-scale also can be used (Rasmussen and
Williams, 2006). The θ value specifies the rate of decay for
the covariance function. Higher values for θ (smaller length-
scale) result in a faster decay of covariance, and subsequently
correlation, by increasing the distance. More detailed descrip-
tions of GPR can be found in, for example, Li and Sudjianto
(2005) and chapters 2 and 4 of Rasmussen and Williams (2006).

PROPOSED MODELS
A proper input vector for the observed and target sites needs to
be defined to start fitting the GPR. It is possible to consider the
homogeneity assumption for regions with fairly uniform site
conditions. In this case, all of the GP’s stochastic descriptors
depend only on the geographical separation distance between
the stations (Zerva and Zervas, 2002). In this study, we con-
sider two types of input vectors (corresponding to two GPR
models) for the stations. These are namely, type 1, the 3D
Cartesian components of each station (after converting the
geographical coordinates longitude and latitude into 3D
Cartesian coordinates), x � fx1; x2; x3g, in which the homo-
geneity assumption is valid. In fact, fx1; x2; x3g are the
Cartesian coordinates of the station on the Earth’s surface.
In type 2, the 3D Cartesian components are stacked up with
log�VS30� as the fourth component, x � fx1; x2; x3; log�VS30�g,
in which the homogeneity assumption is invalid.

More precisely, the GPR model type 1 is a specific case of
the more inclusive GPR model type 2. The GPR model type 1 is
used here to investigate the applicability of a simpler attribute
vector (using only the 3D Cartesian coordinates), imposing
lower computational cost for regions with fairly uniform soil
conditions (i.e., the variation of VS30 is negligible).

The GPR model type 2 input vector can also be extended
to include more attributes of the locations such as Z1:0 (depth
to VS � 1 km=s), Z2:5 (depth to VS � 2:5 km=s), and RJB

(closest distance to the surface projection of coseismic rup-
ture). In the GPR model type 2, input vector attributes are nor-
malized, such that the mean and standard deviation of each
distribution are zero and one, respectively. This normalization
is required to convert all of the attributes to a similar range
of values.

Model parameters and optimization
The parameters of the GPRmodel are the distance normalizing
factor θ and the GP mean μ and variance σ f , which need to be
predefined to implement the GPR. Denoting the model param-
eters as γ � �θ; μ; σ f �, a commonly used method to find the

optimum γ is to maximize the log-marginal likelihood of
the n observations given γ, using

EQ-TARGET;temp:intralink-;df13;320;718 log p�f jX; γ� � −
1
2
�f − μ�TK−1

xx �f − μ� − 1
2
log jKxxj −

n
2
log 2π:

�13�
In equation (13), the superscript T indicates the transpose oper-
ator, and jKxxj denotes the determinant of the matrix Kxx. In
equation (13), μ and Kxx are functions of θ (Li and Sudjianto,
2005). Parameter estimates found by maximizing equation (13)
are the maximum-likelihood estimates (MLEs). The MLEs have
considerable variance near their optimum solution because the
likelihood function is almost flat close to its extremum, especially
when observations are sparse (Li and Sudjianto, 2005). To tackle
this issue, one can maximize the penalized log likelihood (log
posterior) rather than log-marginal likelihood. Equation (14)
shows the penalized log-likelihood, Q�γ�, formulation:

EQ-TARGET;temp:intralink-;df14;320;522Q�γ��−
1
2
�f −μ�TK−1

xx �f −μ�−
1
2
log jKxxj−

n
2
log2π−ndpλ�θ�:

�14�
In equation (14), pλ�θ� is a nonnegative penalty function for nor-
malizing factor θ. The λ is a nonnegative regularization factor
that needs to be tuned using data-driven methods, as elaborated
in the Hyperparameter Optimization section. There are several
choices for the penalty function in equation (14), such as the least
absolute shrinkage and selection operator (e.g., Tibshirani, 1996)
and smoothly clipped absolute deviation Smoothly Clipped
Absolute Deviation (SCAD) (Fan and Li, 2001). In this study,
the SCAD penalty function is used and is given by

EQ-TARGET;temp:intralink-;df15;320;355pλ�θ� �
8<
:
λθ θ ≤ λ
− λ2�θ2−2aλθ

2�a−1� λ < θ ≤ aλ
λ2�a�1�

2 aλ < θ

; �15�

in which a is a constant, which is assumed to be 3.7 based on Fan
and Li (2001) who illustrated that a model’s performance is not
considerably improved choosing a through a data-driven
method. The penalized log likelihood, Q�γ�, in equation (14),
is the log posterior distribution of γ, given the observations.
In other words, the maximum a posteriori estimates of param-
eters, γ̂ � �θ̂; μ̂; bσ f �, are employed as an alternative to the com-
monly used MLEs by maximizing equation (14). The GP mean,
μ, in equation (8), and the variance, σ f , are updated into μ̂ andbσ f , respectively, given θ̂ (e.g., Li and Sudjianto, 2005).

The GPR is completely defined by its optimized parameters
θ̂, μ̂, and bσ f . The regularization factor, λ, needs to be defined
before optimizing these parameters through maximizing Q�γ�.
More specifically, λ governs the derivation of optimized
parameters θ̂, μ̂, and bσ f . As a hierarchical view, one can rec-
ognize θ, μ, and σ f as the parameters of the GPR model,
whereas λ is its hyperparameter. The process of optimization
of this hyperparameter is elaborated next.
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Hyperparameter optimization
It is common to use data-driven methods such as cross
validation (CV) to find the optimum hyperparameter values,
here the regularization factor, λ̂. In our case, the “data” to be
used in the “data-driven” methodology is a set of “observed”
ground motions, which is a subset of physics-based simulated
ground motions for the 1906Mw 7.9 San Francisco earthquake.
Here, we used broadband ground motions generated using
Graves’s hybrid simulation wave propagation code (Aagaard
et al., 2008). These ground-motion time series were generated
at 40,700 locations on a 1.5 km × 1.5 km uniform grid along
three orthogonal directions. Table 1 displays various features of
the physics-based simulated ground motions for the 1906
Mw 7.9 San Francisco earthquake. A minimum VS30 value
of 760 m/s was used for these simulations. Correction factors
were applied for site effects at locations with VS30 lower than
760 m/s.

Two different optimum λ̂ values must be obtained for the
two GPR models introduced in the Proposed Models section.
For GPR model type 1, 396 locations with the same VS30

(560 m/s) within a 20 km × 75 km rectangular region are
chosen with the homogeneity assumption. We refer to this
region hereafter as the “East Bay” region (Fig. 1). For GPR
model type 2, two regions where the homogeneity assumption
is invalid are chosen. These two regions are hereafter referred
to as the “Palo Alto” and “South Napa” regions (Fig. 1), with
104 and 111 chosen sites, respectively. The sites within each of

TABLE 1
1906 M 7.9 San Francisco Physics-Based Simulated Wave Propagation Parameters from Aagaard et al. (2008)

Domain Resolution Features

Length
(km)

Width
(km)

Maximum
depth Bandwidth

Minimum
VS Topography Water

Material
Properties Attenuation

555 162 45 T > 1.0 s 760 m/s Bulldozed Sediment
filled

USGS 05.1.0 Graves (Aagaard et al.,
2008)

USGS, U.S. Geological Survey.

Figure 1. (a) Aagaard et al. (2008) 1906 Mw 7.9 San Francisco earthquake
simulated ground motions domain and (b) the study regions corresponding
to the type 1 (East Bay) and type 2 Gaussian process regression (GPR)
models (Palo Alto and South Napa). The color version of this figure is
available only in the electronic edition.
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the East Bay, Palo Alto, and South Napa regions are randomly
split into a training set (80% of the total number of sites),
which makes up the “observed” ground motions, while the
remaining 20% are considered the test set (target sites) (Fig. 2).

A five-fold CV procedure is implemented over the training
set (observed ground motions) within each region to select the
best regularization factor, λ̂, for the corresponding GPR model.
The accuracy criterion for this selection is the normalized root
mean square error (NRMSE) between the exact (physics-based
simulated) and the estimated (conditioned simulated) ground
motions’ 5% damped pseudo-spectral acceleration (PSA) at the
target site. The NRMSE is computed as

EQ-TARGET;temp:intralink-;df16;53;353NRMSE �
��������������������������������������������
1
τ

Xτ
i�1

�PSAi − dPSAi�2dPSA2
i

;

vuut �16�

in which, τ equals 85, which is the number of periods included in
the PSA ranging from 0.1 to 20 s, and PSAi and dPSAi are the
predicted and exact ground motions’ PSA values at the ith period,
respectively. A lower NRMSE value indicates a greater similarity
between the estimated and exact response spectra. One can use
Fourier amplitude spectrum (FAS) NRMSE; however, the
response spectrum is smoother than the FAS, which makes
the NRMSE criterion better suited to measure the degree of sim-
ilarity between the estimated and exact ground motions. The
NRMSE value computed across all frequencies for the FAS is
highly sensitive to the rapid variations of amplitude from one
frequency to another, whereas such changes are far smaller
for the PSA. Moreover, the PSA spectrum is representative of
the GMIM, which is commonly used for engineering appli-
cations.

The following steps are taken to select λ̂. First, we randomly
split the training (observed) dataset into five separate folds. For
each λtest to be evaluated, we carry out the following procedure:

1. For each fold i = 1, …, 5:
1.1 Find the optimum parameters θ̂, μ̂, and σ̂ f for the

observed motions within all folds except the ith-fold
using λtest and maximizing Q�γ� in equation (14).
These parameters need to be found for each frequency
and for both real and imaginary parts of the DFT
coefficients.

1.2 Estimate the ground-motion time series at each site
within the ith-fold using the posterior mean (equation 8)
for the DFT coefficients, using θ̂, μ̂, andbσ f determined
in step 1.1.

1.3 Compute the NRMSE between the estimated (step 1.2)
and exact ground-motion response spectra (equa-
tion 16) at each site within the ith-fold, and store their
averages as Errori.

2. Take the average of Errori (i = 1,…, 5), that is, Erroravg and
record it as being associated with λtest.

Eventually, we choose the λtest with the lowest Erroravg
computed in step 2 as the optimized regularization factor, λ̂.

Covariance function selection
We investigate the performance of the model using three
different covariance functions, exponential (compare with
equation 11), Matérn with ν � 1:5, and ν � 2:5 (shown in
equations 17 and 18), to find the optimized covariance func-
tion for the GPR model. The values ν � 1:5 and ν � 2:5 are
widely used for Matérn covariance functions in GPR applica-
tions (Rasmussen andWilliams, 2006). Exponential covariance

Figure 2. Distribution of the training and test sets for the (a) East Bay,
(b) Palo Alto, and (c) South Napa study regions within the 1906 San
Francisco simulated motions domain. The color version of this figure is
available only in the electronic edition.
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functions have been used in the estimation of spatially distrib-
uted GMIMs (Jayaram and Baker, 2009). Matérn covariance
functions have also been used to model the spatial correlation
of ground motions for developing nonergodic ground-motion
models (Kuehn and Abrahamson, 2020):

EQ-TARGET;temp:intralink-;df17;41;535kν�1:5�r� � σ2f �1�
���
3

p
r� exp�−

���
3

p
r�; �17�
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���
5
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r � 5

3
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���
5

p
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We use the South Napa training set (Fig. 2c) to conduct the
five-fold CV procedure for GPR models type 2 constructed with
each of the three aforementioned covariance functions. First, the
optimized regularization factor, λ̂, is obtained for each of the
GPR models; then, the average NRMSE (Erroravg described
in the Hyperparameter Optimization section) for the corre-
sponding obtained λ̂ is determined for each GPR model.
Table 2 illustrates derived λ̂ values for each covariance function
as well as the average NRMSE obtained for the corresponding
model over the South Napa training set in both the fault-normal
(FN) and fault-parallel (FP) directions. As is illustrated in
Table 2, the Matérn with ν � 1:5 covariance function outper-
formed the other two covariance functions. Thus, in this study,
we used the Matérn covariance function with ν � 1:5 (compare
with equation 17) to establish the GPR models type 1 and 2.

Table 3 displays the λ̂ values for the FN and FP directions
for each model using the Matérn (ν � 1:5) covariance func-
tion. The CV procedure yielded the same λ̂ values within
the South Napa and Palo Alto study regions for the GPR model
type 2. It is worth noting that the optimized regularization fac-
tor, λ̂, is dependent on the density of the observations (recall
that this is the number of observed sites divided by the area of
the network). We observe that a smaller number of available
observations (lower density of observed sites) leads to higher
required regularization factor values, consistent with Li and
Sudjianto (2005). The observation densities for the East Bay
and Palo Alto (or similarly South Napa) regions are 0.26
and 0:29 sites=km2, respectively.

MODEL EVALUATION
The performance of the proposed GPR models is evaluated
next. To do so, we compare the estimated ground motions gen-
erated by the GPR model with the exact ground motions at the
same sites. The following procedure is used to estimate the
ground-motion time series at any target site:

1. Given the observed ground motions (training set), the
model parameters θ̂, μ̂, and bσ f are obtained at each
frequency for the real and imaginary parts of the DFT coef-
ficients using the corresponding λ̂ given in Table 3.

2. The posterior means (equation 8) at the desired sites for the
DFT coefficients are calculated for each frequency using the
values of θ̂, μ̂, and bσ f from step 1.

3. The entire ground-motion time series is constructed using
equation (1).

The tuned λ̂ based on the 1906 Mw 7.9 San Francisco earth-
quake subset (as elaborated in the Covariance Function
Selection section) is used to validate the GPRmodels’ estimation
of ground motions in simulated datasets of the 1906Mw 7.9 San
Francisco (Aagaard et al., 2008) and the Mw 7.0 Hayward fault
scenario earthquakes (Rodgers et al., 2019), as well as the 2019
Mw 7.1 Ridgecrest earthquake recorded by the Community
Seismic Network (CSN) (Clayton et al., 2020).

The 1906 Mw 7.9 San Francisco simulated motions
The training set for each study region (East Bay, Palo Alto, and
South Napa) for the 1906 Mw 7.9 San Francisco earthquake
simulated motions are shown in Figure 2. The corresponding
GPR model is implemented for each region to estimate the
ground-motion time series at each test site within the test set
(colorful circular points in Fig. 3). Figure 3 illustrates the distri-
bution of NRMSE between the estimated and exact motions’
linear response spectra 5% damped RotD50 (Boore, 2010) val-
ues. In Figure 3, there are three chosen test sites for each region.
The prediction results for the RotD50 spectrum, velocity time
series, and FAS are shown for selected sites in the East Bay,
Palo Alto, and South Napa regions in Figures 4–6, respectively.
Table 4 summarizes the 1906 San Francisco test set’s NRMSE for
FN, FP, and RotD50 linear response spectra.

Regarding the RotD50 spectrum NRMSE, Figure 3 demon-
strates that the GPRmodel is able to estimate the ground-motion

TABLE 2
Optimized Regularization Factor, λ̂, and Obtained Average
Normalized Root Mean Square Error (NRMSE) over the
South Napa Training Set

Covariance Kernel λ̂ (FN) λ̂ (FP) Erroravg (FN) Erroravg (FP)

Exponential 1.3 1.3 0.36 0.36
Matérn (ν � 1:5) 0.7 0.7 0.28 0.28
Matérn (ν � 2:5) 0.7 0.7 0.30 0.31

FN, fault normal; FP, fault parallel.

TABLE 3
Optimized Regularization Factor, λ̂, for the Models Type 1
and Type 2

GPR Model Type 1 GPR Model Type 2

Fault Normal Fault Parallel Fault Normal Fault Parallel

1.2 1.2 0.7 0.7

GPR, Gaussian process regression.
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time series at most of the target sites reasonably well. The
estimation can be less accurate for sites at the boundaries of
the network (as shown in Fig. 3), where there is a less uniform
distribution of observations. By comparing the results of
Figure 3b,c, it is apparent that the estimation accuracy for the
sites far away from the causative fault might be higher than
for those close to the fault (also shown in Table 4). This could
be due to the use of an isotropic covariance function, which allo-
cates a uniform correlation to the surrounding locations based
on the separation distance. The GPR model predictions can be
improved by employing an anisotropic covariance structure,
which uses different normalizing factors for each attribute to
compute the separation distance (Rasmussen and Williams,
2006) for regions closer to the fault. Figure 3b indicates that
the test sites with less accurate ground-motion estimation
(higher RotD50 NRMSE) within the Palo Alto region are mainly
restricted to the edge stations, yet the trained GPR model is able
to predict ground motions for sites close to the fault appropri-
ately. As evidenced in Figure 4, the GPR model type 1 is capable
of estimating the entire ground-motion time series properly for
the structural period ranges pertinent to most earthquake engi-
neering applications.

Figure 5a,b show that the GPR model is able to estimate the
long-period pulses along the FN direction due to the directivity
effect for the sites far away from the epicenter but close to the
fault (sites 1 and 2 in Fig. 3b).

Figures 4–6 show that the RotD50 response spectrum and
FAS errors are lower for longer periods, whereas the differ-
ence between the estimated and the exact spectra increases for
the shorter periods. This might be due to two reasons: first,
the short-period motions of the 1906 San Francisco earth-
quake are constructed stochastically (Aagaard et al., 2008),
which results in lower correlations for the short-period con-
tent of the neighboring motions. Thus, the GPR estimation
for the short-period motion could be less accurate than it
is for longer-period motion. Second, the motions are less

well-correlated to each other at higher frequencies and longer
geographical separation distances because of the smaller wave-
lengths associated with those frequencies. Therefore, short-
period waves of the ground motions may be less accurately
synthesized, especially when the neighboring stations are not
sufficiently close to each other. This phenomenon is observed
in existing “lagged coherency” models in which the lagged
coherency between two stations, as a representative of the cor-
relation between the frequency content, drops with increasing
frequency and separation distance (e.g., Abrahamson et al.,
1991; Liao and Zerva, 2006; Rodda and Basu, 2018).

Figure 7 displays the DFT coefficients’ real part θ̂ values for
the GPR model type 2 implemented within the Palo Alto and
South Napa study regions along the FN and FP directions. As
indicated, we incorporated the effects of variations in soil con-
ditions in these regions. Figure 7 demonstrates the θ̂ growth as
a function of increasing frequency. A similar observation exists
for the imaginary part θ̂ values. It is recognizable from equa-
tions (10) and (17) that covariance (and subsequently correla-
tion) among the observed values decreases with increasing θ̂
(equivalently decrease of length-scale). In other words, there
is a lower correlation between the higher-frequency content
of the ground motions, which is consistent with the established
lagged coherency models.

Mw 7.0 Hayward fault scenario earthquake simulated
motions
We evaluate the performance of the trained GPR on another
simulated earthquake dataset, which was not used during the

Figure 3. The distribution of the test set’s normalized root mean square error
(NRMSE) for the 5% damped RotD50 spectrum for the GPR model (a) type 1
in East Bay, (b) type 2 in Palo Alto, and (c) type 2 in South Napa study
regions. The color version of this figure is available only in the electronic
edition.
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hyperparameter optimization procedure. To do this, the
Mw 7.0 Hayward fault scenario earthquake-simulated ground
motions (Rodgers et al., 2019) are employed. In the present
study, motions for the 3D model (“3DTOPO”) are used to
evaluate the accuracy of the trained GPR’s estimation. The
3DTOPO Earth model has a VSmin

� 500 m=s; therefore,
the simulation results for the sites with VS > 500 m=s are
more reliable. The 3D subsurface material properties and
the topography (3DTOPO) simulations are obtained based
on the USGS model (USGS, 2018). There is a total of 2301
locations within a 120 km × 80 km rectangular domain on
a uniform 2 km × 2 km grid for which velocity time series
are generated along the FN, FP, and vertical directions.

In this study, 326 locations with fairly uniform site condi-
tions (520 m=s > VS30 > 500 m=s) are chosen within the East
Bay study region (Fig. 8). Because all sites are located on a fairly
uniform site condition, the GPR model type 1 is implemented
to estimate the test sites’ ground-motion time series.

About 80% of the 326 locations are randomly selected as the
training set, whereas the remaining 20% are used as the test set.

The observation density of the training set is about
0:25 stations=km2, which makes the λ̂ obtained for the GPR
model type 1 (with approximately the same observation den-
sity in Table 3) usable to estimate the ground-motion time
series at target sites. The distribution of the training set and
test sites is shown in Figure 8. In addition, the distribution
of the NRMSE between the estimated and “exact” (physics-
based simulated) motions’ RotD50 spectra are shown in
Figure 8. Two test sites are shown in Figure 8, for which
the prediction results are shown in Figure 9.

Table 5 summarizes the NRMSE of the linear response spec-
trum in both the FN and FP directions and for RotD50. Table 5
shows that the Mw 7.0 Hayward fault scenario earthquake test

Figure 4. The RotD50, velocity time series, and Fourier amplitude spectrum
(FAS) of the predicted and the exact motions along fault-normal direction for
the chosen test sites: numbers (a) 1, (b) 2, and (c) 3 within the East Bay
study region. The color version of this figure is available only in the electronic
edition.
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set, which was not used during the hyperparameter optimiza-
tion, resulted in a higher average NRMSE for the RotD50 spec-
trum in comparison with the 1906 Mw 7.9 San Francisco
simulated motion dataset. In addition, the Hayward fault sim-
ulations consider the topography of the region, whereas the
1906 San Francisco simulations were carried out for a horizon-
tal surface. Moreover, the Mw 7.0 Hayward fault simulations
used wave propagation for all frequencies, whereas the 1906
San Francisco simulations implemented stochastic noise for
frequencies above 1 Hz. Therefore, the Hayward fault dataset
includes more complexity, which might lead to a higher
estimation error than for the 1906 San Francisco dataset.

Figure 8 demonstrates that the RotD50 spectra of the esti-
mated ground motions have acceptable NRMSE for the major-
ity of the test locations for theMw 7.0 Hayward fault-simulated
motions. Moreover, Figure 8 illustrates the applicability of the
trained GPR model in the prediction of ground-motion time
series for the sites close to the fault (less than 4 km away) and
close to the epicenter (less than 9 km away). For a few locations
mainly located at the boundary edges of the simulation
network, the estimated ground-motion time series are less

accurate. Figure 9a demonstrates that the GPR model appro-
priately predicted the long-period pulses due to the directivity
effect for site 1. Figure 9 illustrates that the ground-motion
time-series estimation is more accurate for the long-period
motions, whereas the shorter-period shear waves might be less
accurately predicted. This feature of our results is consistent
with those generated using the 1906 San Francisco earthquake.

2019 Mw 7.1 Ridgecrest earthquake
It is useful to examine the trained GPR model’s prediction with
an actual recorded earthquake dataset. To do so, we used motions
of the 2019Mw 7.1 Ridgecrest earthquake that were recorded by
the CSNwithin the northern Los Angeles basin as another test set
for the GPR model type 2 (Clayton et al., 2020; Kohler et al.,
2020; Filippitzis et al., 2021). The Mw 7.1 Ridgecrest earthquake

Figure 5. The RotD50, velocity time series, and FAS of the predicted and the
exact motions along fault-normal direction for the chosen test sites:
numbers (a) 1, (b) 2, and (c) 3 within the Palo Alto study region. The color
version of this figure is available only in the electronic edition.
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ground motions were poorly recorded in the epicentral region
because there are only about three seismic stations within a
20 km × 20 km area surrounding the epicenter (USGS ShakeMap
for 2019Mw 7.1 Ridgecrest earthquake) (U.S. Geological Survey,
2019). Therefore, an area with an adequate number of recording
stations is chosen to evaluate the trained GPR model’s perfor-
mance. In this study, we chose 151 CSN ground-level stations
that recorded the 2019 Mw 7.1 Ridgecrest earthquake. The site
condition, VS30, of the recording stations is estimated using a
proxy-based model as described in Ahdi et al. (2020).

One hundred forty nine recording stations are considered as
the training set, whereas the remaining two stations are used as
the test stations. The observation density for 149 observed sites
distributed over a 492 km2 region is about 0:30 stations=km2,

TABLE 4
1906 Mw 7.9 San Francisco Test Set’s NRMSE for Model Type 1 and Type 2

FN FP RotD50

Model Type Study Region Average Standard Deviation Average Standard Deviation Average Standard Deviation

Type 1 East Bay 0.23 0.08 0.23 0.08 0.19 0.07
Type 2 Palo Alto 0.34 0.29 0.38 0.38 0.31 0.36
Type 2 South Napa 0.23 0.06 0.26 0.1 0.19 0.05

FN, fault normal; FP, fault parallel.

Figure 6. The RotD50, velocity time series, and FAS of the predicted and the
exact motions along fault-normal direction for the chosen test sites:
numbers (a) 1, (b) 2, and (c) 3 within the South Napa study region. The color
version of this figure is available only in the electronic edition.
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which makes the λ̂ obtained for the GPR model type 2 (for
0:29 stations=km2 density) applicable. Figure 10 shows the
distribution of the observed stations (training set) and their site
conditions, VS30, as well as the test stations for which the
ground-motion time series are estimated. The trained GPR
model type 2 is implemented for the conditioned simulation
procedure. As indicated, this GPR model is capable of incorpo-
rating variations of local soil conditions. Figure 11 displays the
prediction results for the two test stations shown in Figure 10. It
is noted that the predicted time series are reliable only within the
mutually usable frequency bandwidth (Ancheta et al., 2014)
among all observed motions, which is the reliable frequency
range after the noise removal of the recorded motions. Figure 11
displays the estimated and the exact (recorded) ground motions’
RotD50 and FAS within the overlapping usable frequency
bandwidth of the observed motions.

Figure 11 shows that the results for ground-motion time-
series estimation for the 2019 Mw 7.1 Ridgecrest earthquake
sequence are auspicious. The PGV and the long-period pulses
of the recorded motions (Filippitzis et al., 2021) are captured
fairly accurately at both test stations. This implies that the GPR
model type 2 can generate ground motions with acceptable
accuracy. We plan to investigate further the applicability of
the GPR model type 2 using a broader set of recorded earth-
quake datasets.

Realizations of ground motion
The trained GPR model provides the posterior mean vector
and posterior covariance matrix for the DFT coefficients at
each frequency for the target sites based on equations (8)
and (9). In this study, there is only one target site to estimate
the DFT coefficients at each prediction step. Thus, equa-
tions (8) and (9) provide the DFT coefficients’ real and imagi-
nary parts’ posterior mean and posterior standard deviation at
each frequency. In addition, we estimate the correlation
between Rek and Imk at the kth frequency, k = 0, …, N −
1, at the target site using the observed ground motions DFT
coefficients at the same frequency. Therefore, we can generate

Figure 8. Distribution of the training and test set and the test set’s NRMSE for
the 5% damped RotD50 spectrum for the Mw 7.0 Hayward fault scenario
earthquake simulated motions study region. The color version of this figure
is available only in the electronic edition.

Figure 7. θ̂ for real part (Re) covariance functions along (a) fault-normal and
(b) fault-parallel directions within Palo Alto and South Napa study regions.
The color version of this figure is available only in the electronic edition.
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pairs of (Rek, Imk) 2 × 1 random sample vectors having the 2
× 1 mean vector and 2 × 2 covariance matrix of the real and
imaginary parts at each frequency. These generated samples
can then be converted to samples of amplitude, jAkj (compare
with equation 2). We estimate the logarithmic mean and stan-
dard deviation of amplitudes at each frequency using the jAkj
samples. Eventually, we implement the interfrequency correla-
tion model established by Bayless and Abrahamson (2019) to
develop the covariance matrix of log�jAkj� for all frequencies, k
= 0,…, N − 1. We generate 150 multivariate Gaussian random
samples of FAS using the established N × 1 mean vector and N
× N covariance matrix. These FAS samples are then combined
with the phase spectrum constructed with mean estimated real
and imaginary parts at the target site to generate 150 random
ground-motion realizations.

Figure 12a depicts 150 random generated ground-motion
realizations’ 5% damped response spectra as well as the logarith-
mic mean of those samples’ response spectra along the east–west
direction for the test station 1 shown in Figure 10. In addition,
Figure 12a demonstrates that the estimated ground-motion time
series using mean DFT coefficients has a similar response

spectrum (solid black line in Fig. 12a) to the logarithmic mean
of the realizations’ response spectra. Figure 12b shows the 68%
confidence interval (mean ± standard deviation) of the ground
motions’ realizations on a logarithmic scale. It is observable
in Figure 12b that the estimated ground motion’s response
spectrum has higher uncertainty at shorter periods, whereas
this uncertainty decreases at longer periods. As evidenced in
Figure 12b, the recorded motion’s response spectrum is located
within the 68% confidence interval at most periods within the
usable frequency bandwidth.

CONCLUSION AND DISCUSSION
A novel approach to estimate the entire ground-motion time
series at a target location using the observed surrounding
motions was developed. The generated motions at target

TABLE 5
Mw 7.0 Hayward Fault Scenario Earthquake Simulated Motions Test Set’s NRMSE for Model Type 1 and Type 2

FN FP RotD50

Model Type Study Region Average Standard Deviation Average Standard Deviation Average Standard Deviation

Type 1 Mw 7.0 Hayward Fault 0.28 0.07 0.31 0.11 0.25 0.07

FN, fault normal; FP, fault parallel.

Figure 9. The RotD50, velocity time series, and FAS of the predicted and the
exact motions along fault-normal direction for the chosen test sites:
numbers (a) 1 and (b) 2 within the Mw 7.0 Hayward fault scenario
earthquake simulated motions study region. The color version of this figure
is available only in the electronic edition.
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(uninstrumented) sites can be used for site-specific nonlinear
structural analysis as well as quantification of spatial damage
distribution.

In this study, GPRwas employed to estimate time series at the
target sites through interpolating the real and imaginary parts of
the DFT coefficients. To do so, the GPR model’s hyperpara-
meter, λ, was tuned using ground motions of the physics-based
simulated 1906 San Francisco earthquake. Two GPR models
were developed: one applicable to the homogeneous regions (rel-
atively uniform site condition) and the other usable in regions
with considerable local site condition variation. The optimized λ̂
for these models are applicable for the regions with an approx-
imately similar observation density. Both models demonstrated
acceptable performance for estimation of the ground motion, as
well as the response spectra for the 1906 Mw 7.9 San Francisco
and Mw 7.0 Hayward fault-simulated ground motions. In addi-
tion, our investigation demonstrated the applicability of the
trained GPR model for estimation of the 2019 Mw 7.1
Ridgecrest earthquake recorded ground motions.

The trained GPR models estimated the long-period pulses
properly. The estimation of the motions for locations at the

edges of the network, where there is a nonuniform distribution
of observations or regions with fewer observations, may not be
as accurate as those at other locations. In addition, the length-
scale parameter of the covariance functions demonstrated that
there is a higher correlation for the long-period content of the
ground motions compared with the short-period content
within a region. Therefore, the conditioned simulated ground
motions are generally more reliable in the long-period range
than those at short periods. In addition, we incorporated
the posterior mean and standard deviation of the DFT coeffi-
cients as well as the interfrequency correlations among neigh-
boring frequencies to generate random realizations of ground
motions at the target site. The ground-motion realizations
depicted that the uncertainty of the estimated ground motions
is higher for the short periods.

The GPR models can be expanded by considering other site
attributes such as Z1:0, Z2:5, and RJB as well as combining the
covariance functions. In addition, using an anisotropic covari-
ance function, especially for regions closer to the fault, may
improve the estimation.

DATA AND RESOURCES
The 1906Mw 7.9 San Francisco earthquake simulated ground motions
were provided by Robert W. Graves (Aagaard et al., 2008). The
RotD50 and orthogonal directions linear response spectra of the
ground motions were constructed using the R package for computa-
tion of earthquake ground-motion response spectra (Wang et al.,
2017), which is accessible through https://peer.berkeley.edu/peer-
reports. The Mw 7.0 Hayward fault scenario earthquake simulated
motions (Rodgers et al., 2019) were provided by Arthur J. Rodgers.
The Mw 7.1 2019 Ridgecrest earthquake data recorded by the
Community Seismic Network (CSN) were obtained from http://
csn.caltech.edu/data/. The processed recorded motions for the 2019
Mw 7.1 Ridgecrest earthquake can be retrieved from https://
www.risksciences.ucla.edu/nhr3/gmdata. The average shear-wave
velocity values, VS30, at each CSN station were provided by
Pengfei Wang using the proxy-based model (Ahdi et al., 2020). All
websites were last accessed in February 2021.
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Figure 12. The 5% damped pseudospectral acceleration (PSA) along east–
west direction at test station 1 within the CSN network that recorded the
2019 Mw 7.1 Ridgecrest earthquake for (a) 150 random ground-motion

realizations and (b) 68% confidence interval. The color version of this figure
is available only in the electronic edition.

Figure 11. The RotD50, velocity time series, and FAS of the predicted and the
exact motions along east–west direction for the chosen test stations:
numbers (a) 1 and (b) 2 within the CSN network that recorded the 2019

Mw 7.1 Ridgecrest earthquake. The color version of this figure is available
only in the electronic edition.
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