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1. Introduction

1.1. Distributed algorithms and edge-coloring

The LOCAL model of distributed computation was introduced by Linial in the seminal

paper [14]. In this model an n-vertex (simple undirected) graph G abstracts a commu-

nication network where each vertex plays the role of a processor and edges represent

communication links. Every vertex is given a unique O(logn)-bit identifier (used for
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symmetry-breaking). Initially, each vertex knows its own identifier, as well as n (the
number of vertices) and perhaps some other global parameters, such as the maximum
degree A of G. The computation proceeds in rounds. During each round, the vertices first
perform arbitrary local computations and then synchronously broadcast messages to all
their neighbors. At the end, each vertex should output its part of the global solution (for
instance, its own color or, in the context of edge-coloring, the colors of the edges incident
to it). The only measure of efficiency for such an algorithm is the worst-case number of
communication rounds. The reader is referred to the book [2] by Barenboim and Elkin
for an introduction to this subject.

It is clear that in a LOCAL algorithm that terminates in 7" rounds, each vertex only
has access to information in its radius-7' neighborhood. Furthermore, every T-round
LOCAL algorithm can be transformed into one in which every vertex first collects all the
information about its radius-7" neighborhood and then makes a decision, based on this
information alone, about its part of the output (see [2, §4.1.2]). In particular, any function
of G can trivially be computed by a LOCAL algorithm in O(diameter(G)) rounds. While
in many cases much more efficient distributed algorithms are known, there are still some
classical problems for which the trivial bound O(diameter(G)) is the state of the art. In
this paper we study one such problem: edge-coloring using A + 1 colors.

Recall that a proper k-edge-coloring of a graph G is a map ¢: E(G) — [k] such that
(e) # p(h) for every pair of distinct edges e, h € E(G) that share an endpoint. (Here and
in what follows we use the standard notation [k] := {1,...,k} for k € NT.) A celebrated
theorem of Vizing [20] (see [18, Appendix A.1] for an English translation of Vizing’s
paper) asserts that every graph G of maximum degree A has a proper (A + 1)-edge-
coloring. However, all heretofore known proofs of Vizing’s theorem have been inherently
“non-local” (we discuss this in more detail in §1.2). In particular, prior to this work, no
nontrivial distributed (A 4 1)-edge-coloring algorithm has been known. Here we provide
such an algorithm; specifically, we show that a proper (A+1)-edge-coloring of an n-vertex
graph G can be found by a LOCAL algorithm whose number of rounds is polynomial in
logn and A.

Theorem 1.1. There exists a deterministic distributed algorithm in the LOCAL model that
computes a proper (A + 1)-edge-coloring of an n-vertex graph of maximum degree A in
poly(A,logn) rounds.

While Theorem 1.1 provides the first efficient distributed algorithm for (A + 1)-edge-
coloring, significant progress has been made previously concerning edge-coloring with
more colors. In particular, considerable work has been done on the problem of (2A — 1)-
edge-coloring, since 2A — 1 is the number of colors required for a greedy (sequential)
edge-coloring algorithm. This is a special case of the more general (A+1)-vertez-coloring
problem, which has also attracted a lot of attention. Among the earliest results in dis-
tributed computing is a randomized O(logn)-round (A+1)-vertex-coloring algorithm due
to Alon, Babai, and Itai [1] and independently Luby [15]. On the other hand, Goldbreg,
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Plotkin, and Shannon [10] designed a deterministic (A 4 1)-vertex-coloring algorithm
that runs in O(A?) + log* n rounds (here log* n is the iterated logarithm of n, i.e., the
number of times the logarithm function must be applied to n before the result becomes
at most 1). The Goldbreg—Plotkin—Shannon algorithm is extremely fast when A is small
compared to n (e.g., when A is constant), but for large A it becomes slower than the
Alon-Babai-Itai/Luby algorithm. Developing a deterministic (A + 1)-vertex-coloring or
(2A — 1)-edge-coloring algorithm that runs in poly(logn) rounds regardless of the value
of A has been a major challenge [2, Problems 11.2 and 11.4]. After a long line of contribu-
tions by numerous researchers, such algorithms have been discovered by Fischer, Ghaffari,
and Kuhn [7] for edge-coloring and by Rozhoti and Ghaffari [17] for vertex-coloring.

There have also been many results concerning edge-coloring with fewer than 2A — 1
colors. For thorough surveys see, e.g., [5,9]. Here we only mention a few highlights.
Chang, He, Li, Pettie, and Uitto [5] developed a randomized algorithm for (A +O(v/A))-
edge-coloring that runs in poly(A, loglogn) rounds. (Their algorithm relies on efficiently
solving instances of the Lovdsz Local Lemma, which can be done in poly(A,loglogn)
due to a recent result of Rozhon and Ghaffari [17].) In the deterministic setting, Ghaffari,
Kuhn, Maus, and Uitto [9] gave a poly(A,logn)-round algorithm for |3A/2]-edge-
coloring. The smallest number of colors for which an efficient distributed algorithm was
known prior to our work is A + 2 (i.e., just one more than the bound in Vizing’s the-
orem). Namely, a randomized poly(A,logn)-round algorithm for (A + 2)-edge-coloring
was designed by Su and Vu [19]. In a recent breakthrough, Rozhon and Ghaffari [17]
developed a general derandomization technique that, in particular, allows one to modify
the Su—Vu algorithm to make it deterministic.

It is natural to wonder how close to optimal the number of rounds required by our
algorithm is. Chang, He, Li, Pettie, and Uitto [5] showed that any (A + 1)-edge-coloring
algorithm based on “extending partial colorings by recoloring subgraphs” (a class to
which our algorithm belongs) must take at least Q(Alog(n/A)) rounds. Furthermore,
they showed that every deterministic LOCAL algorithm for (2A — 2)-edge-coloring re-
quires Q(logn/log A) rounds, even in the case when the underlying graph G is a tree.
The number of rounds in our algorithm is certainly not linear in Alogn, although we
did not make an attempt to optimize it precisely. The following remains an interesting
open problem:

Question 1.2. In the regime when A is constant, does there exist a randomized (A + 1)-
edge-coloring algorithm that takes only o(logn) rounds?

1.2. Locality of (A + 1)-edge-coloring

The main ingredient of our algorithm is a certain purely combinatorial result con-
cerning extensions of partial (A + 1)-edge-colorings, namely Theorem 1.3 below. Before
stating it, we need to introduce some terminology and explain our motivation. Let G be
an n-vertex graph of maximum degree A. Fix a partition E(G) = X U U of the edge
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set of G and let p: X — [A + 1] be a proper partial edge-coloring with domain X. We
call the edges in X (resp. U) colored (resp. uncolored) by ¢. A subgraph H C G is
augmenting (for ) if at least one edge of H is uncolored and there is a proper coloring
Y: X UE(H) — [A+ 1] that agrees with ¢ on X \ E(H); that is, by only modifying ¢
on the edges of H, it is possible to extend it to a proper partial coloring with domain
X U E(H). Notice that if Hy, ..., Hy are vertex-disjoint augmenting subgraphs, then
their (disjoint) union Hy U ... U Hy, is also augmenting.

A standard way to prove Vizing’s theorem is to construct, given an uncolored edge
e € U, an augmenting graph H with e € F(H) of a certain special form, called a Vizing
chain (see Fig. 1a). A Vizing chain H consists of a fan—i.e., a set of edges that share the
same common vertex—and a path that is alternating in the sense that the sequence of
colors assigned by ¢ to its edges has the form «, 8, a, 3, ... for a pair of colors a, 8. In
the distributed setting, this approach raises two difficulties. First, uncolored edges cannot
be treated one at a time; it is necessary to be able to extend the coloring to include a non-
negligible fraction of the uncolored edges simultaneously. The second difficulty is even
more fundamental: the Vizing chain H corresponding to an uncolored edge ¢ may have
large diameter (in principle, linear in n), so it cannot be discovered in a small number
of rounds in the LOCAL model. We overcome both these difficulties by showing that it
is possible to find a “large” collection of vertex-disjoint “small” augmenting subgraphs
(although these subgraphs need not be Vizing chains anymore):

Theorem 1.3. There is ng € N such that for all n > ng, the following holds. Let G
be an n-vertexr graph of mazimum degree A. Fizx a partition E(G) = X UU and let
v: X = [A+ 1] be a proper partial edge-coloring. Then there exists a subset W C U of
size [W| = |U|/((A + 1)%(logn)?) such that it is possible to assign to each edge e € W
a connected augmenting subgraph H® C G with the following properties:

o foreache e W, E(H®)NU = {e}, that is, e is the unique uncolored edge in H®;
o the verter sets of the graphs H¢, e € W, are pairwise disjoint;
o for eache € W, |E(H®)| < (A +1)5(logn)?.

Thanks to the recent work of Ghaffari, Harris, and Kuhn [8] and Harris [12] on
distributed approximation algorithms for hypergraph maximum matching, it is straight-
forward to derive Theorem 1.1 from Theorem 1.3. We present the details of this derivation
in §2. Note that if U # &, then the lower bound on the size of W in Theorem 1.3 is pos-
itive. Thus, Theorem 1.3 in particular implies that if G' contains only a single uncolored
edge e, then there is a connected augmenting subgraph H C G such that e € F(H) and
|[E(H)| < poly(A,logn).

Let us now say a few words about the proof of Theorem 1.3. Our inspiration comes
from recent developments in the area of descriptive combinatorics, i.e., the study of
combinatorial problems on infinite graphs in the presence of additional topological or
measure-theoretic constraints. For a state-of-the-art introduction to this subject, see the



A. Bernshteyn / Journal of Combinatorial Theory, Series B 152 (2022) 319-352 323

path

(a) A Vizing chain. (b) A two-step Vizing chain. (¢) A multi-step Vizing chain.

Fig. 1. Types of augmenting subgraphs.

surveys [13] by Kechris and Marks and [16] by Pikhurko. It turns out that many of
the challenges one encounters in descriptive combinatorics mirror those in distributed
computing; furthermore, there are some explicit implications between the two areas [3,4].
Until very recently, one of the most celebrated open problems in descriptive combinatorics
had been to obtain a “measurable” version of Vizing’s theorem for graphs G on standard
probability spaces (for instance, with V(G) = [0, 1], the unit interval). This was recently
accomplished (under some minor additional assumptions) by Grebik and Pikhurko [11].
Their key idea was to consider a more general type of augmenting graphs, namely two-
step Vizing chains (called “iterated Vizing chains” in [11]; see Fig. 1b). Roughly speaking,
to construct a two-step Vizing chain, one first starts growing a Vizing chain as usual, but
then at some point, instead of completing the alternating path (which may be too long),
one “changes the direction” and starts growing a second Vizing chain. The flexibility in
the choice of the point where the second Vizing chain starts allowed Grebik and Pikhurko
to control the total number of edges in the resulting structure. In particular, returning to
finite graphs, a relatively straightforward adaptation of the Grebik—Pikhurko argument
shows that for each uncolored edge e € U, one can find an augmenting two-step Vizing
chain H with e € E(H) such that |[F(H)| = O(poly(A)y/n).

Unfortunately, the bound O(poly(A)y/n) is not sufficient for our purposes, as we can
only work with augmenting graphs of diameter at most poly(A, logn). We solve this issue
by extending the ideas of Grebik and Pikhurko and considering multi-step Vizing chains
(see Fig. 1c). Roughly speaking, we prove Theorem 1.3 by showing that it is possible to
construct augmenting subgraphs of this form by joining together O(logn) partial Vizing
chains, each consisting of O(poly(A)logn) edges. For the reader’s convenience, we give
an informal overview of our argument in §3.
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2. From Theorem 1.3 to Theorem 1.1

In this section we deduce Theorem 1.1 from Theorem 1.3. To this end, we shall use the
distributed approximation algorithm for hypergraph maximum matching due to Harris
[12]. (Alternatively, we could have used the earlier and somewhat less efficient algorithm
due to Ghaffari, Harris, and Kuhn [8, Theorem 1.2].) To begin with, we need a few
definitions and some notation. Recall that log™ n denotes the iterated logarithm of n. The
asymptotic notation O(z) hides polylogarithmic factors, i.e., it stands for O(poly(log z) -
x). Let S = (V(), E(A)) be a hypergraph. To avoid potential confusion with the
graph case, we will call the elements of F () hyperedges. The rank of 7, in symbols
r(J€), is the largest size of a hyperedge of 2 (if E() = @, then we set r() := 0).
The maximum degree d(7¢) of 7 is the maximum, over all the vertices x € V(J¢), of
the number of hyperedges S € E(5) with x € S. A matching in 7 is a set M C E(J¢)
of pairwise disjoint hyperedges. We use (%) to denote the maximum number of edges
in a matching in . While the usual LOCAL model is defined for graphs, there is an
analogous model operating on a hypergraph 5. Namely, in a single communication
round of the LOCAL model on 47, each vertex x € V() is allowed to send messages
to every vertex y € V() such that x and y are contained in a common hyperedge.

Theorem 2.1 (Harris [12, Theorem 1.1]). There exists a deterministic distributed al-
gorithm in the LOCAL model on an n-vertex hypergraph F€ that outputs a matching
M C E(5€) with |M| = Q(u/r) in

O(rlogd + log® d + log* n)
rounds, where r = r(), d = d(JH), and p = pu(H).

With Theorem 2.1 in hand, we are ready to derive Theorem 1.1 from Theorem 1.3.
Let G be an n-vertex graph of maximum degree A. Since we only care about asymptotic
bounds, we may assume that n is sufficiently large for Theorem 1.3 to apply. For brevity,
set V := V(@) and E := E(G). We shall devise a poly(A,logn)-round LOCAL algorithm
that, given a proper partial edge-coloring ¢: X — [A + 1], X C E, computes a new
proper partial edge-coloring ¢: Y — [A + 1], Y C E, such that Y 2 X and

[E\Y| < (1—1/poly(A,logn))|E\ X|.

TIterating this algorithm poly(A,logn) times starting with the empty coloring will then
yield a proper (A + 1)-edge-coloring of the entire graph G, as desired.

So, let us fix a proper partial edge-coloring ¢: X — [A + 1]. Define an auxiliary
hypergraph 7 on the vertex set V' by making a subset S C V a hyperedge of J# if
and only if S = V(H) for some connected augmenting subgraph H C G with |E(H)| <
(A +1)%(logn)?. Theorem 1.3 then implies that
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W) = |E\X|/((A+1)"(ogn)?) = |E\ X|/poly(A,logn).
By definition, each S € E(#) satisfies |S| < (A + 1)%(logn)? + 1 = poly(A, logn), so
r() < poly(A,logn).

To bound the maximum degree of ¢, consider any vertex ¢ € V. If x € S € E(J¢),
then the vertices of S can be ordered as x = xo, x1, ..., T|g—1 so that each z;, i > 1,
is adjacent to at least one of xg, ..., z;—1. This means that once xq, ..., x;_1 are fixed,
there are at most A < r(J)A choices for x;, and thus

d(A) < (r(A)A)") < exp(poly(A,logn)).

Therefore, Theorem 2.1 provides a LOCAL algorithm on 5# that outputs a matching
M C E(s#) with

|M| > |E\ X|/poly(A,logn)

in poly(A,logn) rounds. It is clear that a single round of communication in the LOCAL
model on J# can be simulated in poly(A,logn) rounds of the LOCAL model on G, so
M can also be computed in the LOCAL model on G in poly(A,logn) rounds. Once
such a matching M is fixed, in poly(A,logn) rounds it is possible to choose a “leader”
in each hyperedge S € M (by picking, say, the vertex with the lexicographically least
identifier). In another poly(A,logn) rounds, each “leader” x surveys its corresponding
hyperedge S, picks an arbitrary augmenting subgraph H with V(H) = S, and modifies
the coloring so that every edge of H becomes colored. Since M is a matching in #, all
these modifications can happen in parallel without conflicting with each other. In the
resulting coloring, every edge in X is still colored, plus there is at least one new colored
edge per each S € M, and hence we are done.

3. Informal overview of the proof of Theorem 1.3

In this section we sketch the main ideas behind our proof of Theorem 1.3. Due to the
informal character of this section, we will avoid any technicalities and precise definitions,
all of which are postponed to the later sections. It should be understood that the termi-
nology we use here might have a slightly different meaning when we formally define it,
but only in minor and technical ways.

Let G be an n-vertex graph of maximum degree A and let ¢ be a proper partial
(A + 1)-edge-coloring of G. For simplicity, in this section we shall treat A as a constant,
so that implicit constants in asymptotic notation may depend on A. Fix an uncolored
edge e = xy. We will describe our strategy for proving the following consequence of
Theorem 1.3:
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Tz/
2

(a) Before shifting. (b) After shifting.

Fig. 2. A Vizing chain H = F + P before and after shifting. Greek letters represent colors.

There is a connected augmenting subgraph H C G such that e € E(H) and |E(H)| <
O((logn)?).

As mentioned in §1.2, standard proofs of Vizing’s theorem (for instance, the one given
in [6, §5.3]) proceed by building an augmenting subgraph H consisting of two parts:

e a fan F with pivot z, i.e., a sequence of distinct edges incident to x, starting with e;
e an af-alternating path P, i.e., a path whose edges are colored «, 3, «, 3, etc.

There is some variation between different presentations of the proof of Vizing’s theorem
in the literature as to the precise way in which the fan F' and the path P fit together. For
our purposes, it will be most convenient to assume that P starts at the vertex z, where
xz is the last edge of F. This situation is illustrated in Fig. 2a. We write H = FF + P
to indicate that the graph H is built from F' and P in this manner and refer to H as a
Vizing chain. Given a Vizing chain H = F + P, we can shift the colors in H, as shown
in Fig. 2b. One can show (see, e.g., [6, §5.3] or Corollary 4.10 below) that there is such
a Vizing chain H that is shiftable, meaning that the coloring resulting after the shifting
is proper, and thus H is an augmenting subgraph.

The problem, of course, is that there is no a priori upper bound on the length of the
alternating path P (except O(n)). In [19], Su and Vu tackled this problem as follows.
Suppose that P is too long, say, much longer than logn. Pick a random edge z'y’ on
P within distance O(logn) from z and truncate the path there. Then let Py be the
truncated path and, instead of shifting the whole chain F' + P, only shift F' + Fy. This
process is shown in Fig. 3. In the resulting coloring, the edge z’y’ becomes uncolored. If
we could use one extra color, say A + 2, then we would assign it to z’y’. By executing
this procedure for all the uncolored edges, one eventually obtains a (A + 2)-edge-coloring
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Fig. 3. Shifting a truncated Vizing chain F + Py.

Fig. 4. A two-step Vizing chain F + Py + F’ + P’.

of the entire graph that is proper except that there might be adjacent edges of color
A + 2. However, Su and Vu showed in [19] that with high probability, no two edges of
color A + 2 will be adjacent, and thus one actually gets a proper (A + 2)-edge-coloring.

In [11], Grebik and Pikhurko encountered a similar problem, but in the context of
(A + 1)-edge-coloring (as we already mentioned in §1.2, Grebik and Pikhurko’s goal was
to prove a version of Vizing’s theorem for infinite graphs on probability spaces). Their
solution also involved picking a random edge z’y’ on P, truncating the path there, and
then shifting the chain F' + Py. But since they could not use an extra color for the edge
2y, they instead built a new Vizing chain H' = F’ + P’ starting at the edge z'y’, and
shifted the whole combination of F + Py + F' + P’ (see Fig. 4). Let us call the sequence
F+ Py+F'+ P’ a two-step Vizing chain. This two-step approach can be used to build an
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augmenting subgraph with only O(y/n) edges, and while our ultimate goal is to reduce
O(y/n) further to O((logn)?), it will perhaps be instructive if we explain first how to get
the bound O(y/n).

If the length of P is O(y/n), then we are done, so assume that P is much longer
than y/n. The vertex 2’ is chosen at random from among the first ©(y/n) vertices of
P, and we want to show that the expected length of P’, relative to this random choice
of 2/, is O(y/n). To this end, we fix an arbitrary vertex u € V(G) and ask, what is the
probability that P’ passes through u? Suppose that the path P’ starts at a vertex 2’ that
is adjacent to 2’ and is vyd-alternating (as is shown in Fig. 4). If we start at u and follow
the edges colored v and ¢, then we would stop precisely when we hit z’. Thus, given u,
we can uniquely determine 2’ by specifying the colors v and § ((A + 1)? options) and
the location of ’ among the neighbors of z’ (A options). In other words, given u, there
are at most O(A3) = O(1) possibilities for 2’. Since ' is chosen randomly from a set of
©(y/n) candidates, we conclude that

P [P’ passes through u] < O(1/y/n).

Summing over all u € V(G) yields E[|P’|] < O(n-1/+/n) = O(y/n), as desired.

The argument in the previous paragraph has a flaw that, even in this informal
overview, we cannot overlook. Namely, the path P’ may intersect the fan F or the
path Py. Because of that, some of the edges of P’ may be colored differently before
and after the chain F' + Py is shifted. This means that, in principle, even if we know
u, 8, and v, we cannot locate 2z’ by tracing the yd-alternating path starting at u unless
we also know what the coloring looks like after shifting F' + Py. To circumvent this is-
sue, Grebik and Pikhurko showed that, roughly speaking, a careful choice of P’ ensures
that P’ is disjoint from F' + P, with high probability. It is unlikely that P’ intersects
F—essentially because F' is small, namely |F| < A = O(1). The real challenge is to
make P’ (edge-)disjoint from Py. Since every edge in Py is colored « or §, it would be
ideal if we could simply pick P’ so that {v,d} N {«, 8} = &. Unfortunately, this is not
always possible. Thankfully, Grebik and Pikhurko showed that P’ can always be chosen
so that either {v,0} N {a, 8} = @ or else, {7,d} = {a, 8} (see Lemma 4.9 below). In
the former case, P’ and P, are disjoint, so we are done. In the latter case, P’ and P,
cannot intersect transversally: if P’ N Py # &, then P’ D Py, and one can show that this
is unlikely.

In this paper we take a natural next step and consider multi-step Vizing chains (see
Fig. 5). Fix parameters ¢ = alogn and T = blog n, where a and b are positive constants
with a > b. Let zg := x and yg := y and build a Vizing chain Fy + Qg for zqgyo. Here Qg
is an apfp-alternating path that starts at a vertex zp adjacent to zg. If |Qo| < ¥, then
stop. Otherwise, pick a random edge z1y; on (g at distance at most ¢ from zg, truncate
Qo at that edge, and let Py be the truncated path. After shifting Fyy + Py, the edge x111
becomes uncolored, and we repeat the process with xz1y; in place of xgyy, obtaining a
fan F; and an «qfi-alternating path @, starting at a vertex z; adjacent to x;. Again,
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Fig. 5. A multi-step Vizing chain.

if |Q1| < ¢, then we stop, and otherwise we pick a random edge x2y2 on @)1, truncate
Q1 at that edge, and let P; be the truncated path. Then we shift F} + P;, and repeat
the process with oy in place of z1yi1, etc. If this process terminates within 7' steps,
then it produces an augmenting subgraph with at most O(T¥¢) = O((logn)?) edges, as
desired. Hence, our goal becomes to show that the process terminates within T steps
with positive probability.

The basic calculation here is similar to the one in the two-step case. Namely, we fix
a vertex v € V(G) and bound the probability that the process runs for at least T steps
and the path Pr passes through u. If we start at « and follow the edges colored ar and
B, we will stop at zp. Since zr is adjacent to zr, we can determine xzr by specifying
the colors ar and B and the location of x7 among the neighbors of zp. Then we can
trace the ap_1Br_1-alternating path starting at z to find zr_1, and then locate x7_1
among the neighbors of z7_;. Continuing in this manner, we see that the total number
of sequences (z1,...,x7) for which Py passes through u is at most A?(T). Since each z;
is chosen among ¢ candidates, we conclude that, for some positive constant C,

AO(T)
T

P [Pr passes through u] < < exp(—C'lognloglogn).

If the process runs for at least T' steps, then Pr has to pass through some vertex, so
P [the process runs for at least T' steps] < n-exp(—Clognloglogn) = o(1).
Again, the above reasoning only really works if each P; is disjoint from Fy+ Py+---+
F;_1 + P;_1. As in the two-step case, making P; disjoint from the fans Fy, ..., F;_1 is

a bit easier, so let us focus on the problem of making P; disjoint from P, ..., P;_;. For
1 > j, let &;; be the event that the first intersection that occurs during the process is
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between P; and P;. We need to bound the probability of €;;. By using the same methods
as Grebik and Pikhurko, i.e., by making sure that either {a;, 8;} N {a;—1,8i—1} = & or
{a;, Bi} = {ei_1, Bi—1}, we can eliminate the possibility that j =i — 1, so let us assume
that 7 <7 — 2. Fix the outcome of the procedure up to step j, so that we have already
settled on the vertices xg, x1, ..., 2; but not on z;;1. At this point, we already know
the path @;, but we have not yet truncated it. Pick any vertex v on (); within distance
¢ from z; and let &;;, be the event that &;; happens and the first intersection point
between P; and P; is u. The key observation is that if €;;, happens, then, since u is the
first intersection point, the calculations in the preceding paragraph can be used for .
That is, starting at u, we can trace the o;f3;-alternating path back to z;, choose x; from
the neighbors of z;, trace the «;_13;_1-alternating path to z;_1, choose x;_; from the
neighbors of z;_1, etc. In this way, we see that there is a positive constant ¢ such that the
number of sequences (zj41,...,x;) for which &;;, holds is at most Acli=3)  Therefore,

Aci=3)
i—i

P €] <
There are ¢ options for u, so, by the union bound,

Acli—3) Acli—=37)
Ples] < & = = 1

Applying the union bound a second time and using the assumption j < 7 — 2, we get

T2 T Ac(i-j) T-2 % Ack
P [the paths Py, ..., Pr are not disjoint] < Z Z 7T < AC Z Z 7
§=0 i=j+2 §=0 k=1
A%(T - 1)
L — Ac

Remembering that ¢/ = alogn and T = blogn, we can make the last expression as small
as desired by increasing the ratio a/b. Notice that O((logn)?) is a natural barrier for
this argument, since both ¢ and 7' must be of the order ©(logn). (With more careful
computations, it is possible to shave off a poly(loglogn)-factor from this bound.) It
remains an interesting open problem to see if one can actually reduce the bound to
O(logn) using a different method.

The rest of the paper is organized as follows. In §4, we introduce the terminology
needed for the proof, such as the notion of shifting a chain. We also prove Lemmas 4.8
and 4.9, the first of which essentially asserts the existence of a Vizing chain, while the
second one comes from the work of Grebik and Pikhurko and allows one to find ~d-
alternating paths with {v,0} N {«, 8} = @ or {v,d} = {a, F}. Then, in §5, we describe
our Multi-Step Vizing Algorithm in detail and verify some of its properties. After that,
in §6, we undertake the probabilistic analysis of the Multi-Step Vizing Algorithm and
finish the proof of Theorem 1.3.
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4. Chains, paths, and fans
4.1. Basics

For the remainder of the paper we fix an n-vertex graph G of maximum degree A.
For brevity, set V := V(G) and E := E(G). As usual, we say that two edges of G are
adjacent, or neighbors of each other, if they are distinct and have a common endpoint.
Throughout, we shall use the phrase “(partial) coloring” to mean a (partial) (A 4 1)-
edge-coloring of G. For convenience, if ¢ is a partial coloring and e € F \ dom(yp) is an
uncolored edge, then we write ¢(e) = blank, where blank is a special symbol distinct
from every color.

4.2. Missing colors and happy edges

Given a proper partial coloring ¢ and a vertex = € V, we let M(p,z) C [A + 1] be
the set of all colors missing at = in the coloring ¢, that is, M (p,z) := [A + 1]\ {p(zy) :
xy € E}. Note that | M (p,x)| is equal to A 4+ 1 — degq(x) plus the number of uncolored
edges incident to x; in particular, the set M (¢, z) is always nonempty. We say that an
uncolored edge e = xy is p-happy if M (p,2) N M(p,y) # @. If e = 2y is p-happy and «
is any color in M (p,z) N M(p,y), then we can extend ¢ by assigning to e the color a.
In other words, in this case the subgraph of G with vertex set {z,y} and edge set {e} is
augmenting for (.

4.3. Shifts and chains

Given a proper partial coloring, we wish to “locally” modify it in order to create a
happy edge (which then would allow us to enlarge the domain of the coloring). In order to
achieve this, we will be “shifting” colors from colored edges to their uncolored neighbors.
Let eg, e1 € E be two adjacent edges and let ¢ be a proper partial coloring. Define a
coloring Shift(p, eq, e1) by setting, for all e € E,

w(er) if e = ep;
Shift(p,ep,e1)(e) := 4 blank if e =ey;

p(e)  otherwise.

In other words, Shift(yp,eq, e1) “shifts” the color from ey to e, leaves e; uncolored, and
keeps the coloring of the rest of the edges unchanged. The pair (eg,e1) is said to be
p-shiftable if

e eo ¢ dom(yp), e; € dom(yp), and
o the coloring Shift(y, eg, e1) is proper.
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Fig. 6. Shifting a coloring along a chain.

The latter condition is equivalent to saying that ¢(e1) € M (p,x), where z is the unique
vertex that belongs to ey but not to e;. Note that if a pair (eg,e1) is @-shiftable, then
the pair (e1, eg) is Shift(yp, eg, e1)-shiftable and

Shift(Shift(p,eq,€1),e1,€0) = . (4.1)

A chain of length ¢ > 1 is a sequence C = (e, ...,e¢—1) of edges such that e; and
e;+1 are adjacent, for all 0 < ¢ < ¢ — 2. Note that we do not require the edges in
a chain to be pairwise distinct; however, any two consecutive edges must be distinct
since they are adjacent. We define the edge set E(C) and the vertex set V(C) of a
chain C' = (eg,...,er—1) by setting E(C) := {eo,...,e—1} and making V(C) be the
set of all the endpoints of the edges in C. We also let H(C) be the subgraph of G
with vertex set V(C) and edge set E(C). It is clear that the graph H(C') is connected.
Let Start(C) := eg and End(C) := e;_; denote the first and the last edges of C,
respectively, and let length(C) := ¢ be the length of C. Given a partial coloring ¢, we
define Shift(yp,C) by iteratively shifting the colors from e; to eg, then from e to ey,
etc. (see Fig. 6). More precisely, we consider the following recursively defined sequence
of colorings:

Shiftg(p, C) = ¢;

Shifti+1(<p, C) = Shift(Shifti(@, C), €i, 6i+1) forall0 <1<l —2,

and set Shift(p,C) := Shift,_1(p,C). We say that C is ¢-shiftable if for all 0 < ¢ <
£—2, the pair (e;, e;41) is Shift;(p, C')-shiftable. Given a chain C' = (eg, ..., e¢-1), we let
C* := (es_1,...,€0) denote the reverse of C. Repeated applications of (4.1) show that
if C' is ¢-shiftable, then C* is Shift(p, C)-shiftable and Shift(Shift(p, C),C*) = .

Fact 4.2. Let ¢ be a proper partial coloring and let C' be a chain. If C is p-shiftable, then
the following statements are valid:

(i) the unique edge in E(C) that is uncolored by ¢ is Start(C);
(ii) Shift(p, C) is a proper partial coloring that agrees with ¢ on E \ E(C);
(iii) the unique edge in E(C) that is uncolored by Shift(y,C) is End(C).
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Proof. Let C = (eq,...,e¢—1), where £ = length(C). A straightforward induction shows
that for each 0 < ¢ < £ — 1, the coloring Shift;(y, C) is proper, which, in particular,
yields (ii). To see (i), note first that ey must be uncolored by ¢ since the pair (eq,e1)
is ¢-shiftable. Suppose now that e € F(C) is a p-uncolored edge and let i be the least
index such that e = ¢;. If ¢ > 0, then e is still uncolored by Shift,;_;(p, C'), which means
that the pair (e;_1, €;) is not Shift;_;(p, C)-shiftable; a contradiction. Part (iii) follows
by applying (i) with Shift(p,C) and C* in place of ¢ and C. B

We say that a chain C' is p-happy if C is @-shiftable and the edge End(C) is
Shift(y, C')-happy.

Fact 4.3. Let ¢ be a proper partial coloring and let C be a chain. If C' is p-happy, then
the graph H(C') is augmenting for .

Proof. The coloring ¢ can be modified to include all the edges in E(C) as follows: First,
replace ¢ by 1) := Shift(yp, C). Now the only uncolored edge in F(C) is End(C'), which,
by assumption, is ¥-happy, so 1) can be extended to include it. W

Thus, our goal becomes to develop a technique for constructing “short” happy chains.
4.4. Initial segments and combinations

For a chain C = (eg,...,ep—1) and 1 < k < £, the initial segment of C of length k is
the chain

C|k‘ = (60, . .,6]671).

Note that if C' is ¢-shiftable for some proper partial coloring ¢, then every initial segment
of C is also -shiftable. Observe also that Shift(p, C|k) = Shift,_1(p,C) for all 1 <
k < 4. We additionally consider an operation that is in some sense the opposite of taking
initial segments. Namely, let Cp and C; be chains such that End(Cy) = Start(Cy). Then
we can combine Cj and C into a single chain Cy + C7 by identifying the last edge of
Cy with the first edge of C;. More precisely, if Cy = (eg,...,er-1), C1 = (ho,. .., hg—1),
and ey_1 = hg, then we set

Co + Cl = (60, .. .,egfl,hl, ce 7]7,]€,1).

Notice that Cy is an initial segment of Cy + Cy. It is clear that for any proper partial
coloring ¢, we have

Shift((p7 Co+ Cl) = Shift(Shift((p, Co), Cl),

and if Cj is @-shiftable and Cy is Shift(p, Cp)-shiftable, then Cy+ CY is also p-shiftable.
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4.5. Path-chains

A particular type of a chain is a path-chain, i.e., a nonempty sequence of edges
that forms a path in G in the usual graph-theoretic sense. Explicitly, a chain P =
(eo,-..,ep—1)is called a path-chain, or simply a path, if there is a sequence (xg, x1, ..., xy)
of pairwise distinct vertices such that e; = x;2;41 for all 1 < ¢ < ¢ — 1. Such a sequence
(xo,%1,...,2¢) is necessarily unique unless ¢ = 1, while if P = (zy) is a path-chain of
length 1, then there are two such sequences, namely (z,y) and (y, ). When dealing with
such length-1 path-chains, we shall still tacitly assume that one of these two sequences is
chosen, so that every path-chain P has a well-defined first and a well-defined last vertex,
denoted by vStart(P) and vEnd(P), respectively.

The aim of this subsection is to describe a particular way of constructing shiftable
path-chains by considering edges of two specific colors. For the remainder of §4.5, we fix
the following data:

e a proper partial coloring ¢;
e a pair of distinct colors a, 8 € [A 4 1].

Let G(p, af) denote the spanning subgraph of G with

E(G(p,ap)) == {e€ E : ¢ple) € {a, f}}.

Since ¢ is proper, the maximum degree of G(p,af) is at most 2, which means that
every connected component of G(p,af) is either a cycle or a path (where we view
isolated vertices as paths of length 0). For x € V| let G(z, ¢, af) denote the connected
component of x in G(p, af), and let deg(z, ¢, ) be the degree of x in G(p, af). Note
that deg(z, v, a8) < 2 if and only if at least one of «, 8 is missing at x. We say that two
vertices z, y € V are (¢, af)-related if G(z, ¢, af) = G(y, ¢, af).

Suppose that xy € E is an uncolored edge that is not w-happy. We say that xy is:

o (¢, af)-hopeful if deg(z, ¢, af) < 2 and deg(y, v, af) < 2;
e (¢, aB)-successful if it is (¢, @f)-hopeful and x and y are not (¢, af3)-related.

For a (p,af)-hopeful edge zy, we define a chain P(z,y,p,af) as follows. Since
deg(y, ¢, af) < 2, the graph G(y,p,af) is a path, one of whose endpoints is y. Let
(e1,-..,ex) be the sequence in which the edges of this path appear as it is traversed start-
ing from y. Note that k& > 1, since otherwise {a, 8} C M (¢, y) and {a, B} "M (p, ) # 2,
which would mean that the edge xy is ¢-happy. The sequence (ey,...,er) is af-
alternating, in the sense that the sequence of colors ¢(e1), (ez2), (es), p(eq), ... has
the form o, 8, o, 8, ... or B, a, B, , .... Then we define

P(xay7@7aﬂ) = (xyaela"'aek)‘
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x Y € Y
(a) The edge zy is not (¢, af)-successful. (b) The edge zy is (¢, af)-successful.

Fig. 7. The chain P(z,y, ¢, af).

This construction is illustrated in Fig. 7.
Fact 4.4. If zy is a (@, af)-hopeful edge, then the chain P(x,y,p,af) is @-shiftable.

Proof. Since the edge xy is not ¢-happy, M(p,z) N M(p,y) = &. As xy is (p, af)-
hopeful, this implies that « misses one of the colors «, § and y misses the other one.
Without loss of generality, assume that o € M(p,x) and 8 € M(p,y). Set eg := xzy and
P := P(z,y,p,af) = (eo,€1,...,ex). Then eq is uncolored and ¢(e1) = a, p(e2) = B,
ples) = a, p(eq) = B, ete. Since o € M (ip, x), the pair of edges (e, e1) is @-shiftable.
Straightforward induction then shows that the whole chain P is ¢-shiftable. W

If an edge xy is not just (¢, af)-hopeful, but in fact (p, af)-successful, then = cannot
appear on the path G(y, ¢, &), which implies that P(z,y, ¢, @) is a path-chain. Note
that the first vertex of P(x,y, ¢, af) is x, while the last one is the endpoint of the path
Gy, p,af) distinct from y.

Fact 4.5. If zy is a (¢, af)-successful edge, then the path-chain P(x,y, v, af) is @-happy.

Proof. Set e := zy and P := P(z,y,p,af) = (eg,€1,...,e;). We already know, from
Fact 4.4, that P is ¢-shiftable. In the coloring Shift(p, P), both endpoints of the edge
e miss the same one of the colors a, 3, so ey is Shift(p, P)-happy, as desired. W

4.6. Fans

Another useful type of a chain is a fan. A fan is a chain of the form F =
(Yo, Ty1,- .-, TYe—1), where x € V and yo, ..., ye—1 are pairwise distinct neighbors
of x. Given a fan F = (xyo, zy1,. - ., xYye—1), we call the vertex = the pivot of F' and write
Pivot(F') := x. We also refer to y,_1 as the last vertex of F' and write vEnd(F') := yy_1.
As in the case of path-chains, this creates some ambiguity when F = (zy) is a fan of
length 1. When dealing with such a length-1 fan, we shall still tacitly assume that it
has been decided which one of x, y is the pivot. Note that for every fan F, its last edge
End(F) is {Pivot(F'),vEnd(F)}.
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Shift;

Fig. 8. The process of shifting a fan for i steps.

Fact 4.6. Let ¢ be a proper partial coloring and consider a fan F = (xyo, Y1, - .., TYe—1)-
Then F' is p-shiftable if and only if the following two conditions are satisfied:

(i) xyo ¢ dom(yp), while zy; € dom(yp) for all 1 <i <L —1;
(ii) for each 0 < i <€ —2, p(xy;v1) € M(p,y:).

Proof. Condition (i) is necessary for F' to be @-shiftable due to Fact 4.2, so we may
assume that (i) holds. For brevity, set ¢; := Shift;(¢, F) for each 0 < ¢ < ¢ — 1.
By definition, F is ¢-shiftable if for all 0 < i < ¢ — 2, the pair (zy;, xy;t+1) is ;-
shiftable. Tt is straightforward to check that ¢;(zy;) = blank, while ©;(xy;+1) = @(zyi+1)
(see Fig. 8). Thus, (zy;, zyi+1) is 1;-shiftable if and only if p(xy;+1) € M (v;,y;). For
i = 0, this is just saying that p(zy1) € M(p,yo0), as desired. For i > 0, observe that
M (i, y:) = M(,y:) U {p(zy;)}. Since the coloring ¢ is proper, p(zy;+1) # ©(xy;), so
o(ryiv1) € M (4, y;) if and only if p(zy;+1) € M (¢, y:), and we are done. W

Let ¢ be a partial proper coloring and let «, 8 € [A + 1] be two distinct colors. Let
F be a p-shiftable fan that is not @-happy. Set x := Pivot(F) and y := vEnd(F) (so
End(F) = zy). By analogy with the definitions in §4.5, we say that F' is:

¢ (p,af)-hopeful if deg(x, p, af) < 2 and deg(y, ¢, af) < 2;
e (p,af)-successful if it is (p, af)-hopeful and = and y are not (Shift(p, F),af)-
related.

Fact 4.7. Let F be a fan and set x := Pivot(F) and y := vEnd(F). Define ¢ :=
Shift(p, F). If F is (p,afB)-hopeful (
(¥, aB)-hopeful (resp. (¥, af)-successful

resp. (¢, af)-successful), then the edge xy is
).
Proof. Note that M (¢, z) = M(p,z) and M(¢,y) 2 M(p,y) (the inclusion is, in

fact, strict unless F' is of length 1). This implies that if F' is (¢, af)-hopeful, then

deg(z,v,af) = deg(w,p,aB) < 2 and deg(y,v,aB) < deg(y,p,aff) < 2, and hence
the edge xy is (¢, af)-hopeful, as desired. The statement for (¢, af)-successful fans

follows. W
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Next we establish two lemmas that allow us to find successful or, at least, hopeful
fans. Modulo our choice of terminology, the first of these lemmas was already known to
Vizing [20] (see [6] for a textbook presentation), while the second one comes from the
work of Grebik and Pikhurko [11].

Lemma 4.8 (First fan lemma). Let ¢ be a partial proper coloring and let xy € E\ dom(p)
be an uncolored edge. Then there exists a p-shiftable fan F with pivot x and Start(F) =
xy such that:

o either F' is p-happy,
e or, for some distinct o, B € [A + 1], F is (¢, af)-successful.

Proof. Assume that there is no ¢-happy fan with pivot x and starting edge zy. For
each neighbor z of x, fix an arbitrary color 8(z) € M(y, z). We shall recursively build a
sequence Yo, Y1, - .. of pairwise distinct neighbors of x such that the fan (xyo, xy1,...) is
p-shiftable. Start by setting 1o := y. Once the vertices yo, ..., y; have been determined,
consider the color 8(y;). If B(y;) € M(p,x), then the fan (zyo, . .., zy;) is p-happy, which
contradicts our assumption. Thus, 5(y;) ¢ M (¢, z), which means that = has a (unique)
neighbor z with ¢(zz) = 8(y;). Note that z # y;, because the color 8(y;) is missing at
y; but not at z. Similarly, z # yo because the edge zyy is uncolored, while zz is not.
Now, if z € {y1,...,yi—1}, then we stop the construction, and otherwise we set y;11 := 2
and proceed to the next step. Since x has only finitely many neighbors, this construction
must terminate. That is, we shall eventually obtain a sequence yg, ..., yx of distinct
neighbors of = such that:

)
)

(iii) for all 0 < i <k — 1, p(2yit1) = B(y:);
)

Set 8 := B(yg). If j is the index from (iv), then (iii) yields 8 = p(zy;) = B(y;-1); that is,
3 is missing both at y; and at y;_1. Now let a be any color in M (p,z). By (ii), a # 3.
Define

F = (zyo,...,7Yx) and F' = (xyo,...,xyj—1) = F|j.

By construction, both F and F’ are (¢, a3)-hopeful fans. We claim that at lest one of
F, F' is (¢, af)-successful. For brevity, let

¢ := Shift(p,F) and ¢’ := Shift(p, F') = Shift;_;(p, F).

Suppose that F is not (g, af)-successful. This means that the vertices x and y; are
(1, af)-related. By Fact 4.7, the edge zyx is (¢, af)-hopeful, so G,s(¢, x) must be a



338 A. Bernshteyn / Journal of Combinatorial Theory, Series B 152 (2022) 319-352

path with endpoints « and y. Furthermore, ¢(zy;_1) = S, so the (unique) edge of this
path incident to x is xy;_1. All the other edges of this path avoid the vertex z, which
means that their colors cannot be changed by shifting a fan with pivot z. In particular,
they have the same colors in ¢, 9, and ¢/, which implies that the vertices y;_; and yy, are
(¢, af)-related. Since both these vertices miss the color § in ¢, the graph Gag(¥’, yj—1)
is a path with endpoints y;_1 and y;. This path cannot include z (because « is missing
a), and thus y;_; and x are not (¢, a3)-related, as desired. W

Lemma 4.9 (Second fan lemma). Let ¢ be a partial proper coloring and let xy € E \
dom(p) be an uncolored edge. Fix a pair of distinct colors o, B € [A + 1] such that
deg(x, p,af) = 1. Then there exists a @-shiftable fan F with pivot x and Start(F) = zy
such that:

o ecither F' is p-happy,
e or, for some distinct v, § € [A+1] with {v,d}N{a, B} = @, F is (p,vd)-successful,
o or F is (¢, af)-hopeful, vEnd(F) # y, and no edge in F is colored o or 8 by .

Proof. Again, we may assume that there is no p-happy fan with pivot = and starting
edge xy. Since deg(x, ¢, af) = 1, precisely one of the colors «, § is missing at x. For
concreteness, suppose that « € M(p,x) and 8 ¢ M(y,x). For each neighbor z of x, fix
a color §(z) € M(yp,z); it does not matter which color from M/, z) we pick, except
that we make sure that §(y) # [ (this is possible since y is incident to an uncolored
edge and thus |M(¢,y)| > 2). As in the proof of Lemma 4.8, we build a sequence yp,
Y1, ... of pairwise distinct neighbors of  such that the fan (zyg, zy1,...) is ¢-shiftable.
Start by setting yo := y. Once the vertices yo, ..., y; have been determined, consider the
color 6(y;). If 0(y;) € M(p,x), then the fan (xyo,...,zy;) is p-happy, which contradicts
our assumption. Thus, d(y;) ¢ M (¢, z). At this point, if é(y;) = B, then we stop the
construction. Otherwise we proceed as in the proof of Lemma 4.8. In other words, if
d(y;) # B, then we let z be the (unique) neighbor of x such that p(zz) = §(y;). If
z € {y1,--.,Yi—1}, then we stop, and otherwise, we let ;41 := z and move on to the
next step. Since x has only finitely many neighbors, this construction must terminate.
Hence, we eventually obtain a sequence yq, ..., yx of distinct neighbors of x such that:

(i) vo=1y;
(i) forall 0 <@ < k, 6(yi) € M(p,x);
(iii) forall 0 < i <k —1, o(xyir1) = 6(yi);
(iv) forall 0 <i< k-1, 0(y;) # 5;
(v) either d(yx) = B, or else, d(yx) = p(xy;) for some 1 < j <k — 1.

Now we consider two cases.

Case 1. 6(yx) = B.



A. Bernshteyn / Journal of Combinatorial Theory, Series B 152 (2022) 319-352 339

Then the fan F := (xyo,...,xyx) is, by construction, (¢, a)-hopeful. Furthermore,
since 0(y) # B, we have vEnd(F) = yi # y. Finally, for each 1 < ¢ < k, we have
o(zy;) = 0(yi—1), and since 6(y;—1) # B by (iv) and 6(y;—1) ¢ M(p,z) by (ii), we
conclude that no edge in F is colored « or (.

Case 2. §(yi) # 5 and 6(yx) = p(zy;) for some 1 < j<k—1

Set § := d(yx) and let j be the index from (v), so that the color § is missing both at
yr and at y;_1. Since x is incident to an uncolored edge, we can pick a color v € M(z, ¢)
distinct from a. Now {v,d} N{a, 8} = @ and the argument from the proof of Lemma 4.8
shows that at least one of the fans

F = (zyo,...,7yx) and  F' := (zyo,...,2Yj-1)
is (,y0)-successful, as desired. W

As an illustration, we can now use Lemma 4.8 to complete the proof of Vizing’s
theorem:

Corollary 4.10 (to Lemma 4.8). For every proper partial coloring ¢ and every uncolored
edge e = xy, there is a connected augmenting subgraph H C G whose only uncolored edge
s e.

Proof. By Fact 4.3, it suffices to find a p-happy chain C with Start(C) = e. To this
end, let F' be a fan satisfying the conclusion of Lemma 4.8. If F' is p-happy, then we
are done, so assume that instead there are distinct colors «, 8 € [A + 1] such that F is
(¢, af)-successful. Let z := vEnd(F) and set ¢ := Shift(yp, F'). By Fact 4.7, the edge
xz is (¢, af)-successful, so, by Fact 4.5, the path-chain P := P(v, x, z, af) is ¢-happy.
Therefore, the chain F' + P is as desired. W

5. The Multi-Step Vizing Algorithm
5.1. The sets R™(x,¢) and R (y, ¥)

Before we begin describing our construction of multi-step Vizing chains, we need to
introduce some notation that will be useful for keeping track of intersections between
different alternating paths. Let ¢ be a proper partial coloring and let a, 5 € [A 4 1] be
distinct colors. Given z € V, we let R™(x, p,a3) C V denote the set of all vertices y
that satisfy at least one of the following two conditions:

e y = x or y is adjacent to x,
o or there is a neighbor z of z such that deg(z, p,af) < 2 and z and y are (g, af)-
related.
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We also define R (y, p,af) :={x €V : y € R”(x,p,af)} and set

R (z,0) == |J B (z,0,08) and R (y,¢) = | R (y,,08).
a#B a#p

Lemma 5.1. For each proper partial coloring ¢ and every vertex y € V, we have
[R™(y,9)| < (A+1)°.

Proof. At most A elements of R (y, ¢) are neighbors of y, and for each (unordered) pair
of colors a, 3, there are at most two vertices z that are (¢, af)-related to y and satisfy
deg(z, p, af) < 2. Each such vertex z has at most A neighbors, so

A+1

|IR™(y, )] < 1+A+2A< A

) = AP+ AT+ A+1 < (A+1)° W

Given a chain C, we write R (C, ¢) := U, cv () B (¥, 9)-

Lemma 5.2. Let ¢ be a proper partial coloring and let C be a @-shiftable chain. Set
¥ = Shift(p,C). If x is a vertex that is not in R (C,p) N R~ (C, ), then R”(z,¢) =
R~ (z,%).

Proof. It is enough to show that if z ¢ R~ (C, ¢), then R (x,¢) = R~ (x,1); the conclu-
sion for x ¢ R~ (C, 1) then follows by exchanging the roles of ¢ and v and replacing C by
its reverse C*. So, suppose that © ¢ R (C, ¢). We first prove that R (x, ) C R™(x, ).
Take any vertex y € R7(z,¢). If y = x or y is adjacent to x, then y € R™(x,%) by
definition, so suppose instead that there exist colors a, 8 and a neighbor z of x such that
deg(z,¢,af) < 2 and z and y are (¢, af)-related. In other words, G(z, ¢, af) is a path
starting at z and containing y. Since x ¢ R (C, ), no vertex on this path is incident to
an edge in C. This implies that G(z, ¥, af) = G(z, ¢, af), so G(z,1, af) is still a path
starting at z and passing through y, and hence y € R~ (z, %), as desired.

Now we show R”(z,v) C R”(x,¢). Take a vertex y € R7(z,v). Again, if y = z
or y is adjacent to x, then we are done, so assume that there exist colors «, 8 and a
neighbor z of x such that deg(z, v, a8) < 2 and z and y are (¢, af)-related. Note that
deg(z, ¢, af) < 2 as well; otherwise, some edge incident to z would be colored differently
in ¢ and %, which would imply that z € V(C) and thus z € R“(C, ). Therefore,
the graph G(z,p, ) is a path starting at z. As before, we observe that no vertex on
this path can be incident to an edge in C, since © ¢ R*(C,¢). But this means that
G(z,¢,ap) = G(z,p,ap), so if z and y are (1, af)-related, then they are also (p, af)-
related, as desired. W

5.2. The algorithm

For the remainder of §5, we fix the following data:
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e a proper partial coloring ¢;
o an uncolored edge e = zy € E \ dom(yp).

We also fix a numerical parameter £ € N*. (We will eventually make £ be a value of
order poly(A)logn, but for now this does not matter.) We shall describe a randomized
procedure, called the Multi-Step Vizing Algorithm, that attempts to build a ¢-happy
chain C' with starting edge e. The chain C will have the form C' = Fo+Py+F1+ P+ -,
where each Fj is a fan and each P; is a path-chain. The construction proceeds in steps,
indexed by natural numbers (the total number of steps may be finite or infinite). On
Step 4, we build the fan F; and the path P;.

5.2.1. Initial set-up
Initially, we set o := ¢, €eg ' =€, z¢ :=z, and yo = y.

5.2.2. Input for Step i

At the start of Step i, we have already constructed a number of interrelated structures.
However, in order to describe how Step ¢ operates, only the following objects will be
needed:

(Inl) a sequence of proper partial colorings ¢, Vo, ..., Pi—1, Yi—1, ©i;

(In2) an edge e; = z;y; with ¢;(e;) = blank;

(In3) if i > 0, a pair of distinct colors «;—; and ;1 such that deg(x;, vi, a;—18i—1) = 1;
(In4) a sequence Fy, Py, ..., F;_1, P;_1, where each F} is a fan and each P; is a path-

chain.

5.2.3. Step i
We start by constructing a fan Fj;. To this end, we consider two cases.

Case 1. There is a p;-happy fan F with Pivot(F) = x; and Start(F) = ¢;.

Then we make F; be any such fan and stop the construction. In this case, the algorithm
succeeds.

Case 2. There is no w;-happy fan F with Pivot(F) = x; and Start(F) = e;.

If ¢ = 0, then we use Lemma 4.8 to obtain a ¢g-shiftable fan Fy with pivot zg and
Start(Fy) = eg and a pair of distinct colors ag, Sy such that Fy is (¢g, agSBo)-successtul.
If, on the other hand, i > 0, then we apply Lemma 4.9 instead with a;_1, 5;—1 in place
of a, B (this is possible by (In3)) and obtain a ¢;-shiftable fan F; with pivot z; and
Start(F;) = e; and a pair of distinct colors «;, §; such that:

(F1) either {a;, 8} N{ai—1,Pi—1} = @ and F; is (p;, o;f;)-successful,
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(F2) or the following statements are valid:
(F2a) {O‘hﬁi} = {aiflvﬁifl};
(F2b) F; is (¢4, o f;)-hopeful;
(F2c¢) vEnd(F;) # y;; and
(F2d)

no edge in F; is colored «; or 3; by ;.
Note that regardless of whether (F1) or (F2) holds, F; is (¢;, «;3;)-hopeful. Let

z; := vEnd(F;) and ; := Shift(y;, F;).
By Fact 4.7, the edge x;z; is (1;, «; 5;)-hopeful, so we can define

Qi = P(xi, i, ¥i, ifi).

Set u;(0) := i, u;(1) := 2 and write Q; = (u; (0)u; (1), ui (1w (2), ui(2)ui(3), .. .). Next
we proceed to define a path P;, which will be an initial segment of @);. There are again
a few cases to consider.
Subcase 2.1. The fan F; is (@i, o;08;)-successful and length(Q;) < £.
Then we let P; := @Q; and stop the construction. In this case, the algorithm succeeds.

Subcase 2.2. The fan F; is (i, o;0;)-successful and length(Q;) > £ + 1.

Note that since length(Q;) > ¢+ 1, the vertex w;(¢+ 1) is well-defined. Pick an integer
1 < /4; < £ uniformly at random and set

Tipr = wi(€;), Yit1 = wi(;+1), and P; := Q|4 +1).
By construction, P; is a path-chain of length ¢; + 1 < £+ 1 and we have
vEnd(P;,) = yi+1 and  ejy1 := Ti41Yi+1 = End(F;).
There are now two more subcases.
Subsubcase 2.2.1. At least one of the following holds:

o iy1 € RT(F),4;) for some j <1,
o orxziy1 € RT(Pj, ;) for some j <i—1.

In this case we stop the construction and declare that the algorithm fails.

Subsubcase 2.2.2. The following statements are valid:
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Fig. 9. The colorings ¢;, ¥;, and ¢, 1. In this case, £; = 5.

o xiy1 & R(Fj, ;) for all j <i; and
* Tit1 ¢ RH(Pj,lﬁj) fO?” a”] < . — 1.

Then we let ;41 := Shift(;, P;). Note that the unique edge of color a; or 3; in ;41

incident to ;41 is w;(¢; — 1)a;41, so deg(zit1, pit1,@if5i) = 1 (see Fig. 9¢). Thus, (In3)

holds with ¢ + 1 in place of i, and hence we may continue to Step ¢ 4+ 1. This finishes
Subcase 2.2.

Subcase 2.3. The fan F; is not (¢;, o;B;)-successful.

We will show that this situation cannot occur (see Lemma 5.5). For now let us say that

in this case the procedure stops and the algorithm fails.

5.2.4. Output of Step i
Here is a brief résumé of the possible outcomes for Step i:

(Outl)
(Out2)
(Out3)

(Out4)
(Outb)

In Case 1, the algorithm successfully outputs a ¢-happy chain Fy + Py + -+ - +
P,_1+ F;.

In Subcase 2.1, the algorithm successfully outputs a p-happy chain Fy + Py +
o4 Fz. + B

In Subsubcase 2.2.1, the algorithm fails.

In Subsubcase 2.2.2; the algorithm moves on to Step i + 1.

In Subcase 2.3, the algorithm fails, but we will prove in Lemma 5.5 that this
cannot happen.
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Note that the only case in which the algorithm moves on to the next step is Subsub-
case 2.2.2.

5.8. The backtracking lemma

In this subsection we prove a lemma that plays a central role in our analysis of the
Multi-Step Vizing Algorithm. In essence, it formalizes the idea of tracing back alternating
paths that we sketched in §3.

Lemma 5.3 (Backtracking). Suppose that on Step i of the Multi-Step Vizing Algorithm,
Case 2 occurs. Fiz a verter uw € V(Q;). Then x; € R (u, ;) N R~ (u, ;) for all j < i,
and, in particular, x; € R (u, ).

Proof. Let o := «; and B := ;. If u = z;, then we are done, so assume that u # z;.
Then z; € R (u,1);) since z; is a neighbor of x; with deg(z;,¥;, af) < 2 and u is
(1;, af)-related to z;. Next we show that

x; € R™ (u, vi, af). (5.4)

Since the fan F; is (¢;, af)-hopeful, we have deg(z;, ¢;, ) < 2. Suppose, towards a
contradiction, that u and z; are not (p;, af)-related. By construction, v and z; are
joined by a path in G(¢;, af). If u and z; are not (p;, af)-related, then at least one edge
on this path must have a color different from « and 8 in ¢;, which means that it must
belong to F;. But every edge in F; contains x;, so x; is an internal vertex on some path
in G(v;, af), which is impossible as deg(x;, ¥;, aff) = deg(z;, i, af) < 2.

If i = 0, then we are done, so assume that 7 > 0. On Step ¢ — 1, the algorithm must
have entered Subsubcase 2.2.2 (otherwise it would have stopped without reaching Step
1), which means that the following statements hold:

o z; ¢ RT(Fj,1;) forall j <i—1;and
e I; §é R(_(Pj,lbj) for allj <i— 2.

By iteratively applying Lemma 5.2, we conclude that
R7 (@i, p0) = R7(x5,¢%0) = R (zi,01) = R (@i, ¢1) = -+ = R (@, ¥i-1).
Thus, it remains to argue that x; € R (u,1;—1). We will in fact show that
z; € R (u, i1, ).

There are two possibilities to consider. If on Step i, situation (F1) occurs, then {a, 8} N
{a;—1,Bi—1} = @. The only colors that are involved in the change from ;1 to ;
are a;—1 and f;_1, so in this case G(;—1, ) = G(¢;, af). In particular, (5.4) yields
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z; € R (u,v;—1,ap), as desired. Now assume that on Step i, situation (F2) occurs and,
in particular, {a;_1,8;—1} = {«, 5}.

Claim. Under the above assumptions, deg(z;, ¥;—1,af) = deg(z;, @i, af) < 2.

Proof. When the path P;_; is shifted, the only vertices whose degrees in the af-colored
graph change are the first and the last two vertices of P;_1, i.e., z;_1, z;_1, x;, and y;.
Since xz; and z; are adjacent, z; # x;. Also, z; # y; by (F2¢). The only remaining options
are z; = x;—1 and z; = z;_1, but both of them imply z; € R (F;_1,%;—1), which is a
contradiction.

It remains to check that u and z; are (¢;—1, af)-related. Suppose, towards a contradic-
tion, that they are not. This means that the subgraphs G(z;,¥;—1, @) and G(z;, i, af)
are distinct, and hence at least one vertex in G(z;,¥;—1,af) is incident to an edge that
is colored differently in v;_; and in ;. All such vertices, except x;_1, are (¥;_1, af)-
related to z;—1 (see Fig. 9b for an illustration). Thus, z; is (¢;—1, af)-related either to
x;—1 or to z;_1. In any case, x; € R™(F;_1,%;_1); a contradiction. W

Next we apply Lemma 5.3 to show that Subcase 2.3 cannot occur:
Lemma 5.5. On Step i of the Multi-Step Vizing Algorithm, Subcase 2.3 cannot occur.

Proof. Let o := «; and 8 := (3; and suppose, towards a contradiction, that the fan
F; is not (p;, af)-successful. This implies that ¢ > 0 and (F2) holds; in particular,
{ai—1,Pi—1} = {«, B}. Since F; is (¢;, a)-hopeful but not (p;, af)-successful, the ver-
tices x; and z; are (;, af)-related. From (F2d), we conclude that G (15, a8) = G(p;, af),
so x; and z; are also (p;, af)-related. Since {o;—1, Bi—1} = {a, B}, x; is (p;, aff)-related
to x;—1 (see Fig. 9¢ for an illustration). Therefore, z; and x;_1 are (¢;, of)-related, and,
by (F2d) again, z; and z;_1 are (¢;, af)-related. This implies that x;,_1 € V(Q;), so,
by Lemma 5.3, x; € R (x;-1,%;—1) and thus ; € R (F;_1,1;—1). But if this were the
case, then the algorithm would have entered Subsubcase 2.2.1 and stopped on Step i —1;
a contradiction. W

6. Probabilistic analysis of the Multi-Step Vizing Algorithm
6.1. The algorithm is likely to succeed

We use the set-up and the notation of §5.2. Our goal is to obtain a lower bound on
the probability that the Multi-Step Vizing Algorithm terminates successfully within a
limited number of steps.
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Lemma 6.1. Fiz T € Nt and set A\ := £/(A + 1)3. Assuming that X\ > 1, the probability
that the Multi-Step Vizing Algorithm successfully terminates on Step i for some i < T
is at least

Proof. First we bound the probability that the algorithm enters Step T'. Fix a vertex u €
V and consider the probability P [xr = u]. Notice that if x7 = u, then, by Lemma 5.3,

xr =w, xp_1 € R (xp,p), zp_2 € R (xr_1,¢), ..., and x1 € R (xz2,¢).
(6.2)
By Lemma 5.1, the number of sequences (z1,...,z7) satisfying (6.2) is at most (A +
1)3(T=1)_ Since each of the vertices 1, ..., 7 is chosen uniformly at random from a set
of ¢ candidates, we conclude that

A+ 1370
Plor - < ST 1

Since the vertex x7 must be defined for the algorithm to enter Step T', we have

P [the algorithm enters Step T < Z Pxr =u] < )\%
ucV
Next we bound the probability that the algorithm fails on Step ¢ for some i < T.
Thanks to Lemma 5.5, the only situation in which the algorithm fails on Step i is

Subsubcase 2.2.1, i.e.,

e Zit1 € RT(Fj,1;) for some j <1,
o or z,41 € R°(P},v;) for some j <i—1.

Claim. For all j <1, we have

3
Plrcs € RO 0] < vt and Bla € R (P < 20
Proof. We will show that the desired upper bounds hold even if we allow an adversary
to specify the outcome of the algorithm’s execution until it is time to pick ¢; (if the
algorithm terminates earlier, or if it does not enter Subcase 2.2 on Step j, then the
events ;11 € R™(Fj,1;) and ;11 € R“(P;,1;) cannot happen, so we may ignore
that possibility). So, fix the outcome of the algorithm’s execution up to the stage when
¢; is supposed to be chosen and let P* denote conditional probability subject to this
outcome. At this point, we have already constructed the fan F}, the coloring 1, and the
path Q; = (u;(0)u;(1),u;(1)u;(2),...) of length at least £41, but we have not yet picked
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the vertex x;41. Fix any u € V and consider the (conditional) probability P* [z;11 = u].
If ;41 = u, then, by Lemma 5.3,

Tig1 =U, T € R™(Tit1,9), xi—1 € R (zi,), ..., and zj41 € R™(zj42,9).
(6.3)
By Lemma 5.1, the number of sequences (xj41,...,2;41) satisfying (6.3) is at most
(A + 1)3(i_j). Since each of the vertices 41, ..., Zi41 is chosen uniformly at random

from a set of ¢ candidates, we get

: (A1) 3
P [zip1 =] < fi—it1 =T

Set U := R (Fj,1;). By Lemma 5.1, we have |U| < (A +1)3|V(F;)| < (A +1)4, so

. A+1)* A+1
P* [wit1 € R™(Fj,¢5)] = > P* [z =] < <Ai_j€) = S

uelU
Regardless of the value ¢}, the set R (P;, ;) is contained in W := UH1 R (uj(k), ;).
By Lemma 5 L (W] < (A+1)3(¢+2) < 2(A +1)3¢ (where we are using that ¢ >
(A+1)3>1,s0f+2<2(), and hence
) 2(A+1)3
P [IZ‘+1€R J?qu ZP .’L'Z+1—U \ % =
ueW
Using the above claim and the union bound, we obtain
P[the algorithm fails on Step ¢ for some i < T
T—-1 oo T—-2 oo
<D Y Plaipn € RE(FLy)l + Y Y Plais € R7(Py, )]
j=0 i=j j=0 i=j+1
T—1 oo T—-2 oo
. A+1 2(A+1)3
[by the claim] < Z Tt Z A
7=0 i=j5 Jj=0i=j+1
e A+ &A1)
o Z 2k + Z Nk
j=0 k=1 7=0 k=1
. TA+1) 2(T-1)(A+1)3  3T(A+1)3
1 = <
[since A > 1] o1 T o1 1

Putting everything together, we conclude that

P[the algorithm succeeds on Step 4 for some i < T

= 1 — P [the algorithm enters Step T
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— P[the algorithm fails on Step ¢ for some i < T

n 3T(A+1)
<1- — 2= 1°2
AT -1

Lemma 6.1 immediately yields the existence of “small” augmenting subgraphs:
Corollary 6.4 (to Lemma 6.1). Assuming n is sufficiently large, the following statement
holds: For every proper partial coloring ¢ and every uncolored edge e = xy, there is a

connected augmenting subgraph H whose only uncolored edge is e with |E(H)| < (A +
1)%(logn)?.

Proof. By Fact 4.3, it suffices to find a ¢-happy chain C' with Start(C) = e and
length(C) < (A 4+ 1)%(logn)?.

To this end, fix a small positive constant ¢ (any £ < 1/3 would work), let T":= |elogn|,
and run the Multi-Step Vizing Algorithm with eg = e and

0= (A+1)%logn].

Since A := £/(A + 1) = (A +1)3|logn| > 1, we can use Lemma 6.1 to conclude that
the algorithm successfully terminates on Step i for some ¢ < T with probability at least

T(A+1)3 1
TP LAC S D L

lelogn|
bt Sl Bt S - —3e—o0(l) = 1-3¢—0(1 .
T 1 <(A+1)3Llognj> 3e—o(1) 3e—o(1) > 0

Whenever the algorithm terminates successfully on Step i < T, it produces a @-happy
chain C' with Start(C) = e of the foom C = Fo+ Po+---+ P,_1+ F,or C = Fy+ Py +
-+« + F; + P;. Since length(F;) < A and length(F;) < ¢+ 1 for all ¢, we obtain

length(C) < T(£+A) < (e +o0(1))(A +1)%(logn)?,
which yields the desired bound. W

6.2. Proof of Theorem 1.3

For the reader’s convenience, we recall the statement of Theorem 1.3.

Theorem 1.3. There is ng € N such that for all n > ng, the following holds. Let G
be an n-vertexr graph of mazimum degree A. Fix a partition E(G) = X UU and let
v: X — [A 4+ 1] be a proper partial edge-coloring. Then there exists a subset W C U of
size |[W| = |U|/((A + 1)1%(logn)?) such that it is possible to assign to each edge e € W
a connected augmenting subgraph H¢ C G with the following properties:
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o foreache e W, E(H®)NU = {e}, that is, e is the unique uncolored edge in H®;
e the vertex sets of the graphs H¢, e € W, are pairwise disjoint;
o foreache e W, |E(H®)| < (A +1)%(logn)?.

Proof. Throughout the proof, we will be assuming that n is sufficiently large. Let the
endpoints of each uncolored edge e be z¢ and y¢ (it does not matter which endpoint we
call z¢ and which y°). Set the value of the parameter ¢ to

¢ := (A+1)%logn|

and run the Multi-Step Vizing Algorithm with eg = e, o = z¢, and yy = y°© for every
uncolored edge e, making the processes for different uncolored edges independent of each
other. We use variables with “e” as a superscript, such as Ff and P?, to denote the
structures obtained using the execution of the algorithm with ey = e. In particular, for
each e € U, we have a sequence of vertices z¢ = xf, xf, x5, . ...

Let A :=¢/(A+1)3 = (A +1)3|logn|. Fix a small positive constant & (any ¢ < 1/12
would work) and set T := |elogn|. Say that an uncolored edge e is lucky if the execution
of the Multi-Step Vizing Algorithm with ey = e successfully terminated on Step 4 for
some i < T. Let L C U denote the set of all lucky edges. For e € L, we let C¢ be the ¢-
happy chain with Start(C*) = e produced by the algorithm with ey = e. In other words,
if the algorithm terminated on Step ¢ due to Case 1, then C°¢ = F§+Ff+---+ P + F?,
and if it terminated due to Subcase 2.1, then C¢ = F§ + P5 +---+ F¢ + Pf. If e € L,
then we let H¢ := H(C*¢). By construction, H¢ is a connected p-augmenting subgraph
whose only uncolored edge is e. Furthermore, since e is lucky,

\E(H®)|, |V(H®)| < length(C®)+1 < T((+A)+1 < (s+0(1))(A+1)5(logn)?. (6.5)

Our goal now is to show that, with positive probability, there is a set W C L of lucky
edges of size at least |W| > |U|/((A + 1)!°(logn)?) such that the graphs H¢, e € E,
are pairwise vertex-disjoint. To this end, define an auxiliary graph I" with V(T') := E by
making two distinct edges e, h adjacent in I' if and only if e and h are both lucky and
V(H®)NV(H") # 2.

Claim. For each uncolored edge e, E [degp(e)] < (¢ + o(1))(A + 1)1%(log n)?.

Proof. We will show that the desired upper bound holds even if we allow an adversary
to specify the outcome of the algorithm for ey = e. So, fix the outcome of the algorithm’s
execution for eyg = e and let E* denote conditional expectation subject to this outcome.
We may assume that e is lucky, since otherwise degp(e) = 0. Then

E*[degr(e)] < Y E[[{h€U\{e}: heLandueV(H"}|]. (6.6)
ueV (H¢®)
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We may write “E” instead of “E*” on the right-hand side of (6.6) because the construction
of H" for h # e is independent from the construction of H¢. Fix an arbitrary vertex
u € V(H®). Observe that if u € V(H") for some h, then there is some i such that
u € V(FM orue V(PP), so

E[[{heU\{e} : he Landuec V(H")}|]

< i]E [{heU : u € V(FM oruEV(Pih)}H.

If u € V(F!) or u € V(P!), then, by Lemma 5.3,

al € R™(u,9), zly € R™(al,p), ..., 2l € R (2},¢), and 2" =zl € R (a},¢).
6.7)

Since for every x € V, there are at most A edges h such that 2" = x, we conclude

that, by Lemma 5.1, there are at most A(A + 1)30+D < (A 4 1)%"+4 possible sequences

(h,xf,xh, ... xl) satisfying (6.7). Since the vertices 2%, ..., 2 are chosen uniformly at

random from sets of ¢ candidates, we obtain

(A+1)% (A+ 1)4’

E[{heU:ueV(F)orueV(P}] < 7 =

Thus we can write

E[{h€eU\{e} : he Landue V(H")}|] < f: AH = /\il(A—kl)“
=0

= (1+0(1))(A+1)™
Plugging this into (6.6) and using (6.5) gives
E* [degp(e)] < (1+0(1)(A+1)*V(H)| < (e +o0(1)(A+1)""(logn)?.

Using the above claim and Markov’s inequality, we see that for each uncolored edge
67

P [degp(e) > 2e(A +1)"(logn)® — 1] < % +o(1). (6.8)

Let W’ C L be the set of all lucky edges e satisfying degp(e) < 2e(A + 1)1%(logn)? — 1.
Using Lemma 6.1 and (6.8), we conclude that for each e € U,

PleecW'] >1 - no 3TA+1T P [degp(e) > 2e(A + 1) (logn)* — 1]
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1 lelogn] 1
> 1 — - - _ _ Z _
=1 n((A+1)3LlognJ> 3e 5 o(1)

1 1
25—35—0(1)>Z.

Therefore, with positive probability, |IW’| > |U|/4. Note that the maximum degree of the
induced subgraph of I' on W is, by definition, at most 2e(A + 1)1%(logn)? — 1, which
means that it contains an independent set W C W’ of size at least |W| = |[W'|/(2¢(A +
1)!%(logn)?). Since W is an independent set in I', the subgraphs H¢ for e € W are
pairwise vertex-disjoint, and |W| > |U|/(8c(A + 1)%(logn)?) = |U|/((A + 1)'°(log n)?)
with positive probability. This completes the proof of Theorem 1.3. W
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