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an n-vertex graph of maximum degree Δ in poly(Δ, log n)
rounds. This is the first nontrivial distributed edge-coloring 
algorithm that uses only Δ + 1 colors (matching the bound 
given by Vizing’s theorem). Our approach is inspired by the 
recent proof of the measurable version of Vizing’s theorem 
due to Grebík and Pikhurko.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Distributed algorithms and edge-coloring

The LOCAL model of distributed computation was introduced by Linial in the seminal 
paper [14]. In this model an n-vertex (simple undirected) graph G abstracts a commu-
nication network where each vertex plays the role of a processor and edges represent 
communication links. Every vertex is given a unique Θ(log n)-bit identifier (used for 
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symmetry-breaking). Initially, each vertex knows its own identifier, as well as n (the 
number of vertices) and perhaps some other global parameters, such as the maximum 
degree Δ of G. The computation proceeds in rounds. During each round, the vertices first 
perform arbitrary local computations and then synchronously broadcast messages to all 
their neighbors. At the end, each vertex should output its part of the global solution (for 
instance, its own color or, in the context of edge-coloring, the colors of the edges incident 
to it). The only measure of efficiency for such an algorithm is the worst-case number of 
communication rounds. The reader is referred to the book [2] by Barenboim and Elkin 
for an introduction to this subject.

It is clear that in a LOCAL algorithm that terminates in T rounds, each vertex only 
has access to information in its radius-T neighborhood. Furthermore, every T -round 
LOCAL algorithm can be transformed into one in which every vertex first collects all the 
information about its radius-T neighborhood and then makes a decision, based on this 
information alone, about its part of the output (see [2, §4.1.2]). In particular, any function 
of G can trivially be computed by a LOCAL algorithm in O(diameter(G)) rounds. While 
in many cases much more efficient distributed algorithms are known, there are still some 
classical problems for which the trivial bound O(diameter(G)) is the state of the art. In 
this paper we study one such problem: edge-coloring using Δ + 1 colors.

Recall that a proper k-edge-coloring of a graph G is a map ϕ : E(G) → [k] such that 
ϕ(e) �= ϕ(h) for every pair of distinct edges e, h ∈ E(G) that share an endpoint. (Here and 
in what follows we use the standard notation [k] := {1, . . . , k} for k ∈ N+.) A celebrated 
theorem of Vizing [20] (see [18, Appendix A.1] for an English translation of Vizing’s 
paper) asserts that every graph G of maximum degree Δ has a proper (Δ + 1)-edge-
coloring. However, all heretofore known proofs of Vizing’s theorem have been inherently 
“non-local” (we discuss this in more detail in §1.2). In particular, prior to this work, no 
nontrivial distributed (Δ + 1)-edge-coloring algorithm has been known. Here we provide 
such an algorithm; specifically, we show that a proper (Δ +1)-edge-coloring of an n-vertex 
graph G can be found by a LOCAL algorithm whose number of rounds is polynomial in 
log n and Δ.

Theorem 1.1. There exists a deterministic distributed algorithm in the LOCAL model that 
computes a proper (Δ + 1)-edge-coloring of an n-vertex graph of maximum degree Δ in 
poly(Δ, log n) rounds.

While Theorem 1.1 provides the first efficient distributed algorithm for (Δ + 1)-edge-
coloring, significant progress has been made previously concerning edge-coloring with 
more colors. In particular, considerable work has been done on the problem of (2Δ − 1)-
edge-coloring, since 2Δ − 1 is the number of colors required for a greedy (sequential)
edge-coloring algorithm. This is a special case of the more general (Δ +1)-vertex-coloring 
problem, which has also attracted a lot of attention. Among the earliest results in dis-
tributed computing is a randomized O(log n)-round (Δ +1)-vertex-coloring algorithm due 
to Alon, Babai, and Itai [1] and independently Luby [15]. On the other hand, Goldbreg, 
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Plotkin, and Shannon [10] designed a deterministic (Δ + 1)-vertex-coloring algorithm 
that runs in O(Δ2) + log∗ n rounds (here log∗ n is the iterated logarithm of n, i.e., the 
number of times the logarithm function must be applied to n before the result becomes 
at most 1). The Goldbreg–Plotkin–Shannon algorithm is extremely fast when Δ is small 
compared to n (e.g., when Δ is constant), but for large Δ it becomes slower than the 
Alon–Babai–Itai/Luby algorithm. Developing a deterministic (Δ + 1)-vertex-coloring or 
(2Δ − 1)-edge-coloring algorithm that runs in poly(log n) rounds regardless of the value 
of Δ has been a major challenge [2, Problems 11.2 and 11.4]. After a long line of contribu-
tions by numerous researchers, such algorithms have been discovered by Fischer, Ghaffari, 
and Kuhn [7] for edge-coloring and by Rozhoň and Ghaffari [17] for vertex-coloring.

There have also been many results concerning edge-coloring with fewer than 2Δ − 1
colors. For thorough surveys see, e.g., [5,9]. Here we only mention a few highlights. 
Chang, He, Li, Pettie, and Uitto [5] developed a randomized algorithm for (Δ +Õ(

√
Δ))-

edge-coloring that runs in poly(Δ, log log n) rounds. (Their algorithm relies on efficiently 
solving instances of the Lovász Local Lemma, which can be done in poly(Δ, log log n)
due to a recent result of Rozhoň and Ghaffari [17].) In the deterministic setting, Ghaffari, 
Kuhn, Maus, and Uitto [9] gave a poly(Δ, log n)-round algorithm for �3Δ/2�-edge-
coloring. The smallest number of colors for which an efficient distributed algorithm was 
known prior to our work is Δ + 2 (i.e., just one more than the bound in Vizing’s the-
orem). Namely, a randomized poly(Δ, log n)-round algorithm for (Δ + 2)-edge-coloring 
was designed by Su and Vu [19]. In a recent breakthrough, Rozhoň and Ghaffari [17]
developed a general derandomization technique that, in particular, allows one to modify 
the Su–Vu algorithm to make it deterministic.

It is natural to wonder how close to optimal the number of rounds required by our 
algorithm is. Chang, He, Li, Pettie, and Uitto [5] showed that any (Δ + 1)-edge-coloring 
algorithm based on “extending partial colorings by recoloring subgraphs” (a class to 
which our algorithm belongs) must take at least Ω(Δ log(n/Δ)) rounds. Furthermore, 
they showed that every deterministic LOCAL algorithm for (2Δ − 2)-edge-coloring re-
quires Ω(log n/ log Δ) rounds, even in the case when the underlying graph G is a tree. 
The number of rounds in our algorithm is certainly not linear in Δ log n, although we 
did not make an attempt to optimize it precisely. The following remains an interesting 
open problem:

Question 1.2. In the regime when Δ is constant, does there exist a randomized (Δ + 1)-
edge-coloring algorithm that takes only o(log n) rounds?

1.2. Locality of (Δ + 1)-edge-coloring

The main ingredient of our algorithm is a certain purely combinatorial result con-
cerning extensions of partial (Δ + 1)-edge-colorings, namely Theorem 1.3 below. Before 
stating it, we need to introduce some terminology and explain our motivation. Let G be 
an n-vertex graph of maximum degree Δ. Fix a partition E(G) = X � U of the edge 
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set of G and let ϕ : X → [Δ + 1] be a proper partial edge-coloring with domain X. We 
call the edges in X (resp. U) colored (resp. uncolored) by ϕ. A subgraph H ⊆ G is
augmenting (for ϕ) if at least one edge of H is uncolored and there is a proper coloring 
ψ : X ∪ E(H) → [Δ + 1] that agrees with ϕ on X \ E(H); that is, by only modifying ϕ
on the edges of H, it is possible to extend it to a proper partial coloring with domain 
X ∪ E(H). Notice that if H1, . . . , Hk are vertex-disjoint augmenting subgraphs, then 
their (disjoint) union H1 � . . . � Hk is also augmenting.

A standard way to prove Vizing’s theorem is to construct, given an uncolored edge 
e ∈ U , an augmenting graph H with e ∈ E(H) of a certain special form, called a Vizing 
chain (see Fig. 1a). A Vizing chain H consists of a fan—i.e., a set of edges that share the 
same common vertex—and a path that is alternating in the sense that the sequence of 
colors assigned by ϕ to its edges has the form α, β, α, β, . . . for a pair of colors α, β. In 
the distributed setting, this approach raises two difficulties. First, uncolored edges cannot 
be treated one at a time; it is necessary to be able to extend the coloring to include a non-
negligible fraction of the uncolored edges simultaneously. The second difficulty is even 
more fundamental: the Vizing chain H corresponding to an uncolored edge e may have 
large diameter (in principle, linear in n), so it cannot be discovered in a small number 
of rounds in the LOCAL model. We overcome both these difficulties by showing that it 
is possible to find a “large” collection of vertex-disjoint “small” augmenting subgraphs
(although these subgraphs need not be Vizing chains anymore):

Theorem 1.3. There is n0 ∈ N such that for all n > n0, the following holds. Let G

be an n-vertex graph of maximum degree Δ. Fix a partition E(G) = X � U and let 
ϕ : X → [Δ + 1] be a proper partial edge-coloring. Then there exists a subset W ⊆ U of 
size |W | � |U |/((Δ + 1)10(log n)2) such that it is possible to assign to each edge e ∈ W

a connected augmenting subgraph He ⊆ G with the following properties:

• for each e ∈ W , E(He) ∩ U = {e}, that is, e is the unique uncolored edge in He;
• the vertex sets of the graphs He, e ∈ W , are pairwise disjoint;
• for each e ∈ W , |E(He)| � (Δ + 1)6(log n)2.

Thanks to the recent work of Ghaffari, Harris, and Kuhn [8] and Harris [12] on 
distributed approximation algorithms for hypergraph maximum matching, it is straight-
forward to derive Theorem 1.1 from Theorem 1.3. We present the details of this derivation 
in §2. Note that if U �= ∅, then the lower bound on the size of W in Theorem 1.3 is pos-
itive. Thus, Theorem 1.3 in particular implies that if G contains only a single uncolored 
edge e, then there is a connected augmenting subgraph H ⊆ G such that e ∈ E(H) and 
|E(H)| � poly(Δ, log n).

Let us now say a few words about the proof of Theorem 1.3. Our inspiration comes 
from recent developments in the area of descriptive combinatorics, i.e., the study of 
combinatorial problems on infinite graphs in the presence of additional topological or 
measure-theoretic constraints. For a state-of-the-art introduction to this subject, see the 
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Fig. 1. Types of augmenting subgraphs.

surveys [13] by Kechris and Marks and [16] by Pikhurko. It turns out that many of 
the challenges one encounters in descriptive combinatorics mirror those in distributed 
computing; furthermore, there are some explicit implications between the two areas [3,4]. 
Until very recently, one of the most celebrated open problems in descriptive combinatorics 
had been to obtain a “measurable” version of Vizing’s theorem for graphs G on standard 
probability spaces (for instance, with V (G) = [0, 1], the unit interval). This was recently 
accomplished (under some minor additional assumptions) by Grebík and Pikhurko [11]. 
Their key idea was to consider a more general type of augmenting graphs, namely two-
step Vizing chains (called “iterated Vizing chains” in [11]; see Fig. 1b). Roughly speaking, 
to construct a two-step Vizing chain, one first starts growing a Vizing chain as usual, but 
then at some point, instead of completing the alternating path (which may be too long), 
one “changes the direction” and starts growing a second Vizing chain. The flexibility in 
the choice of the point where the second Vizing chain starts allowed Grebík and Pikhurko 
to control the total number of edges in the resulting structure. In particular, returning to 
finite graphs, a relatively straightforward adaptation of the Grebík–Pikhurko argument 
shows that for each uncolored edge e ∈ U , one can find an augmenting two-step Vizing 
chain H with e ∈ E(H) such that |E(H)| = O(poly(Δ)

√
n).

Unfortunately, the bound O(poly(Δ)
√

n) is not sufficient for our purposes, as we can 
only work with augmenting graphs of diameter at most poly(Δ, log n). We solve this issue 
by extending the ideas of Grebík and Pikhurko and considering multi-step Vizing chains
(see Fig. 1c). Roughly speaking, we prove Theorem 1.3 by showing that it is possible to 
construct augmenting subgraphs of this form by joining together O(log n) partial Vizing 
chains, each consisting of O(poly(Δ) log n) edges. For the reader’s convenience, we give 
an informal overview of our argument in §3.
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2. From Theorem 1.3 to Theorem 1.1

In this section we deduce Theorem 1.1 from Theorem 1.3. To this end, we shall use the 
distributed approximation algorithm for hypergraph maximum matching due to Harris 
[12]. (Alternatively, we could have used the earlier and somewhat less efficient algorithm 
due to Ghaffari, Harris, and Kuhn [8, Theorem 1.2].) To begin with, we need a few 
definitions and some notation. Recall that log∗ n denotes the iterated logarithm of n. The 
asymptotic notation Õ(x) hides polylogarithmic factors, i.e., it stands for O(poly(log x) ·
x). Let H = (V (H ), E(H )) be a hypergraph. To avoid potential confusion with the 
graph case, we will call the elements of E(H ) hyperedges. The rank of H , in symbols 
r(H ), is the largest size of a hyperedge of H (if E(H ) = ∅, then we set r(H ) := 0). 
The maximum degree d(H ) of H is the maximum, over all the vertices x ∈ V (H ), of 
the number of hyperedges S ∈ E(H ) with x ∈ S. A matching in H is a set M ⊆ E(H )
of pairwise disjoint hyperedges. We use μ(H ) to denote the maximum number of edges 
in a matching in H . While the usual LOCAL model is defined for graphs, there is an 
analogous model operating on a hypergraph H . Namely, in a single communication 
round of the LOCAL model on H , each vertex x ∈ V (H ) is allowed to send messages 
to every vertex y ∈ V (H ) such that x and y are contained in a common hyperedge.

Theorem 2.1 (Harris [12, Theorem 1.1]). There exists a deterministic distributed al-
gorithm in the LOCAL model on an n-vertex hypergraph H that outputs a matching 
M ⊆ E(H ) with |M | = Ω(μ/r) in

Õ(r log d + log2 d + log∗ n)

rounds, where r := r(H ), d := d(H ), and μ := μ(H ).

With Theorem 2.1 in hand, we are ready to derive Theorem 1.1 from Theorem 1.3. 
Let G be an n-vertex graph of maximum degree Δ. Since we only care about asymptotic 
bounds, we may assume that n is sufficiently large for Theorem 1.3 to apply. For brevity, 
set V := V (G) and E := E(G). We shall devise a poly(Δ, log n)-round LOCAL algorithm 
that, given a proper partial edge-coloring ϕ : X → [Δ + 1], X ⊆ E, computes a new 
proper partial edge-coloring ψ : Y → [Δ + 1], Y ⊆ E, such that Y ⊇ X and

|E \ Y | � (1 − 1/poly(Δ, log n))|E \ X|.

Iterating this algorithm poly(Δ, log n) times starting with the empty coloring will then 
yield a proper (Δ + 1)-edge-coloring of the entire graph G, as desired.

So, let us fix a proper partial edge-coloring ϕ : X → [Δ + 1]. Define an auxiliary 
hypergraph H on the vertex set V by making a subset S ⊆ V a hyperedge of H if 
and only if S = V (H) for some connected augmenting subgraph H ⊆ G with |E(H)| �
(Δ + 1)6(log n)2. Theorem 1.3 then implies that
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μ(H ) � |E \ X|/((Δ + 1)10(log n)2) = |E \ X|/poly(Δ, log n).

By definition, each S ∈ E(H ) satisfies |S| � (Δ + 1)6(log n)2 + 1 = poly(Δ, log n), so

r(H ) � poly(Δ, log n).

To bound the maximum degree of H , consider any vertex x ∈ V . If x ∈ S ∈ E(H ), 
then the vertices of S can be ordered as x = x0, x1, . . . , x|S|−1 so that each xi, i � 1, 
is adjacent to at least one of x0, . . . , xi−1. This means that once x0, . . . , xi−1 are fixed, 
there are at most iΔ � r(H )Δ choices for xi, and thus

d(H ) � (r(H )Δ)r(H ) � exp(poly(Δ, log n)).

Therefore, Theorem 2.1 provides a LOCAL algorithm on H that outputs a matching 
M ⊆ E(H ) with

|M | � |E \ X|/poly(Δ, log n)

in poly(Δ, log n) rounds. It is clear that a single round of communication in the LOCAL
model on H can be simulated in poly(Δ, log n) rounds of the LOCAL model on G, so 
M can also be computed in the LOCAL model on G in poly(Δ, log n) rounds. Once 
such a matching M is fixed, in poly(Δ, log n) rounds it is possible to choose a “leader” 
in each hyperedge S ∈ M (by picking, say, the vertex with the lexicographically least 
identifier). In another poly(Δ, log n) rounds, each “leader” x surveys its corresponding 
hyperedge S, picks an arbitrary augmenting subgraph H with V (H) = S, and modifies 
the coloring so that every edge of H becomes colored. Since M is a matching in H , all 
these modifications can happen in parallel without conflicting with each other. In the 
resulting coloring, every edge in X is still colored, plus there is at least one new colored 
edge per each S ∈ M , and hence we are done.

3. Informal overview of the proof of Theorem 1.3

In this section we sketch the main ideas behind our proof of Theorem 1.3. Due to the 
informal character of this section, we will avoid any technicalities and precise definitions, 
all of which are postponed to the later sections. It should be understood that the termi-
nology we use here might have a slightly different meaning when we formally define it, 
but only in minor and technical ways.

Let G be an n-vertex graph of maximum degree Δ and let ϕ be a proper partial 
(Δ + 1)-edge-coloring of G. For simplicity, in this section we shall treat Δ as a constant, 
so that implicit constants in asymptotic notation may depend on Δ. Fix an uncolored 
edge e = xy. We will describe our strategy for proving the following consequence of 
Theorem 1.3:
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Fig. 2. A Vizing chain H = F + P before and after shifting. Greek letters represent colors.

There is a connected augmenting subgraph H ⊆ G such that e ∈ E(H) and |E(H)| �
O((log n)2).

As mentioned in §1.2, standard proofs of Vizing’s theorem (for instance, the one given 
in [6, §5.3]) proceed by building an augmenting subgraph H consisting of two parts:

• a fan F with pivot x, i.e., a sequence of distinct edges incident to x, starting with e;
• an αβ-alternating path P , i.e., a path whose edges are colored α, β, α, β, etc.

There is some variation between different presentations of the proof of Vizing’s theorem 
in the literature as to the precise way in which the fan F and the path P fit together. For 
our purposes, it will be most convenient to assume that P starts at the vertex z, where 
xz is the last edge of F . This situation is illustrated in Fig. 2a. We write H = F + P

to indicate that the graph H is built from F and P in this manner and refer to H as a 
Vizing chain. Given a Vizing chain H = F + P , we can shift the colors in H, as shown 
in Fig. 2b. One can show (see, e.g., [6, §5.3] or Corollary 4.10 below) that there is such 
a Vizing chain H that is shiftable, meaning that the coloring resulting after the shifting 
is proper, and thus H is an augmenting subgraph.

The problem, of course, is that there is no a priori upper bound on the length of the 
alternating path P (except O(n)). In [19], Su and Vu tackled this problem as follows. 
Suppose that P is too long, say, much longer than log n. Pick a random edge x′y′ on 
P within distance O(log n) from z and truncate the path there. Then let P0 be the 
truncated path and, instead of shifting the whole chain F + P , only shift F + P0. This 
process is shown in Fig. 3. In the resulting coloring, the edge x′y′ becomes uncolored. If 
we could use one extra color, say Δ + 2, then we would assign it to x′y′. By executing 
this procedure for all the uncolored edges, one eventually obtains a (Δ +2)-edge-coloring 
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Fig. 3. Shifting a truncated Vizing chain F + P0.
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Fig. 4. A two-step Vizing chain F + P0 + F ′ + P ′.

of the entire graph that is proper except that there might be adjacent edges of color 
Δ + 2. However, Su and Vu showed in [19] that with high probability, no two edges of 
color Δ + 2 will be adjacent, and thus one actually gets a proper (Δ + 2)-edge-coloring.

In [11], Grebík and Pikhurko encountered a similar problem, but in the context of 
(Δ + 1)-edge-coloring (as we already mentioned in §1.2, Grebík and Pikhurko’s goal was 
to prove a version of Vizing’s theorem for infinite graphs on probability spaces). Their 
solution also involved picking a random edge x′y′ on P , truncating the path there, and 
then shifting the chain F + P0. But since they could not use an extra color for the edge 
x′y′, they instead built a new Vizing chain H ′ = F ′ + P ′ starting at the edge x′y′, and 
shifted the whole combination of F + P0 + F ′ + P ′ (see Fig. 4). Let us call the sequence 
F +P0 +F ′ +P ′ a two-step Vizing chain. This two-step approach can be used to build an 
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augmenting subgraph with only O(
√

n) edges, and while our ultimate goal is to reduce 
O(

√
n) further to O((log n)2), it will perhaps be instructive if we explain first how to get 

the bound O(
√

n).
If the length of P is O(

√
n), then we are done, so assume that P is much longer 

than 
√

n. The vertex x′ is chosen at random from among the first Θ(
√

n) vertices of 
P , and we want to show that the expected length of P ′, relative to this random choice 
of x′, is O(

√
n). To this end, we fix an arbitrary vertex u ∈ V (G) and ask, what is the 

probability that P ′ passes through u? Suppose that the path P ′ starts at a vertex z′ that 
is adjacent to x′ and is γδ-alternating (as is shown in Fig. 4). If we start at u and follow 
the edges colored γ and δ, then we would stop precisely when we hit z′. Thus, given u, 
we can uniquely determine x′ by specifying the colors γ and δ ((Δ + 1)2 options) and 
the location of x′ among the neighbors of z′ (Δ options). In other words, given u, there 
are at most O(Δ3) = O(1) possibilities for x′. Since x′ is chosen randomly from a set of 
Θ(

√
n) candidates, we conclude that

P [P ′ passes through u] � O(1/
√

n).

Summing over all u ∈ V (G) yields E[|P ′|] � O(n · 1/
√

n) = O(
√

n), as desired.
The argument in the previous paragraph has a flaw that, even in this informal 

overview, we cannot overlook. Namely, the path P ′ may intersect the fan F or the 
path P0. Because of that, some of the edges of P ′ may be colored differently before 
and after the chain F + P0 is shifted. This means that, in principle, even if we know 
u, δ, and γ, we cannot locate z′ by tracing the γδ-alternating path starting at u unless 
we also know what the coloring looks like after shifting F + P0. To circumvent this is-
sue, Grebík and Pikhurko showed that, roughly speaking, a careful choice of P ′ ensures 
that P ′ is disjoint from F + P0 with high probability. It is unlikely that P ′ intersects 
F—essentially because F is small, namely |F | � Δ = O(1). The real challenge is to 
make P ′ (edge-)disjoint from P0. Since every edge in P0 is colored α or β, it would be 
ideal if we could simply pick P ′ so that {γ, δ} ∩ {α, β} = ∅. Unfortunately, this is not 
always possible. Thankfully, Grebík and Pikhurko showed that P ′ can always be chosen 
so that either {γ, δ} ∩ {α, β} = ∅ or else, {γ, δ} = {α, β} (see Lemma 4.9 below). In 
the former case, P ′ and P0 are disjoint, so we are done. In the latter case, P ′ and P0
cannot intersect transversally: if P ′ ∩ P0 �= ∅, then P ′ ⊇ P0, and one can show that this 
is unlikely.

In this paper we take a natural next step and consider multi-step Vizing chains (see 
Fig. 5). Fix parameters � = a log n and T = b log n, where a and b are positive constants 
with a 
 b. Let x0 := x and y0 := y and build a Vizing chain F0 + Q0 for x0y0. Here Q0
is an α0β0-alternating path that starts at a vertex z0 adjacent to x0. If |Q0| � �, then 
stop. Otherwise, pick a random edge x1y1 on Q0 at distance at most � from z0, truncate 
Q0 at that edge, and let P0 be the truncated path. After shifting F0 + P0, the edge x1y1
becomes uncolored, and we repeat the process with x1y1 in place of x0y0, obtaining a 
fan F1 and an α1β1-alternating path Q1 starting at a vertex z1 adjacent to x1. Again, 
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Fig. 5. A multi-step Vizing chain.

if |Q1| � �, then we stop, and otherwise we pick a random edge x2y2 on Q1, truncate 
Q1 at that edge, and let P1 be the truncated path. Then we shift F1 + P1, and repeat 
the process with x2y2 in place of x1y1, etc. If this process terminates within T steps, 
then it produces an augmenting subgraph with at most O(T�) = O((log n)2) edges, as 
desired. Hence, our goal becomes to show that the process terminates within T steps 
with positive probability.

The basic calculation here is similar to the one in the two-step case. Namely, we fix 
a vertex u ∈ V (G) and bound the probability that the process runs for at least T steps 
and the path PT passes through u. If we start at u and follow the edges colored αT and 
βT , we will stop at zT . Since xT is adjacent to zT , we can determine xT by specifying 
the colors αT and βT and the location of xT among the neighbors of zT . Then we can 
trace the αT −1βT −1-alternating path starting at xT to find zT −1, and then locate xT −1
among the neighbors of zT −1. Continuing in this manner, we see that the total number 
of sequences (x1, . . . , xT ) for which PT passes through u is at most ΔO(T ). Since each xi

is chosen among � candidates, we conclude that, for some positive constant C,

P [PT passes through u] � ΔO(T )

�T
� exp(−C log n log log n).

If the process runs for at least T steps, then PT has to pass through some vertex, so

P [the process runs for at least T steps] � n · exp(−C log n log log n) = o(1).

Again, the above reasoning only really works if each Pi is disjoint from F0 +P0 + · · ·+
Fi−1 + Pi−1. As in the two-step case, making Pi disjoint from the fans F0, . . . , Fi−1 is 
a bit easier, so let us focus on the problem of making Pi disjoint from P0, . . . , Pi−1. For 
i > j, let Eij be the event that the first intersection that occurs during the process is 
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between Pi and Pj . We need to bound the probability of Eij. By using the same methods 
as Grebík and Pikhurko, i.e., by making sure that either {αi, βi} ∩ {αi−1, βi−1} = ∅ or 
{αi, βi} = {αi−1, βi−1}, we can eliminate the possibility that j = i − 1, so let us assume 
that j � i − 2. Fix the outcome of the procedure up to step j, so that we have already 
settled on the vertices x0, x1, . . . , xj but not on xj+1. At this point, we already know 
the path Qj , but we have not yet truncated it. Pick any vertex u on Qj within distance 
� from zj and let Eij,u be the event that Eij happens and the first intersection point 
between Pi and Pj is u. The key observation is that if Eij,u happens, then, since u is the 
first intersection point, the calculations in the preceding paragraph can be used for u. 
That is, starting at u, we can trace the αiβi-alternating path back to zi, choose xi from 
the neighbors of zi, trace the αi−1βi−1-alternating path to zi−1, choose xi−1 from the 
neighbors of zi−1, etc. In this way, we see that there is a positive constant c such that the 
number of sequences (xj+1, . . . , xi) for which Eij,u holds is at most Δc(i−j). Therefore,

P [Eij,u] � Δc(i−j)

�i−j
.

There are � options for u, so, by the union bound,

P [Eij ] � � · Δc(i−j)

�i−j
= Δc(i−j)

�i−j−1 .

Applying the union bound a second time and using the assumption j � i − 2, we get

P [the paths P0, . . . , PT are not disjoint] �
T −2∑
j=0

T∑
i=j+2

Δc(i−j)

�i−j−1 � Δc
T −2∑
j=0

∞∑
k=1

Δck

�k

= Δ2c(T − 1)
� − Δc

.

Remembering that � = a log n and T = b log n, we can make the last expression as small 
as desired by increasing the ratio a/b. Notice that O((log n)2) is a natural barrier for 
this argument, since both � and T must be of the order Θ(log n). (With more careful 
computations, it is possible to shave off a poly(log log n)-factor from this bound.) It 
remains an interesting open problem to see if one can actually reduce the bound to 
O(log n) using a different method.

The rest of the paper is organized as follows. In §4, we introduce the terminology 
needed for the proof, such as the notion of shifting a chain. We also prove Lemmas 4.8
and 4.9, the first of which essentially asserts the existence of a Vizing chain, while the 
second one comes from the work of Grebík and Pikhurko and allows one to find γδ-
alternating paths with {γ, δ} ∩ {α, β} = ∅ or {γ, δ} = {α, β}. Then, in §5, we describe 
our Multi-Step Vizing Algorithm in detail and verify some of its properties. After that, 
in §6, we undertake the probabilistic analysis of the Multi-Step Vizing Algorithm and 
finish the proof of Theorem 1.3.
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4. Chains, paths, and fans

4.1. Basics

For the remainder of the paper we fix an n-vertex graph G of maximum degree Δ. 
For brevity, set V := V (G) and E := E(G). As usual, we say that two edges of G are
adjacent, or neighbors of each other, if they are distinct and have a common endpoint. 
Throughout, we shall use the phrase “(partial) coloring” to mean a (partial) (Δ + 1)-
edge-coloring of G. For convenience, if ϕ is a partial coloring and e ∈ E \ dom(ϕ) is an 
uncolored edge, then we write ϕ(e) = blank, where blank is a special symbol distinct 
from every color.

4.2. Missing colors and happy edges

Given a proper partial coloring ϕ and a vertex x ∈ V , we let M(ϕ, x) ⊆ [Δ + 1] be 
the set of all colors missing at x in the coloring ϕ, that is, M(ϕ, x) := [Δ + 1] \ {ϕ(xy) :
xy ∈ E}. Note that |M(ϕ, x)| is equal to Δ + 1 − degG(x) plus the number of uncolored 
edges incident to x; in particular, the set M(ϕ, x) is always nonempty. We say that an 
uncolored edge e = xy is ϕ-happy if M(ϕ, x) ∩ M(ϕ, y) �= ∅. If e = xy is ϕ-happy and α
is any color in M(ϕ, x) ∩ M(ϕ, y), then we can extend ϕ by assigning to e the color α. 
In other words, in this case the subgraph of G with vertex set {x, y} and edge set {e} is 
augmenting for ϕ.

4.3. Shifts and chains

Given a proper partial coloring, we wish to “locally” modify it in order to create a 
happy edge (which then would allow us to enlarge the domain of the coloring). In order to 
achieve this, we will be “shifting” colors from colored edges to their uncolored neighbors. 
Let e0, e1 ∈ E be two adjacent edges and let ϕ be a proper partial coloring. Define a 
coloring Shift(ϕ, e0, e1) by setting, for all e ∈ E,

Shift(ϕ, e0, e1)(e) :=

⎧⎪⎪⎨
⎪⎪⎩

ϕ(e1) if e = e0;
blank if e = e1;
ϕ(e) otherwise.

In other words, Shift(ϕ, e0, e1) “shifts” the color from e1 to e0, leaves e1 uncolored, and 
keeps the coloring of the rest of the edges unchanged. The pair (e0, e1) is said to be
ϕ-shiftable if

• e0 /∈ dom(ϕ), e1 ∈ dom(ϕ), and
• the coloring Shift(ϕ, e0, e1) is proper.
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Fig. 6. Shifting a coloring along a chain.

The latter condition is equivalent to saying that ϕ(e1) ∈ M(ϕ, x), where x is the unique 
vertex that belongs to e0 but not to e1. Note that if a pair (e0, e1) is ϕ-shiftable, then 
the pair (e1, e0) is Shift(ϕ, e0, e1)-shiftable and

Shift(Shift(ϕ, e0, e1), e1, e0) = ϕ. (4.1)

A chain of length � � 1 is a sequence C = (e0, . . . , e	−1) of edges such that ei and 
ei+1 are adjacent, for all 0 � i � � − 2. Note that we do not require the edges in 
a chain to be pairwise distinct; however, any two consecutive edges must be distinct 
since they are adjacent. We define the edge set E(C) and the vertex set V (C) of a 
chain C = (e0, . . . , e	−1) by setting E(C) := {e0, . . . , e	−1} and making V (C) be the 
set of all the endpoints of the edges in C. We also let H(C) be the subgraph of G

with vertex set V (C) and edge set E(C). It is clear that the graph H(C) is connected. 
Let Start(C) := e0 and End(C) := e	−1 denote the first and the last edges of C, 
respectively, and let length(C) := � be the length of C. Given a partial coloring ϕ, we 
define Shift(ϕ, C) by iteratively shifting the colors from e1 to e0, then from e2 to e1, 
etc. (see Fig. 6). More precisely, we consider the following recursively defined sequence 
of colorings:

Shift0(ϕ, C) := ϕ;

Shifti+1(ϕ, C) := Shift(Shifti(ϕ, C), ei, ei+1) for all 0 � i � � − 2,

and set Shift(ϕ, C) := Shift	−1(ϕ, C). We say that C is ϕ-shiftable if for all 0 � i �
� −2, the pair (ei, ei+1) is Shifti(ϕ, C)-shiftable. Given a chain C = (e0, . . . , e	−1), we let 
C∗ := (e	−1, . . . , e0) denote the reverse of C. Repeated applications of (4.1) show that 
if C is ϕ-shiftable, then C∗ is Shift(ϕ, C)-shiftable and Shift(Shift(ϕ, C), C∗) = ϕ.

Fact 4.2. Let ϕ be a proper partial coloring and let C be a chain. If C is ϕ-shiftable, then 
the following statements are valid:

(i) the unique edge in E(C) that is uncolored by ϕ is Start(C);
(ii) Shift(ϕ, C) is a proper partial coloring that agrees with ϕ on E \ E(C);
(iii) the unique edge in E(C) that is uncolored by Shift(ϕ, C) is End(C).
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Proof. Let C = (e0, . . . , e	−1), where � = length(C). A straightforward induction shows 
that for each 0 � i � � − 1, the coloring Shifti(ϕ, C) is proper, which, in particular, 
yields (ii). To see (i), note first that e0 must be uncolored by ϕ since the pair (e0, e1)
is ϕ-shiftable. Suppose now that e ∈ E(C) is a ϕ-uncolored edge and let i be the least 
index such that e = ei. If i > 0, then e is still uncolored by Shifti−1(ϕ, C), which means 
that the pair (ei−1, ei) is not Shifti−1(ϕ, C)-shiftable; a contradiction. Part (iii) follows 
by applying (i) with Shift(ϕ, C) and C∗ in place of ϕ and C. �

We say that a chain C is ϕ-happy if C is ϕ-shiftable and the edge End(C) is 
Shift(ϕ, C)-happy.

Fact 4.3. Let ϕ be a proper partial coloring and let C be a chain. If C is ϕ-happy, then 
the graph H(C) is augmenting for ϕ.

Proof. The coloring ϕ can be modified to include all the edges in E(C) as follows: First, 
replace ϕ by ψ := Shift(ϕ, C). Now the only uncolored edge in E(C) is End(C), which, 
by assumption, is ψ-happy, so ψ can be extended to include it. �

Thus, our goal becomes to develop a technique for constructing “short” happy chains.

4.4. Initial segments and combinations

For a chain C = (e0, . . . , e	−1) and 1 � k � �, the initial segment of C of length k is 
the chain

C|k := (e0, . . . , ek−1).

Note that if C is ϕ-shiftable for some proper partial coloring ϕ, then every initial segment 
of C is also ϕ-shiftable. Observe also that Shift(ϕ, C|k) = Shiftk−1(ϕ, C) for all 1 �
k � �. We additionally consider an operation that is in some sense the opposite of taking 
initial segments. Namely, let C0 and C1 be chains such that End(C0) = Start(C1). Then 
we can combine C0 and C1 into a single chain C0 + C1 by identifying the last edge of 
C0 with the first edge of C1. More precisely, if C0 = (e0, . . . , e	−1), C1 = (h0, . . . , hk−1), 
and e	−1 = h0, then we set

C0 + C1 := (e0, . . . , e	−1, h1, . . . , hk−1).

Notice that C0 is an initial segment of C0 + C1. It is clear that for any proper partial 
coloring ϕ, we have

Shift(ϕ, C0 + C1) = Shift(Shift(ϕ, C0), C1),

and if C0 is ϕ-shiftable and C1 is Shift(ϕ, C0)-shiftable, then C0 +C1 is also ϕ-shiftable.
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4.5. Path-chains

A particular type of a chain is a path-chain, i.e., a nonempty sequence of edges 
that forms a path in G in the usual graph-theoretic sense. Explicitly, a chain P =
(e0, . . . , e	−1) is called a path-chain, or simply a path, if there is a sequence (x0, x1, . . . , x	)
of pairwise distinct vertices such that ei = xixi+1 for all 1 � i � � − 1. Such a sequence 
(x0, x1, . . . , x	) is necessarily unique unless � = 1, while if P = (xy) is a path-chain of 
length 1, then there are two such sequences, namely (x, y) and (y, x). When dealing with 
such length-1 path-chains, we shall still tacitly assume that one of these two sequences is 
chosen, so that every path-chain P has a well-defined first and a well-defined last vertex, 
denoted by vStart(P ) and vEnd(P ), respectively.

The aim of this subsection is to describe a particular way of constructing shiftable 
path-chains by considering edges of two specific colors. For the remainder of §4.5, we fix 
the following data:

• a proper partial coloring ϕ;
• a pair of distinct colors α, β ∈ [Δ + 1].

Let G(ϕ, αβ) denote the spanning subgraph of G with

E(G(ϕ, αβ)) := {e ∈ E : ϕ(e) ∈ {α, β}}.

Since ϕ is proper, the maximum degree of G(ϕ, αβ) is at most 2, which means that 
every connected component of G(ϕ, αβ) is either a cycle or a path (where we view 
isolated vertices as paths of length 0). For x ∈ V , let G(x, ϕ, αβ) denote the connected 
component of x in G(ϕ, αβ), and let deg(x, ϕ, αβ) be the degree of x in G(ϕ, αβ). Note 
that deg(x, ϕ, αβ) < 2 if and only if at least one of α, β is missing at x. We say that two 
vertices x, y ∈ V are (ϕ, αβ)-related if G(x, ϕ, αβ) = G(y, ϕ, αβ).

Suppose that xy ∈ E is an uncolored edge that is not ϕ-happy. We say that xy is:

• (ϕ, αβ)-hopeful if deg(x, ϕ, αβ) < 2 and deg(y, ϕ, αβ) < 2;
• (ϕ, αβ)-successful if it is (ϕ, αβ)-hopeful and x and y are not (ϕ, αβ)-related.

For a (ϕ, αβ)-hopeful edge xy, we define a chain P (x, y, ϕ, αβ) as follows. Since 
deg(y, ϕ, αβ) < 2, the graph G(y, ϕ, αβ) is a path, one of whose endpoints is y. Let 
(e1, . . . , ek) be the sequence in which the edges of this path appear as it is traversed start-
ing from y. Note that k � 1, since otherwise {α, β} ⊆ M(ϕ, y) and {α, β} ∩M(ϕ, x) �= ∅, 
which would mean that the edge xy is ϕ-happy. The sequence (e1, . . . , ek) is αβ-
alternating, in the sense that the sequence of colors ϕ(e1), ϕ(e2), ϕ(e3), ϕ(e4), . . . has 
the form α, β, α, β, . . . or β, α, β, α, . . . . Then we define

P (x, y, ϕ, αβ) := (xy, e1, . . . , ek).



A. Bernshteyn / Journal of Combinatorial Theory, Series B 152 (2022) 319–352 335
x y

α

β

αβ

α

β

(a) The edge xy is not (ϕ, αβ)-successful.

x y

α

β

αβ

α

β

(b) The edge xy is (ϕ, αβ)-successful.

Fig. 7. The chain P (x, y, ϕ, αβ).

This construction is illustrated in Fig. 7.

Fact 4.4. If xy is a (ϕ, αβ)-hopeful edge, then the chain P (x, y, ϕ, αβ) is ϕ-shiftable.

Proof. Since the edge xy is not ϕ-happy, M(ϕ, x) ∩ M(ϕ, y) = ∅. As xy is (ϕ, αβ)-
hopeful, this implies that x misses one of the colors α, β and y misses the other one. 
Without loss of generality, assume that α ∈ M(ϕ, x) and β ∈ M(ϕ, y). Set e0 := xy and 
P := P (x, y, ϕ, αβ) = (e0, e1, . . . , ek). Then e0 is uncolored and ϕ(e1) = α, ϕ(e2) = β, 
ϕ(e3) = α, ϕ(e4) = β, etc. Since α ∈ M(ϕ, x), the pair of edges (e0, e1) is ϕ-shiftable. 
Straightforward induction then shows that the whole chain P is ϕ-shiftable. �

If an edge xy is not just (ϕ, αβ)-hopeful, but in fact (ϕ, αβ)-successful, then x cannot 
appear on the path G(y, ϕ, αβ), which implies that P (x, y, ϕ, αβ) is a path-chain. Note 
that the first vertex of P (x, y, ϕ, αβ) is x, while the last one is the endpoint of the path 
G(y, ϕ, αβ) distinct from y.

Fact 4.5. If xy is a (ϕ, αβ)-successful edge, then the path-chain P (x, y, ϕ, αβ) is ϕ-happy.

Proof. Set e0 := xy and P := P (x, y, ϕ, αβ) = (e0, e1, . . . , ek). We already know, from 
Fact 4.4, that P is ϕ-shiftable. In the coloring Shift(ϕ, P ), both endpoints of the edge 
ek miss the same one of the colors α, β, so ek is Shift(ϕ, P )-happy, as desired. �

4.6. Fans

Another useful type of a chain is a fan. A fan is a chain of the form F =
(xy0, xy1, . . . , xy	−1), where x ∈ V and y0, . . . , y	−1 are pairwise distinct neighbors 
of x. Given a fan F = (xy0, xy1, . . . , xy	−1), we call the vertex x the pivot of F and write 
Pivot(F ) := x. We also refer to y	−1 as the last vertex of F and write vEnd(F ) := y	−1. 
As in the case of path-chains, this creates some ambiguity when F = (xy) is a fan of 
length 1. When dealing with such a length-1 fan, we shall still tacitly assume that it 
has been decided which one of x, y is the pivot. Note that for every fan F , its last edge 
End(F ) is {Pivot(F ), vEnd(F )}.
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Fig. 8. The process of shifting a fan for i steps.

Fact 4.6. Let ϕ be a proper partial coloring and consider a fan F = (xy0, xy1, . . . , xy	−1). 
Then F is ϕ-shiftable if and only if the following two conditions are satisfied:

(i) xy0 /∈ dom(ϕ), while xyi ∈ dom(ϕ) for all 1 � i � � − 1;
(ii) for each 0 � i � � − 2, ϕ(xyi+1) ∈ M(ϕ, yi).

Proof. Condition (i) is necessary for F to be ϕ-shiftable due to Fact 4.2, so we may 
assume that (i) holds. For brevity, set ψi := Shifti(ϕ, F ) for each 0 � i � � − 1. 
By definition, F is ϕ-shiftable if for all 0 � i � � − 2, the pair (xyi, xyi+1) is ψi-
shiftable. It is straightforward to check that ψi(xyi) = blank, while ψi(xyi+1) = ϕ(xyi+1)
(see Fig. 8). Thus, (xyi, xyi+1) is ψi-shiftable if and only if ϕ(xyi+1) ∈ M(ψi, yi). For 
i = 0, this is just saying that ϕ(xy1) ∈ M(ϕ, y0), as desired. For i > 0, observe that 
M(ψi, yi) = M(ϕ, yi) ∪ {ϕ(xyi)}. Since the coloring ϕ is proper, ϕ(xyi+1) �= ϕ(xyi), so 
ϕ(xyi+1) ∈ M(ψi, yi) if and only if ϕ(xyi+1) ∈ M(ϕ, yi), and we are done. �

Let ϕ be a partial proper coloring and let α, β ∈ [Δ + 1] be two distinct colors. Let 
F be a ϕ-shiftable fan that is not ϕ-happy. Set x := Pivot(F ) and y := vEnd(F ) (so 
End(F ) = xy). By analogy with the definitions in §4.5, we say that F is:

• (ϕ, αβ)-hopeful if deg(x, ϕ, αβ) < 2 and deg(y, ϕ, αβ) < 2;
• (ϕ, αβ)-successful if it is (ϕ, αβ)-hopeful and x and y are not (Shift(ϕ, F ), αβ)-

related.

Fact 4.7. Let F be a fan and set x := Pivot(F ) and y := vEnd(F ). Define ψ :=
Shift(ϕ, F ). If F is (ϕ, αβ)-hopeful (resp. (ϕ, αβ)-successful), then the edge xy is 
(ψ, αβ)-hopeful (resp. (ψ, αβ)-successful).

Proof. Note that M(ψ, x) = M(ϕ, x) and M(ψ, y) ⊇ M(ϕ, y) (the inclusion is, in 
fact, strict unless F is of length 1). This implies that if F is (ϕ, αβ)-hopeful, then 
deg(x, ψ, αβ) = deg(x, ϕ, αβ) < 2 and deg(y, ψ, αβ) � deg(y, ϕ, αβ) < 2, and hence 
the edge xy is (ψ, αβ)-hopeful, as desired. The statement for (ϕ, αβ)-successful fans 
follows. �
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Next we establish two lemmas that allow us to find successful or, at least, hopeful 
fans. Modulo our choice of terminology, the first of these lemmas was already known to 
Vizing [20] (see [6] for a textbook presentation), while the second one comes from the 
work of Grebík and Pikhurko [11].

Lemma 4.8 (First fan lemma). Let ϕ be a partial proper coloring and let xy ∈ E \dom(ϕ)
be an uncolored edge. Then there exists a ϕ-shiftable fan F with pivot x and Start(F ) =
xy such that:

• either F is ϕ-happy,
• or, for some distinct α, β ∈ [Δ + 1], F is (ϕ, αβ)-successful.

Proof. Assume that there is no ϕ-happy fan with pivot x and starting edge xy. For 
each neighbor z of x, fix an arbitrary color β(z) ∈ M(ϕ, z). We shall recursively build a 
sequence y0, y1, . . . of pairwise distinct neighbors of x such that the fan (xy0, xy1, . . .) is 
ϕ-shiftable. Start by setting y0 := y. Once the vertices y0, . . . , yi have been determined, 
consider the color β(yi). If β(yi) ∈ M(ϕ, x), then the fan (xy0, . . . , xyi) is ϕ-happy, which 
contradicts our assumption. Thus, β(yi) /∈ M(ϕ, x), which means that x has a (unique)
neighbor z with ϕ(xz) = β(yi). Note that z �= yi, because the color β(yi) is missing at 
yi but not at z. Similarly, z �= y0 because the edge xy0 is uncolored, while xz is not. 
Now, if z ∈ {y1, . . . , yi−1}, then we stop the construction, and otherwise we set yi+1 := z

and proceed to the next step. Since x has only finitely many neighbors, this construction 
must terminate. That is, we shall eventually obtain a sequence y0, . . . , yk of distinct 
neighbors of x such that:

(i) y0 = y;
(ii) for all 0 � i � k, β(yi) /∈ M(ϕ, x);
(iii) for all 0 � i � k − 1, ϕ(xyi+1) = β(yi);
(iv) β(yk) = ϕ(xyj) for some 1 � j � k − 1.

Set β := β(yk). If j is the index from (iv), then (iii) yields β = ϕ(xyj) = β(yj−1); that is, 
β is missing both at yk and at yj−1. Now let α be any color in M(ϕ, x). By (ii), α �= β. 
Define

F := (xy0, . . . , xyk) and F ′ := (xy0, . . . , xyj−1) = F |j.

By construction, both F and F ′ are (ϕ, αβ)-hopeful fans. We claim that at lest one of 
F , F ′ is (ϕ, αβ)-successful. For brevity, let

ψ := Shift(ϕ, F ) and ψ′ := Shift(ϕ, F ′) = Shiftj−1(ϕ, F ).

Suppose that F is not (ϕ, αβ)-successful. This means that the vertices x and yk are 
(ψ, αβ)-related. By Fact 4.7, the edge xyk is (ψ, αβ)-hopeful, so Gαβ(ψ, x) must be a 



338 A. Bernshteyn / Journal of Combinatorial Theory, Series B 152 (2022) 319–352
path with endpoints x and yk. Furthermore, ψ(xyj−1) = β, so the (unique) edge of this 
path incident to x is xyj−1. All the other edges of this path avoid the vertex x, which 
means that their colors cannot be changed by shifting a fan with pivot x. In particular, 
they have the same colors in ϕ, ψ, and ψ′, which implies that the vertices yj−1 and yk are 
(ψ′, αβ)-related. Since both these vertices miss the color β in ψ′, the graph Gαβ(ψ′, yj−1)
is a path with endpoints yj−1 and yk. This path cannot include x (because x is missing 
α), and thus yj−1 and x are not (ψ′, αβ)-related, as desired. �

Lemma 4.9 (Second fan lemma). Let ϕ be a partial proper coloring and let xy ∈ E \
dom(ϕ) be an uncolored edge. Fix a pair of distinct colors α, β ∈ [Δ + 1] such that 
deg(x, ϕ, αβ) = 1. Then there exists a ϕ-shiftable fan F with pivot x and Start(F ) = xy

such that:

• either F is ϕ-happy,
• or, for some distinct γ, δ ∈ [Δ + 1] with {γ, δ} ∩ {α, β} = ∅, F is (ϕ, γδ)-successful,
• or F is (ϕ, αβ)-hopeful, vEnd(F ) �= y, and no edge in F is colored α or β by ϕ.

Proof. Again, we may assume that there is no ϕ-happy fan with pivot x and starting 
edge xy. Since deg(x, ϕ, αβ) = 1, precisely one of the colors α, β is missing at x. For 
concreteness, suppose that α ∈ M(ϕ, x) and β /∈ M(ϕ, x). For each neighbor z of x, fix 
a color δ(z) ∈ M(ϕ, z); it does not matter which color from M(ϕ, z) we pick, except 
that we make sure that δ(y) �= β (this is possible since y is incident to an uncolored 
edge and thus |M(ϕ, y)| � 2). As in the proof of Lemma 4.8, we build a sequence y0, 
y1, . . . of pairwise distinct neighbors of x such that the fan (xy0, xy1, . . .) is ϕ-shiftable. 
Start by setting y0 := y. Once the vertices y0, . . . , yi have been determined, consider the 
color δ(yi). If δ(yi) ∈ M(ϕ, x), then the fan (xy0, . . . , xyi) is ϕ-happy, which contradicts 
our assumption. Thus, δ(yi) /∈ M(ϕ, x). At this point, if δ(yi) = β, then we stop the 
construction. Otherwise we proceed as in the proof of Lemma 4.8. In other words, if 
δ(yi) �= β, then we let z be the (unique) neighbor of x such that ϕ(xz) = δ(yi). If 
z ∈ {y1, . . . , yi−1}, then we stop, and otherwise, we let yi+1 := z and move on to the 
next step. Since x has only finitely many neighbors, this construction must terminate. 
Hence, we eventually obtain a sequence y0, . . . , yk of distinct neighbors of x such that:

(i) y0 = y;
(ii) for all 0 � i � k, δ(yi) /∈ M(ϕ, x);
(iii) for all 0 � i � k − 1, ϕ(xyi+1) = δ(yi);
(iv) for all 0 � i � k − 1, δ(yi) �= β;
(v) either δ(yk) = β, or else, δ(yk) = ϕ(xyj) for some 1 � j � k − 1.

Now we consider two cases.

Case 1. δ(yk) = β.
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Then the fan F := (xy0, . . . , xyk) is, by construction, (ϕ, αβ)-hopeful. Furthermore, 
since δ(y) �= β, we have vEnd(F ) = yk �= y. Finally, for each 1 � i � k, we have 
ϕ(xyi) = δ(yi−1), and since δ(yi−1) �= β by (iv) and δ(yi−1) /∈ M(ϕ, x) by (ii), we 
conclude that no edge in F is colored α or β.

Case 2. δ(yk) �= β and δ(yk) = ϕ(xyj) for some 1 � j � k − 1.

Set δ := δ(yk) and let j be the index from (v), so that the color δ is missing both at 
yk and at yj−1. Since x is incident to an uncolored edge, we can pick a color γ ∈ M(x, ϕ)
distinct from α. Now {γ, δ} ∩{α, β} = ∅ and the argument from the proof of Lemma 4.8
shows that at least one of the fans

F := (xy0, . . . , xyk) and F ′ := (xy0, . . . , xyj−1)

is (ϕ, γδ)-successful, as desired. �

As an illustration, we can now use Lemma 4.8 to complete the proof of Vizing’s 
theorem:

Corollary 4.10 (to Lemma 4.8). For every proper partial coloring ϕ and every uncolored 
edge e = xy, there is a connected augmenting subgraph H ⊆ G whose only uncolored edge 
is e.

Proof. By Fact 4.3, it suffices to find a ϕ-happy chain C with Start(C) = e. To this 
end, let F be a fan satisfying the conclusion of Lemma 4.8. If F is ϕ-happy, then we 
are done, so assume that instead there are distinct colors α, β ∈ [Δ + 1] such that F is 
(ϕ, αβ)-successful. Let z := vEnd(F ) and set ψ := Shift(ϕ, F ). By Fact 4.7, the edge 
xz is (ψ, αβ)-successful, so, by Fact 4.5, the path-chain P := P (ψ, x, z, αβ) is ψ-happy. 
Therefore, the chain F + P is as desired. �

5. The Multi-Step Vizing Algorithm

5.1. The sets R�(x, ϕ) and R�(y, ϕ)

Before we begin describing our construction of multi-step Vizing chains, we need to 
introduce some notation that will be useful for keeping track of intersections between 
different alternating paths. Let ϕ be a proper partial coloring and let α, β ∈ [Δ + 1] be 
distinct colors. Given x ∈ V , we let R�(x, ϕ, αβ) ⊆ V denote the set of all vertices y
that satisfy at least one of the following two conditions:

• y = x or y is adjacent to x,
• or there is a neighbor z of x such that deg(z, ϕ, αβ) < 2 and z and y are (ϕ, αβ)-

related.
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We also define R�(y, ϕ, αβ) := {x ∈ V : y ∈ R�(x, ϕ, αβ)} and set

R�(x, ϕ) :=
⋃

α�=β

R�(x, ϕ, αβ) and R�(y, ϕ) :=
⋃

α�=β

R�(y, ϕ, αβ).

Lemma 5.1. For each proper partial coloring ϕ and every vertex y ∈ V , we have 
|R�(y, ϕ)| � (Δ + 1)3.

Proof. At most Δ elements of R�(y, ϕ) are neighbors of y, and for each (unordered) pair 
of colors α, β, there are at most two vertices z that are (ϕ, αβ)-related to y and satisfy 
deg(z, ϕ, αβ) < 2. Each such vertex z has at most Δ neighbors, so

|R�(y, ϕ)| � 1 + Δ + 2Δ
(

Δ + 1
2

)
= Δ3 + Δ2 + Δ + 1 � (Δ + 1)3. �

Given a chain C, we write R�(C, ϕ) :=
⋃

y∈V (C) R�(y, ϕ).

Lemma 5.2. Let ϕ be a proper partial coloring and let C be a ϕ-shiftable chain. Set 
ψ := Shift(ϕ, C). If x is a vertex that is not in R�(C, ϕ) ∩ R�(C, ψ), then R�(x, ϕ) =
R�(x, ψ).

Proof. It is enough to show that if x /∈ R�(C, ϕ), then R�(x, ϕ) = R�(x, ψ); the conclu-
sion for x /∈ R�(C, ψ) then follows by exchanging the roles of ϕ and ψ and replacing C by 
its reverse C∗. So, suppose that x /∈ R�(C, ϕ). We first prove that R�(x, ϕ) ⊆ R�(x, ψ). 
Take any vertex y ∈ R�(x, ϕ). If y = x or y is adjacent to x, then y ∈ R�(x, ψ) by 
definition, so suppose instead that there exist colors α, β and a neighbor z of x such that 
deg(z, ϕ, αβ) < 2 and z and y are (ϕ, αβ)-related. In other words, G(z, ϕ, αβ) is a path 
starting at z and containing y. Since x /∈ R�(C, ϕ), no vertex on this path is incident to 
an edge in C. This implies that G(z, ψ, αβ) = G(z, ϕ, αβ), so G(z, ψ, αβ) is still a path 
starting at z and passing through y, and hence y ∈ R�(x, ψ), as desired.

Now we show R�(x, ψ) ⊆ R�(x, ϕ). Take a vertex y ∈ R�(x, ψ). Again, if y = x

or y is adjacent to x, then we are done, so assume that there exist colors α, β and a 
neighbor z of x such that deg(z, ψ, αβ) < 2 and z and y are (ψ, αβ)-related. Note that 
deg(z, ϕ, αβ) < 2 as well; otherwise, some edge incident to z would be colored differently 
in ϕ and ψ, which would imply that z ∈ V (C) and thus x ∈ R�(C, ϕ). Therefore, 
the graph G(z, ϕ, αβ) is a path starting at z. As before, we observe that no vertex on 
this path can be incident to an edge in C, since x /∈ R�(C, ϕ). But this means that 
G(z, ψ, αβ) = G(z, ϕ, αβ), so if z and y are (ψ, αβ)-related, then they are also (ϕ, αβ)-
related, as desired. �

5.2. The algorithm

For the remainder of §5, we fix the following data:
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• a proper partial coloring ϕ;
• an uncolored edge e = xy ∈ E \ dom(ϕ).

We also fix a numerical parameter � ∈ N+. (We will eventually make � be a value of 
order poly(Δ) log n, but for now this does not matter.) We shall describe a randomized 
procedure, called the Multi-Step Vizing Algorithm, that attempts to build a ϕ-happy 
chain C with starting edge e. The chain C will have the form C = F0 +P0 +F1 +P1 + · · · , 
where each Fi is a fan and each Pi is a path-chain. The construction proceeds in steps, 
indexed by natural numbers (the total number of steps may be finite or infinite). On 
Step i, we build the fan Fi and the path Pi.

5.2.1. Initial set-up
Initially, we set ϕ0 := ϕ, e0 := e, x0 := x, and y0 := y.

5.2.2. Input for Step i
At the start of Step i, we have already constructed a number of interrelated structures. 

However, in order to describe how Step i operates, only the following objects will be 
needed:

(In1) a sequence of proper partial colorings ϕ0, ψ0, . . . , ϕi−1, ψi−1, ϕi;
(In2) an edge ei = xiyi with ϕi(ei) = blank;
(In3) if i > 0, a pair of distinct colors αi−1 and βi−1 such that deg(xi, ϕi, αi−1βi−1) = 1;
(In4) a sequence F0, P0, . . . , Fi−1, Pi−1, where each Fj is a fan and each Pj is a path-

chain.

5.2.3. Step i
We start by constructing a fan Fi. To this end, we consider two cases.

Case 1. There is a ϕi-happy fan F with Pivot(F ) = xi and Start(F ) = ei.

Then we make Fi be any such fan and stop the construction. In this case, the algorithm
succeeds.

Case 2. There is no ϕi-happy fan F with Pivot(F ) = xi and Start(F ) = ei.

If i = 0, then we use Lemma 4.8 to obtain a ϕ0-shiftable fan F0 with pivot x0 and 
Start(F0) = e0 and a pair of distinct colors α0, β0 such that F0 is (ϕ0, α0β0)-successful. 
If, on the other hand, i > 0, then we apply Lemma 4.9 instead with αi−1, βi−1 in place 
of α, β (this is possible by (In3)) and obtain a ϕi-shiftable fan Fi with pivot xi and 
Start(Fi) = ei and a pair of distinct colors αi, βi such that:

(F1) either {αi, βi} ∩ {αi−1, βi−1} = ∅ and Fi is (ϕi, αiβi)-successful,
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(F2) or the following statements are valid:
(F2a) {αi, βi} = {αi−1, βi−1};
(F2b) Fi is (ϕi, αiβi)-hopeful;
(F2c) vEnd(Fi) �= yi; and
(F2d) no edge in Fi is colored αi or βi by ϕi.

Note that regardless of whether (F1) or (F2) holds, Fi is (ϕi, αiβi)-hopeful. Let

zi := vEnd(Fi) and ψi := Shift(ϕi, Fi).

By Fact 4.7, the edge xizi is (ψi, αiβi)-hopeful, so we can define

Qi := P (xi, zi, ψi, αiβi).

Set ui(0) := xi, ui(1) := zi and write Qi = (ui(0)ui(1), ui(1)ui(2), ui(2)ui(3), . . .). Next 
we proceed to define a path Pi, which will be an initial segment of Qi. There are again 
a few cases to consider.

Subcase 2.1. The fan Fi is (ϕi, αiβi)-successful and length(Qi) � �.

Then we let Pi := Qi and stop the construction. In this case, the algorithm succeeds.

Subcase 2.2. The fan Fi is (ϕi, αiβi)-successful and length(Qi) � � + 1.

Note that since length(Qi) � � + 1, the vertex ui(� + 1) is well-defined. Pick an integer 
1 � �i � � uniformly at random and set

xi+1 := ui(�i), yi+1 := ui(�i + 1), and Pi := Qi|(�i + 1).

By construction, Pi is a path-chain of length �i + 1 � � + 1 and we have

vEnd(Pi) = yi+1 and ei+1 := xi+1yi+1 = End(Pi).

There are now two more subcases.

Subsubcase 2.2.1. At least one of the following holds:

• xi+1 ∈ R�(Fj , ψj) for some j � i,
• or xi+1 ∈ R�(Pj , ψj) for some j � i − 1.

In this case we stop the construction and declare that the algorithm fails.

Subsubcase 2.2.2. The following statements are valid:
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Fig. 9. The colorings ϕi, ψi, and ϕi+1. In this case, 	i = 5.

• xi+1 /∈ R�(Fj , ψj) for all j � i; and
• xi+1 /∈ R�(Pj , ψj) for all j � i − 1.

Then we let ϕi+1 := Shift(ψi, Pi). Note that the unique edge of color αi or βi in ϕi+1

incident to xi+1 is ui(�i − 1)xi+1, so deg(xi+1, ϕi+1, αiβi) = 1 (see Fig. 9c). Thus, (In3) 
holds with i + 1 in place of i, and hence we may continue to Step i + 1. This finishes 
Subcase 2.2.

Subcase 2.3. The fan Fi is not (ϕi, αiβi)-successful.

We will show that this situation cannot occur (see Lemma 5.5). For now let us say that 
in this case the procedure stops and the algorithm fails.

5.2.4. Output of Step i
Here is a brief résumé of the possible outcomes for Step i:

(Out1) In Case 1, the algorithm successfully outputs a ϕ-happy chain F0 + P0 + · · · +
Pi−1 + Fi.

(Out2) In Subcase 2.1, the algorithm successfully outputs a ϕ-happy chain F0 + P0 +
· · · + Fi + Pi.

(Out3) In Subsubcase 2.2.1, the algorithm fails.
(Out4) In Subsubcase 2.2.2, the algorithm moves on to Step i + 1.
(Out5) In Subcase 2.3, the algorithm fails, but we will prove in Lemma 5.5 that this 

cannot happen.
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Note that the only case in which the algorithm moves on to the next step is Subsub-
case 2.2.2.

5.3. The backtracking lemma

In this subsection we prove a lemma that plays a central role in our analysis of the 
Multi-Step Vizing Algorithm. In essence, it formalizes the idea of tracing back alternating 
paths that we sketched in §3.

Lemma 5.3 (Backtracking). Suppose that on Step i of the Multi-Step Vizing Algorithm, 
Case 2 occurs. Fix a vertex u ∈ V (Qi). Then xi ∈ R�(u, ψj) ∩ R�(u, ϕj) for all j � i, 
and, in particular, xi ∈ R�(u, ϕ).

Proof. Let α := αi and β := βi. If u = xi, then we are done, so assume that u �= xi. 
Then xi ∈ R�(u, ψi) since zi is a neighbor of xi with deg(zi, ψi, αβ) < 2 and u is 
(ψi, αβ)-related to zi. Next we show that

xi ∈ R�(u, ϕi, αβ). (5.4)

Since the fan Fi is (ϕi, αβ)-hopeful, we have deg(zi, ϕi, αβ) < 2. Suppose, towards a 
contradiction, that u and zi are not (ϕi, αβ)-related. By construction, u and zi are 
joined by a path in G(ψi, αβ). If u and zi are not (ϕi, αβ)-related, then at least one edge 
on this path must have a color different from α and β in ϕi, which means that it must 
belong to Fi. But every edge in Fi contains xi, so xi is an internal vertex on some path 
in G(ψi, αβ), which is impossible as deg(xi, ψi, αβ) = deg(xi, ϕi, αβ) < 2.

If i = 0, then we are done, so assume that i > 0. On Step i − 1, the algorithm must 
have entered Subsubcase 2.2.2 (otherwise it would have stopped without reaching Step 
i), which means that the following statements hold:

• xi /∈ R�(Fj , ψj) for all j � i − 1; and
• xi /∈ R�(Pj , ψj) for all j � i − 2.

By iteratively applying Lemma 5.2, we conclude that

R�(xi, ϕ0) = R�(xi, ψ0) = R�(xi, ϕ1) = R�(xi, ψ1) = · · · = R�(xi, ψi−1).

Thus, it remains to argue that xi ∈ R�(u, ψi−1). We will in fact show that

xi ∈ R�(u, ψi−1, αβ).

There are two possibilities to consider. If on Step i, situation (F1) occurs, then {α, β} ∩
{αi−1, βi−1} = ∅. The only colors that are involved in the change from ψi−1 to ϕi

are αi−1 and βi−1, so in this case G(ψi−1, αβ) = G(ϕi, αβ). In particular, (5.4) yields 
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xi ∈ R�(u, ψi−1, αβ), as desired. Now assume that on Step i, situation (F2) occurs and, 
in particular, {αi−1, βi−1} = {α, β}.

Claim. Under the above assumptions, deg(zi, ψi−1, αβ) = deg(zi, ϕi, αβ) < 2.

Proof. When the path Pi−1 is shifted, the only vertices whose degrees in the αβ-colored 
graph change are the first and the last two vertices of Pi−1, i.e., xi−1, zi−1, xi, and yi. 
Since xi and zi are adjacent, zi �= xi. Also, zi �= yi by (F2c). The only remaining options 
are zi = xi−1 and zi = zi−1, but both of them imply xi ∈ R�(Fi−1, ψi−1), which is a 
contradiction. �

It remains to check that u and zi are (ψi−1, αβ)-related. Suppose, towards a contradic-
tion, that they are not. This means that the subgraphs G(zi, ψi−1, αβ) and G(zi, ϕi, αβ)
are distinct, and hence at least one vertex in G(zi, ψi−1, αβ) is incident to an edge that 
is colored differently in ψi−1 and in ϕi. All such vertices, except xi−1, are (ψi−1, αβ)-
related to zi−1 (see Fig. 9b for an illustration). Thus, zi is (ψi−1, αβ)-related either to 
xi−1 or to zi−1. In any case, xi ∈ R�(Fi−1, ψi−1); a contradiction. �

Next we apply Lemma 5.3 to show that Subcase 2.3 cannot occur:

Lemma 5.5. On Step i of the Multi-Step Vizing Algorithm, Subcase 2.3 cannot occur.

Proof. Let α := αi and β := βi and suppose, towards a contradiction, that the fan 
Fi is not (ϕi, αβ)-successful. This implies that i > 0 and (F2) holds; in particular, 
{αi−1, βi−1} = {α, β}. Since Fi is (ϕi, αβ)-hopeful but not (ϕi, αβ)-successful, the ver-
tices xi and zi are (ψi, αβ)-related. From (F2d), we conclude that G(ψi, αβ) = G(ϕi, αβ), 
so xi and zi are also (ϕi, αβ)-related. Since {αi−1, βi−1} = {α, β}, xi is (ϕi, αβ)-related 
to xi−1 (see Fig. 9c for an illustration). Therefore, zi and xi−1 are (ϕi, αβ)-related, and, 
by (F2d) again, zi and xi−1 are (ψi, αβ)-related. This implies that xi−1 ∈ V (Qi), so, 
by Lemma 5.3, xi ∈ R�(xi−1, ψi−1) and thus xi ∈ R�(Fi−1, ψi−1). But if this were the 
case, then the algorithm would have entered Subsubcase 2.2.1 and stopped on Step i −1; 
a contradiction. �

6. Probabilistic analysis of the Multi-Step Vizing Algorithm

6.1. The algorithm is likely to succeed

We use the set-up and the notation of §5.2. Our goal is to obtain a lower bound on 
the probability that the Multi-Step Vizing Algorithm terminates successfully within a 
limited number of steps.
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Lemma 6.1. Fix T ∈ N+ and set λ := �/(Δ + 1)3. Assuming that λ > 1, the probability 
that the Multi-Step Vizing Algorithm successfully terminates on Step i for some i < T

is at least

1 − n

λT
− 3T (Δ + 1)3

λ − 1 .

Proof. First we bound the probability that the algorithm enters Step T . Fix a vertex u ∈
V and consider the probability P [xT = u]. Notice that if xT = u, then, by Lemma 5.3,

xT = u, xT −1 ∈ R�(xT , ϕ), xT −2 ∈ R�(xT −1, ϕ), . . . , and x1 ∈ R�(x2, ϕ).
(6.2)

By Lemma 5.1, the number of sequences (x1, . . . , xT ) satisfying (6.2) is at most (Δ +
1)3(T −1). Since each of the vertices x1, . . . , xT is chosen uniformly at random from a set 
of � candidates, we conclude that

P [xT = u] � (Δ + 1)3(T −1)

�T
� 1

λT
.

Since the vertex xT must be defined for the algorithm to enter Step T , we have

P [the algorithm enters Step T ] �
∑
u∈V

P [xT = u] � n

λT
.

Next we bound the probability that the algorithm fails on Step i for some i < T . 
Thanks to Lemma 5.5, the only situation in which the algorithm fails on Step i is 
Subsubcase 2.2.1, i.e.,

• xi+1 ∈ R�(Fj , ψj) for some j � i,
• or xi+1 ∈ R�(Pj , ψj) for some j � i − 1.

Claim. For all j � i, we have

P [xi+1 ∈ R�(Fj , ψj)] � Δ + 1
λi−j+1 and P [xi+1 ∈ R�(Pj , ψj)] � 2(Δ + 1)3

λi−j
.

Proof. We will show that the desired upper bounds hold even if we allow an adversary 
to specify the outcome of the algorithm’s execution until it is time to pick �j (if the 
algorithm terminates earlier, or if it does not enter Subcase 2.2 on Step j, then the 
events xi+1 ∈ R�(Fj , ψj) and xi+1 ∈ R�(Pj , ψj) cannot happen, so we may ignore 
that possibility). So, fix the outcome of the algorithm’s execution up to the stage when 
�j is supposed to be chosen and let P∗ denote conditional probability subject to this 
outcome. At this point, we have already constructed the fan Fj, the coloring ψj , and the 
path Qj = (uj(0)uj(1), uj(1)uj(2), . . .) of length at least � +1, but we have not yet picked 
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the vertex xj+1. Fix any u ∈ V and consider the (conditional) probability P∗ [xi+1 = u]. 
If xi+1 = u, then, by Lemma 5.3,

xi+1 = u, xi ∈ R�(xi+1, ϕ), xi−1 ∈ R�(xi, ϕ), . . . , and xj+1 ∈ R�(xj+2, ϕ).
(6.3)

By Lemma 5.1, the number of sequences (xj+1, . . . , xi+1) satisfying (6.3) is at most 
(Δ + 1)3(i−j). Since each of the vertices xj+1, . . . , xi+1 is chosen uniformly at random 
from a set of � candidates, we get

P∗ [xi+1 = u] � (Δ + 1)3(i−j)

�i−j+1 = 1
λi−j�

.

Set U := R�(Fj , ψj). By Lemma 5.1, we have |U | � (Δ + 1)3|V (Fj)| � (Δ + 1)4, so

P∗ [xi+1 ∈ R�(Fj , ψj)] =
∑
u∈U

P∗ [xi+1 = u] � (Δ + 1)4

λi−j�
= Δ + 1

λi−j+1 .

Regardless of the value �j , the set R�(Pj , ψj) is contained in W :=
⋃	+1

k=0 R�(uj(k), ψj). 
By Lemma 5.1, |W | � (Δ + 1)3(� + 2) � 2(Δ + 1)3� (where we are using that � >

(Δ + 1)3 � 1, so � + 2 � 2�), and hence

P∗ [xi+1 ∈ R�(Pj , ψj)] �
∑

u∈W

P∗ [xi+1 = u] � 2(Δ + 1)3

λi−j
. �

Using the above claim and the union bound, we obtain

P [the algorithm fails on Step i for some i < T ]

�
T −1∑
j=0

∞∑
i=j

P [xi+1 ∈ R�(Fj , ψj)] +
T −2∑
j=0

∞∑
i=j+1

P [xi+1 ∈ R�(Pj , ψj)]

[by the claim] �
T −1∑
j=0

∞∑
i=j

Δ + 1
λi−j+1 +

T −2∑
j=0

∞∑
i=j+1

2(Δ + 1)3

λi−j

=
T −1∑
j=0

∞∑
k=1

Δ + 1
λk

+
T −2∑
j=0

∞∑
k=1

2(Δ + 1)3

λk

[since λ > 1] = T (Δ + 1)
λ − 1 + 2(T − 1)(Δ + 1)3

λ − 1 � 3T (Δ + 1)3

λ − 1 .

Putting everything together, we conclude that

P [the algorithm succeeds on Step i for some i < T ]

= 1 − P [the algorithm enters Step T ]
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− P [the algorithm fails on Step i for some i < T ]

� 1 − n

λT
− 3T (Δ + 1)3

λ − 1 . �

Lemma 6.1 immediately yields the existence of “small” augmenting subgraphs:

Corollary 6.4 (to Lemma 6.1). Assuming n is sufficiently large, the following statement 
holds: For every proper partial coloring ϕ and every uncolored edge e = xy, there is a 
connected augmenting subgraph H whose only uncolored edge is e with |E(H)| � (Δ +
1)6(log n)2.

Proof. By Fact 4.3, it suffices to find a ϕ-happy chain C with Start(C) = e and

length(C) � (Δ + 1)6(log n)2.

To this end, fix a small positive constant ε (any ε < 1/3 would work), let T := �ε log n�, 
and run the Multi-Step Vizing Algorithm with e0 = e and

� := (Δ + 1)6�log n�.

Since λ := �/(Δ + 1)3 = (Δ + 1)3�log n� > 1, we can use Lemma 6.1 to conclude that 
the algorithm successfully terminates on Step i for some i < T with probability at least

1 − n

λT
− 3T (Δ + 1)3

λ − 1 = 1 − n

(
1

(Δ + 1)3�log n�

)�ε log n�
− 3ε − o(1) = 1−3ε−o(1) > 0.

Whenever the algorithm terminates successfully on Step i < T , it produces a ϕ-happy 
chain C with Start(C) = e of the form C = F0 + P0 + · · · + Pi−1 + Fi or C = F0 + P0 +
· · · + Fi + Pi. Since length(Fi) � Δ and length(Pi) � � + 1 for all i, we obtain

length(C) � T (� + Δ) � (ε + o(1))(Δ + 1)6(log n)2,

which yields the desired bound. �

6.2. Proof of Theorem 1.3

For the reader’s convenience, we recall the statement of Theorem 1.3.

Theorem 1.3. There is n0 ∈ N such that for all n > n0, the following holds. Let G

be an n-vertex graph of maximum degree Δ. Fix a partition E(G) = X � U and let 
ϕ : X → [Δ + 1] be a proper partial edge-coloring. Then there exists a subset W ⊆ U of 
size |W | � |U |/((Δ + 1)10(log n)2) such that it is possible to assign to each edge e ∈ W

a connected augmenting subgraph He ⊆ G with the following properties:
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• for each e ∈ W , E(He) ∩ U = {e}, that is, e is the unique uncolored edge in He;
• the vertex sets of the graphs He, e ∈ W , are pairwise disjoint;
• for each e ∈ W , |E(He)| � (Δ + 1)6(log n)2.

Proof. Throughout the proof, we will be assuming that n is sufficiently large. Let the 
endpoints of each uncolored edge e be xe and ye (it does not matter which endpoint we 
call xe and which ye). Set the value of the parameter � to

� := (Δ + 1)6�log n�

and run the Multi-Step Vizing Algorithm with e0 = e, x0 = xe, and y0 = ye for every 
uncolored edge e, making the processes for different uncolored edges independent of each 
other. We use variables with “e” as a superscript, such as F e

i and P e
i , to denote the 

structures obtained using the execution of the algorithm with e0 = e. In particular, for 
each e ∈ U , we have a sequence of vertices xe = xe

0, xe
1, xe

2, . . . .
Let λ := �/(Δ + 1)3 = (Δ + 1)3�log n�. Fix a small positive constant ε (any ε < 1/12

would work) and set T := �ε log n�. Say that an uncolored edge e is lucky if the execution 
of the Multi-Step Vizing Algorithm with e0 = e successfully terminated on Step i for 
some i < T . Let L ⊆ U denote the set of all lucky edges. For e ∈ L, we let Ce be the ϕ-
happy chain with Start(Ce) = e produced by the algorithm with e0 = e. In other words, 
if the algorithm terminated on Step i due to Case 1, then Ce = F e

0 +P e
0 + · · ·+P e

i−1 +F e
i , 

and if it terminated due to Subcase 2.1, then Ce = F e
0 + P e

0 + · · · + F e
i + P e

i . If e ∈ L, 
then we let He := H(Ce). By construction, He is a connected ϕ-augmenting subgraph 
whose only uncolored edge is e. Furthermore, since e is lucky,

|E(He)|, |V (He)| � length(Ce)+1 � T (�+Δ)+1 � (ε+o(1))(Δ+1)6(log n)2. (6.5)

Our goal now is to show that, with positive probability, there is a set W ⊆ L of lucky 
edges of size at least |W | � |U |/((Δ + 1)10(log n)2) such that the graphs He, e ∈ E, 
are pairwise vertex-disjoint. To this end, define an auxiliary graph Γ with V (Γ) := E by 
making two distinct edges e, h adjacent in Γ if and only if e and h are both lucky and 
V (He) ∩ V (Hh) �= ∅.

Claim. For each uncolored edge e, E [degΓ(e)] � (ε + o(1))(Δ + 1)10(log n)2.

Proof. We will show that the desired upper bound holds even if we allow an adversary 
to specify the outcome of the algorithm for e0 = e. So, fix the outcome of the algorithm’s 
execution for e0 = e and let E∗ denote conditional expectation subject to this outcome. 
We may assume that e is lucky, since otherwise degΓ(e) = 0. Then

E∗ [degΓ(e)] �
∑

e

E
[ ∣∣{h ∈ U \ {e} : h ∈ L and u ∈ V (Hh)

}∣∣ ]
. (6.6)
u∈V (H )
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We may write “E” instead of “E∗” on the right-hand side of (6.6) because the construction 
of Hh for h �= e is independent from the construction of He. Fix an arbitrary vertex 
u ∈ V (He). Observe that if u ∈ V (Hh) for some h, then there is some i such that 
u ∈ V (F h

i ) or u ∈ V (P h
i ), so

E
[ ∣∣{h ∈ U \ {e} : h ∈ L and u ∈ V (Hh)

}∣∣ ]

�
∞∑

i=0
E

[ ∣∣{h ∈ U : u ∈ V (F h
i ) or u ∈ V (P h

i )
}∣∣ ]

.

If u ∈ V (F h
i ) or u ∈ V (P h

i ), then, by Lemma 5.3,

xh
i ∈ R�(u, ϕ), xh

i−1 ∈ R�(xh
i , ϕ), . . . , xh

1 ∈ R�(xh
2 , ϕ), and xh = xh

0 ∈ R�(xh
1 , ϕ).
(6.7)

Since for every x ∈ V , there are at most Δ edges h such that xh = x, we conclude 
that, by Lemma 5.1, there are at most Δ(Δ + 1)3(i+1) � (Δ + 1)3i+4 possible sequences 
(h, xh

0 , xh
1 , . . . , xh

i ) satisfying (6.7). Since the vertices xh
1 , . . . , xh

i are chosen uniformly at 
random from sets of � candidates, we obtain

E
[ ∣∣{h ∈ U : u ∈ V (F h

i ) or u ∈ V (P h
i )

}∣∣ ]
� (Δ + 1)3i+4

�i
= (Δ + 1)4

λi
.

Thus we can write

E
[ ∣∣{h ∈ U \ {e} : h ∈ L and u ∈ V (Hh)

}∣∣ ]
�

∞∑
i=0

(Δ + 1)4

λi
= λ

λ − 1(Δ + 1)4

= (1 + o(1))(Δ + 1)4.

Plugging this into (6.6) and using (6.5) gives

E∗ [degΓ(e)] � (1 + o(1))(Δ + 1)4|V (He)| � (ε + o(1))(Δ + 1)10(log n)2. �

Using the above claim and Markov’s inequality, we see that for each uncolored edge 
e,

P
[
degΓ(e) > 2ε(Δ + 1)10(log n)2 − 1

]
� 1

2 + o(1). (6.8)

Let W ′ ⊆ L be the set of all lucky edges e satisfying degΓ(e) � 2ε(Δ + 1)10(log n)2 − 1. 
Using Lemma 6.1 and (6.8), we conclude that for each e ∈ U ,

P [e ∈ W ′] � 1 − n
T

− 3T (Δ + 1)3
− P

[
degΓ(e) > 2ε(Δ + 1)10(log n)2 − 1

]

λ λ − 1
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� 1 − n

(
1

(Δ + 1)3�log n�

)�ε log n�
− 3ε − 1

2 − o(1)

= 1
2 − 3ε − o(1) >

1
4 .

Therefore, with positive probability, |W ′| � |U |/4. Note that the maximum degree of the 
induced subgraph of Γ on W ′ is, by definition, at most 2ε(Δ + 1)10(log n)2 − 1, which 
means that it contains an independent set W ⊆ W ′ of size at least |W | � |W ′|/(2ε(Δ +
1)10(log n)2). Since W is an independent set in Γ, the subgraphs He for e ∈ W are 
pairwise vertex-disjoint, and |W | � |U |/(8ε(Δ + 1)10(log n)2) � |U |/((Δ + 1)10(log n)2)
with positive probability. This completes the proof of Theorem 1.3. �
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