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CANCELLATION PROBLEM FOR
AS-REGULAR ALGEBRAS OF DIMENSION THREE

XIN TANG, HELBERT J. VENEGAS RAMÍREZ AND JAMES J. ZHANG

We study a noncommutative version of the Zariski cancellation problem for
some classes of connected graded Artin–Schelter regular algebras of global
dimension three.

Introduction

The classical Zariski cancellation problem for commutative polynomial rings has
a long history; see the very nice survey paper [Gupta 2015]. A noncommutative
version of the Zariski cancellation problem was investigated as early as 1970s, see
[Coleman and Enochs 1971; Brewer and Rutter 1972], and was reintroduced in
[Bell and Zhang 2017a]. During the past few years several research groups have
been making significant contributions to this topic; see, for example, [Bell et al.
2021; Bell and Zhang 2017a; 2017b; Brown and Yakimov 2018; Ceken et al. 2015;
2016; Chan et al. 2016; 2018; Gaddis 2017; Gaddis et al. 2017; 2019b; Levitt and
Yakimov 2018; Lezama et al. 2019; Lu et al. 2020; Lü et al. 2017; Nguyen et al.
2017; Tang 2017; 2018; Tang et al. 2020; Wang and Zhang 2018]. Very recently,
the Zariski cancellation problem was introduced for commutative Poisson algebras
by Gaddis and Wang [2020].

We are following the terminology introduced in [Gupta 2015; Bell and Zhang
2017a]. Recall that an algebra A is called cancellative if any algebra isomorphism

A[t] ∼= B[t]

of polynomial extensions for some algebra B implies that

A ∼= B.

The famous Zariski cancellation problem (abbreviated as ZCP) asks if

the commutative polynomial ring k[x1, . . . , xn] over a field k is cancellative

for n ≥ 1; see [Kraft 1996; Gupta 2015; Bell and Zhang 2017a]. It is well-known
that k[x1] is cancellative by a result of Abhyankar, Eakin and Heinzer [Abhyankar
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et al. 1972]. For n = 2, k[x1, x2] is cancellative by a result of Fujita [1979] and
Miyanishi and Sugie [1980] in characteristic zero and by a result of Russell [1981]
in positive characteristic. The ZCP for n ≥ 3 has been open for many years. A
major breakthrough in this research area is a remarkable result of Gupta [2014a;
2014b], which settled the ZCP negatively in positive characteristic for n ≥ 3. The
ZCP in characteristic zero remains open for n ≥ 3. Examples of noncancellative
algebras were given by Hochster [1972], Danielewski [1989] and Gupta [2014a;
2014b], and can be found in [Lu et al. 2020, Example 2.5].

Our main goal is to study the ZCP for noncommutative noetherian connected
graded Artin–Schelter regular algebras [Definition 0.1] of global dimension three.

Definition 0.1 [Artin and Schelter 1987, p. 171]. A connected graded algebra A
is called Artin–Schelter Gorenstein (or AS Gorenstein, for short) if the following
conditions hold:

(a) A has injective dimension d <∞ on the left and on the right,

(b) ExtiA(Ak, A A)= ExtiA(kA, AA)= 0 for all i 6= d , and

(c) ExtdA(Ak, A A)∼= ExtdA(kA, AA)∼= k(l) for some integer l .

If in addition,

(d) A has finite global dimension, and

(e) A has finite Gelfand–Kirillov dimension,

then A is called Artin–Schelter regular (or AS regular, for short) of dimension d .

AS-regular algebras are considered as a noncommutative analogue of the commu-
tative polynomial rings. We refer to [Levasseur 1992; Lü et al. 2017; Stafford 1994]
for related concepts such as the Auslander regularity and the Cohen–Macaulay
property which will be used later in Proposition 0.6. It is well-known that the
only AS-regular algebra of global dimension one is the polynomial ring k[x1].
Combining classical results in [Fujita 1979; Miyanishi and Sugie 1980] with [Bell
and Zhang 2017a, Theorem 0.5], every AS-regular algebra of global dimension two
(over a base field of characteristic zero) is cancellative. On the other hand, by the
results in [Gupta 2014a; 2014b], not every AS-regular algebra of global dimension
three (or higher) is cancellative. Therefore it is natural and sensible to ask which
AS-regular algebras of global dimension three (or higher) are cancellative. In [Lü
et al. 2017, Corollary 0.9], the authors showed that several classes of AS-regular
algebras of global dimension three are cancellative. We say A is PI if it satisfies a
polynomial identity. Our first result is:

Theorem 0.2. Suppose char k = 0. Let A be a noetherian connected graded AS-
regular algebra of global dimension three that is generated in degree 1. If A is
not PI, then it is cancellative.
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Theorem 0.2 covers [Lü et al. 2017, Corollary 0.9]. For an algebra A, let Z(A)
denote the center of A. Let GKdim A (respectively, gldim A) be the Gelfand–
Kirillov dimension (respectively, the global dimension) of A. For AS-regular
algebras of higher global dimension, we have the following.

Theorem 0.3. Suppose char k= 0. Let A be a noetherian connected graded domain
of finite global dimension that is generated in degree 1. Suppose that

(a) GKdim Z(A)≤ 1, and

(b) gldim A/(t)=∞ for every homogeneous central element t in Z(A) of positive
degree.

Then A is cancellative.

We will also show a result similar to Theorem 0.3 for graded isolated singu-
larities which have infinite global dimension; see Theorem 4.3. For a general
noncommutative algebra we have the following conjecture, which extends both
Theorems 0.2 and 0.3.

Conjecture 0.4. Suppose char k = 0. Let A be a noetherian finitely generated
prime algebra.

(1) If GKdim Z(A)≤ 1, then A is cancellative.

(2) If GKdim A = 3 and A is not PI, then A is cancellative.

Originally this conjecture was made without the hypothesis that char k = 0.
When char k > 0, a counterexample to part (1) was given in [Bell et al. 2021,
Theorem 1.1(b)]. See [Bell et al. 2021, Question 4.1] for a modified and weaker
version of Conjecture 0.4(1) in positive characteristic.

The cancellation property of Veronese subrings of skew polynomial rings was con-
sidered in [Chan et al. 2018]. We have the following improvement of Theorem 0.2
concerning the Veronese subrings which provides some evidence for Conjecture 0.4.

Corollary 0.5. Suppose char k= 0. Let A be a noetherian connected graded AS-
regular algebra of global dimension three that is generated in degree 1. If A is
not PI, then the d-th Veronese subring A(d) of A is cancellative for every d ≥ 1.

The proofs of Theorems 0.2 and 0.3 are related to the following result that
establishes that the center of the algebras in these two theorems is either k or k[t].

Proposition 0.6. Let A be a noetherian connected graded Auslander regular Cohen–
Macaulay algebra. If GKdim Z(A)≤ 1, then Z(A) is either k or k[t].

When Z(A) = k[t], we can use Theorem 1.5 which was proved in [Lu et al.
2020]. And we have a question along this line.
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Question 0.7. Let A be a noetherian connected graded Auslander regular algebra.
If GKdim Z(A) = 2, what can we say about the center Z(A)? For example, is
Z(A) always noetherian in this case?

As in the commutative case, it is usually difficult to determine whether or not
an AS-regular algebra is cancellative. For example, we are unable to answer the
following question.

Question 0.8. Let q ∈ k \ {0, 1} be a root of unity. Is the skew polynomial ring
of three variables kq [x1, x2, x3] (or of odd number variables kq [x1, x2, . . . , x2n+3])
cancellative?

When q = 1 and char k= 0, the above question is the classical ZCP which has
been open for many years [Gupta 2015]. Note that if q = 1 and char k > 0, then
k[x1, . . . , xn] for n ≥ 3 is not cancellative by [Gupta 2014a; 2014b]. Question 0.8
is a special case of [Chan et al. 2018, Question 1.5] which was stated for a larger
class of rings, namely, for Veronese subrings of the skew polynomial rings. Sur-
prisingly, if q ∈ k \ {0, 1}, then the skew polynomial ring of even number variables
kq [x1, . . . , x2n] is cancellative by [Bell and Zhang 2017a, Theorem 0.8(a)].

Several new methods were introduced to deal with the noncommutative version
of the ZCP. For example, methods of discriminants and Makar-Limanov invariants
were introduced and used in [Bell and Zhang 2017a]. In [Lezama et al. 2019], the
retractability and detectability were introduced to relate the cancellation property.
In [Lü et al. 2017], Nakayama automorphisms were used to show some classes of
algebras are cancellative. In [Lu et al. 2020], Azumaya locus and P-discriminant
methods were introduced to study the cancellation property. One should continue to
look for new invariants and methods to handle the algebras given in Question 0.8.

The paper is organized as follows. Section 1 contains definitions and preliminar-
ies. In Section 2, we prove some preliminary results necessary for the last section.
In Section 3, we present some lemmas related to cancellation problem. As an
application we establish that the universal enveloping algebra of any 3-dimensional
nonabelian Lie algebra is cancellative (Example 3.10). Theorems 0.2, 0.3 and
Corollary 0.5 are proven in Section 4.

1. Definitions and Preliminaries

We recall some definitions from [Bell and Zhang 2017a; Lezama et al. 2019; Lu
et al. 2020]. Let k be a base field that is algebraically closed. Objects in this paper
are k-linear.

Definition 1.1 [Bell and Zhang 2017a, Definition 1.1]. Let A be an algebra.

(1) We call A cancellative if any algebra isomorphism A[t] ∼= B[s] for some
algebra B implies that A ∼= B.
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(2) We call A strongly cancellative if, for each n ≥ 1, any algebra isomorphism

A[t1, . . . , tn] ∼= B[s1, . . . , sn]

for some algebra B implies that A ∼= B.

For any algebra A, let M(A) denote the category of right A-modules.

Definition 1.2 [Lu et al. 2020, Definition 2.2]. Let A be an algebra.

(1) We call A m-cancellative if any equivalence of abelian categories M(A[t])∼=
M(B[s]) for some algebra B implies that M(A)∼= M(B).

(2) We call A strongly m-cancellative if, for each n≥ 1, any equivalence of abelian
categories

M(A[t1, . . . , tn])∼= M(B[s1, . . . , sn])

for some algebra B implies that M(A)∼= M(B).

The letter m here stands for the word “Morita”.

This Morita version of the cancellation property is a natural generalization of
the original Zariski cancellation property when we study noncommutative algebras.

Let Z be a commutative ring over the base field k, which is usually the center of
a noncommutative algebra. We now recall the definition of P-discriminant for a
property P . Let Spec Z denote the prime spectrum of Z and let

MaxSpec(Z) := {m |m is a maximal ideal of Z}

denote the maximal spectrum of Z . For any S ⊆ Spec Z , I (S) is the ideal of Z
vanishing on S, namely,

I (S)=
⋂
p∈S

p.

For any algebra A, A× denotes the set of invertible elements in A. A property P
considered in the following means a property defined on a class of algebras that is
an invariant under algebra isomorphisms.

Definition 1.3 [Lu et al. 2020, Definition 3.3]. Let A be an algebra, Z := Z(A)
be the center of A. Let P be a property defined for k-algebras (not necessarily a
Morita invariant).

(1) The P-locus of A is defined to be

LP(A) := {m ∈MaxSpec(Z) | A/mA has the property P}.

(2) The P-discriminant set of A is defined to be

DP(A) :=MaxSpec(Z) \ LP(A).
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(3) The P-discriminant ideal of A is defined to be

IP(A) := I (DP(A))⊆ Z .

(4) If IP(A) is a principal ideal of Z generated by d ∈ Z , then d is called the
P-discriminant of A, denoted by dP(A). In this case dP(A) is unique up to
an element in Z×.

(5) Let C be a class of algebras over k. We say that P is C-stable if for every
algebra A in C and every n ≥ 1,

IP(A⊗ k[t1, . . . , tn])= IP(A)⊗ k[t1, . . . , tn]

as an ideal of Z ⊗ k[t1, . . . , tn]. If C is a singleton {A}, we simply call P
A-stable. If C is the whole collection of k-algebras with the center affine
over k, we simply call P stable.

In general, neither LP(A) nor DP(A) is a subscheme of Spec Z(A).
In this paper we will use another property that is closely related to the m-

cancellative property.
Recall from the Morita theory that if A′ := A[t1, . . . , tn] is Morita equivalent

to B ′ := B[s1, . . . , sn], then there is an (A′, B ′)-bimodule � that is invertible and
induces naturally algebra isomorphisms A′ ∼= End(�B ′) and (B ′)op ∼= End(A′�)

such that
Z(A′)∼= Hom(A′,B ′)(�,�)∼= Z(B ′).

The above isomorphism is denoted by

(1.3.1) ω : Z(A′)→ Z(B ′).

The retractable property was introduced in [Lezama et al. 2019, Definitions 2.1
and 2.5] and the Morita Z -retractability in [Lu et al. 2020, Definition 3.6].

Definition 1.4. Let A be an algebra.

(1) We call A Z-retractable if, for any algebra B, any algebra isomorphism
φ : A[t] ∼= B[s] implies that φ(Z(A))= Z(B). If further φ(A)= B, we just
say A is retractable.

(2) We call A strongly Z-retractable if, for any algebra B and integer n ≥ 1, any
algebra isomorphism φ : A[t1, . . . , tn] ∼= B[s1, . . . , sn] implies that φ(Z(A))=
Z(B). If further φ(A)= B, we just say A is strongly retractable.

(3) We call A m-Z-retractable if, for any algebra B, any equivalence of categories
M(A[t])∼= M(B[s]) implies that ω(Z(A))= Z(B), where

ω : Z(A)[t] → Z(B)[s]

is given as in (1.3.1).
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(4) We call A strongly m-Z-retractable if, for any algebra B and any n ≥ 1, any
equivalence of categories M(A[t1, . . . , tn])∼= M(B[s1, . . . , sn]) implies that
ω(Z(A))= Z(B), where

ω : Z(A)[t1, . . . , tn] → Z(B)[s1, . . . , sn]

is given as in (1.3.1).

The following theorem was proved in [Lu et al. 2020, Corollary 3.11 and
Lemma 4.4] and will be used several times in later sections.

Theorem 1.5. Let A be a noetherian algebra such that its center Z(A) is k[x].
Let P be a Morita invariant property (respectively, stable property) such that the P-
discriminant of A, denoted by d , is a nonzero noninvertible element in Z(A). Then A
is strongly m-Z-retractable (respectively, strongly Z-retractable) and strongly m-
cancellative (respectively, strongly cancellative).

Proof. By [Lu et al. 2020, Lemma 6.1], P is stable (when k is algebraically closed).
The assertion follows from [Lu et al. 2020, Corollary 3.11 and Lemma 4.4] �

2. Results not involving cancellation properties

In this section we collect some results that do not directly involve cancellation
properties, but are needed in later sections. In the next section, we collect some
lemmas that are directly related to cancellation properties.

Lemma 2.1. Let k be a field of characteristic zero and q 6= 1 be a nonzero scalar
in k. The following hold.

(1) Algebras k〈x, y〉/(xy− yx), k〈x, y〉/(xy− yx−1) and k〈x, y〉/(xy− yx−x)
are pairwise not Morita equivalent.

(2) If q is not a root of unity, k〈x, y〉/(xy − qyx) is not Morita equivalent to
k〈x, y〉/(xy− qyx − 1).

(3) The Jordan plane (algebra) k〈x, y〉/(xy− yx + x2) is not Morita equivalent
to k〈x, y〉/(xy− yx + x2

− 1).

(4) The Jordan plane (algebra) k〈x, y〉/(xy− yx + x2) is not Morita equivalent
to k〈x, y〉/(xy− yx + x2

− x).

(5) The Jordan plane (algebra) k〈x, y〉/(xy− yx + x2) is not Morita equivalent
to k〈x, y〉/(xy− yx + x2

− y).

Proof. (1) First of all k〈x, y〉/(xy − yx) and k〈x, y〉/(xy − yx − x) have global
dimension two while k〈x, y〉/(xy− yx − 1) has global dimension one. So either
the algebra k〈x, y〉/(xy− yx) or the algebra k〈x, y〉/(xy− yx − x) is not Morita
equivalent to k〈x, y〉/(xy − yx − 1). Second, the centers of k〈x, y〉/(xy − yx)
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and k〈x, y〉/(xy − yx − x) are nonisomorphic, so these algebras are not Morita
equivalent.

(2) Let A := k〈x, y〉/(xy− qyx) and B := k〈x, y〉/(xy− qyx − 1). Suppose on
the contrary that A is Morita equivalent to B. Let J be the height one prime ideal
of B generated by (1− q)xy − 1 such that B/J = k[x±1

] (with the image of y
being (1− q)−1x−1). Since A is Morita equivalent to B, there is an ideal I of A
such that A/I is Morita equivalent to k[x±1

]. Since every projective module over
k[x±1

] is free, A/I is a matrix algebra over k[x±1
]. When q is not a root of unity,

the only height one prime ideals I of A are (x) or (y) [Brown and Goodearl 2002,
Example II.1.2]. In both cases, A/I is isomorphic to k[t], which is not a matrix
algebra over k[x±1

]. This yields a contradiction and therefore A is not Morita
equivalent to B.

(3) Let A := k〈x, y〉/(xy − yx + x2) and B := k〈x, y〉/(xy − yx + x2
− 1) by

recycling notation from the proof of part (2) and suppose on the contrary that A
is Morita equivalent to B. Let J± be the height one prime ideals of B generated
by (xy − yx, x ± 1). Since A is Morita equivalent to B, there is an ideal I± of
A such that A/I± is Morita equivalent to B/J±. Since char k = 0, A has only a
single height one prime that is (x) [Shirikov 2005, Theorem 2.4]. This yields a
contradiction. Therefore A is not Morita equivalent to B.

(4) The assertion follows from part (3) because k〈x, y〉/(xy − yx + x2
− 1) ∼=

k〈x, y〉/(xy− yx + x2
− x).

(5) Let A :=k〈x, y〉/(xy−yx+x2) and B :=k〈x, y〉/(xy−yx+x2
−y) by recycling

notation from the proof of part (2) and suppose on the contrary that A is Morita
equivalent to B. Let y′= y− x2. Then the relation in B becomes xy′− y′x− y′= 0.
Exchanging x and y′, one sees that B is isomorphic to k〈x, y〉/(xy− yx+ x). Let I
be the unique height one prime ideal of B generated by x . Then B/I ∼=k[y]. Since A
and B are Morita equivalent, there is a height one prime J of A. Since the only
height one prime of A is (x). Let J = (x), then I 2 corresponds to J 2. This implies
that B/I 2∼=k〈x, y〉/(xy− yx+x, x2) is Morita equivalent to A/J 2∼=k[x, y]/(x2).
Since the center is preserved by Morita equivalence,

k[x, y]/(x2)∼= Z(k〈x, y〉/(xy− yx + x, x2))∼= k,

yielding a contradiction. Therefore A and B are not Morita equivalent. �

We thank one of the referees for the following remark.

Remark 2.2 (Referee). With only a little more work, one can show the following.

Claim: Let A and B be two filtered AS-regular algebras of global dimension 2 that
are not PI. Then A and B are Morita equivalent if and only if they are isomorphic.
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Sketch proof of the claim. Such algebras all have the form k〈x, y〉/( f ), where f
is a (not necessarily homogeneous) polynomial of degree 2. By [Gaddis 2016,
Corollary 2.12], up to isomorphism, f is one of
(a) xy− yx − 1,
(b) xy− yx − x ,
(c) xy− yx + x2,
(d) xy− yx + x2

+ 1,
(e) xy− qyx for q 6= 1 a nonroot of unity (the algebra is denoted by Oq(k2)), or
(f) xy− qyx − 1 for q 6= 1 a nonroot of unity.

By [Richard and Solotar 2006, Lemma 3.1.1], if two noetherian domains A and B
are Morita equivalent, then the rings of fractions Q(A) and Q(B) are isomorphic.

Note that the algebra corresponding to (a) is simple, consequently, it is not
Morita equivalent to any other algebras that are not simple (in cases (b)–(f)). In
cases (b)–(d) the corresponding algebras all have Q(A)∼= D1(k), the Weyl division
ring. By Lemma 2.1, for the most part, these algebras are pairwise non-Morita
equivalent. The proof of (b) not being Morita equivalent to (d) is similar to the
proof of Lemma 2.1(3).

On the other hand, for cases (e) and (f), Q(A)∼= Dq
1 (k), the skew Weyl division

ring. By [Alev and Dumas 1994, Corollaire 3.11(c)], Dq
1 (k)
∼= Dq ′

1 (k) if and only
if q ′= q±1. By Lemma 2.1(2), algebras in cases (e) and (f) are Morita distinct from
each other. Since Oq(k2)∼=Oq−1(k2) in the case (e) (and similarly for the quantum
Weyl algebras in case (f)), this completes the proof. �

Next we prove Proposition 0.6. To save some space, we refer the reader to
[Levasseur 1992; Stafford 1994] for the definitions of Auslander regularity and
Cohen–Macaulay property. A nice result of [Levasseur 1992, Corollary 6.2] is
that every AS-regular algebra of global dimension three is Auslander regular and
Cohen–Macaulay. A ring A is called stably free if, for every finitely generated
projective A-module P, there exist integers n and m such that P ⊕ A⊕n ∼= A⊕m.
Connected graded algebras are automatically stably free [Stafford 1994]. An Ore
domain A is called a maximal order if A⊆ B inside the quotient division ring Q(A)
of A for some ring B with the property that aBb⊆ A, for some a, b ∈ A \ {0}, then
A = B. The main result of [Stafford 1994] is:

Theorem 2.3 [Stafford 1994, Theorem]. Let A be a noetherian algebra that is
Auslander regular, Cohen–Macaulay and stably free. Then, A is a domain and a
maximal order in its quotient division ring Q(A).

Lemma 2.4. Let Z be a connected graded domain of GK dimension one.

(1) It is noetherian and finitely generated over k.

(2) If Z is normal, then Z is isomorphic to k[t].
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Proof. Note that every domain of GK dimension one is commutative.

(1) Since Z is connected graded and k is algebraically closed, Z is a subring of
k[t] where deg t = 1. From this, it is easy to see that Z is finitely generated and
noetherian.

(2) First of all, Kdim Z = GKdim Z = 1. By part (1), Z is noetherian. Every
noetherian normal domain Z of Krull dimension one or zero is regular (namely, has
finite global dimension). So Z is regular of global dimension no more than one.
Since Z is connected graded, its graded maximal ideal is principal, which implies
that Z ∼= k[t]. �

Note that a noetherian commutative maximal order is a normal domain.

Lemma 2.5. Let A be a domain that is a maximal order.

(1) Its center Z(A) is a maximal order in the field of fractions Q(Z(A)).

(2) If A is connected graded and GKdim Z(A)≤ 1, then Z(A) is either k or k[t].

Proof. (1) Let B be a subring of Q(Z(A)) containing Z(A) such that aBb⊆ Z(A)
for some a, b ∈ Z(A) \ {0}. Let C := AB be the subring of Q(A) generated by A
and B. Then aCb ⊆ AZ(A) = A. Since A is a maximal order, C = A. As a
consequence, B = Z(A). The assertion follows.

(2) The assertion follows from part (1) and Lemma 2.4. �

Note that if GKdim Z(A)= 2, then Z(A) may not be regular. For example let
A = kpi j [x1, x2, x3, x4], where

pi j =


1 for (i, j)= (1, 2),
−1 for (i, j)= (1, 3), (2, 3), (1, 4), (2, 4),
q for (i, j)= (3, 4),

where q is not a root of unity. Then it is easy to see that Z(A) is the second
Veronese subring k[x1, x2]

(2) of the commutative polynomial ring. Hence Z(A) is
not regular.

Lemma 2.6. Let A be a connected graded domain and t be a central element in A
of positive degree d.

(1) For every α ∈ k×, A/(t −α) contains (A[t−1
])0 as a subalgebra.

(2) Suppose that A is generated in degree 1 and that d 6= 0 in k. Then

gldim A/(t −α)= gldim(A[t−1
])0.

(3) Suppose that A is generated in degree 1 and that d 6= 0 in k. If A has finite
global dimension, then so does A/(t −α) for all α ∈ k×.
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Proof. (1) Let T denote the d-th Veronese subalgebra of A, where d = deg t . So,
in T, t can be treated as an element of degree 1. Now

(2.6.1) T/(t −α)∼= T/(α−1t − 1)∼= (T [(α−1t)−1
])0 = (T [t−1

])0 ∼= (A[t−1
])0

where the second ∼= is due to [Rogalski et al. 2014, Lemma 2.1].
Note that A/(t − α) is a Z/(d)-graded algebra with the degree 0 component

being T/(t −α). By (2.6.1), A/(t −α) contains (A[t−1
])0 as a subalgebra.

(2) Since A is generated in degree 1, A/(t −α) is a strongly Z/(d)-graded algebra
with the degree 0 component being (A[t−1

])0. Since we assume d 6= 0 in k, by [Yi
1994, Lemma 2.2(iii)],

gldim A/(t −α)= gldim(A[t−1
])0.

(3) By part (2) it suffices to show that (A[t−1
])0 has finite global dimension. Since

A has finite global dimension, A has finite graded global dimension. Then A[t−1
]

has finite graded global dimension. As a consequence, (A[t−1
])0 has finite global

dimension as required. �

To conclude this section we list two well-known results.

Lemma 2.7 [Lu et al. 2007, Lemma 7.6]. Let A be a connected graded algebra
and t be a central element of degree 1. If A/(t) has finite global dimension, then so
does A.

Lemma 2.8 [Smith and Zhang 1998, Corollary 2]. Let A be a finitely generated
Ore domain that is not PI. Let Z be the center of A. Then GKdim Z ≤GKdim A−2.

3. Some cancellation lemmas

First we recall a classical result concerning the cancellation property.

Lemma 3.1 [Abhyankar et al. 1972, Corollary 3.4]. Let A be an affine domain of
GK dimension at most one.

(1) If A = k, then it is trivially strongly retractable and strongly cancellative.

(2) If A = k[t], then it is strongly cancellative.

(3) If A 6∼= k[t], then it is strongly retractable, and consequently, strongly cancella-
tive.

The following lemma concerns cancellation properties for a tensor product A⊗R,
where R is commutative.

Lemma 3.2. Let A be an algebra with trivial center and let R be a commutative
algebra that is cancellative (respectively, strongly cancellative). Then the tensor
product A ⊗ R is both cancellative (respectively, strongly cancellative) and m-
cancellative (respectively, strongly m-cancellative).
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Proof. The proofs for the assertions without the word “strongly” are similar by
taking n = 1 in the following proof. So we only prove the “strongly” version.

First we show that A⊗ R is strongly cancellative assuming that R is strongly
cancellative. Let B be an algebra such that

φ : (A⊗ R)[t1, . . . , tn]
∼=
−→ B[s1, . . . , sn]

is an isomorphism of algebras. Taking the center on both sides, we obtain an
isomorphism

φZ : R[t1, . . . , tn]
∼=
−→ Z(B)[s1, . . . , sn],

where φZ is a restriction of φ on the centers. Since R is strongly cancellative,
R ∼= Z(B). Let I be the ideal of Z(B)[s1, . . . , sn] generated by {si }

n
i=1. Then

J := φ−1(I ) is an ideal of R[t1, . . . , tn] and

A⊗ (R[t1, . . . , tn]/J )∼= B⊗ (k[s1, . . . , sn]/I )∼= B.

Taking the center on both sides of the above isomorphism and using the fact that
Z(A)= k, we have

R[t1, . . . , tn]/J ∼= Z(B)∼= R.

Therefore
B ∼= A⊗ (R[t1, . . . , tn]/J )∼= A⊗ R

as required.
Next we show that if R is strongly cancellative, then A ⊗ R is strongly m-

cancellative. Let B be an algebra such that

A′ := (A⊗ R)[t1, . . . , tn] is Morita equivalent to B[s1, . . . , sn] =: B ′.

By [Lu et al. 2020, Lemma 3.1(iii)], there is an invertible (A′, B ′)-bimodule � and
an isomorphism

ω : Z(A′)= R[t1, . . . , tn]
∼=
−→ Z(B)[s1, . . . , sn] = Z(B ′)

such that the left action of x ∈ Z(A′) on � agrees with the right action of ω(x) ∈
Z(B ′) on �. Since R is strongly cancellative, R ∼= Z(B). Let I be the ideal of
Z(B)[s1, . . . , sn] generated by {si }

n
i=1. Then J :=ω−1(I ) is an ideal of R[t1, . . . , tn],

and by [Lu et al. 2020, Lemma 3.1(v)],

A⊗ (R[t1, . . . , tn]/J ) is Morita equivalent to B⊗ (k[s1, . . . , sn]/I )∼= B.

Taking the center of the above Morita equivalence and using the fact that Z(A)= k,
we have

R[t1, . . . , tn]/J ∼= Z(B)∼= R.
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Hence

A⊗ (R[t1, . . . , tn]/J )∼= A⊗ R.

Therefore A⊗ R is Morita equivalent to B as required. �

Corollary 3.3. Let k be of characteristic zero and A be a commutative algebra.
Let δ be a locally nilpotent derivation of A with δ(y)= 1 for some y ∈ A. Suppose
that ker(δ) is cancellative (respectively, strongly cancellative). Then A[x; δ] is
cancellative (respectively, strongly cancellative).

Proof. Let C = ker(δ). By [McConnell and Robson 1987, Lemma 14.6.4] A[x; δ]∼=
C⊗ A1(k). By hypothesis, then C is cancellative and Z(A1(k))= k. The assertion
follows from Lemma 3.2. �

With a slight modification to the previous lemma we can consider the case in
which R is a (noncommutative) Z -retractable algebra.

Lemma 3.4. Let A be an algebra with trivial center and let R be a Z-retractable
algebra (respectively, strongly Z-retractable). Then the tensor product A⊗ R is
Z-retractable (respectively, strongly Z-retractable).

The proof of Lemma 3.4 is similar to the proof of Lemma 3.2, so it is omitted.
We call an algebra R universally right noetherian if A⊗ R is right noetherian for
every right noetherian k-algebra A. This property was studied in [Artin et al. 1999].
Thus, if in the previous lemma, we suppose that A is right noetherian algebra and R
is universally right noetherian, then A⊗ R is Hopfian, and by [Lezama et al. 2019,
Lemma 3.6] A⊗ R is cancellative (respectively, strongly cancellative).

The following lemma is useful in some situations.

Lemma 3.5. Let A be a noetherian algebra such that

(i) its center Z(A) is the commutative polynomial ring k[t] for some t ∈ A, and

(ii) t is in the ideal [A, A] of A generated by the commutators and [A, A] 6= A.

Then A is strongly Z-retractable and strongly cancellative.

Proof. Let P be the property that the commutators generate the whole algebra.
By (ii) the property P fails for the maximal ideal (t) in k[t] since [A, A] 6= A,
where A = A/(t). By (ii) again, (t − α)+ [A, A] = A for all α 6= 0. This means
that the property P holds for the maximal ideal (t −α) in k[t] for all α 6= 0. Thus
the P-discriminant of A is t . The assertion follows from Theorem 1.5. �

We refer to [Lezama et al. 2019; Lu et al. 2020] for the definition of LNDH
t -rigid

in the proof of the following lemma.
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Lemma 3.6. Let A be a noetherian domain with Z(A)= k[t]. Let P be a property
such that the P-discriminant is t .

(1) A is strongly Z-retractable and strongly cancellative.

(2) If P is a Morita invariant, then A is strongly Z-retractable, strongly m-Z-
retractable, strongly cancellative and strongly m-cancellative.

Proof. We only prove (2).
Since t is an effective element in k[t] by [Lezama et al. 2019, Example 2.8].

By [Lu et al. 2020, Theorem 3.10], Z is strongly LNDH
t -rigid. By [Lu et al.

2020, Proposition 3.7(ii)], A is both strongly Z -retractable and strongly m-Z -
retractable. Since A is noetherian, it is Hopfian in the sense of [Lezama et al. 2019,
Definition 3.4]. By [Lu et al. 2020, Lemmas 4.4 and 4.6], A is strongly cancellative
and strongly m-cancellative. �

Next we consider the connected graded case.

Lemma 3.7. Let A be a noetherian connected graded domain.

(1) If Z(A) has GK dimension ≤ 1 and Z(A) is not isomorphic to k[t], then A
is strongly Z-retractable, strongly m-Z-retractable, strongly cancellative and
strongly m-cancellative.

For the following parts, we assume that A is generated in degree 1, that Z(A)∼= k[t]
and that char k= 0.

(2) If gldim A/(t)=∞ and gldim A/(t−1)<∞, then A is strongly Z-retractable,
strongly m-Z-retractable, strongly cancellative and strongly m-cancellative.

(3) Suppose the global dimension of A is finite and gldim A/(t) = ∞. Then A
is strongly Z-retractable, strongly m-Z-retractable, strongly cancellative and
strongly m-cancellative.

(4) Suppose A is AS-regular and gldim A/(t) = ∞. Then A is strongly Z-
retractable, strongly m-Z-retractable, strongly cancellative and strongly m-
cancellative.

Proof. (1) By Lemma 2.4(1), Z is an affine domain. By Lemma 3.1, Z is strongly
retractable. By taking P to be a trivial property, say being an algebra, the P-
discriminant is 1. By [Lezama et al. 2019, Remark 3.7(6)], Z is strongly LNDH

1 -
rigid. By [Lu et al. 2020, Proposition 3.7(ii)], A is both strongly Z -retractable
and strongly m-Z -retractable. Since A is noetherian, it is Hopfian in the sense of
[Lezama et al. 2019, Definition 3.4]. By [Lu et al. 2020, Lemmas 4.4 and 4.6], A
is strongly cancellative and strongly m-cancellative.
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(2) Let P be the property of having finite global dimension. By Lemma 2.6, for
every 0 6= α ∈ k,

gldim A/(t −α)= gldim(A[t−1
])0 = gldim A/(t − 1) <∞

and by the hypothesis, we have that

gldim A/(t)=∞.

Hence the P-discriminant is t . The assertion follows from Lemma 3.6(2).

(3) By part (2), it suffices to show that gldim A/(t−1)<∞. Since A has finite global
dimension, so does A[t−1

]. Then A[t−1
] has finite graded global dimension. Since A

is generated in degree 1, A[t−1
] is strongly Z-graded. Hence gldim(A[t−1

])0 is
finite. By Lemma 2.6,

gldim A/(t − 1)= gldim(A[t−1
])0 <∞

as required.
(4) The assertion follows from part (3) and the fact that an AS-regular algebra

has finite global dimension. �

By Lemma 3.7(1), the case of GKdim Z(A)=1 is covered except for Z(A)=k[t].

Lemma 3.8. Let A be a noetherian connected graded algebra.

(1) Suppose Z(A)= k[t] for some homogeneous element t of positive degree. If
(A[t−1

])0 does not have any nonzero finite-dimensional left module, then A
is strongly Z-retractable, strongly m-Z-retractable, strongly cancellative and
strongly m-cancellative.

(2) Suppose B is a connected graded subalgebra of A satisfying

(i) Z(B)= k[t] for some homogeneous element t ∈ B of positive degree.
(ii) Z(A)∩ Z(B) 6= k.

(iii) (A[t−d
])0 does not have any nonzero finite-dimensional left module for

some td
∈ Z(B)∩ Z(A), where d is a positive integer.

(iv) AB is finitely generated and B is noetherian.
(v) A = B⊕C as a right B-module.

Then B is strongly Z-retractable, strongly m-Z-retractable, strongly cancella-
tive and strongly m-cancellative.

Proof. (1) Let P be the property of not having nonzero finite-dimensional left
module over an algebra. Since A is connected graded, P fails for A/(t). We claim
that P holds for A/(t−α) for all α∈k×. By the hypothesis, (A[t−1

])0 does not have
any nonzero finite-dimensional left module. Since A/(t−α) contains (A[t−1

])0 by
Lemma 2.6(1), A/(t−α) does not have any nonzero finite-dimensional left module.
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So the claim holds. Therefore the P-discriminant of A is t . Now the assertion
follows from Lemma 3.6(2).

(2) By part (1) it suffices to show that (B[t−1
])0 does not have any nonzero finite-

dimensional left module. Note that B[t−1
] = B[t−d

]. So it is equivalent to show
that (B[t−d

])0 does not have any nonzero finite-dimensional left module. We
prove this claim by contradiction. Suppose M is a nonzero finite-dimensional
left (B[t−d

])0-module. By hypotheses (iii)–(iv) and by inverting td , A[t−d
] =

C[t−d
] ⊕ B[t−d

] and A[t−d
] is a finitely generated right B[t−d

]-module. Then
(A[t−d

])0 = (C[t−d
])0 ⊕ (B[t−d

])0 and (A[t−d
])0 is a finitely generated right

(B[t−d
])0-module. Hence (A[t−d

])0⊗(B[t−d ])0 M is a nonzero finite-dimensional
left (A[t−d

])0-module. This yields a contradiction. At this point, we have proved
that (B[t−1

])0 does not have any nonzero finite-dimensional left module. The
assertion follows from part (1). �

Lemma 3.8 can be applied to many examples. Here is an easy one.

Example 3.9. Suppose char k= 0. Let A be a generic 3-dimensional Sklyanin alge-
bra generated by {x, y, z}; see [Gaddis et al. 2019a, Introduction] for the relations.
Then Z(A)=k[g] where g is a homogeneous element of degree three. Let G be any
finite group of graded algebra automorphisms of A. Let B be the fixed subring AG.
Then we claim that B is strongly Z -retractable, strongly m-Z -retractable, strongly
cancellative and strongly m-cancellative. It is easy to see that hypotheses (ii)–(v)
in Lemma 3.8(2) hold. If hypothesis (i) in Lemma 3.8(2) holds, then it is easy to
see that remaining hypotheses hold as well and the claim follows by that Lemma.
If hypothesis (i) in Lemma 3.8(2) fails, then the result follows by Lemma 3.7(1).

To conclude this section we give an example of ungraded algebras that are
cancellative.

Example 3.10. Suppose char k=0. Let A be the universal enveloping algebra U (g),
where g is a 3-dimensional nonabelian Lie algebra. One can use Bianchi classifica-
tion to list all 3-dimensional nonabelian Lie algebras [Jacobson 1962, Section 1.4]
as follows.

(1) g= sl2.

(2) g is the Heisenberg Lie algebra.

(3) g= L ⊕ kz, where L is the 2-dimensional nonabelian Lie algebra.

(4) g has a basis {e, f, g} and is subject to the relations

[e, f ] = 0, [e, g] = e, [ f, g] = α f,

where α 6= 0.
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(5) g has a basis {e, f, g} and is subject to the relations

[e, f ] = 0, [e, g] = e+β f, [ f, g] = f,

where β 6= 0.

For each class, one can verify that A is strongly cancellative.

(1) See [Lu et al. 2020, Example 6.11].

(2) The universal enveloping algebra of the Heisenberg Lie algebra has the center
Z =k[t] with t in the ideal generated by the commutators, then the assertion follows
from Lemma 3.5.

(3) In this case U (g) = U (L)⊗ k[z] with Z(U (L)) = k. The assertion follows
from Lemma 3.2.

(4,5) In both cases, one can write A :=U (g) as an Ore extension k[e, f ][g; δ] for
some derivation δ of the commutative polynomial ring k[e, f ]. If the center of A is
trivial, then A is strongly cancellative by [Bell and Zhang 2017a, Proposition 1.3].
For the rest of proof we assume that Z(A) 6= k. Note that the derivation δ of k[e, f ]
is determined by

(3.10.1) δ : e→−e, f →−α f

in part (4), and by

(3.10.2) δ : e→−(e+β f ), f →− f

in part (5). By an easy calculation, one sees that

Z(A)= {x ∈ k[e, f ] | δ(x)= 0}

which is a graded subring of k[e, f ] (which is inside A). Since A contains U (L)
as a subalgebra where L is the 2-dimensional nonabelian Lie algebra, A is not PI.
By Lemma 2.8, GKdim Z(A)≤ 1. Since Z(A) 6= k and k is algebraically closed,
GKdim Z(A) ≥ 1. Thus GKdim Z(A) = 1. By Lemma 2.4, Z(A) is a domain
that is finitely generated over k. If Z(A) is not isomorphic to k[t], then Z(A) is
strongly retractable by Lemma 3.1(3). Using the proof of Lemma 3.7(1), one sees
that A is strongly cancellative and strongly m-cancellative. For the rest, we assume
that Z(A) ∼= k[t] for some homogeneous element t in k[e, f ]. By the form of δ
in (3.10.1)–(3.10.2), the degree of t is at least 2. This implies that k[e, f ]/(t) has
infinite global dimension. On the other hand, if α 6= 0, then k[e, f ]/(t−α) has finite
global dimension (applying Lemma 2.6 to the algebra k[e, f ]). Therefore A/(t)=
(k[e, f ]/(t))[g; δ] has infinite dimension and A/(t −α)= (k[e, f ]/(t −α))[g; δ]
has finite global dimension. Then an argument similar to the proof of Lemma 3.7(2)
shows that A is strongly cancellative.
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One obvious question after Example 3.10 is whether or not every universal
enveloping algebra of a 4-dimensional nonabelian Lie algebra is cancellative.

4. Proof of Theorems 0.2, 0.3 and Corollary 0.5

In this section we prove some of the main results listed in the introduction. We
start with Theorem 0.3.

Proof of Theorem 0.3. If Z(A) is not isomorphic to k[t], the assertion follows
from Lemma 3.7(1). If Z(A) is isomorphic to k[t], the assertion follows from
Lemma 3.7(3). �

Proof of Theorem 0.2. Note that every AS-regular algebra has finite global dimension.
If A is not PI, then by Lemma 2.8,

GKdim Z ≤ GKdim A− 2= 3− 2= 1.

If Z(A) is not isomorphic to k[t], the assertion follows from Lemma 3.7(1). If
Z(A) is isomorphic to k[t] and if gldim A/(t) = ∞, the assertion follows from
Lemma 3.7(3). For the rest of the proof we assume that Z(A)= k[t] and A/(t) has
finite global dimension.

By Rees lemma, gldim A/(t)≤ 2. By a Hilbert series computation, we obtain
that GKdim A/(t)= 2. This implies that A/(t) is AS-regular of global dimension
two. Since we assume that k is algebraically closed, A/(t) is either kq [x, y] or
kJ [x, y]. In particular, the Hilbert series of A/(t) is 1

(1−s)2 . Since A is AS-regular
of global dimension three, it is generated by either 3 elements or 2 elements. Next
we consider these two cases.

Case 1: A is generated by two elements. Then the Hilbert series of A is 1
(1−s)2(1−s2)

.
This forces that deg t = 2. If A/(t)= kq [x, y], then t = xy−qyx and A/(t−1)=
k〈x, y〉/(xy−qyx−1). If q=1, let P be the property of not being Morita equivalent
to A/(t). Then the P-discriminant is t by Lemma 2.1(1). Now the assertion follows
from Lemma 3.6(2).

If q 6=1, we claim that q is not a root of unity. If q is a root of unity, then A/(t−1)
is PI. By Lemma 2.6(1), (A[t−1

])0 is PI. Note that A(2)[t−1
] = (A[t−1

])0[t±1
]. So

A(2)[t−1
] is PI. Consequently, A(2) is PI and whence A is PI, a contradiction. Then

by the argument in the previous paragraph with Lemma 2.1(2) being replaced by
Lemma 2.1(1), one sees that A is strongly cancellative and strongly m-cancellative.

If A/(t)= kJ [x, y], then

t = xy− yx + x2 and A/(t − 1)= k〈x, y〉/(xy− yx + x2
− 1).

Let P be the property of being Morita equivalent to A/(t − 1). Then the P-
discriminant is t by Lemma 2.1(3). By Lemma 3.6(2), A is strongly cancellative
and strongly m-cancellative.
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Case 2: A is generated by three elements. Then the Hilbert series of A is 1
(1−s)3 .

If A is isomorphic to A′⊗ k[t] for some algebra A′, then Z(A′) is trivial and the
assertion follows from Lemma 3.2. So we further assume that A is not a tensor
product of two nontrivial algebras. In this case A is generated by x, y, t subject to
three relations

(4.0.1)

xt − t x = 0,

yt − t y = 0,

xy− qyx = f t + εt2, or xy− yx + x2
= f t + εt2,

where ε is either 0 or 1 and f is a linear combination of x and y.
Again we have three cases. If q = 1 in the first type of (4.0.1), using Lemmas

2.1(1) and 3.6(2), one sees that A is strongly cancellative and strongly m-cancellative.
If q 6= 1 in the first type of (4.0.1), then we can assume that f = 0 and ε = 1 after a
base change. Since A is not PI, q is not a root of unity. Then we use Lemma 2.1(2)
instead of Lemma 2.1(1). Otherwise we have the relation

xy− yx + x2
− f t − εt2

= 0.

Up to a base change, we may assume that ε = 0. Then either xy− yx+ x2
− xt = 0

or xy− yx+x2
− yt = 0. In the case of xy− yx+x2

−xt = 0, using Lemmas 2.1(4)
and 3.6(2), one sees that A is strongly cancellative and strongly m-cancellative. In
the case of xy− yx+ x2

− yt = 0, using Lemmas 2.1(5) and 3.6(2), one sees that A
is strongly cancellative and strongly m-cancellative. �

For the rest of this section we study cancellation property for some graded
isolated singularities. In noncommutative algebraic geometry, Ueyama gave the
following definition of a graded isolated singularity.

Definition 4.1 [Ueyama 2013, Definition 2.2]. Let A be a noetherian connected
graded algebra. Then A is called a graded isolated singularity if

(1) gldim A is infinite.

(2) The associated noncommutative projective scheme Proj A (in the sense of
[Artin and Zhang 1994]) has finite global dimension.

Examples of graded isolated singularities are given in [Chan et al. 2020; Gaddis
et al. 2019a; Mori and Ueyama 2016a; 2016b; Ueyama 2013]. One nice example
of graded isolated singularities is the fixed subring of the generic Sklyanin algebra
under the cyclic permutation action [Gaddis et al. 2019a, Theorem 5.2] which is
cancellative by Example 3.9.

Lemma 4.2. Suppose char k= 0. Let A be a graded isolated singularity generated
in degree one and t ∈ B be a central regular element of positive degree. Then
A/(t −α), for every 0 6= α ∈ k, has finite global dimension.
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Proof. By Lemma 2.6(2) it suffices to show that (A[t−1
])0 has finite global dimen-

sion. Since there is a localizing functor from Proj A to GrMod A[t−1
],

gldim GrMod A[t−1
] ≤ gldim Proj A <∞.

It is well-known that
gldim(A[t−1

])0 = gldim GrMod A[t−1
]

as A[t−1
] is strongly Z-graded. The assertion follows. �

Theorem 4.3. Let A be a noetherian connected graded domain generated in de-
gree 1. Suppose

(1) char k= 0,

(2) GKdim Z(A)≤ 1, and

(3) A is a graded isolated singularity.

Then A is strongly cancellative and strongly m-cancellative.

Proof. If Z(A) 6∼= k[t], then the assertion follows from Lemma 3.7(1). Now we
assume that Z(A)∼= k[t] where t can be chosen to be a homogeneous element of
positive degree. Since A has infinite global dimension, so does A/(t) by Lemma 2.7.
For every 0 6= α ∈ k, by Lemma 4.2, A/(t −α) has finite global dimension. The
assertion follows from Lemma 3.7(2). �

Now we are ready to prove Corollary 0.5.

Proof of Corollary 0.5. If d = 1, then it follows from Theorem 0.2.
Next we assume that d > 1. Note that the Hilbert series of A is either 1

(1−s)3
or 1

(1−s)2(1−s2)
. By an easy computation, the Hilbert series of A(d) cannot be

of the form 1
f (s) for some polynomial f (s). By [Stephenson and Zhang 1997,

Theorem 2.4 and the preceding argument], A(d) does not have finite global dimen-
sion. By [Artin and Zhang 1994, Proposition 5.10(3)], A(d) is a graded isolated
singularity. Since A is not PI, GKdim Z(A) ≤ 1 by Lemma 2.8. The assertion
follows from Theorem 4.3. �
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