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Uniqueness of the minimizer of the normalized
volume function

Chenyang Xu
∗
and Ziquan Zhuang

We confirm a conjecture of Chi Li which says that the minimizer
of the normalized volume function for a klt singularity is unique
up to rescaling. This is achieved by defining stability thresholds for
valuations in the local setting, and then showing that a valuation is
a minimizer if and only if it is K-semistable, and that K-semistable
valuation is unique up to rescaling. As applications, we prove a
finite degree formula for volumes of klt singularities and an effective
bound of the local fundamental group of a klt singularity.
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1. Introduction

Throughout this paper, we work over an algebraically closed field k of char-
acteristic 0. Given a klt singularity x ∈ (X,Δ), Chi Li introduced in [20] the

normalized volume function v̂olX,Δ on the space ValX,x of real valuations
on the function field K(X) of X that are centered on x. Motivated by the

study of K-stability of Fano varieties, the minimizing valuation of v̂olX,Δ is
conjectured to have a number of deep geometric properties, which together
comprise the so-called Stable Degeneration Conjecture, see [20, 22].

There has been a lot of progress on the solution of different parts of
the Stable Degeneration Conjecture in [3, 19, 22, 23, 32]. In particular, it
has been known that a minimizing valuation exists (see [3]) and it is always
quasi-monomial (see [32]).

1.1. Main Theorems

In this paper, we aim to solve another part of the Stable Degeneration Con-
jecture, namely, the uniqueness of the minimizing valuation, as conjectured
in [20, Conjecture 7.1.2].
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Theorem 1.1. Let x ∈ (X,Δ) be a klt singularity, then up to rescaling,

there is a unique minimizer v0 of the normalized volume function v̂olX,Δ.

We remark that our proof of the theorem does not rely on the fact that
the minimizer is quasi-monomial.

An immediate consequence is the following, which is the local version of
the K-semistable case of [33, Theorem 1.1].

Corollary 1.2. If a klt singularity x ∈ (X,Δ) admits a group G-action,

then any minimizer v0 of v̂olX,Δ is G-invariant.

Another direct consequence is the finite degree formula for normalized
volumes.

Theorem 1.3 (Finite degree formula). Let f :
(
y ∈ (Y,ΔY )

)
→

(
x ∈

(X,Δ)
)

be a finite Galois morphism between klt singularities such that
f∗(KX +Δ) = KY +ΔY . Then

v̂ol(x,X,Δ) · deg(f) = v̂ol(y, Y,ΔY ).

Here v̂ol(x,X,Δ) denotes the volume of the klt singularity x ∈ (X,Δ),
see Definition 2.5. We apply this to obtain the following effective bound of
the local fundamental group.

Corollary 1.4. Let x ∈ (X,Δ) be the germ of a klt singularity, then the
order of the fundamental group of the smooth locus satisfies

#|π1(x,Xsm)| ≤ nn

v̂ol(x,X,Δ)
,

where the equality holds if and only if Δ = 0 and x ∈ X is étale locally
isomorphic to Cn/G where the action of G ∼= π1(x,X

sm) is fixed point free
in codimension one.

Combining Corollary 1.4 with the results from [24, 4] relating local and
global volumes of Fano varieties, we also have the following theorem.

Theorem 1.5. Let (X,Δ) be a log Fano variety. Then for any x ∈ (X,Δ),
if we denote by πloc

1 (x,Xsm) the local fundamental group of the smooth locus
of the germ x ∈ (X,Δ), we have the inequality

#|πloc
1 (x,Xsm)| ≤ (n+ 1)n

δ(X,Δ)n ·
(
− (KX +Δ)

)n .
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In particular, the Cartier index of X is bounded from above by the right hand
side of the above inequality.

Here δ(X,Δ) denotes the stability threshold of the log Fano pair (X,Δ),
see [11, Definition 0.2] or [4].

Remark 1.6. An interesting application of Theorem 1.5 is that it gives a new
proof of the boundedness of K-semistable Fano varieties of a fixed dimension
and with volume bounded from below. This was originally proved in [13] as
a consequence of the boundedness results proved in [2]. Applying Theorem
1.5, we only need the fact that Fano varieties with a fixed Cartier index form
a bounded family, which was first proved in [12, Corollary 1.8].

1.2. Outline of the proof

Given a klt singularity x ∈ (X = Spec(R),Δ), the uniqueness of the min-

imizer v (up to rescaling) of v̂olX,Δ is proved in [22] under the assump-
tion that the graded rings associated to the minimizers are finitely gener-
ated. The finite generation assumption is used to give a degeneration of
the singularity (X,Δ) to a K-semistable log Fano cone (X0,Δ0, ξv), where
X0 = Spec(grv(R)), Δ0 the degeneration of Δ, and ξv is the Reeb vector
induced by v. This degeneration picture allows one to degenerate any mini-
mizer to X0, and use the strict convexity of the volume function to conclude
that ξv is the unique T -equivariant minimizer on (X0,Δ0) (see [31, Page
823]).

The main aim of this paper is to prove uniqueness of the minimizer
without assuming the finite generation property, which still remains a major
challenge. For this purpose, a key new input, introduced in Section 3.1, is
the K-semistability of a general valuation v0 ∈ ValX,x centered at a klt
singularity x ∈ (X,Δ). More generally, we will define the stability threshold
δ(v0) of a valuation v0 with finite log discrepancy. This is done by introducing
a local version of basis type divisors. Roughly speaking, a basis type divisor
with respect to the chosen valuation v0 is (up to a suitable rescaling factor)
a divisor of the form {f1 = 0} + · · · + {fN = 0} where the images of fi
form a basis of OX,x/am(v0) (for some integer m; here a•(v0) denotes the
valuation ideals) that is compatible with the filtration induced by v0. Given
another valuation v ∈ ValX,x, we apply the key technical observation from
[1] to find basis type divisors that are compatible with both v0 and v. This
allows us to define the S-invariant and δ-invariant of a valuation v0 with
respect to another valuation v and to eventually define the local analogue of
the stability notions from the global setting. To justify our definition, when
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v0 is given by a Kollár component S, we will show that ordS is K-semistable
as a valuation if and only if (S,ΔS) is K-semistable as a log Fano pair (see
Theorem 3.6).

With these new definitions, in the second step we show in Section 3.2 that
a K-semistable valuation is always a minimizer, and up to scaling there is a
unique K-semistable valuation. The observation here is that the log canon-
ical thresholds (lct) of basis type divisors with respect to a K-semistable
valuation v0 is asymptotically computed by v0. On the other hand, the
asymptotic expected vanishing order of these basis type divisors along a
valuation v is at least volX,Δ(v)

−1/n, with equality when v = v0. Through
the identity

v̂olX,Δ(v)
1/n =

AX,Δ(v)

volX,Δ(v)−1/n
,

minimizing the normalized volume v̂olX,Δ(v) can be thought of as find-
ing valuations that compute the lct of basis type divisors. In particular,
this implies that K-semistable valuations are minimizers of v̂olX,Δ and the
uniqueness then follows from an analysis of the equality condition.

In the last step, we show in Section 3.3 that every minimizing valuation
v0 is K-semistable. To circumvent the finite generation assumption of grv0

R
in [22], we will generalize the derivative argument from [19]. Intuitively,
given two valuations v0, v ∈ ValX,x, we would like to draw a ray between
them in the valuation space and use the nonnegativity of the derivative of
v̂olX,Δ at the minimizer v0 to prove its K-semistability. When v0 and v are
quasi-monomial with respect to a common stratum, a natural candidate is
given by the line joining them in the corresponding dual complex. However,
it is unclear to us how to write down such a ray in general. Our idea is to
instead construct a family of graded sequences of ideals that interpolates
the valuation ideals of the two given valuations. Combining the derivative
formula from [19] and an analysis of the log canonical thresholds and mul-
tiplicities of these “mixed” ideal sequences, we can then show that if v0 is a
minimizer, then δ(v0) ≥ 1, i.e. v0 is K-semistable.
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2. Preliminaries

Notation and Conventions. We follow the notation as in [16, 17, 15].
We say x ∈ (X = Spec(R),Δ) is a singularity if R is a local ring of

essentially finite type over k, Δ is an effective divisor on X and x ∈ X is
the unique closed point.

A filtration F• on a finite dimensional vector space V is a decreasing
sequence F tV (t ∈ R) of subspaces satisfying F tV ⊆ F t′V whenever t ≥ t′.
It is called an N-filtration if F0V = V and F tV = F�t�V for all t ∈ R.
For any filtration F on V , we define its induced N-filtration F•

N by setting
F t

NV := F�t�V .
A projective klt pair (X,Δ) is called a log Fano pair if −KX − Δ is

ample.

2.1. Graded sequences of ideals

Let (R,m) be a local ring of essentially finite type over k ∼= R/m. A graded
sequence of ideals (see [14]) is a sequence of ideals a• = (am)m∈N such that
am · an ⊆ am+n. We call it decreasing if am+1 ⊆ am for all m ∈ N. A graded
sequence b• of ideals is said to be linearly bounded by another one a•, if there
is a positive integer C such that such that

bCm ⊆ am

for any m ∈ N. A finite subset {f1, . . . , fN} of R\{0} is said to be compatible
with a decreasing graded sequence a• of ideals if for all m ∈ N, the nonzero
images f̄i of fi in R/am are linearly independent.

The following lemma is a local version of [1, Lemma 3.1].

Lemma 2.1. Let (R,m) be a local ring of essentially finite type over k ∼=
R/m, let a• and b• be two decreasing graded sequences of m-primary ideals
and let m ∈ N. Then there exist some fi ∈ R \ {0} (1 ≤ i ≤ N) whose
images in R/am form a basis such that {f1, . . . , fN} is compatible with both
a• and b•.

Proof. Let V := R/am which is a finite dimensional vector space. Then V
has two filtrations given by

Fr
a•
V := (ar + am)/am and Fs

b•
V := (bs + am)/am.

By [1, Lemma 3.1], there exists a basis f̄i (1 ≤ i ≤ N) of V that is compatible
with both filtrations Fa• and Fb• . We can lift each f̄i to some element
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fi ∈ R such that {f1, · · · , fN} is compatible with b• (it suffices to lift each
f̄i ∈ Fs

b•
V \Fs+1

b•
V to some fi ∈ bs). On the other hand, since f̄i is compatible

with Fa• , any such lift is automatically compatible with a• (i.e. for all r ≤ m,
fi ∈ ar if and only if f̄i ∈ Fr

a•
V ).

2.2. The space of valuations

2.2.1. Valuations. Let X be a variety defined over k. A real valuation of
its function field K(X) is a non-constant map v : K(X)∗ → R, satisfying:

• v(fg) = v(f) + v(g);
• v(f + g) ≥ min{v(f), v(g)};
• v(k∗) = 0.

We set v(0) = +∞. A valuation v gives rise to a valuation ring

Ov := {f ∈ K(X) | v(f) ≥ 0}.

We say a valuation v is centered at a scheme-theoretic point x = cX(v) ∈ X
if we have a local inclusion OX,x ↪→ Ov of local rings. Notice that the center
of a valuation, if exists, is unique since X is separated. Denote by ValX the
set of nontrivial real valuations of K(X) that admit centers on X. For a
closed point x ∈ X, we further denote by ValX,x the set of real valuations
of k(X) centered at x ∈ X.

For each valuation v ∈ ValX,x and any positive integer m, we define the
valuation ideal

am(v) := {f ∈ OX,x | v(f) ≥ m}.

It is clear that a• = {am}m∈N form a decreasing graded sequence of mx-
primary ideals.

Let (X,Δ) be a pair. We denote by

AX,Δ : ValX → R ∪ {+∞}

the log discrepancy function of valuations as in [14] and [6, Theorem 3.1]
which extends the standard definition of log discrepancies from divisors to all
valuations in ValX . It is possible that AX,Δ(v) = +∞ for some v ∈ ValX , see
e.g. [14, Remark 5.12]. We denote by Val∗X the set of valuations v ∈ ValX
with AX,Δ(v) < +∞ and set Val∗X,x = Val∗X ∩ ValX,x for a closed point
x ∈ X. Note that AX,Δ is strictly positive on ValX if and only if (X,Δ) is
klt.
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Proposition 2.2. Let x ∈ (X,Δ) be a klt singularity and let v0, v1 ∈ Val∗X,x.
Then the graded sequences a•(v0) and a•(v1) of valuation ideals are linearly
bounded by each other.

Proof. This is a direct consequence of the Izumi type inequalities (see e.g.
[20, Theorem 3.1]), which says that a•(vi) and {mm

x }m∈N are linearly bounded
by each other.

Definition 2.3 (Kollár Components). Let x ∈ (X,Δ) be a klt singularity.
A prime divisor S over (X,Δ) is a Kollár component if there is a birational
morphism π : Y → X such that π is an isomorphism overX\{x}, S is a prime
divisor on Y , π(S) = {x}, −S is Q-Cartier and π-ample, and (Y, π−1

∗ Δ+S)
is plt. The map π : Y → X is called the plt blowup associated to the Kollár
component S. By adjunction (see [15, Definition 4.2]) we may write

(KY + π−1
∗ Δ+ S)|S = KS +ΔS ,

where (S,ΔS) is a log Fano pair.

2.2.2. Local volumes.

Definition 2.4. LetX be an n-dimensional normal variety and let x ∈ X be
a closed point. Following [10] we define the volume of a valuation v ∈ ValX,x

as

vol(v) = volX,x(v) = lim sup
m→∞

�(OX,x/am(v))

mn/n!
.

where �(·) denotes the length of the Artinian module.

Thanks to the works of [10, 18, 9], the above limsup is actually a limit.

The following invariant, which was first defined in [20], plays a key role
in our study of local stability.

Definition 2.5 ([20]). Let x ∈ (X,Δ) be an n-dimensional klt singularity.

The normalized volume function of valuations v̂ol(X,Δ),x : ValX,x → (0,+∞)
is defined as

v̂ol(X,Δ),x(v) =

{
AX,Δ(v)

n · volX,x(v), if v ∈ Val∗X,x;

+∞, if v /∈ Val∗X,x.

We often denote it by v̂olX,Δ or v̂ol when x ∈ (X,Δ) is clear from the
context. The volume of a klt singularity (x ∈ (X,Δ)) is defined as

v̂ol(x,X,Δ) := inf
v∈ValX,x

v̂ol(X,Δ),x(v).
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It has been known that the above infimum is indeed a minimum by [3]

and that the minimizing valuations are always quasi-monomial by [32]. The

study of v̂olX,Δ is closely related to K-stability of log Fano pairs, guided

by the so-called Stable Degeneration Conjecture as formulated in [20, Con-

jecture 7.1] and [22, Conjecture 1.2]. See [21] for more background. Our

Theorem 1.1 settles one part of this conjecture.

The following theorem from [22] motivates some of our arguments, al-

though we do not need it in our proof.

Theorem 2.6. Let x ∈ (X = Spec(R),Δ) be a klt singularity, and vm a

minimizer of v̂olX,Δ. Assume the associated grade ring grvm(R) is finitely

generated. Denote by X0 = Spec(grvm(R)) with the cone vertex o, Δ0 the de-

generation of Δ on X0, ξv the Reeb orbit induced by v. Then o ∈ (X0,Δ0, ξv)

is a K-semistable log Fano cone.

Note that the finite generation assumption always holds when v is a

divisorial valuation by [23, 3].

2.3. Log canonical thresholds

Definition 2.7. Given a klt pair (X,Δ) and a non-zero ideal a on X, the

log canonical threshold lct(X,Δ; a) of a with respect to (X,Δ) is defined to

be

lct(X,Δ; a) = max{t ≥ 0 | (X,Δ+ at) is log canonical} = inf
v∈Val∗X

AX,Δ(v)

v(a)
.

For a graded sequence a• = {am}m∈N of non-zero ideals on a klt pair

(X,Δ), we can also define its log canonical threshold to be

lct(X,Δ; a•) := lim sup
m

m · lct(X,Δ; am) ∈ R>0 ∪ {+∞}.

It is proved in [24, Theorem 27] that

(2.1) v̂ol(x,X,Δ) = inf
a•

lct(X,Δ; a•)
n ·mult(a•),

where the infimum runs through all graded ideal sequences a• of mx-primary

ideals, and lct(X,Δ; a•)n ·mult(a•) is set to be +∞ if lct(X,Δ; a•) = +∞.
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3. K-semistability of a valuation

This is the main section of this paper. We will first define the notion of

K-semistability for valuations. Then we will show that for valuations, being

K-semistable is the same as being a minimizer of the normalized volume

function, and that there is a unique K-semistable valuation up to rescaling.

3.1. Definition of K-semistability for a valuation

In this subsection, we introduce a local version of S-invariant on the product

of the valuation space Val∗X,x × Val∗X,x and use it to define the δ-invariant

of valuations, which then naturally give the notion of K-semistability of a

valuation.

Let x ∈ (X = Spec(R),Δ) be a klt singularity. Fix a valuation v0 ∈
Val∗X,x. By Proposition 2.2, for any valuation v ∈ Val∗X,x, the graded se-

quences of ideals a•(v) and a•(v0) are linearly bounded by each other. By

Lemma 2.1, for any m ∈ N there exist some f1, . . . , fNm
∈ R (where Nm =

�(R/am(v0))) which are compatible with both a•(v0) and a•(v) such that

their images f̄i form a basis of Rm := R/am(v0). We call such {f1, . . . , fNm
}

an (m, v)-basis (with respect to v0). The valuation v induces a filtration Fv

on Rm such that an element f̄ ∈ Rm is contained in Fλ
v Rm (λ ∈ R) if and

only if there exists a lifting f ∈ R of f̄ such that v(f) ≥ λ. (For a similar

filtration in the global setting, see [5, 5.1.1]).

Lemma-Definition 3.1. The limit

vol(v0; v) := lim
m→∞

�(Fm
v Rm)

mn/n!

exists. Moreover, we have vol(v0; v/t) = 0 for all t � 0.

Proof. From the definition we have Fm
v Rm = (am(v) + am(v0))/am(v0) ∼=

am(v)/(am(v) ∩ am(v0)), hence

�(Fm
v Rm) = �(R/(am(v) ∩ am(v0)))− �(R/am(v)),

thus by [18, Theorem 3.8] we obtain

(3.1) lim
m→∞

1

mn/n!
�(Fm

v Rm) = mult(a•(v) ∩ a•(v0))−mult(a•(v)).
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Since a•(v0) and a•(v) are linearly bounded by each other, we have

aCm(v) ⊆ am(v0) for some constant C > 0. Thus FCm
v Rm = 0 and

vol(v0; v/t) = lim
m→∞

�(F tm
v Rm)

mn/n!
= 0

for all t ≥ C.

Analogous to the global log Fano case, we set S̃m(v0; v) =
∑Nm

i=1�v(fi)
,
which doesn’t depend on the choice of fi; indeed it is not hard to check that

S̃m(v0; v) =

+∞∑
i=0

i · �(F i
vRm/F i+1

v Rm) =

+∞∑
i=1

�(F i
vRm).

We then define

Sm(v0; v) :=
AX,Δ(v0)

S̃m(v0; v0)
· S̃m(v0; v),

S(v0; v) :=
n+ 1

n
· AX,Δ(v0)

vol(v0)

∫ ∞

0
vol(v0; v/t)dt.

Remark 3.2. In the global non-Archimedean setting, a similar construction

named the (logarithmic) relative volume of two norms is given in [7, Section

3]. However, we measure ‘the relative volume’ by taking a quotient instead

of a difference.

Lemma 3.3. For any v0, v ∈ Val∗X,x, we have S(v0; v) = limm→∞ Sm(v0; v).

Moreover, the function t �→ vol(v0; v/t) is continuous.

Proof. We can embed (X,Δ) into a projective variety (X̄, Δ̄). By [18, Lem-

ma 3.9], we can find a sufficiently ample line bundle L such that the natural

map

(3.2) H0(X̄, Lm) → H0(X̄, Lm ⊗OX/a2Cm(v))

is surjective for all m ∈ N, where C is a positive integer such that aCm(v) ⊆
am(v0) and aCm(v0) ⊆ am(v) for all m ∈ N. Note that this implies that the

restriction map

(3.3) h : H0(X̄, Lm) → H0(X̄, Lm ⊗OX/am(v0)) ∼= R/am(v0)
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is also surjective, where the last isomorphism is given by a trivialization of
L near x. For such L,

Wm := H0(X̄, Lm ⊗ am(v0)) and Vm := H0(X̄, Lm)

defines two graded linear series W•, V• that contain ample series. The valu-
ation v induces a filtration Fv on both V• and W• by setting Fλ

v Vm = {s ∈
H0(X̄, Lm) | v(s) ≥ λ} and Fλ

v Wm = Wm ∩ Fλ
v Vm.

Through (3.3), the image of Fv induces a filtration F1 on Rm :=
R/am(v0). We claim that it is the same as the filtration F•

v on Rm. In-
deed, given an element f ∈ Fλ

v Vm, it is clear that its image f̄ ∈ Rm lies in
Fλ
v Rm. Conversely, if 0 �= f̄ ∈ Fλ

v Rm, then it can be lifted to some f ∈ R
with v(f) ≥ λ. Since

H0(X̄, Lm) → H0(X̄, Lm ⊗OX/aCm(v))

is a surjective, there exists some s ∈ Fλ
v Vm such that s and f has the same

image in R/aCm(v). As aCm(v) ⊆ am(v0), we see that the restriction of s in
Rm gives f̄ . This proves the claim.

Let W t
m = F tm

v Wm and V t
m = F tm

v Vm. Then from the above claim we
have �(F tm

v Rm) = dimV t
m − dimW t

m, hence

vol(v0; v/t) = vol(V t
• )− vol(W t

•),

which, by [4, Proposition 2.3], is continuous in t when 0 ≤ t ≤ C since
vol(V C

• ) ≥ vol(WC
• ) > 0 by (3.2); on the other hand, vol(v0; v/t) = 0 when

t ≥ C as in Lemma 3.1, thus the function t �→ vol(v0; v/t) is continuous
everywhere.

We next prove S(v0; v) = limm→∞ Sm(v0; v). We claim that

(3.4) lim
m→∞

S̃m(v0; v)

mn+1/n!
=

∫ ∞

0
vol(v0; v/t)dt.

By definition, this is equivalent to

(3.5) lim
m→∞

∑∞
i=1 �(F i

vRm)

mn+1/n!
=

∫ ∞

0
vol(v0; v/t)dt.

Let ψm(t) = �(F�tm�
v Rm)
mn/n! . Then we may rewrite the expression in the above

limit as
∫∞
0 ψm(t)dt. Notice that limm→∞ ψm(t) = vol(v0; v/t) and ψm(t) =
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0 for all t ≥ C and all m ∈ N. The equality (3.5) now follows from the
dominated convergence theorem.

It is clear that vol(v0; v0/t) = max{(1− tn)vol(v0), 0} for all t ≥ 0, thus
taking v = v0 in (3.4) we get

lim
m→∞

S̃m(v0; v0)

mn+1/n!
=

∫ ∞

0
vol(v0; v0/t)dt =

∫ 1

0
(1−tn)vol(v0)dt =

n

n+ 1
vol(v0),

hence

lim
m→∞

Sm(v0; v)

AX,Δ(v0)
= lim

m→∞
S̃m(v0; v)

S̃m(v0; v0)
=

n+ 1

n
·
∫∞
0 vol(v0; v/t)dt

vol(v0)
.

In other words, S(v0; v) = limm→∞ Sm(v0; v).

Definition 3.4. A valuation v0 ∈ Val∗X,x is said to be K-semistable if
AX,Δ(v) ≥ S(v0; v) for all v ∈ Val∗X,x. We also define the stability threshold
δ(v0) of a valuation v0 ∈ Val∗X,x as δ(v0) = infv δ(v0; v) where δ(v0; v) =
AX,Δ(v)
S(v0;v)

and the infimum runs over all valuations v ∈ Val∗X,x.

Remark 3.5. The notion of K-semistable valuation has been previously de-
fined for valuations which are quasi-monomial, and whose associated graded
rings are finitely generated (see [31, Page 819] or [21, Theorem 4.14]).

Whereas it is known that minimizers of v̂olX,Δ are quasi-monomial by [32],
the finite generation of the associated graded rings remains open. Therefore,
while Definition 3.4 is conjecturally equivalent to the previous definition, we
circumvent the issue of finite generation.

From the definition it is clear that δ(v0) = δ(λ · v0), thus v0 is K-
semistable if and only if λv0 is K-semistable for some λ > 0. In the spe-
cial case of divisorial valuations induced by Kollár components, we have the
following equivalent characterization, which serves as the motivation of our
definition.

Theorem 3.6. Let S be a Kollár component over x ∈ (X,Δ) (see Definition
2.3). Then we have δ(ordS) ≥ min{1, δ(S,ΔS)} and the valuation ordS is
K-semistable if and only if the log Fano pair (S,ΔS) is K-semistable.

Proof. Let v0 = ordS and let v ∈ Val∗X,x. We know there is an ample Q-
divisor L ∼Q −S|S on S such that the short exact sequences

0 → OY (−(m+ 1)S) → OY (−mS) → OS(mL) → 0
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hold (see e.g. [15, Section 4.1]), where by convention OS(mL) := OS(�mL
).
Since R1π∗OY (−mS) = 0 for all m ≥ 0 by Kawamata-Viehweg vanishing,

we get isomorphisms

am/am+1
∼= H0(S,mL)

where am := am(ordS). After identifying ⊕m∈Nam/am+1 with R(S,L) :=

⊕m∈NH0(S,mL), the valuation v induces a filtration Fv on the section ring

R(S,L).

We claim that

(3.6) S(v0; v) = AX,Δ(v0) · S(L;Fv),

where S(L;Fv) denotes the S-invariant of a filtration as in [4, Section 2.5-

2.6] (we will also use its approximated versions Sm(L;Fv) from loc. cit.). To

see this, we note that

S̃m(v0; v) =

∞∑
i=1

m∑
j=1

�(F i
v(aj−1/aj)) =

m∑
j=1

j · h0(S, jL) · Sj(L; (Fv)N).

By [4, Corollary 2.12], we have Sj(L; (Fv)N) → S(L; (Fv)N) = S(L;Fv)

(j → ∞), thus as h0(S, jL) = (Ln−1) jn−1

(n−1)! +O(jn−2), we obtain

lim
m→∞

S̃m(v0; v)

mn+1/(n+ 1)!
= n(Ln−1) · S(L;Fv).

Thus

S(v0; v)

AX,Δ(v0)
= lim

m→∞
S̃m(v0; v)

S̃m(v0; v0)
=

S(L;Fv)

S(L;Fv0
)
.

On the other hand, it is clear from the definition that S(L;Fv0
) = 1 (the fil-

tration Fv0
satisfies F j

v0H
0(S,mL) = H0(S,mL) if j ≤ m and

F j
v0H

0(S,mL) = 0 when j ≥ m+ 1), which proves (3.6).

Since −(KS + ΔS) ∼Q −(KY + π−1
∗ Δ + S)|S ∼ AX,Δ(v0) · L, we may

rewrite (3.6) as

(3.7) S(v0; v) = S(−(KS +ΔS);Fv).

Let m ∈ N be a sufficiently divisible integer and let f1, · · · , fN ∈ aAm

(where A := AX,Δ(v0)) be the lift of a basis {f̄i} of H0(S,−m(KS +ΔS)) =
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H0(S,mAL). Let

N := dimH0(S,mAL) and D =
1

mN

N∑
i=1

{fi = 0}.

Then we have π∗D = A · S + D̃ where D̃|S is an m-basis type Q-divisor of
the log Fano pair (S,ΔS) (see [11, 4]). Let δm := min{1, δm(S,ΔS)}. From
the definition of stability thresholds, we know that the pair (S,ΔS+δmD̃|S)
is lc, thus (Y, S + π−1

∗ Δ + δmD̃) is also lc by inversion of adjunction. We
have

KY + S + π−1
∗ Δ+ δmD ≥ π∗(KX +Δ+ δmD),

hence (X,Δ+ δmD) is lc, which implies that AX,Δ(v) ≥ δm · v(D) for any
v ∈ Val∗X,x and any D as above.

If we choose f̄i to be compatible with the filtration Fv, then v(D) =
Sm(−(KS +ΔS);Fv) and we obtain

AX,Δ(v) ≥ δm · Sm(−(KS +ΔS);Fv).

Letting m → ∞, we deduce δ(v0) ≥ min{1, δ(S,ΔS)} using (3.7). In partic-
ular, if (S,ΔS) is K-semistable, then v0 = ordS is K-semistable.

Conversely, if v0 is K-semistable, then we have

AX,Δ(v) ≥ S(v0; v) = S(−(KS +ΔS);Fv)

for any v ∈ Val∗X,x. Let c := v(a•(v0)). We may shift the filtration Fv by c to

get a new filtration F on R(S,L), i.e., FλH0(S,mL) := Fλ+cm
v H0(S,mL).

It satisfies F0H0(S,mL) = H0(S,mL) as v(am) ≥ cm for all m ∈ N. By [4,
Corollary 2.10], there exists some εm with limm→∞ εm = 1 such that for all
m ∈ N and any v ∈ Val∗X,x,

εm · Sm(−(KS +ΔS);F) ≤ S(−(KS +ΔS);F)

= S(−(KS +ΔS);Fv)−AX,Δ(v0) · v(a•(v0))
≤ AX,Δ(v)−AX,Δ(v0) · v(a•(v0)) .

For sufficiently divisible integer m and with {fi}, D and D̃ as before, this
means that (Y, S + π−1

∗ Δ+ εmD̃) is lc. By adjunction we see that (S,ΔS +
εmD̃|S) is lc. Since D̃|S can be any m-basis type Q-divisor of (S,ΔS), we
conclude that δm(S,ΔS) ≥ εm. Letting m → ∞ we obtain δ(S,ΔS) ≥ 1, i.e.
(S,ΔS) is K-semistable.
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In general, if (S,ΔS) is not K-semistable, then the inequality in Theorem
3.6 could be strict.

3.2. K-semistable valuation is the unique minimizer

In this subsection, we show that if Val∗X,x contains a K-semistable valuation,

then it is the unique minimizer of v̂olX,Δ up to rescaling.

Theorem 3.7. Let x ∈ (X = Spec(R),Δ) be a klt singularity and let
v0 ∈ Val∗X,x. Assume that v0 is K-semistable. Then

1. v0 is a minimizer of v̂olX,Δ, i.e., v̂ol(x,X,Δ) = v̂ol(v0);

2. if v1 ∈ Val∗X,x is another minimizer of v̂olX,Δ, then v1 = λv0 for some
λ > 0.

For the proof we need some auxiliary calculation. For each valuation
v ∈ Val∗X,x and every integer m > 0, we set

wm(v) := min

m∑
i=1

�v(fi)


where the minimum runs over all f1, · · · , fm ∈ R \ {0} that are compati-
ble with a•(v). Clearly the minimum is achieved by some f1, · · · , fm that
are compatible with a•(v), if and only if for the unique integer r satisfy-
ing �(R/ar+1(v)) > m ≥ �(R/ar(v)), f1, · · · , fm span R/ar(v) and form a
linearly independent set in R/ar+1(v).

Lemma 3.8. We have

lim
m→∞

wm(v)

m
n+1

n

=
n

n+ 1
·
(

n!

vol(v)

)1/n

.

Proof. Let a• = a•(v). From the above description we have

0 ≤ wm(v)−
r−1∑
i=0

i · �(ai/ai+1) ≤ r · �(ar/ar+1)

for all integers r,m > 0 with �(R/ar) ≤ m < �(R/ar+1). Note that this
implies

lim
r→∞

m

rn/n!
= vol(v).
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We also have limr→∞
�(ar/ar+1)

rn = 0 and

lim
r→∞

∑r
i=0 i · �(ai/ai+1)

rn+1/n!
= lim

r→∞
r · �(R/ar+1)−

∑r
i=0 �(R/ai)

rn+1/n!

=

(
1− 1

n+ 1

)
vol(v).

Thus limr→∞
wm(v)
rn+1/n! =

n
n+1vol(v) and

lim
m→∞

wm(v)

m
n+1

n

= lim
r→∞

(
wm(v)

rn+1/n!
· r

n/n!

m
· r

m1/n

)
=

n

n+ 1
·
(

n!

vol(v)

)1/n

.

Proof of Theorem 3.7. We first prove that v0 is a minimizer of v̂olX,Δ, i.e.

v̂ol(v) ≥ v̂ol(v0) for every valuation v ∈ Val∗X,x. Without loss of generality we
may assume that AX,Δ(v0) = AX,Δ(v) = 1. Let m ∈ N and let f1, · · · , fNm

be an (m, v)-basis with respect to v0 (where Nm = �(R/am(v0))).
Since v0 is K-semistable, we have

(3.8) 1 = AX,Δ(v) ≥ S(v0; v).

From the definition it is clear that S̃m(v0; v0) = wNm
(v0) and S̃m(v0; v) ≥

wNm
(v), hence by Lemma 3.8 we get

S(v0; v) ≥ lim
m→∞

wNm
(v)

wNm
(v0)

=

(
vol(v0)

vol(v)

) 1

n

.

Combined with (3.8) we immediately have

v̂ol(v) = vol(v) ≥ vol(v0) = v̂ol(v0),

i.e. v0 minimizes the normalized volume function v̂olX,Δ.
Now assume vol(v0) = vol(v). We claim that

(3.9) vol(v0) = vol(v) = mult(a•(v0) ∩ a•(v)).

Suppose this is not the case, then vol(v0; v) > 0 by (3.1). Thus by the
continuity part of Lemma 3.3, there exists some ε > 0 such that

γ := vol

(
v0;

v

1 + 2ε

)
= lim

m→∞
�(F (1+2ε)m

v (R/am(v0)))

mn/n!
> 0.
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For each m ∈ N, let km be the unique integer k determined by

�(R/ak−1(v)) ≤ Nm < �(R/ak(v)).

Since vol(v0) = vol(v), we have limm→∞
km

m = 1 and thus km < (1 + ε)m

for sufficiently large m. Let g1, · · · , gNm
∈ R \ {0} be a sequence that’s

compatible with a•(v) such that

wNm
(v) =

Nm∑
i=1

�v(gi)
.

Then by construction we have v(gi) ≤ km for all 1 ≤ i ≤ Nm and the

inequality

S̃m(v0; v) =

Nm∑
i=1

�v(fi)
 ≥ wNm
(v)

can be upgraded as

Nm∑
i=1

min{�v(fi)
, km} ≥
Nm∑
i=1

�v(gi)
 = wNm
(v).

In particular, for sufficiently large m we get

Nm∑
i=1

�v(fi)
 =
∞∑
j=0

j · �(F j
vRm/F j+1

v Rm)

≥
∞∑
j=0

min{j, km} · �(F j
vRm/F j+1

v Rm)

+ ((1 + 2ε)m− km) · �(F (1+2ε)m
v Rm)

≥
∞∑
j=0

min{j, km} · �(F j
vRm/F j+1

v Rm) + εm · γm
n

n!

=

Nm∑
i=1

min{�v(fi)
, km}+ εγmn+1

n!

≥ wNm
(v) +

εγmn+1

n!
,
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where Rm = R/am(v0). Dividing by
∑

�v0(fi)
 = S̃m(v0; v0) = wNm
(v0) =

O(mn+1) and letting m → ∞, we obtain

1 ≥ S(v0; v) = lim
m→∞

S̃m(v0; v)

S̃m(v0; v0)
> lim

m→∞
wNm

(v)

wNm
(v0)

=

(
vol(v0)

vol(v)

) 1

n

where the last equality follows from Lemma 3.8, hence vol(v) > vol(v0), a
contradiction. This proves the claim (3.9). By the following Lemma 3.9, it
implies v = v0 and we are done.

The following result, which is an improvement of [23, Proposition 2.7],
is used in the above proof.

Lemma 3.9. Let x ∈ X = Spec(R) be a singularity and let v0, v1 ∈ Val∗X,x.
Assume that

vol(v0) = vol(v1) = mult(a•(v0) ∩ a•(v1)) > 0.

Then v0 = v1.

Proof. We prove by contradiction. Assume that v0(f) �= v1(f) for some f ∈
R. Without loss of generality we may assume that v0(f) = �0 > �1 = v1(f).
Replacing f by fk for some k ∈ N we may further assume that �0 ≥ �1+1. For
v ∈ Val∗X,x and r ≥ 0, let ar(v) = {f ∈ R | v(f) ≥ r}. Let br = ar(v0)∩ar(v1)
and cr = ar(v0) ∩ a2r(v1) where r ≥ 0.

For everym ∈ N and every s ∈ bm, we have v0(f
ms) = m·v0(f)+v0(s) ≥

m(�0 + 1), thus multiplication by fm induces a map

bm
fm

−→ am(�0+1)(v0) → am(�0+1)(v0)/bm(�0+1)

whose kernel is contained in cm (since v1(f
ms) ≥ m(�0 + 1) implies v1(s) ≥

m(�0 + 1)−m�1 ≥ 2m). It follows that

(3.10) �(am(�0+1)(v0)/bm(�0+1)) ≥ �(bm/cm)

for all m ∈ N. By [23, Proposition 2.7], there exists some 0 �= g ∈ mx such
that �2 = v1(g) > v0(g) > 0. For every m ∈ N and every s ∈ cm, we then
have

v1(g
ms) = m · v1(g) + v1(s) ≥ m(�2 + 2),

thus multiplication by gm induces a map

cm
gm

−→ am(�2+2)(v1) → am(�2+2)(v1)/bm(�2+2)
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whose kernel is contained in b2m (if v0(g
ms) ≥ m(�2 + 2) then as v0(g) ≤ �2

we get v0(s) ≥ 2m). It follows that

(3.11) �(am(�2+2)(v1)/bm(�2+2)) ≥ �(cm/b2m)

for all m ∈ N. Combining (3.10) and (3.11) we see that

(�0 + 1)n(mult(b•)− vol(v0)) + (�2 + 2)n(mult(b•)− vol(v1))

= lim
m→∞

�(am(�0+1)(v0)/bm(�0+1))

mn/n!
+ lim

m→∞

�(am(�2+2)(v1)/bm(�2+2))

mn/n!

≥ lim
m→∞

�(bm/cm) + �(cm/b2m)

mn/n!
= lim

m→∞
�(bm/b2m)

mn/n!

=(2n − 1)mult(b•) > 0,

which contradicts our assumption. Thus v0(f) = v1(f) for all f ∈ R as
desired.

3.3. Every minimizer is K-semistable

In this subsection, we show that every valuation that minimizes the nor-
malized volume function is K-semistable. Combined with Theorem 3.7, this
proves the uniqueness of the minimizer.

Theorem 3.10. Let x ∈ (X = Spec(R),Δ) be a klt singularity and let

v0 ∈ Val∗X,x be a minimizer of the normalized volume function v̂olX,Δ. Then
v0 is K-semistable.

In other words, we will show that AX,Δ(v) ≥ S(v0; v) for every valuation
v ∈ Val∗X,x. Inspired by the argument of [19], we consider a family b•,t
(t ∈ R≥0) of graded sequences of ideals that interpolate the valuation ideal
sequences of v0 and v, defined as follows: we set b•,0 = a•(v0); when t > 0,
we set

(3.12) bm,t =

m∑
i=0

am−i(v0) ∩ ai(tv).

Roughly speaking, the ideal bm,t is generated by elements f ∈ R with v0(f)+
t · v(f) ≥ m. By (2.1), we have

lct(b•,t)
n ·mult(b•,t) ≥ v̂ol(v0) = lct(b•,0)

n ·mult(b•,0).
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To relate this to the K-semistability of v0, the idea is to take the deriva-

tive of the above normalized multiplicities at t = 0, which was a technique

introduced in [19]. To do so we analyze the log canonical thresholds and

multiplicities of b•,t.

3.3.1. Log canonical thresholds of summations. We first establish

an inequality for the log canonical thresholds of graded sequences of ideals.

Given two graded sequences of ideals a• and b•, we define c• := a• � b• by

setting

cm = (a� b)m =

m∑
i=0

ai ∩ bm−i.

It is easy to verify that c• is also a graded sequence of ideals. Note that our

definition differs from the usual sum of ideal sequences (see e.g. [27]) since

we use intersections of ideals rather than taking product.

Theorem 3.11. Under the above notation, assume a• and b• are graded

sequences of mx-primary ideals. Then we have

lct(c•) ≤ lct(a•) + lct(b•).

We denote by J (at) the multiplier ideal of a fractional ideal and similarly

by J (at•) the asymptotic multiplier ideal of a graded sequence of ideals a•
with exponent t (see [17] for details). The above inequality will follow from

a summation formula of multiplier ideals.

Lemma 3.12. For any two graded sequences of ideals a•, b• and any t > 0,

we have

(3.13) J (ct•) ⊆
∑

λ+μ=t

J (aλ•) ∩ J (bμ• )

where c• = a• � b•.

Proof. We follow the proof of [28, Proposition 4.10]. Let m be a sufficiently

large and divisible integer such that J (ct•) = J (c
t/m
m ). By the summation

formula of multiplier ideals (see [28, Theorem 0.1(2)]), which says that for

any two ideals a and b,

J
(
(a+ b)t

)
=

∑
t1+t2=t

J (at1 · bt2),
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we have

J (ct/mm ) = J

⎛⎝(
m∑
i=0

ai ∩ bm−i

)t/m
⎞⎠ =

∑
t0+···+tm=t/m

J
(

m∏
i=0

(ai ∩ bm−i)
ti

)
.

(The right hand side is a finite sum.) Since a
m!/i
i ⊆ am!, each individual term

in the above right hand side is contained in

J
(

m∏
i=0

a
ti
i

)
⊆ J

(
m∏
i=0

a
iti
m!

m!

)
= J

(
a
λ/m!
m!

)
⊆ J (aλ•)

where λ =
∑m

i=0 iti. By symmetry, it is also contained in J (bμ• ) where

μ =
∑m

i=0(m− i)ti. Note that λ+ μ =
∑m

i=0mti = m · t
m = t, thus every

J
(

m∏
i=0

(ai ∩ bm−i)
ti

)
⊆ J (aλ•) ∩ J (bμ• )

is contained in the right hand side of (3.13). This completes the proof.

Proof of Theorem 3.11. Let α = lct(a•), β = lct(b•) and let t = α + β. For

any λ, μ ≥ 0 with λ + μ = t we have either λ ≥ α or μ ≥ β, therefore

J (aλ•) ∩ J (bμ• ) ⊆ mx. By Lemma 3.12 we see that J (ct•) ⊆ mx and hence

lct(c•) ≤ t = lct(a•) + lct(b•).

3.3.2. Multiplicities of a family of graded sequences of ideals. We

next derive a formula for the multiplicities of b•,t.

Lemma 3.13. mult(b•,t) = vol(v0)− (n+ 1)
∫∞
0 vol(v0; v/u)

tdu
(1+tu)n+2 .

Proof. By definition, we have

mult(b•,t) = lim
m→∞

�(R/bm,t)

mn/n!
.

However, to derive the statement of the lemma, it is better to use a different

formula, which follows from the above equality:

(3.14) mult(b•,t) = lim
m→∞

∑m
j=1 �(R/bj,t)

mn+1/(n+ 1)!
.
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For ease of notation, let a• = a•(v0). We have

(
aj−�−1 ∩ a�+1(tv)

)
∩

�∑
i=0

(
aj−i ∩ ai(tv)

)
= aj−� ∩ a�+1(tv)

for all 0 ≤ � < j and we get short exact sequences

0 → aj−�−1 ∩ a�+1(tv)

aj−� ∩ a�+1(tv)
→ R∑�

i=0 aj−i ∩ ai(tv)
→ R∑�+1

i=0 aj−i ∩ ai(tv)
→ 0.

Thus from the definition of b•,t, we get

�(R/bj,t) = �(R/aj)−
j∑

i=1

�(F i/t
v (aj−i/aj−i+1)).

Summing over j = 0, 1, · · · ,m we obtain

m∑
j=0

�(R/bj,t) =

m∑
j=1

�(R/aj)−
∑

1≤i≤j≤m

�(F i/t
v (aj−i/aj−i+1))

=

m∑
j=1

�(R/aj)−
m∑
i=1

�(F i/t
v (R/am−i+1))

Combining with (3.14), we deduce that

(3.15) mult(b•,t) = vol(v0)− (n+ 1) · lim
m→∞

Wm

mn+1/n!

where Wm :=
∑m

i=1 �(F
i/t
v (R/am−i+1)). To analyze the limit in the above

expression, we set (c.f. the proof of Lemma 3.3 or the argument in [19,
Section 4.1.1])

φm(y) =
�(F�my�/t

v (R/am−�my�+1))

mn/n!

=
�(F�my�/t

v (R/am−�my�+1))

(m− �my�+ 1)n/n!
· (m− �my�+ 1)n

mn

where 0 < y < 1. It is not hard to check that

lim
m→∞

φm(y) = g

(
y

t(1− y)

)
(1− y)n
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where g(u) = vol(v0; v/u), hence by the dominated convergence theorem we
have

lim
m→∞

Wm

mn+1/n!
= lim

m→∞

∫ 1

0
φm(y)dy

=

∫ 1

0
g

(
y

t(1− y)

)
(1− y)ndy =

∫ ∞

0
g(u)

tdu

(1 + tu)n+2
.

Together with (3.15) this implies the statement of the lemma.

We are now ready to give the proof of Theorem 3.10.

Proof of Theorem 3.10. Let v ∈ Val∗X,x. Up to rescaling, we may assume
that AX,Δ(v0) = AX,Δ(v) = 1. Define b•,t (t ≥ 0) as in (3.12), and let

f(t) := (1 + t)n ·mult(b•,t).

Clearly f(0) = v̂ol(v0). By Theorem 3.11 we have

lct(b•,t) ≤ lct(a•(v0)) + lct(a•(tv)) ≤
AX,Δ(v0)

v0(a•(v0))
+

AX,Δ(v)

v(a•(tv))
≤ 1 + t.

Hence for all t ≥ 0,

f(t) ≥ lct(b•,t)
n ·mult(b•,t) ≥ v̂ol(v0) = f(0),

where the second inequality follows from (2.1) and the assumption that v0
is a minimizer of v̂olX,Δ. Thus f

′(0) ≥ 0. Using Lemma 3.13, we find

f ′(0) = n · vol(v0)− (n+ 1)

∫ ∞

0
vol(v0; v/u)du,

thus

AX,Δ(v) = 1 ≥ n+ 1

n
·
∫∞
0 vol(v0; v/u)du

vol(v0)
= S(v0; v).

Since v ∈ Val∗X,x is arbitrary, it follows that v0 is K-semistable.

Remark 3.14. If we combine together Theorems 3.6, 3.7 and 3.10, we get a
proof of the fact that a Kollár component is a minimizer if and only if it is
K-semistable, which was first established in [19, 23]. While in the proof of
Theorem 3.10, we still use a version of the derivative formula introduced in
[19], we do not need it for the converse.
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4. Applications

In this section, we prove the results mentioned in the introduction.

Proof of Theorem 1.1. By [3] (see also [32, Remark 3.8]), there exists v0 ∈
Val∗X,x such that v̂ol(v0) = v̂ol(x,X,Δ). By Theorem 3.10, v0 is K-semistable,
thus by Theorem 3.7, it is the unique minimizer of the normalized volume
function up to scaling.

Proof of Corollary 1.2. If v0 is a minimizer of v̂olX,Δ, then for any g ∈ G,
the valuation g · v0 defined by (g · v0)(s) = v0(g

−1 · s) is also a minimizer

of v̂olX,Δ. By Theorem 1.1, we have g · v0 = λv0 for some λ > 0; but
since AX,Δ(v0) = AX,Δ(g · v0), we must have λ = 1, hence v0 = g · v0 is
G-invariant.

Theorem 1.3 is then an easy consequence of Corollary 1.2.

Proof of Theorem 1.3. Let G = Aut(Y/X) be the Galois group. By Corol-

lary 1.2, the minimizer v0 of v̂olY,ΔY
is G-invariant, hence v̂ol(y, Y,ΔY ) =

v̂ol
G
(y, Y,ΔY ), where

v̂ol
G
(x,X,Δ) := inf

v∈ValGX,x

v̂ol(X,Δ),x(v)

as the infimum runs over all valuations v ∈ ValX,x that are invariant under
the G-action.

By [26, Theorem 2.7(1)], we get v̂ol
G
(y, Y,ΔY ) = |G| · v̂ol(x,X,Δ) (in

loc. cit. it is assumed that ΔY = 0 and f is étale in codimension one, but the
proof applies in general since these assumptions are only used to guarantee
that Δ = 0). Thus

v̂ol(y, Y,ΔY ) = |G| · v̂ol(x,X,Δ) = deg(f) · v̂ol(x,X,Δ).

In fact, the above argument implies the finite degree formula for any
quasi-étale (i.e. étale in codimension one) finite morphism Y → X, as we
can pass to the Galois closure of Y/X, which is also quasi-étale. However,
if there is a branched divisor, then the pull back of KX + Δ to the Galois
closure of Y/X might have negative coefficients.

Proof of Corollary 1.4. For the germ of a klt singularity (X,Δ), by [30, 8]
(see also [29]), the fundamental group π1(x,X

sm) of the smooth locus Xsm

of is finite.
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Let f : (Y, y) → (X,x) be the universal cover of Xsm and let ΔY = f∗Δ.
Then we have KY + ΔY = f∗(KX + Δ), hence by Theorem 1.3 we get

v̂ol(y, Y,ΔY ) = deg(f) · v̂ol(x,X,Δ). By [26, Theorem A.4], we also have

v̂ol(y, Y,ΔY ) ≤ nn with equality if and only if y ∈ X is smooth and ΔY = 0.
It follows that

deg(f) = #|π1(x,Xsm)| ≤ nn

v̂ol(x,X,Δ)

and the equality holds if and only if
(
y ∈ (Y,ΔY )

) ∼= (0 ∈ Cn) (étale
locally), i.e., Δ = 0 and (x ∈ X) is étale locally isomorphic to Cn/G where
G ∼= π1(x,X

sm) and the action of G is fixed point free in codimension
one.

Proof of Theorem 1.5. By [4, Theorem D], we have

v̂ol(x,X,Δ) ≥
(

n

n+ 1

)n

· δ(X,Δ)n · (−(KX +Δ))n .

Thus the result follows immediately from Corollary 1.4.
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[7] Sébastien Boucksom and Mattias Jonsson. A non-Archimedean ap-
proach to K-stability. arXiv:1805.11160.

https://arxiv.org/abs/arXiv:2003.13788
https://arxiv.org/abs/arXiv:1805.11160


174 Chenyang Xu and Ziquan Zhuang

[8] Lukas Braun. The local fundamental group of a Kawamata log terminal

singularity is finite. arXiv:2004.00522.

[9] Steven Dale Cutkosky. Multiplicities associated to graded families of

ideals. Algebra Number Theory, 7(9):2059–2083, 2013.

[10] Lawrence Ein, Robert Lazarsfeld, and Karen E. Smith. Uniform ap-

proximation of Abhyankar valuation ideals in smooth function fields.

Amer. J. Math., 125(2):409–440, 2003.

[11] Kento Fujita and Yuji Odaka. On the K-stability of Fano varieties and

anticanonical divisors. Tohoku Math. J. (2), 70(4):511–521, 2018.

[12] Christopher D. Hacon, James McKernan, and Chenyang Xu. ACC for

log canonical thresholds. Ann. of Math. (2), 180(2):523–571, 2014.

[13] Chen Jiang. Boundedness of Q-Fano varieties with degrees and alpha-

invariants bounded from below. Ann. Sci. Éc. Norm. Supér. (4),
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