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K-stability of Fano varieties:
an algebro-geometric approach

Chenyang Xu

Abstract. We give a survey of the recent progress on the study of K-stability of Fano varieties by
an algebro-geometric approach.
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Throughout, we work over an algebraically closed field k of characteristic 0.

1. Introduction

The concept of K-stability is one of the most precious gifts differential geometers brought
to algebraic geometers. It was first introduced in [145] as a criterion to characterize
the existence of Kihler—Einstein metrics on Fano manifolds, which is a central topic in
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complex geometry. The definition involves the sign of an analytic invariant, namely the
generalized Futaki invariant, of all possible normal C*-degenerations of a Fano mani-
fold X. Later, in [48], the notion of K-stability was extended to general polarized man-
ifolds (X, L), and the generalized Futaki invariant was reformulated in completely alge-
braic terms, which then allows arbitrary flat degenerations.

In this survey, we will discuss the recent progress on the algebraic study of K-stability
of Fano varieties, using the ideas developed in higher dimensional geometry, especially
the techniques centered around the minimal model program (MMP). While there is a
long history for complex geometers to study Kahler—Einstein metrics on Fano varieties,
algebraic geometers, especially higher dimensional geometers, only started to look at the
K-stability question relatively recently. One possible reason is that only until the necessary
background knowledge from the minimal model program was developed (e.g. [16]), a
systematic study in general could rise above the horizon. Nevertheless, there has been
spectacular progress from the algebro-geometric side in the last a few years, which we
aim to survey in this note.

1.1. K-stability in algebraic geometry

Unlike many other stability notions, when K-stability was first defined in [145] and later
formulated using purely algebraic geometric terms in [48], it was not immediately clear to
algebraic geometers what this really means and whether it is going to be useful in algebraic
geometry. The definition itself is clear: one considers all one parameter subgroup flat
degenerations X, /A !, and attach an invariant Fut(X) to it, and being K-stable is amount to
saying that Fut(XX) is always positive (except the suitably defined trivial ones). Following
the philosophy of Donaldson—-Uhlenbeck—Yau Theorem, which established the Hitchin—
Kobayashi Correspondence between stable bundles and Einstein—Hermitian bundles, one
naturally would like compare it to the geometric invariant theory (GIT); see e.g. [126, 129]
etc. This may make algebraic geometers feel more comfortable with the concept. However,
an apparently similar nature to the asymptotic GIT stability also makes one daunted, since
the latter is notoriously known to be hard to check. Later people found examples which are
K-stable but not asymptotically GIT stable varieties (see [123]), which made the picture
even less clear.

However, it is remarkable that in [117], concepts and technicals from the minimal
model program were first noticed to be closely related to K-stability question. In particular,
it was shown K-semistability of a Fano variety implies at worst it only has Kawamata log
terminal (klt) singularities, which is a measure of singularities invented in the minimal
model program (MMP) theory. Then by running a meticulously designed MMP process,
in [101] we show to study K-stability of Fano varieties, one only needs to consider X /A!
where the special fiber over 0 € A! is also a kit Fano variety. These works make it clear that
to study K-stability of Fano varieties, the MMP would play a prominent role. In fact, as a
refinement of Tian’s original perspective, [117] and [101] suggested that in the study of K-
stability of Fano varieties, we should focus on Kawamata log terminal (klIt) Fano varieties,
since this class of varieties is equipped with the necessary compactness for suitable moduli
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problems. The class of kit Fano varieties is a theme that has been investigated in higher
dimensional geometry for decades, however such compactness was not noticed before by
birational geometers. It was then foreseeable that not far from the future, there would be an
intensive interplay between two originally disconnected subjects, and a purely algebraic
K-stability theory would be given a birth as a result.

Nevertheless, such a view only fully arose after a series of intertwining works (con-
tributed by K. Fujita, C. Li and others) which established a number of equivalent char-
acterizations of notation in K-stability, including the ones using invariants defined on
valuations (instead of the original definition using one parameter subgroup degenerations
X /A%'). More specifically, in [12], inspired by the analytic work [43], Berman realized
that one can replace the generalized Futaki invariants by Ding invariants and define the
corresponding notions of Ding stability. Soon after that, it was noticed in [24,58] that one
can apply the argument in [101] for Ding invariants, and conclude that Ding stability and
K-stability are indeed the same for Fano varieties. A key technical advantage for Ding
invariant, observed by Fujita in [55], is that we can define Ding(¥') more generally for a
linearly bounded multiplicative filtration ¥ on the anti-pluri-canonical ring

R = @ H®(—mrKy),

meN

which satisfies that if we approximate a filtration by its finitely generated m-truncation %,
then
lim Ding(¥7,) — Ding(¥)
m

(this is not known for the generalized Futaki invariants!). Therefore, Ding semistability
implies the non-negativity of any Ding(¥ ). Based on this, a key invariant for the later
development was independently formulated by Fujita and Li (see [58,94]), namely B(E)
for any divisorial valuation £ over K(X). They also show that there is a close rela-
tion between Ding and 8, and conclude for instance X is Ding-semistable if and only
if B(E) > 0 for any divisorial valuation. Another remarkable conceptual progress is the
definition of the normalized volumes in [94] which provides the right framework to study
the local K-stability theory for kit singularities. As a consequence, one can investigate
the local-to-global principle for K-stability as in many other higher dimensional geometry
problems. In a different direction, a uniform version of the definition of K-stability was
introduced in [28] and [42] independently, which is more natural when one consider the
space of all valuations instead of only divisorial valuations; see [19, 23]. With all these
progress on our foundational understanding of K-stability, we can then turn to study vari-
ous questions on K-stable Fano varieties using purely algebraic geometry.

One of the most important reasons for algebraic geometers’ interests in K-stability
of Fano varieties is the possibility of using it to construct well-behaved moduli spaces,
called K-moduli. Constructing moduli spaces of Fano varieties once seemed to be out
of reach for higher dimensional geometers, as one primary reason is that degenerations
of a family of Fano varieties are often quite complicated. Nevertheless, it is not com-
pletely clueless to believe that by adding the K-stability assumption, one can overcome
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the difficulty. In fact, explicit examples of K-moduli spaces, especially parametrizing
families of surfaces, appeared in [110, 121, 143]. Then general compact moduli spaces
of smoothable K-polystable Fano varieties were first abstractly constructed in [100]; see
also partial results in [118, 135]. However, the proofs of all these heavily rely on ana-
Iytics input e.g. [38, 45, 147]. To proceed, naturally people were trying to construct the
moduli space purely algebraically, and therefore remove the ‘smoothable’ assumption.
However, this only became plausible after the progress of the foundation theory of K-
stability described in the previous paragraph. Indeed, together with major results from
birational geometry (e.g. [14, 16, 63]) and general moduli theory (e.g. [7]), by now we
have successfully provided an algebraic construction of the moduli space and established
a number of fundamental properties, though there are still some missing ones. More pre-
cisely, in [71] it was shown that the boundedness of all K-semistable Fano varieties with
a fixed dimension n and volume V' can be deduced from [14]. After the work of [153],
the same boundedness can be also concluded using a weaker result proved in [63]. Then
in [21,151], two proofs of the openness of K-semistability in a family of Fano varieties are
given, both of which rely on the boundedness of complements proved in [14]. Putting this
together, it implies that there exists an Artin stack f{fsf, of finite type, called K-moduli
stack, which parametrizes all n-dimensional K-semistable Fano varieties with the vol-
ume V. Next, we want to proceed to show %5515, admits a good moduli space (in the sense
of [4]). This was done in a trilogy of works: It was first realized in [98] that for the closure
of a single orbit, the various notions in K-stability share the same nature as the intrinsic
geometry in GIT stability. By further developing the idea in [98], in [23] we prove that the
K-semistable degeneration of a family of Fano varieties is unique up to the S-equivalence,
which amounts to saying that the good moduli space, if exists, is separated. Based on this,
in [5], applying the general theory developed in [7], we eventually prove the good moduli
space

Kss Kps
‘%n,V - Xn,V

does exist as a separated algebraic space. The major remaining challenge is to show the
properness of X ,If P;; In [39, 154], it is also shown that CM line bundle is ample on X ,If ‘;‘j,
provided it is proper and an affirmative answer to the conjecture that K-polystability is
equivalent to the reduced uniformly K-stability.

Another major question of K-stability theory is to verify it for explicit examples, which
has been intensively studied, started from the very beginning when people were searching
for Kédhler—Einstein Fano manifolds. A famous sufficient condition found by Tian in [141]
is n

a(X) > porrd
where (X)) is the alpha-invariant; see [120] for an algebraic treatment. This criterion and
its variants have been applied for a long time by people to verify K-stability, although
there are many cases which people expect to be K-stable but have an alpha-invariant not
bigger than n/(n + 1). After the new equivalent characterizations of K-stability were

established, we can define the §-invariant §(X), which satisfies §(X) > 1 (resp. > 1)



K-stability of Fano varieties 269

if and only if X is K-semistable (resp. uniformly K-stable) (cf. [19, 59]), where §(X)
can be calculated as the limit of the infima of the log canonical thresholds for m-basis
type divisors. Calculating §(X) has a somewhat similar nature with calculating (X)) but
could be more difficult. However, it is also much more rewarding, as it carries the pre-
cise information about K-stability. Since then, many new examples have been verified by
estimating §(X'). Another approach is using the moduli space to continuously identify the
K-(semi, poly)stable Fano varieties from the deformation and degeneration of one that we
know to be K-(semi, poly)stable. While this approach was implicitly contained in [143]
and first explicitly appeared in [110], it became more powerful only after combining with
the recent progress, especially explicit estimates of the normalized volume of singularities
and a connection between local and global stability.

Remark 1.1. There is a huge body of complex geometry study on this topic. We delib-
erately avoid any detailed discussion on them, except occasionally referring as a back-
ground. For readers who are interested, one could look at [140] for a recent survey.

While we try to explain various aspects of the recent progress on the algebro-geometric
theory of K-stability of Fano varieties, the choice of the materials is of course based on
the author’s knowledge and taste.

1.2. Organization of the paper

The paper is divided into three parts.

In Part I, we will discuss algebraic geometers’ gradually evolved understanding of K-
stability. As we mentioned, although in [48], the formulation was already algebraic, the
more recent equivalent characterization using valuations turns out to fit much better into
higher dimensional geometry. Therefore, we focus on explaining this new characterization
of K-stability. In Section 2, we will first briefly review the definition of K-stability given
in [48, 145], then we will discuss the main result on special degenerations in [101]. In the
rest of Part I, we will concentrate on proving the valuation criteria of K-(semi)stability
established by [58, 93] and others, as well as introduce more variants of the notion of
K-stability. In Section 3, we will first introduce Fujita’s S-invariant. It is then easy to
deduce from the special degeneration theorem discussed in Section 2 that the positivity
(resp. non-negativity) of 8 implies K-stability (resp. K-semistability). We will also discuss
two equivalent definitions of §(X') for a Fano variety X from [19,59], which is an invariant
precisely telling whether a given Fano is K-(semi)stable. To finish the converse direction
that K-stability (resp. K-semistability) implies 8 > 0 (resp. 8 > 0), we will present two
approaches. First, in Section 4, we follow the approach in [21], which develops a theory
on special divisors, corresponding to special degenerations. Then in Section 5, we discuss
Fujita’s work in [55] of extending the definition of Ding-invariant for test configurations
as in [12] to more general filtrations. This more general situation contains the filtration
induced by a valuation as a special case, and then one just needs to compare Ding invari-
ants and B as in [58,93]. In Section 4.A, we also discuss [93, 103], which uses a concept
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introduced by Chi Li, called the normalized volume; see [94]. This notion initiates a local
stability theory on klt singularities.

In Part II, we will focus on the program of constructing a projective scheme which
parametrizes all K-polystable Fano varieties with the fixed numerical invariants, called the
K-moduli space of Fano varieties. The construction consists of several steps. In Section 6,
we will show there is a Artin stack which parametrizes all K-semistable Fano varieties
with the fixed numerical invariants; see [21,71, 151, 153]. Then in Section 7, we show it
admits a separated good moduli space; see [5,23]. The properness of such good moduli
space is still unknown, but by assuming that, we can essentially conclude the projectiv-
ity; see [39, 154]. This is discussed in Section 8. The proofs of these results interweave
with our understanding of K-stability as discussed in Part I, and also rely on some recent
progress in algebraic geometry e.g. [7, 14, 63] etc.

In Part III, we will discuss how our new knowledge on K-stability as established in
Part I and Part II can be used to get many new examples of K-stable Fano varieties.
K-stability can be verified either by studying the singularities of the Q-linear system
| — Kx|g or by establishing explicit K-moduli spaces. Both of these two methods have
older roots in works like [110, 121, 141, 143] etc. Nevertheless, the recent progress pro-
vides us much stronger tools. In Section 9, we will focus on how to estimate §-invariants
in some explicit examples of Fano varieties, by following the works in [2,56, 136]. Then
in Section 10, we will discuss how local estimates of the volume of singularities can be
used to give explicit descriptions of K-moduli spaces; see [8, 104, 106] etc. We will also
discuss a wall crossing phenomenon of these moduli spaces in the log setting, as in [8].

Postscript. There is some notable progress after the first version of this paper. In [107], a
central problem left open when this note was written, namely Conjecture 4.18, is solved,
which then also gives affirmative answers to Conjecture 3.15, Conjecture 5.22, and Con-
jecture 8.1. In particular, the K-moduli space X : P; is known to be proper and projective,
and the YTD Conjecture holds for any log Fano pair.

On the problem of verifying K-stability of explicitly given Fano varieties: in [3], the
authors improve their method from [2] and connect it with Seshadri constants. As a result,
they show any smooth n-dimensional Fano hypersurface with Fano index less or equal
to n'/? is K-stable.

1.3. Conventions

We will use the standard terminology of higher dimensional geometry; see e.g. [82,84,89].
A variety X is Q-Fano if it is projective, has klt singularities, and —Ky is ample. A
pair (X, A) is log Fano if X is projective, (X, A) is klt, and —Ky — A is ample.
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Part1
What is K-stability?

Unlike smooth projective varieties which are canonically polarized or Calabi—Yau type,
Fano manifolds do not necessarily have a Kidhler—Einstein (KE) metric. It had been spec-
ulated for a long time that the existence of KE metric on a Fano manifold should be
equivalent to certain algebraic stability. After searching for a few decades, the concept of
K-stability was eventually invented in [145] and reformulated in algebraic terms in [48].
Since then the Yau-Tian—Donaldson Conjecture, which predicts that the existence of a KE
metric on a Fano manifold X is equivalent to X being K-polystable, prevailed in complex
geometry. Eventually, the solution was published in [38, 147], though the corresponding
version for singular Fano varieties is still open, and has attracted lots of recent interests.
Actually, there is a new approach, called the variational approach, that aims to solve the
singular case. The variational approach is probably conceptually closer to the algebraic
geometry, because it is tightly related to non-Archimedean geometry; see [29]. Important
progress along this line has recently been made in [24,91,97]; see Remark 3.16.

In this part, we will discuss our gradually evolved understanding of the notions of
K-stability of Fano varieties, using only algebraic terms. We started with the original
definitions introduced in [48, 145], by considering all C*-degenerations of a Fano vari-
ety X. Then we will explain that, one can apply the MMP to put a strong restriction on
the allowed degenerations, namely we only need to consider Q-Fano degenerations. With
all these preparations, we will introduce a new (but equivalent) criterion of K-stability of
Fano varieties using valuations over X . This is the central topic in Part I. In Appendix 4.A,
we will also briefly discuss a study of unexpectedly deep properties of kit singularities,
which can be considered as a local model of K-stability theory for Fano varieties.

2. Definition of K-stability by degenerations and MMP

2.1. One parameter group degeneration

In this section, we will introduce the original definition of K-stability in [48, 145]. It was
related to the geometric invariant theory (GIT) stability, or more precisely the asymptotic
version; see Remark 2.4. In GIT theory, by Hilbert-Mumford criterion, we know to test
GIT stability, it suffices to compute the weight of the linearization on all possible one
parameter subgroup degenerations.

Here we first consider an abstract one parameter subgroup degeneration, which is
called a test configuration.

Definition 2.1. Let X be an n-dimensional projective normal Q-Gorenstein variety such
that — Ky is ample. Assume that —r Ky is Cartier for some fixed r € N. A test configura-
tion of (X, —rKx) consists of

e avariety X with a G,,-action,
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e a Gy,-equivariant ample line bundle £ — X,

o aflat G,,-equivariant projective map : (X, £) — A!, where G,, acts on A! by mul-
tiplication in the standard way (¢, a) — ta,

such that over A! \ {0}, there is an isomorphism
$: (X, L) xa41 (AT \{0}) — (X, —rKx) x (A1 \ {0}).

For any Q-test configuration, we can define the generalized Futaki invariant as fol-
lows. First for a sufficiently divisible k € N, we have

dr = dim H°(X, Ox (—kKx)) = aok™ + a1k"~! + O(k"?)

for some rational numbers a¢ and a;. Let (Xo, £¢) be the restriction of (X, £) over {0}.
Since G,, acts on (X, cf(;@k/r), it also acts on H%(X,, cf?k/r). We denote the total
weight of this action by wy. By the equivariant Riemann—Roch Theorem,

wi = bok™ ! 4 bik™ + O™ ).

So we can expand
Wk -1 -2
— = Fo+ Fik ok™).
ka, — fot Ak 4 (k%)

Definition 2.2. Under the above notion, the generalized Futaki invariant of the test con-
figuration (X, £) is defined to be

aibo —aoby

Fut(x,éﬁ) = _Fl = - - (1)

0

We easily see for any a € N, Fut(X, £®%) = Fut(X, &), therefore when &£ is only
a Q-line bundle, we can still define Fut(X, £) := Fut(X, £%%) for some sufficiently
divisible a.

Remark 2.3. Test configurations were first introduced in [145], where the special fiber
was required to be normal, and the generalized Futaki invariant was defined in analytic
terms.

Later in [48], any degeneration was allowed (indeed instead of a Fano variety, [48]
considered test configurations of any given polarized projective variety), and the gen-
eralized Futaki invariant was defined in algebraic terms as above. Therefore, in some
literature, the generalized Futaki invariant is also called the Donaldson—Futaki invari-
ant. Since in our current note, we will mostly restrict ourselves to a even smaller class
(see Definition 2.11) than in Tian’s setting, to avoid any confusion, we will only use the
terminology in [145].

In different literatures, the definition of the generalized Futaki invariant may differ by
a (positive) constant. As we will see, in Definition 2.6 of K-stability, it is only the sign of
the generalized Futaki invariant that matters.
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Remark 2.4. The most important feature for testing K-stability is that we have to look
at all r. In other words, we need to consider higher and higher re-embeddings given by
| — rKx| and all their flat degenerations under one parameter group. This is similar to the
asymptotic Chow stability; see [129, Section 3] for a detailed discussion, especially for
the implications among different notions of stability.

Nevertheless, the directions which were not addressed in [129] were more subtle.
While it is proved in [48] that any polarized manifold (X, L) with a cscK metric and finite
automorphism group is asymptotically Chow stable, however, this is known to not hold
for either X has an infinite automorphism group (see [123]) or X is singular (see [115]).

Remark 2.5. The notions of K-stability can be defined for a log Fano pair (X, A); see [49,
equation (30)]. In fact, though for the purpose of making the exposition simpler, we will
only discuss Q-Fano varieties, all the K-stability results we discussed in this survey can
be generalized from a Q-Fano variety X to a log Fano pair (X, A), and for most of the
time the generalization is merely a book-keeping.

Definition 2.6. Let X be an n-dimensional normal Q-Gorenstein variety such that — Ky
is ample, then

(1) X is K-semistable if for any test configuration (X, £) of (X, —Kx), we have
Fut(X, £) > 0.

(2) X is K-stable (resp. K-polystable) if for any test configuration (X,£) of (X,—Kx),
we have Fut(X, £) > 0, and the equality holds only if (X, £) is trivial (resp. only
if X and X x A! are isomorphic) outside a codimension 2 locus on X.

Example 2.7. Consider a smooth Fano variety X, such that there is an effective torus
action T(= GJ,) on X. Then for any (integral) coweight G,, — T', we can define a test
configuration X = X x Al and £ =~ — Ky, 41 with the G,,-action given by

t-(x,a) — (t(x),t-a).

This kind of test configuration is called a product test configuration. Since if we reverse the
action of G, the total weight will change the sign, we conclude that if X is K-semistable,
then Fut(X, £) = 0 for all product test configurations. This condition was first introduced
in [60].

There is an intersection formula description, first introduced in [145, Formula (8.3)]
and showed to be identical to the generalized Futaki invariants for any given test configu-
ration (X, £) in [116, 148].

Lemma 2.8. Assume a (X, L) is a normal test configuration. If we glue (X, £) with
(X X (]P’1 \ {0}), p’f(—rKX)) over A1\ {0} by ¢ to get a proper family (X, £) over P1,
then we have the following equality:

1 1 \n+1 1 —\n
Proof. Seee.g. [116,148] or [101, pp. 224-225]. [
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2.2. MMP on family of Fano varieties

In this section, we will start to uncover the connection between K-stability and MMP.
The following theorem proved in [117] is the first intersection of K-stability theory
and the minimal model program in algebraic geometry.

Theorem 2.9 ([117]). Let X be an n-dimensional normal Q-Gorenstein variety such
that — Ky is ample. If X is K-semistable, then X has (at worst) kit singularities, i.e. X is
a Q-Fano variety.

The proof of the above theorem is a combination of (2) and a MMP construction
called the Ic modification whose existence relies on the relative minimal model program;
see [122].

It was probably not a big surprise that the notion of K-stability should have some
restriction on the singularities, however, it was really a remarkable observation that the
right category of singularities should be the one from the minimal model program theory.
From now on, we will only consider the K-stability problem for Q-Fano varieties.

Remark 2.10. It is natural to ask whether we can restrict ourselves to an even smaller
category of singularities than klt singularities. The answer is likely to be negative; see
Section 4.A. However, the global invariant of the volume (—Kyx )" for the K-semistable
Fano variety will post more restrictive conditions on the possible local singularities; see
Theorem 6.6.

Now we introduce a smaller class of test configurations called special test configura-
tion, which will play a crucial role in our study.

Definition 2.11 (Special test configurations). A test configuration (X, £) of (X,—rKx) is
called a special test configuration if £ ~g —rK x and the special fiber X is a Q-Fano var-
iety. By inversion of adjunction, this is equivalent to saying X is Q-Gorenstein and — K i
is ample and (X, Xp) is plt.

We also call a test configuration (X, £) satisfying that (X, X¢) is log canonical and
£ ~qg —rKx to be a weakly special test configuration.

The next theorem shows the difference in the definition of K-stability for Fano varieties
in [145] and in [48] (see Remark 2.3) does not really play any role.

Theorem 2.12 ([101]). Let (X, &) — A be a test configuration (X, —rKx), then there
exists a special test configuration

(xst, xst) N Al,
which is birational to (X, £) X1 ,_,,a A" over A, such that

Fut(X™, £%) < d -Fut(X, £).
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Moreover, the equality holds if and only if the birational map
(X, E™) ==> (X, L) Xg1 50 A
is an isomorphism outside codimension 2.

Sketch of the proof. Started from any test configuration X, we will use the minimal model
program to modify X such that at the end we obtain a special test configuration X®, and
during the process the generalized Futaki invariants decrease. The modification consists
of a few steps.

Step 0. If we replace X by the normalization n: X® — X x, s A!, then we have
d -Fut(X, £) = Fut(X", £" := n* &)

with the equality holds if and only if X" — X x, s A! is an isomorphism outside
codimension at least 2. This can be seen by directly applying the intersection formula (2).

Key idea 2.13. After Step 0, we can always assume the special fiber is reduced. The fol-
lowing steps will all involve minimal model program constructions. The main observation
is the following calculation: denote by &£ the polarization on X, such that £|y, ~ —rKy,
for t # 0, so we can write £ + rKy, ~ E which is a divisor supported over 0. Then
lett > O such that £; = £ + tE is still ample, then applying (2), we have

L fut(X. £,) " (lf)"_l (IE)2<O 3)
—Fut(X, =—|- (= <O0.
dt ! 2(—Kx)* \r ! r

Step 1. From X", we can construct the log canonical modification of f°: X' — (X", X7)
(see [82, Theorem 1.32]), where X is the special fiber. By a suitable base change, we can

assume that the special fiber X (lf of X'¢ is also reduced. Let F be the reduced exceptional
divisor. Then by the definition of the Ic modification,

Koye + f(X8) + F = Kye + X ~ Kxie

is ample over X™. So E = 1 f1*£" + Ky is ample over X" and £ := 1 fl* g + 1 E
is ample for some 0 < ¢ < 1. Therefore, (3) implies Fut(X", £I°) < Fut(X™", £"), and
the equality holds if and only if (X", X§) is log canonical.

Step 2. Replacing £'° by its power, we can assume that H := £ — Ky is ample.
Then we run K oi.-MMP with the scaling of H (see [16]), which is automatically G,-
equivariant in each step. Thus we get a sequence of numbers

1
o=1>H2>20> 2l >lp=—,
r

with a sequence of models

X = Yo —> Yy —> v = Yy
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such that if we let H; be the pushforward of H on Y;, Ky, + sH; is nef for any s € [t; 1, t;].
Moreover, we have Ky,, , + t Hn—1 ~q 0. Thus,

KYm_l + tm—1Hp—1 ~Q (tm—l _tm)HIn—l

is big and nef. Let X" be the ample model of H,,—; and £*" the ample Q-divisor induced
by H,,—1. If we use (2) to define the generalized Futaki invariant when &£ is a big and nef
line Q-bundle, then (3) implies

Fut(X", £') = Fut(Yy, Ky, + H)
> Fut(Yo, KYO + llH())
= Fut(Yl, KYl + I1H1)

= FUt(Ym—l ’ KY1 + tm—l Hm—l)
= Fut(X™, £™),

and the equality holds if and only if X'° = X*". We note that since — K s is proportional
to £, we indeed have

1 n+1
F t Xan,éﬁan e — K_an . 4
u( ) 2()1+1)(—Kx)”( X /]pl) ( )
(In particular, (X", £2") is a weakly special test configuration.)
Step 3. In the last step, by a tie-breaking argument, we can show after a possible base
change, by running a suitable minimal model program, we can construct a model such
that (X°, X3) is plt and the discrepancy of X with respect to (X*", XJ") is —1. By an
intersection number calculation, we have

1 n+1 1 n+1
- (K > (K
DKy CEe) 2 T Ry (fe)
and the equality holds if and only if X" = X*. ]

2.14. While special degenerations are indeed quite special, however, even simple Fano
varieties could have many special degenerations. An easy example is in Example 2.15.
One could think of the stack %fﬁ‘f}’ of all kit Fano varieties with fixed numerical invariants
similar to the stack @} of all coherent sheaves with the fixed Hilbert polynomial.

Example 2.15. The family (x? + y2 + z2 4+ tw? = 0) C P2 x A!, gives a special degen-
eration of P! x P! to the cone over a conic curve.

Example 2.16. A Q-Fano does not have any nontrivial weakly special test configuration
if and only if X is exceptional, that is

@(X) := inf {lct(X, D)| D ~g —Kx} > 1.

i.e. if we define T(E) = supp{ordg (D) | D ~go —Kx}, then Ax(E)/T(E > 1 for all
divisors E over X as «(X) = infg(Ax (E)/T(E)); see Theorem 4.10 for a proof.
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However, it is known for a Q-Fano variety X, the condition
dim(X)

dim(X) + 1

is sufficient to imply that X is K-stable; see Example 9.9.

So it is clear that Theorem 2.12 alone is not strong enough to verify the K-stability of
a general Fano variety.

a(X) >

3. Fujita-Li’s valuative criterion of K-stability

In this section, we will discuss the characterization of K-stability using valuations. The
viewpoint for using valuations to reinterpret a one parameter group degeneration was
introduced in [28], based on earlier works by [139, 149]. A key definition, made in a series
of remarkable works [55, 58, 93], is the invariant 8(E) for divisorial valuations £ which
will play a prominent role in this survey, based on Theorem 3.2 which says that one can
use them to precisely characterize various K-stability notions. This change of viewpoint
will be our major topic in the rest discussion of Part I.

We say E a divisor over X if E is a divisor on a normal birational model ¥ over X.
Let X be a normal variety such that Ky is Q-Cartier, we define the log discrepancy

Ax(E) =a(E,X) + 1,
where a(E, X) is the discrepancy; see [84, Definition 2.25]. So X being klt is equivalent

to saying that Ay is positive for any E.

3.1. B-invariant
The B-invariant By (E) was first defined in [58,93], after an earlier attempt in [55].

Definition 3.1. Let X be an n-dimensional Q-Fano variety and E a divisor over X. We
define

oo

1
Br(E) = Ax (B) — —— [ vol* (k) — 1) . )
(=Kx)" Jo
where E arises a prime divisor on a proper normal model u: Y — X. We also denote
Ko Jo vol(u* (—=Kx) —1E) by Sx (E).

Our notion differs by a factor (—Kx)" with the one used in some other literature,
e.g. [58]. When X is clear we will omit the decoration to simply write S(E) etc.

The importance of B-invariant can be seen from the following theorem.

Theorem 3.2 (The valuative criterion for K-(semi)stability, [58,93]). A Q-Fano variety X
is

(1) K-semistable if and only if Bx (E) > 0 for all divisors E over X ;

(2) (together with [23]) K-stable if and only if Bx (E) > O for all divisors E over X.
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The rest of the section will be devoted to prove one direction of Theorem 3.2. Then
different proofs of another direction will be completed in Section 4, Section 4.A and Sec-
tion 5.

Consider a special test configuration X, and denote by its special fiber by Xo. Then
the restriction of ordy, on K(X) = K(X x Al) to K(X) yields a valuation v. It is easy
to see when X is a trivial test configuration, then v is trivial, we also have:

Lemma 3.3 ([28, Lemma 4.1]). If X is not a trivial test configuration, then v is a diviso-
rial valuation, i.e. v = c - ordg for some ¢ € Z~y and E over X.

Proof. Since tr.deg(K(X)/K(X)) = 1, by Abhyankar’s inequality, we know that
tr.deg(K(v)) + rankg(v) > tr.deg(K(ordy,)) + rankg(ordyx,) — 1
= dim(X).

This implies v is an Abhyankar valuation, whose value group is nontrivial and contained
in Z, which implies the assertion. |

While the above lemma is very general and cannot be easily used to trace the cor-
respondence geometrically, see Theorem 4.10 for a much more precise characterization
of v.

Lemma 3.4. For a nontrivial special test configuration X, of a Q-Fano variety X, denote
by v the valuation defined as above. Then we have

2 -Fut(X) = Bx (v) := ¢ - Bx(ordg).

Proof. Consider a section s € H°(—mKy) for m sufficiently divisible. Let Dy be the
closure of (s) x A' on X x A'. Fix a common log resolution X of X and X x Al

Denote by X the special fiber of X. So,
¥*(Dy) = D + (ordy, ()Xo + E € H*(—mK g +m-a(Xo, X x AYXo + F), (6)

where D s and X o are the birational transforms of D; and X on X and Supp(E) as well
as Supp(F) supporting over 0 do not contain the birational transform of X x {0} and X.
We know

a(Xo, X x A"y = A(Xo, X x A') =1 =c-Ax(E) and ordy,(s) = c-ordg(s),
so if we denote by D = vy, (ﬁs), pushforward (6) under ¥/, it becomes

D! + (c-ordg (s))Xo € H*(—mKyx + mc - Ax (E)Xo).
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We choose a basis {s1,...,sn, }(Ny = dim H%(—mKx)) of H°(—mKx) which is com-
patible with the filtration, that is, if we let j; = dim F*(H°(—mKy)), then {s1,...,sj,}
form a basis of ¥ (H°(—m Kyx)). The above computation says the total weight w,, of G,,
on H°(—mKx) is

W =Y _ ¢+ (ji = jix1)i —me - Ax (E),

i

and if we divide by m"*!/n! and let m — oo, we have

lim li}—rln =c / vol(—Kx —1 - E)dt — cAx (E)(—Kx)"
m—oo mmn /I’l' 0
= —C(—KX)”,BX(E)’

where we use
o0
h};ln m”‘“/n' Z(], Jiv1)i = hm n+1/nv Z], = / vol(—Kxy —t - E) dt

by the dominated convergence theorem.
On the other hand, a simple Riemann—Roch calculation implies

Wm . 1 _ n+1 n
i e = (K = 2k B

by (4). [

Combining with Theorem 2.12, a direct consequence of Lemma 3.4 is one direction
of Theorem 3.2.

Corollary 3.5. If Bx(E) > 0 (resp. Bx(E) > 0) for any divisor E over X, then X is
K-semistable (resp. K-stable).

The above discussion can be extended using the following construction.

3.6 (Rees construction). The following general construction is from [28, §2].
Fix r such that —rKy is Cartier. Let v be a Z-valued valuation on X which yields a
filtration ¥ := %, on R(X) = D,,eny Rm = Bypeny H®(—mrKx) with

F} R = {s € H*(—~mrKx) | v(s) > A}, VmeN. @)
Then we can construct the Rees algebra of ¥

Rees(F) = ) @t 7F "R S R[t.17"]

meN peZ

as a k|[t]-algebra.
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The associated graded ring of ¥ is

FPR
._ P p _ m
gI'j:R = @ @ngRm, where gI‘me = m
meN peZ
Note that
_ _ Rees(F)

Rees(F klt,t™'] ~ R[t,t7} d —/ 2 ~grzR. 8
ees(F) @k k1,177 [r,:7°] an [Rees(7) — &7 ®)

We say that an N-filtration ¥ is finitely generated if Rees(¥) is a finitely generated
k[t]-algebra. When v is given by a divisor E, this finite generation condition is equivalent
to the finite generation of the double graded ring

P H°(-mp*Kx —nE). ©)

m,neN

i.e. the a divisor is dreamy; see [57, Definition 1.2 (2)]. Assuming ¥ is finitely generated,
we set X := Proj,1 (Rees(F)). By (8),

Xargoy =~ X x (A'\{0}) and X, ~ Proj(grg R).

Lemma 3.7. Under the correspondence between Lemma 3.3 and (9), there is one-to-one
correspondence

Nontrivial test configurations X a divisorial valuation a - ordg
of X with an integral special fiber with dreamy E and a € N4

Moreover, we have a - B(E) = 2 - Fut(X).

Proof. If E is a dreamy divisor, then it is clear the Rees construction Rees(¥;) for v =
a - ordg is finitely generated. And the fiber is integral, since the associated graded ring of
any valuation is integral.

To see the last statement, when the special fiber of a test configuration X is integral,
then £ ~g —K . Thus the calculation in Lemma 3.3 can be verbatim extended to this
setting. [ ]

We also make the following definitions which give smaller classes of divisorial valua-
tions than being dreamy.

Definition 3.8. A divisorial valuation E over a Q-Fano variety is called special (resp.
weakly special) if there is a special test configuration X (resp. weakly special test config-
uration X with an integral fiber), such that ordy, |k(x) = a - ordg.

3.9 (The reverse direction). We still need to prove that the K-(semi)-stability implies the
(semi)-positivity of j.

Note that the main reason we can prove Corollary 3.5 is that instead of considering all
test configurations, which are not easy to connect to S-invariants, Theorem 2.12 allows us
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to only look at special test configurations. The difficulty for the reverse direction then lies
on the fact that not every divisor £ over X arises from a special test configuration, and
more generally it is hard to precisely characterize which divisors are dreamy. In our note,
we will present different proofs of the reverse direction in Section 4 and Section 5.

The first proof was independently given in [58] and [93]. There they use the notion of
Ding invariant (first introduced in [12]) to define notions of Ding-stability. Then one can
use MMP as in Section 2.2 but for Ding-invariants to show the notions of Ding stability
is the same as the K-stability ones, since they are the same on special test configurations.
One major advantage of using Ding invariant is that its definition can be sensibly extended
to any general bounded multiplicative filtration, which contain the setting of both test
configurations and valuations, by establishing an approximation result (proved in [55]);
see Theorem 5.16. We will postpone the detailed discussions in Section 5.

The second proof, which was first found in [103] indeed reduces everything to a ‘spe-
cial’ setting. This is not straightforward for 8, however, we follow [93] and interpret 8 as
the derivative of the normalized volume function over the cone singularity. In Section 4.1,
following [21] we will present an argument only using global invariants; see especially
Theorem 4.6. In Appendix 4.A, we discuss the proof in [103] using normalized volumes.

Example 3.10 (Boundedness of volume, [55]). One of the first striking consequences of
the valuative criterion Theorem 3.2 is the following statement proved by Fujita in [55]:
The volume of an n-dimensional K-semistable Q-Fano variety is at most (n + 1)”.

Let X be a K-semistable Q-Fano variety. Pick up a smooth point x € X, and blow
up x, we get u: Y — X with an exceptional divisor E. Since

0 — wk ® Ox (~mKx) — Ox (~mKx) — Ox (~mKx) ® (Ox /mk) — 0,
we know that
h Oy (u* (—mKx) —kE)) > h°(Ox (—mKx)) — h°(Ox (—mKx) ® (Ox /uk)).

Thus, we have

0= (K" B(E) = n+ (K" = [ vol (" (Kx) = (E) di

(—Kx)")'/
<n- (K - | ((~Kx)" —1").
0

which immediately implies (—Kx)" < (n + 1)".

If X is singular, and we choose x to be a singularity, then an even stronger restriction
on the volume in terms of the local volume of the singularity is obtained in [105]; see
Theorem 6.6.

3.2. Stability threshold

It is also natural to consider a variant,

Ax(E)  (=Kx)"-Ax(E)
Sx(E) — [7°vol(~Kx —tE)dt’

Sy (E) =
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Definition 3.11 ([19,59]). For a Q-Fano variety, we define the stability threshold of (X,A)
to be
8(X) = i%f Ox(E),

where the infimum through all divisors E over X.

In fact, the §-invariant 6(X') was first defined in [59] in the following way: Let X be a
Q-Fano variety. Given a sufficiently divisible m € N, we say D ~q —Kx is an m-basis
type Q-divisor of —Kx — A if there exists a basis {51, ..., s, } of H°(X, Ox (m(—Kx))

such that {
D= (s =0+ + fow, = 0))

We set
$m(X, A) := min {lct(X; D) | D ~qg —Kyx is m-basis type}.
The original definition of §(X) in [59] is lim sup 8,,(X). Then it is shown in [19, Theo-

. . . m—oo
rem 4.4] that the limit exists and

lim &,,(X) = inf éx(FE); (10)
m— o0 E

see Proposition 4.3. This way of computing §(X) as the infimum of the log canoni-
cal thresholds for a special kind of complements (see Definition 4.1) is important both
conceptually and computationally, as it connects to more birational geometry tools; see
e.g. Section 4.1.

Theorem 3.2 (1) can be translated into the following theorem:

Theorem 3.12 ([19,59]). A Q-Fano variety X is K-semistable if and only if §(X) > 1.

3.13 (Uniform K-stability). We call X to be uniformly K-stable if §(X) > 1. For other
equivalent descriptions of this concept, see Theorem 5.17. This concept was first intro-
duced in [28, 42]. The equivalence between the original definition and the current one
follows from the work of [19, 58]; see Theorem 5.17. Theorem 3.2 (2) says uniform
K-stability implies K-stability. However, the converse is much subtler, as we do not know
the infimum is attained by a divisorial valuation. This is Conjecture 3.15 in the case § = 1.

See Section 3.A for the extension of the definition of § to the space of more general
valuations.

Remark 3.14 (Twisted Kédhler—Einstein metric). It turns out that when k = C the invari-
ant §(X) also has an older origin from the differential geometry in terms of twisted
Kihler—Einstein metrics: For a Fano manifold X, in [144] and then in [130,131], an invari-
ant called the greatest Ricci lower bound of X was first defined and studied as

sup {t € [0, 1] | there exists a Kihler metric w € c¢1(X) such that Ric(w) > ta)}.

Later this invariant was further studied in [92, 133, 138] etc. It is shown in [24, 34] that
for a Fano manifold X, the greatest Ricci lower bound is equal to min{1, §(X)}.
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One crucial conjecture remaining is the following; see [22,23].

Conjecture 3.15. Let X be a Q-Fano variety. If §(X) < 1, then there is a nontrivial
special test configuration X with the induced divisorial valuation E (see Lemma 3.3)
such that 8(X) = 8x(E) = 8(Xo), where Xy is the special degeneration.'

For a sketch of the proof of Theorem 3.21 (2) as well as a further discussion of Con-
jecture 3.15, see Section 4. 1.

Remark 3.16 (Yau-Tian—-Donaldson Conjecture). Consider the case 6(X) = 1. In this
case, Conjecture 3.15 says that a Fano variety is K-stable if and only if it is uniformly
K-stable. We can also formulate an equivariant version of the conjecture which predicts
that a Fano variety K-polystable if and only if it is reduced uniformly K-stable; see Defi-
nition 5.20. When k = C, it has been proved recently that any reduced uniformly K-stable
Fano variety has a Kéhler—Einstein metric ([24,91,97]). Therefore Conjecture 3.15 (resp.
its equivariant version Conjecture 5.22) predicts that any K-stable (resp. K-polystable)
Q-Fano variety admits a Kihler—Einstein metric, hence provide a new proof of Yau-Tian—
Donaldson Conjecture which would work even for singular Fano varieties.

3.A. Appendix: General valuations

In this section, we will first extend the above definitions from divisors to all valuations
over X. The key point is that this enlargement allows us to study our minimizing question
in a space with certain compactness.

Let X be a variety. A valuation on X will mean a valuation v: K(X)* — R that is
trivial on the ground field and has a center cx(v) on X. We denote by Valy the set of
non-trivial valuations on X, equipped with the weak topology.

To any valuation v € Valy and ¢ € R, there is an associated valuation ideal sheaf
ay(v): For an affine open subset U C X,

0 ()(U) = {f € Ox(U) | v(f) = 1} ifcx(v) € Usand
a;(v)(U) = Ox(U) otherwise.

Example 3.17 (Divisors over X ). Let X be a variety and 77: Y — X be a proper birational
morphism, with ¥ normal. A prime divisor E C Y defines a valuation ordg: K(X)* — Z
given by order of vanishing at E. Note that cx (ordg) is the generic point of 7 (E) and,
assuming X is normal, a,(v) = 7Oy (—pE).

Example 3.18 (Quasi-monomial valuations). Denote Z — X alog resolution with simple
normal crossing divisors E1, ..., E, on Z. Denote by o = (a1, ...,0,) € RL,. Assume
Mi—; Ei # 9; and there exists acomponent C C NE;, such that around the ger;aric point 1
of C, E; is given by the equation z; in Oz (c). We define a valuation v, to be

va(f) = min { Y aifil cp(m) # 0} for f =gz’
B

I'This conjecture has recently been proved in [107].
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and all such valuations are called quasi-monomial valuations. It is precisely the valuations
satisfying the equality case in Abhyankar’s inequality, therefore, it is another description
of Abhyankar valuation.

We call the dimension of the Q-vector space spanned by {«;, . . .,®,} the rational rank
of vy, and one can show vy, is a rescaling of a divisorial valuation if and only if r = 1. For
fixed C C (Z, E) as above, the valuations v, for all & gives a simplicial cone which is a
natural subspace in Valy.

Example 3.19. Given a valuation v, and a simple normal crossing (but possibly non-
proper) model (Z, E = )_ E;) over X such that the center of v on Z is non-empty, we
can define a valuation vy = p(z,£)(v), where the corresponding component ¢; defined to
be v(z;). Started from a simple normal crossing model, by successively blowing up the
center of v and (possibly shrinking), we get a sequence of models ¢;: Z; — Z;_;, where
Zy = X such that the center of v on Z; is not empty. Define E; = gbi_*l (Ei—1) + Ex(¢).
Denote by ve,; = pz;,E; (v), then v = lim; _, o0 (Vg,; )-

Definition 3.20 (Log discrepancy function on Valy; see [26,72]). When X is Klt, the log
discrepancy function Ay can be extended to a function

Ax:Valy — (0, +00]

in the following way: we have already defined Ax (E) for a divisorial valuation. For a
quasi-monomial valuation as in Example 3.18, we define

Ax(va) = Y i Ax (E).

And for a general valuation v, we define Ax (v) = supy g Ax (oy,£ (v)).

Let X be a Q-Fano variety. For any ¢ € R>¢, we can also define a volume function:

dim H(Ox (—~kKx) ®
vol(~Kx — 1v) = lim - (25,/,1.)() k)

where a; is the associated ideal sheaf of v.
Then for any valuation v with Ax A (v) < 400 we can similarly define,

1 o0
Bx (v) .= Ax (v) — (—K—X)"/o vol(—Kx — tv) dt
and
(=Kx)" - Ax (v)
JoS vol(—Kx —tv)dt’

5}((1)) =

It is easy to see §(v) = §(A - v) for any A > 0.
The advantage of extending the definition to all valuations can be seen by the next
theorem.
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Theorem 3.21. We have the following two facts:
(1) For a Q-Fano variety X,
8(X) :=inf §x (v),
v
where the infimum runs through all valuations v with Ax (v) < +oo [19].

(2) When §(X) < 1, then the infimum is attained by a quasi-monomial valuation [21];
see Theorem 4.17.

(3) When the ground field k is uncountable, §(X) is always computed by a quasi-
monomial valuation [19, 152].

4. Special valuations

In this section, we aim to connect degenerations and valuations in a more straightforward
manner. For this, a key observation is to use complements. As a consequence, we will see
in Theorem 4.10, which gives a geometric characterization of weakly special divisorial
valuations as precisely the set of log canonical places of complements.

4.1. Complements

The following notion first appeared in [132].

Definition 4.1. For a Fano pair (X, A), we say that an effective Q-divisor D is an N-
complement for some N € N, if N(Kx + A + D) ~ 0, and a Q-complement, if it is an
N -complement for some N.

Any valuation v is said to be an Ic place of (X, A + D) if it satisfies that
Ax,a+p(v) = 0.

4.1.1. Log canonical places of complements. We first recall results established in [19,
25] to approximate S(E) by invariants defined in a finite level.

Definition 4.2. For a valuation v, we define
Sm(v) := {supv(D) | D is a m-basis type divisor}.

It can be easily seen that the above supremum is indeed a maximum. Two less non-
trivial facts are the following, which combined can easily yield equation (10).
Proposition 4.3. Notation as above.

(1) For any valuation v with Ax (v) < 400, lim,, Sy, (v) = S(v).

(2) Forevery € >0, there exists mg >0 such that S, (V) <(1 + €)S(v) for any m >my

and any v with Ax (v) < +o0.

Proof. For (1), see [25, Theorem 1.11]. For (2), see [19, Corollary 2.10]. |
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The following approximating result can be considered to be a version of [101] for
valuations.

Proposition 4.4 ([21,22]). For a given Fano variety X, if §(X) < 1, then
8(X) = ingX(E)

for all E which is an Ic place of a Q-complement.

Proof. Denote §,, := 6,,(X). By equation (10), we can pick a sufficiently large m, such
that
S = (1+€)8(X) = (1 +€)?5.
We may also assume S, (E) < (1 + €)S(E) for any divisor £ by Proposition 4.3 (2).
There exists an m-basis type Q-divisor D, and a divisor £ over X with
AE) AE)
ordg (Dm) B Sm(E) .

We first assume 6(X) < 1. So we can also assume §,, < 1. Thus we can find a general
Q-divisor H ~g —(1 — 8m,)Kx, such that (X, 8, Dy, + H) is log canonical, and E is an
Ic place of such a divisor. Thus,

< (1+€)%8(X).

_A(E) A(E)
E)= 5@ = Sm(E) ~

<({+e
Then we can pick a sequence € — 0 and a corresponding sequence of E.

Sm = lct(X; Dpy) =

When §(X) = 1, we need some extra perturbation argument. Consider the pseudo-
effective threshold

T(E) :=sup {t | —u*Kx — tE is pseudo—effective}.

Then by [57, Proposition 2.1], we know T(E) > ”nilS(E) for any E. Thus, we can find
a divisor D ~g —Kx, such that

multg (D) > (1 + % —eo)S(E) > (1 n % . eo)%sﬂ,(m
I RN

if we choose €, € sufficiently small.
Fix t € (0,x(X)), then the pair (X, ¢D) is klt, and

Ax.p(E) = Ax(E) —t -multg (D) and Sy,p = (1-1)S(E),

which implies that

Axp(E) _1—1(1+ 5
S(X,lD)f X,tD( ) < ( 2n)
Sx.tp (E) I—1
1—t(1+25))(1+e
1—1t
if we choose € sufficiently small (depending on ¢).

Sx (E)




K-stability of Fano varieties 287

Thus, for any such 7, by the case of §(X, D) <1, we know that there exists an Ic
place F of (X,tD + D’) for a Q-complement D’ with §x,p(F) sufficiently close to
8(X,tD). On the other hand, since «(X) < Ict(X, D) < Ax (F)/multg (D),

Axup(F) = AF) —-multp D > (1 - ﬁ)A(F),

which implies that

AF) _ (L=0Axp(F) _  1-t
S(F) N (1 - ﬁ)SX,tD(F) 1 - a(tx)

Ix(F) = Sx:p(F).

Since §(X,tD) < 1/(1 —t), we can choose a sequence #,, — 0 and a corresponding
sequence of lIc places Fy, with lim y (F,) — 1. [ ]

4.2. Degenerations and Ic places

In the rest of this section, we will proceed to establish the correspondence between lc
places of complements and weakly special divisorial valuations; see Theorem 4.10. Built
on the observations in [93] to use the cone construction (see Section 4.A.2) to study valu-
ations on a Fano variety X, and later in [98] to relate the valuations over a cone with the
degenerations of X, eventually in [21], we realize that in the correspondence in Lemma 3.7,
if we consider the smaller class of all weakly special test configurations with an inte-
gral central fiber they correspond to Ic places of complements, i.e. the latter are precisely
weakly special divisorial valuations.

We first show the (easy) direction which says a divisor E that is an Ic place of (X, D)
for a Q-complement D is weakly special. We will establish the reverse direction and
therefore complete the correspondence in Theorem 4.10.

Proposition 4.5. Let E be an Ic place of (X, D) where D is a Q-complement, then E
is weakly special. Let X be the corresponding test configuration in Lemma 3.7 for ordg.
Then X is weakly special with irreducible components and 2 - Fut(X) = B(E).

Proof. If E is an Ic place of (X, D) where D is a QQ-complement, then there is a model
Y — Xwhich precisely extracts £ and Y is of Fano type. Thus E is dreamy. In particular,
the Rees construction is finitely generated, thus we obtain a test configuration X with an
integral special fiber X. Next we show the test configuration is weakly special.

Consider the trivial family (X, D) x A!, then we know E41 := E x Al is an Ic place
of the pair. Therefore, E 41 and X are Ic places of

(X x A', X x {0} + D x A'),

which implies the quasi-monomial valuation E; generated by E41 and X x {0} with
weight (1, 1) is also a Ic place of

(X x A", X x{0} + D x A").
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We can precisely extract E; to get a model p: ¥ — X x Al. Since (X x A!, D x Al)is
a (trivial) family of log Calabi—Yau pairs, we can first run a relative MMP over A! for

Ky + p. (D x A + X x {0}) + (1 —1)E1 ~g.a1 —1E1 ~g.a1 1y (X x {0}),

and we will get a model Y — A! whose special fiber is a birational transform of the
irreducible divisor E. Then we can run an —K5-MMP over Al to get a model X — A!
such that —K & is ample (over A!) and (X, D) is also a family of log Calabi—Yau pairs
i.e. X is the test configuration constructed in the first paragraph, which is weakly special.

(]

This is enough for us to prove the reverse direction of Theorem 3.2 (1).
Theorem 4.6. (X is K-semistable) —> (Bx(E) > 0,V E).

Proof. Tf §(X) < 1, then by Proposition 4.4, we know that there exist a QQ-complement D
and a divisor E which is an Ic place for (X, D) such that §(E) < 1. By Proposition 4.5,
we could construct a test configuration X with Fut(X) < 0, so X is not K-semistable. m

Remark 4.7. Comparing the above argument to the one in [103], we do not use the cone
construction.

To finish the proof of Theorem 3.2 (2), it suffices to show if X is K-semistable, and E
is a divisor such that By (E) = 0, then E induces a special test configuration. This is a
special case of Conjecture 3.15. By the discussion in 3.6, a crucial thing is to prove that
the double graded ring in (9) is finitely generated. We will use a global argument slightly
simpler than [23, Section 4.1].

Theorem 4.8. Let X be a K-semistable log Fano pair and E a divisor over X. If
1 =68(X) = 6x(E),
then E is dreamy and induces a non-trivial special test configuration X such that
Fut(X) = 0.
In particular, X is not K-stable.
Proof. Denote by a = Ay (E) = Sx(E). We have
li’{ln Sn(E) =1lim S(E) and li’{lnSm(X) =46(X)=1 by0).
Fix € < 1/(2a 4 2). We can pick up a sufficiently large m such that
a+1>Sm(E)za—% and &, >1—c¢.

Thus, there is an m-basis type divisor D,, which computes S, (E), satisfying that

(X, (1 —€)Dp)
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is klt (since 1 — € < §,,) and
b= Ax1-0p,(E) = a — (1= )Su(E) = (a — Su(E)) + € - Su(E) < 1.

Thus, by [16], we can construct a birational model u: Y — (X, (1 — €) D,,), which pre-
cisely extracts E with —E ample over X. Then we have that

(Y. (1 =)us ' Do + (b — €)E)

is a log Fano pair for some sufficiently small €y. In particular, it is a Mori dream space,
and we know the double graded ring (9) is finitely generated.

Then we can construct the test configuration (X, £) with an integral central fiber X.
This implies £ ~a1 —rKy and therefore, 2 - Fut(X) = B(E) = 0. By Theorem 2.12,
X has to be a special test configuration. ]

The above theorem has been extended to the case that §(X) < 1.

Theorem 4.9 ([22]). If a Q-Fano variety X satisfies 6x (E) = 6(X) < 1, then E comes
from a special degeneration. Moreover, the central fiber Xy satisfies §(Xo) = 8(X), and
it is computed by the valuation induced by the G,,-action.

The following theorem completes the correspondence between Ic places of comple-
ments and weakly special test configurations. See Theorem 4.14 for a strengthening, using
Birkar’s Theorem of the boundedness of complements in [14].

Theorem 4.10 ([21, Theorem A.2]). For a Z-value divisorial valuation v € Valy over an
n-dimensional Q-Fano variety X, it arises from a nontrivial weakly special test configu-
ration with a irreducible central fiber if and only if there exists an Q-complement D of X
such that v is an lc place of X. In other words, a divisorial valuation is weakly special if
and only if it is an Ic place of an Q-complement.

Proof. In Proposition 4.5, we have seen from an Ic place £ of a QQ-complement D, we can
obtain a weakly special test configuration. Then if we consider a valuation v = a - ordg
for an Ic place E of a Q-complement and a € N, then in the proof of Proposition 4.5,
we take the weighted blowup of E 1 and X x {0} with weight (1, a), and run an MMP as
before, we obtain a weakly special test configuration as desired.

Conversely, from a weakly special test configuration X with an irreducible central
fiber, we want to prove the induced Z-valuation v is an Ic place of a Q-complement D.
The original proof in [21] used the cone construction. Here we gave a (simpler) global
argument’, relying on some latter results in Section 5.

Let ordg be the induced divisorial valuation by the weakly special test configuration.
Consider the valuation of ordg on R := @,,cy H O(—mrKyx). Then we know that

w1 (Fg) — S(FE)
r

A(E) — S(E) = B(E) = B(FE) = > DY (Fg) = A(E) - S(E).

2It is suggested by Harold Blum.
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See Definition 5.13 for the invariants of ¥ ; the inequalities follow from Proposition 5.15;
and the last equality follows from the fact that X is weakly special test configuration.
This implies that rA(E) = u1(FEg) as rS(E) = S(¥FE). The rest follows from [154,
Theorem A.7] which we will include here for reader’s convenience.

Let Iy »(F) :=Im (FP Ry ® Ox(—rmKx) — Ox) and I = (I, n:). The func-
tiont — lct(X; 1. .(t) ) is piecewise linear on (0, r Ty (E)] due to the finite generation assump-
tion. Then

Ax (E) Ax (E) 1

. 7(r-Ax (E)) =
let(X, 1 1] ) < ordE(I.(r-Ax(E))) = r-Ax(E) 1’

thus let(X; 1&Ax(ED ) = L. Since grg, R is finitely generated, then

lct(X; [.(r~AX(E))) =m- lCt(X; Im,mrAX(E)) = %

for some sufficiently divisible m. This means there is a divisor D € | — mrKx| with
ordg (D)>mrAx (E) and (X, -1 D) is log canonical. Thus, E is an Ic place of (X, -1-D).
(]

Remark 4.11. An interesting consequence of Theorem 4.10 is that a G,,-equivariant Fano
variety has a G,,-equivariant Q-complement. In fact, let X be the product test configu-
ration given by the G,,-action on X. By Theorem 4.10, we know this yields a valuation
which is an Ic place of a Q-complement D. Then the special fiber Xy of X over 0 is an
Ic place of (X x A, D x A! 4+ X x {0}). Thus the closure D of D x Al on X yields a
family of log CY pairs, i.e. Do := D X1 {0} is a G,,-equivariant N -complement.’

We have the following description of special divisors; see Definition 3.8.

Theorem 4.12 (Zhuang). In Theorem 4.10, the following are equivalent:
(1) adivisor E over X is special;

(2) Ax(E) < T(FE) and there exists a Q-complement D*, such that E is the only Ic
place of (X, D*); and

(3) there exists a divisor D ~g —Kx and t € (0, 1) such that (X,tD) is Ic and E is
the only Ic place for (X,tD).

Proof. We first prove (1) <= (2). A test configuration X is special if and only if for any
effective Q-divisor D ~g —Kyx, there exists a positive €, such that (X, eD) is a weakly
special test configuration where D is the closure of D x G, in X. This is equivalent to
saying that for D, there are a positive € and an effective Q-divisor D’ ~g —Kx of X such
that E is an Ic place of the Ic pair (X,eD + (1 —€)D’).

3This remark comes from a discussion with Yuchen Liu.
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Now we assume E satisfies the conditions in (2). Then we have Q-divisors
D’ ~0 D" ~0 —Kyx

such that Ay, p/(E) > 0 and Ax pr(E) < 0. By choosing one of them as D; and an
appropriate a € [0, 1), we have

Ax.ap,+(1-a)p(E) = 0.
Thus, for a sufficiently small €,
(X.e((1 —a)Dy +aD) + (1 —€)D¥)

is Ic and has E as its Ic place.

Conversely, if we take D to be a general QQ-divisor whose support does not contain
Centy (E), then since for some € > 0, E is an Ic place of (X,eD + (1 —€)D’) from our
assumption, we have

Ax(E) = Ax,ep(E) < Tx,ep(E) = (1 —€)Tx (E).

To see the second property, we denote by u: Y — X the model precisely extracting E.
Then we run MMP for —Ky — E to get a model Y’, and we claim (Y, E’) is plt. Other-
wise, we can find an effective Q-divisor

Dy ~g —Ky — E'

such that (Y’, E’ + €Dy) is not log canonical for any € > 0, as —Kys — E’ is big. This
yields an effective Q-divisor D ~g —Kx on X, violating our assumption on E. Now we
pick up a general Q-complement of (Y', E’), it induces a Q-complement D* with E the
only Ic place of (X, D*).

Finally, from the above discussions, one can easily see (1) = (3) = (2). We leave
the details to the reader. |

4.3. Bounded complements

Following [21], to further extend the correspondence established in Proposition 4.25, we
need the difficult theorem on the boundedness of complements proved in [14]. In fact,
the following lemma, which is a key step for our argument, is a consequence of Birkar’s
theorem on the boundedness of complements.

Lemma 4.13 ([21, Theorem 3.5]). Let n be a positive integer. Then there exists a positive
integer N = N (n), such that for any n-dimensional Q-Fano variety, if E is an lc place of
a Q-complement of X, then it is indeed an Ic place of an N -complement.

Then a consequence is the following improvement of Theorem 4.10.

Theorem 4.14 ([21, Theorem A.2]). Let n be a positive integer and N = N (n) as above.
A divisorial valuation is weakly special if and only if it is an Ic place of an N -complement.
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An application of the boundedness of complements (see Lemma 4.13) is to use it to
understand the valuation which computes §(X), when §(X) < 1.

Combining Proposition 4.4 and Lemma 4.13, we know §(X) = lim; §x (E;), where Ej
is an lc place of an N -complement for any k. Then we have the following construction.

4.15. Given a Q-Fano variety. For any fixed N, there is a variety B of finite type, and a
family of Q-Cartier divisors & C X x B, such that forany b € B, (X, % Dyp) is strictly log
canonical and N(Kx + % Dp) ~ 0. Moreover, any N -complement can be written as ﬁ Dy
for some b € B. In particular, after a further stratification of B and a base change, we can
assume there exists

W— (X xB,D)— B,

which gives fiberwise resolutions over points in B. In particular, for each component B;
of B, we can consider all the prime divisors E; j on ‘W which have log discrepancy 0 with
respect to (X x B;, D|p,). From the assumption on ‘W, we know that restricting E; ; over
each b € B; yields a divisor satisfying Ay, p,(E; ;) = 0. Thus, for any b € B;, the dual
complex W induced by the intersection data of

(E)p =Y (Eij)p
J

can be canonically identified with the dual complex consisting of all Ic places of (X, Dp).

4.16. Applying the construction as in Paragraph 4.15, after taking a subsequence, we can
assume all corresponding points by € B of Ej belonging to the same component B; of B.
By [62, Theorem 1.8], we can argue that the function S(Ep) = S(Ep) if b and b’ belong
to the same component B; of B, and the prime divisors Ep, Ep correspond to the same
point of Wg. Thus a divisor E corresponding to a fixed point on the dual complex W, the
function b — 8y (Ep) does not depend on b (in B;). Therefore, the function §x (-) can be
considered to be a function on W, which is continuous. So it attains a minimum at a point
corresponding to a quasi-monomial valuation v. (A priori, v is not necessarily a divisorial
valuation since it may not correspond to a rational point on the dual complex.)

To recap on the above discussion, thus we show

Theorem 4.17. If §(X) < 1, then it is always computed by a quasi-monomial valuation
which is an lc place of an N -complement.

In fact, one can prove if §(X) < 1, then any valuation computing §(X) is an Ic place
of an N-complement; see [21, Theorem A.7].

To prove Conjecture 3.15, it suffices to produce a divisorial valuation which com-
putes §, out of a quasi-monomial one; see Theorem 4.9. The key point is to verifying the
following conjecture.
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Conjecture 4.18 ([152, Conjecture 1.2]). Let X be a Q-Fano variety with §(X) < 1,
and v a (quasi-monomial) valuation compute §(X), then the graded ring gr, R is finitely
generated.”

The finite generation conjecture above will then imply that for a sufficiently small
rational perturbation v’ of v within the rational face where v is an interior point (see
Example 3.18), we have

gr,R =~ gr, R ([102, Lemma 2.10]) and §&x(v) = 8x(v') ([152, Proposition 3.9]).

See [152] for more discussions. In [2, Theorem 4.15], an example of a quasi-monomial
valuation is given, which is an Ic place of a Q-complement but with a non-finitely gener-
ated associated graded ring.

4.A. Appendix: Normalized volumes and local stability

In this appendix, we will discuss a local K-stability picture. This is established using Chi
Li’s definition of normalized volumes. For reader who wants to know more background
on this, see the survey paper [96]. In Section 4.A.1, we give the definition of normalized
volumes as well as a very quick sketch of the Stable Degeneration Conjecture. Then in
Section 4.A.2, we will explain the cone construction. In Section 4.A.3, we discuss only
a small (known) part of the Stable Degeneration Conjecture for cone singularities, which
has consequences on the K-stability question of the base Fano variety of a cone. See
Theorem 4.26, which provides a different proof of Theorem 3.2.

4.A.1. Normalized volume. The following notion of normalized volume was first intro-
duced in [94]. It shares some similar flavor with the §-invariant, but is defined in a local
setting.

Let Y be an n-dimensional kit singularity and x € ¥ = Spec(R) a closed point. The
non-Archimedean link of Y at x is defined as

Valy , := {v € Valy | cy(v) = {x}} C Valy.
Definition 4.19 ([94]). The normalized volume function
@Y,x: Valy,x — (0, +00]

is defined by
Ay ()" - vol(v) if Ay (v) < +o0;
400 if Ay (v) = +o0.

The volume of the singularity x € Y is defined as

@Y,x (v) = {

vol(x,Y) := veiVI;]fY volyx (v).

The previous infimum is a minimum by the main result in [17]; see also [151, Remark 3.8].

4This conjecture has been recently proved in [107].
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In the recent study of the normalized volume function, the guiding question is the
Stable Degeneration Conjecture; see [94, Conjecture 7.1] and [102, Conjecture 1.2]. There
has been a lot of progress in it; see [96]. The following results, which are part of the Stable
Degeneration Conjecture, have been shown.

Theorem 4.20. For any kit singularity x € Y,

(1) The infimum of the normalized function \To\ly,x (v) is always attained by a quasi-
monomial valuation [17,151].

(2) The minimizer is unique up to rescaling [153].
The main remaining open part is an analogue version of Conjecture 4.18.

Conjecture 4.21. For a kit singularity x € Y, if v is a minimizer of \70\1y,x, then the
associated graded ring Ry := gr, R is finitely generated.

This can be easily proved using [16] in the case when v is of rational rank 1, but the
higher rational rank case remains open.

Theorem 4.22 ([93,102,103]). For any kit singularity x € Y, if the associated graded ring
of the minimizer is finitely generated, then the induced degeneration (Yo = Spec(Ry), &)
is K-semistable. In particular, it holds when the minimizer is divisorial.

The grading of Ry yields a torus T action on Yy, and v gives a real coweight &, of T'.
We know the pair (R, &) is a Fano cone singularity and (Yy, &,) being K-semistable is
in the sense for Fano cone singularities. See [35] or [96, Section 2.5] for the definitions.

The converse was proved in [93,102,103], i.e. any valuation v which is quasi-monomial
with a finitely generated associated graded ring, and satisfies that the induced degenera-
tion (Y, &) is a K-semistable Fano cone must be a minimizer of the normalized volume
function. As a consequence, this answers the K-semistable part of [46, Conjecture 3.22];
see [102].

In the below, we will only concentrate on a small part of the local theory, namely, we
connect the K-(semi)stability of a Q-Fano variety with the minimizing problem on the
cone singularity over the Fano variety. This was initiated in [93].

4.A.2. Cone construction. Let us first recall the cone construction.

4.23 (Cone construction). Denote by Y := Spec(R) = C(X, —rKx) the cone over X

where
R = @ Ry = @ H°(—mrKy).
m meN
Blowing up the vertex x of the cone Y, we get an exceptional divisor X, 2 X, which is
called the canonical valuation.
Let E be any divisor over X that arises on a proper normal model p: Z — X . Follow-
ing [93,103], E gives rise to a ray of valuations

{ve |1 €[0,00) C Valy}. (11)
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Since the blowup of Y at 0 is canonically isomorphic to the total space of the line bundle
Ox (—L), there is a proper birational map from Z;-1 — Y, where Z; -1 denote the total
space of u*Ox (—L). Now,

vo =ordy,, and Vs = ordg,,

where E, denotes the pullback of E under the map Z;-1 — Y and X denote the zero
section of Z -1. Furthermore, we define

v; := the quasi-monomial valuation with weights (1, ¢) along X, and E . (12)

Denote by Ej the divisor corresponding to k - vi/.

Definition 4.24. Let x € Y be a kit singularity. We recall that a prime divisor E over
a klt point x € Y is called a Kolldr component (resp. weak Kolldr component) if there
is a birational morphism u: Y’ — Y isomorphic over X \ {x}, such that E = Ex(u),
(Y', E) is plt (resp. log canonical) and —Ky: — E is ample over Y. In the case of Kollar
component, a morphism u is called a plt blow-up. These notions can be considered as a
local birational version of special degenerations (resp. weakly special degenerations with
irreducible fibers).

If we start with a nontrivial weakly special degeneration X of X with an irreducible
central fiber, then we can take the induced Z-valuation v as in Lemma 3.3, the Rees
algebra construction gives

R = P H(-mrKx)
meN
as a k[t]-algebra. Since there are two gradings given by m and p, we indeed have T =
(Gpm)?-actions on (R: the relative cone structure corresponds to the action by the coweight
(1, 0), and the G, -action from the test configuration corresponds to the coweight (0, 1).

We can take the (weighted) blow up of Y with respect to the filtration induced by
the valuation with weight (1, 1) with an exceptional divisor Ey. Then the exceptional
divisor Ey is given by

Proj(grg, R) = Proj @ ( @ gr’},v Rm)

deN m+p=d
and

grg, R =grpY.

Thus, Ey is a G,,-quotient of Spec(Ry) \ {0} and if we denote Ag, the orbifold divisor,
then (Ey, Ag,) is semi-log-canonical and irreducible with —Kg, — Afg, being ample,
since Spec(Rx) is a cone over X. By the inversion of adjunction,

w:(Y' Ey) =Y

is a weakly Kollar component.
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Conversely, if we start with a G,,-equivariant weak Kollar component Ey over x € Y
with ordg, (t) = 1, we know it arises from a weighted blow up of the pullback of v
and X, with weight (1, 1), where v is a divisorial valuation v := ordg on X. Thus the
filtration of R by ordg is finitely generated, as the associated graded ring

P P el Rm = @ 1x(Oy(—dEy)/us(Oy(—(d + 1)Ey))).

meN peZ deN

Hence, we can take the Rees algebra Rees(FE) to get the test configuration X.
To summarize, the above discussion gives the following correspondence.

Proposition 4.25. There is a one to one correspondence between

weakly special degenerations of X Gm-equivariant weak Kolldr
> .
with an integral central fiber components Ey withordg (t) = 1

Moreover, if we restrict to G, -equivariant Kolldr components over Y, then they pre-
cisely correspond to special test configurations for X .

4.A.3. Local and global K-stability. In [93], by considering the normalized volume
function of the vertex, this construction was related to the study of K-stability question.
At first sight, using the normalized volume function to study the K-stability of Q-Fano
varieties may seem indirect. However, working on Y encodes all information of the anti-
canonical ring. A number of new results were first established through this approach,
e.g. Theorem 4.26 and Theorem 4.8. We will now explain the main ideas.

Since the degeneration induced by the canonical valuation X, is just Y itself, one
established part of the stable degeneration conjecture implies the following statement,
which contains Theorem 3.2(1).

Theorem 4.26 ([93,95, 103]). We have the following equivalence
(X is K-semistable) <=> (vo := ordy,, is a minimizer) <= (Bx(E) > 0,VE/X).

We already see (B(E) > 0, VE) = (X is K-semistable); see Corollary 3.5. Now we
discuss the other implications in Proposition 4.27 and Proposition 4.30.

vo minimizing implies g > 0.
Proposition 4.27 ([93]). (vg is a minimizer ) = (Bx(E) > 0,VE).

Proof. Let E be a divisor over X that arises on a proper normal model u: Z — X. Fol-
lowing [93, 103]; see (12), E gives rise to a ray of valuations

{vi |t €]0,00) C Valy,x}. (13)

We have
Ay (vy) = Ay (ordy, ) + tAy(ordg ) = 1/r + at.
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Fort > 0,

apv) =P Fe” ™/ Ry CR and ap(vo) = P Rm S R.

m=0 m>p

When k € N, vy, = ]%ordEk, where Ej is a divisor over X .
Since vg is a minimizer,

d vol(vy) 0.
dt r=0+
which implies S(E) > 0 by Lemma 4.28. ]
Lemma 4.28 (C. Li’s derivative formula).
45 = 1)Bx (E 14
Zvol(w)| = 1+ DBx(E). (14)
Proof. Leta;,p := ap(vs). So ay,, contains @mzp R,,. We claim the following holds:
mult(a,.e) = r"(—Kx)" — (n + 1) / ~ vol(Fp ROy 19X (15)
i, 0 (1 + lx)"+2 :

This follows from the argument in [93, equations (18)—(25)]. For the reader’s conve-
nience, we give a brief proof. For ¢ € R, we have

. n+ 1!
mult(a; ) = pll)ngo (p"+1) dimg (R/ay,p)
(n+ 1)!

= lim

o0
pooo  phtl ) dimi (R / 5" Rn)
p m=0

! &
= tim “EDNS™ (i Ry, — dimg 7 Ry

00 n+1
r p m=0

p

= vol(L) — 1&20 P Zdl (P m)/tRm-

Then we can identify the limit of the summation with the integral in equation (15), where
a change of the variable is needed (see [93, equation (25)], where one chooses ¢; = 0,
a=p= %).

Computing the derivative, we have

d —~ 1 d
Zvol(v,) R aln + 1)( ) mult(age) + —— T — (mult(a,, .))) ot
From equation (15), we know mult(ag,.) = r"*(—Ky — A)" and
d o0 1—tx(n+1)
. — _ lrod (x) PR
dt (mult(at’.))’t:m (n + 1)[) (VOl(fER )( (14 x)n+3 )) t=0+ dx.
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Since the latter simplifies to
oo
—(n + 1)/ vol(Fg R(x)) dx,
0

then d
(mult(a,a)| | = 01+ 1) Bx(E). .

=

K-semistable implies v9 minimizing. For the last implication that vy is a minimizer
if X is K-semistable, we will take the proof from [103]. There we try to ‘regularize’ the
minimizing valuation to conclude that we only need to compare the normalized volume
vo := ordy_, and those arisen from a special test configuration.

Proposition 4.29 ([103, Proposition 4.4]). We have vol(x, Y) = infg voly . (E), where E
runs through all G,,-equivariant Kolldr components.

Proof. By [105, Theorem 7], we know that
vol(x, Y) = infmult(a) - lct(Y, a)”, (16)
a
where the right hand side runs through all m,-primary ideals. For any a, if we consider
the initial degeneration by of a¥, then b, forms an ideal sequence, and

mult(bg)

1
3 and let(Y;a) > %lct(Y; by).

mult(a) = mult(bs) = lim

Therefore,
mult(a) - Ict(Y, a) < illgfmult(f)k) -let" (Y, by).

Therefore, we can restrict the right hand side of equation (16) by only running through all
Gm-equivariant m,-primary ideals.

Started from any G,-equivariant 1 ,-primary ideal a, let ¢ = lct(Y;a). Let Y’ — Y
be a dlt modification of (X, ¢ - a) with reduced exceptional divisor I'. We can mimic
the last step in the proof of Theorem 2.12, to show that there is a G,,-equivariant Kollar
component £ (with the model Yz — Y'), such thata(E, X,c -a) = —1, and

VOI(E) = ((~Ky, = B)|g)"™" < ((=Ky = D))"~ < mult(a) - let(¥, )"
see [103, Section 3.1]. [
Proposition 4.30. (X is K-semistable) = (v¢ is a minimizer).

Proof. Assume X is K-semistable. To show vy = ordy,, is a minimizer of \Tc;lij, by
Proposition 4.29, it suffices to show that for any Kollar component E over x € Y, we have

Vol(E) = vol(vo).

By Proposition 4.25, we know that £ will induces a ray v, containing a - ordg for some
a € Q, which corresponds to a special test configuration X;. We can rescale ¢ such that v,
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is defined to be the quasimonomial valuation with weights (1,¢) along Xo and ¢ - E,
where ¢ - E is the pull back of the divisorial valuation induced by X'; see Lemma 3.3.
Since X is K-semistable, by Lemma 3.4 and 4.28, we know that

@S limo = (14 1)-Fut(X) 2 0.

Since \7(;1(1),) is a convex function on ¢ by equation (15) (or see [102, Section 3.2]),

vol(ordg) = vol(a - ordg) > vol(v). .

5. Filtrations and Ding stability

In this section, we will discuss the Ding invariants and related stability notions. Unlike
the generalized Futaki invariant which can be defined for any polarized variety, the Ding
invariant was only defined in the Kédhler-FEinstein setting, i.e. Ky = A - L. It was first
formulated by Berman in [12] based on the original analytic work of Ding in [43]. One key
observation made by Fujita in [55] is that Ding invariant satisfies a good approximation
property, and therefore we can define it in a more general context, namely the linearly
bounded filtration. This yields another way of proving Theorem 3.2 which was first given
in [58,93]; see Theorem 5.16.

5.1. Ding stability
First we recall the definition of Ding invariant for test configurations introduced in [12].
Definition 5.1 (Ding invariant). Let X be a normal test configuration and the notation as
in Lemma 2.8. Denote by Xy the central fiber of X over 0 and a divisor
Dax.2 ~0 —%f— KDZ/]P’I
supported on Xo. Then we define
( 1 —)n+1
Ding(X, £) = —m — 1 +1ct(X, D,z Xo). (17)

With the definition of the Ding invariant, we can define various Ding stability notions
the same way as K-stability, replacing Fut(X, £) by Ding(X, £) (for Ding-polystability,
we only look at the test configurations with a reduced central fiber). We easily see the
following.

Lemma 5.2 ([12]). Let (X, £) be a normal test configuration, then
2 - Fut(X, £) = Ding(X, £),

and the equality holds if and only if (X, £) is a weakly special test configuration.
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Theorem 5.3 ([24,58]). For a Fano variety X, the notion of Ding-stability (resp. Ding-
semistability, Ding-polystability) is equivalent to K-stability (resp. K-semistability, K-
polystability).

Proof. Started from any normal test configuration (X, &£), we can exactly follow the steps
in the proof of Theorem 2.12, but replacing the generalized Futaki invariant by Ding
invariants, and show that there is a special test configuration X* such that

Ding(X®) < d - Ding(X, &£)

for some base change degree d. Moreover, the equality holds if and only if X* is isomor-
phic to the normalization of the base change of (X, £); see [58, Theorem 3.1].

Thus, Ding-stability (resp. Ding-semistability, Ding-polystability) is the same if we
only test on special test configurations, as well as K-stability (resp. K-semistability, K-
polystability) by Theorem 2.12. Thus by Lemma 5.2, we know they give the same condi-
tions. L]

5.2. Filtrations and non-Archimedean invariants

In this section, we try to generalize various invariants to a setting including both test
configurations and valuations, namely (multiplicative) linearly bounded filtrations. In fact,
from a non-Archimedean geometric viewpoint, there is an even more general notion which
is the non-Archimedean metric; see [24,28,29] for a study on this. In this note, we will
not discuss this topic.

Definition 5.4 (Filtration). Let r be a sufficiently divisible positive integer such that
L := —rKy is Cartier. Considering graded multiplicative decreasing filtrations ¥’ (¢ € R)
where R is the section ring

R=R(X)= D Rn =P H°(X.Ox(—-mrKx))
meN meN
satisfying
.{FARm = ﬂ,\/<l.{f7”Rm
forall A, ¥4 R,, = R,, for some 1’ < 0 and F*R,, = 0 for A > 0. All the filtrations we

consider are linearly bounded, that is to say there exists e < e € R sothatforallm e N,
FXM Ry = Ry, forx <e_and F*R,, =0forx > e4.

Example 5.5. For a valuation v over X, if Ax(v) < +00, the induced filtration %, as
defined in equation (7) is linearly bounded.

Example 5.6 ([28, 149]). From any test configuration (X, £) of (X, L). Assume r& is
Cartier. We can associate linearly bounded filtrations on R as follow,

FPRy={s€ H*(X.L®™) | 17?5 € H*(X.£%™)}. (18)

where 5 is the pull back of s by X 41 — X considered as a meromorphic section of £&"™;

and ¢ is the parameter on A!. We know @p <z ¥ P R is finitely generated.
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TC=lc places of
Q-complements

Special TC

Remark 5.7. Therefore, linearly bounded filtrations give a natural common generaliza-
tion of test configurations and valuations. More importantly, in the study of K-stability
of Fano varieties, there are natural filtrations appearing, which a priori arise from neither
valuations nor test configurations; see e.g. [23, 154].

Let ¥ be a linearly bounded multiplicative filtration on R. Let

Gl Ry = F*Ru/ | ) " Rm
A'>A

We define (c.f. [19, §§2.3-2.6])

Sm(F) = m ZAdlmGr"R

mdim R,

and S(F) = limy, 00 S (F). Note that the above expression is a finite sum since there
are only finitely many A for which Gré,- R,, # 0 and the limit exists by [25]. For x € R,
we set dim F7 R
vol(F RW) = lim —————"
m—oo  m"/n!

where n = dim X (the limit exists by [90]). Then

s

1 d
i (x)
V= D —vol(F R™)
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is the Duistermaat—Heckman measure of the filtration (see [28, §5]) and we denote by
[Amin (F ), Amax (F)] its support. We also have

et
Sn(F) =e_ d1 / dim F"™* R, dx
ée_
Amax(?)
and S(F) Vol F R(x)) dx = f xdv.
(L”) Auin (%) R

Then we can generalize other invariants from test configurations to more general lin-
early bounded filtrations.

Definition 5.8 (Non-Archimedean invariants). Let X41 = X x A! and Xo = X x {0}.
Let ¥ be a filtration on R and choose e_ and e as in Definition 5.4 such thate_, ey € Z.
Let e = e4 —e_ and for each m € N. Define the base ideal sequence I,,,,(F) for a given
filtration as following: I, is the base ideal of the linear system % 7 H®(—mrKx), i.e.

I p(F) := Im(?”Rm ® Ox(—rmKyx) — (9X).
Then we set
I = Im(F) = Immey + Immer—1 -1+ -+ Inme_t1 - 177" + (1) € Oxar.
It is not hard to verify that 4, is a graded sequence of ideals. Let
cm = 1et(X a1, (dm)"™": Xo)
=sup{c € R | (X1, (cXo) - (4m)"”™") is sub log canonical}

and we can see Coo = limy,_. o Cj, exists. We then define

LM (F) = coo + e7+ _1,

DM (F) = LM(F) — m,

r

Amax(‘rﬁ') - S(‘(F)
%_

JNA(:'F) —
The following construction is first made by Kento Fujita; see [55, Section 4.2].

5.9 (K. Fujita’s approximation). Let y,: X,, — X1 be the normalized blow up of J,,
with the exceptional Cartier divisor &,,. Let £, := uy,(—mrKx)(—&,,), which from the
construction can be easily seen to be semi-ample. Therefore (X,,, £,,) induces a (semi-
ample) test configuration for each m. Then we have the following statement.

Lemma 5.10 ([55, Section 4]). 1lim, oo Ding(X,,, L) = DNVA(F).

Proof. Since py, (Kx, ) + #8,” ~Q —%éﬁm. We have

1t(Xom, Dot i3 (Xim)o) = let(Xar, (9m)""™"; Xo).
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Let ¥, be the filtration induced by the test configuration (X, £,); see Example 5.6.
Then the leading coefficient of the weight polynomial for the test configuration (X, £,,)
is

> \n+l .
(LLm)" _ S(Fm) —es
(n + D(—=Kx)" r '
Thus, by definition equation (17),
> \n+1
(r£m)

Ding(Xm, £m) = — — 1+ 1ct(Xm, D, 25 (Xim)o) = DN (Fop).

(n + D(=Kx)"

By [55, Lemma 4.7], we know lim S(¥,,) — S(¥) and ¢, — ¢, thus we conclude
lim Ding(X, £m) — DA (F). "
m—0o0

Remark 5.11. The conceptual reason that Lemma 5.10 holds is that in the definition of
Ding-invariants, only the leading term of the asymptotic formula is needed. As a compar-
ison, for generalized Futaki invariants one also has to consider the second term. In [149],
the viewpoint of filtrations was taken to study test configurations, and it was extended to
possibly non-finitely generated filtration in [139]. However, as pointed out in [149], it is
difficult to define the generalized Futaki invariants this way, and the definition in [139,
Definition 4] does not behave well e.g. it could change after taking a truncation. It also
relates to [29, Conjecture 2.5] from the non-Archimedean geometry.

Corollary 5.12. If X is Ding-semistable, then DN*(¥) > 0 for any linearly bounded
filtration ¥ .

In [58, 93], Theorem 3.2 was deduced from Corollary 5.12. In our note, by follow-
ing [154], we will conceptualize the argument using the definition of S-invariant for a
filtration.

Definition 5.13 ([154, Definition 4.1]). Given a filtration ¥ of R and some § € R, we
define the §-log canonical slope (or simply log canonical slope when § = 1) ux s(F) as

8
Jx.s(F) = sup {z eR | let(X; 1) > -}, (19)
r
where I.(t) is the graded sequence of ideals given by I,sf )= m,em(F). Then we define
px.s(F) — S(F)
Bros(F) 1= BEE 2,

And when § = 1, we will write Sx (¥).

In [154], the above definition was inspired by the study of a specific filtration, namely
the Harder—Narashiman filtration; see Step 1 of the proof of Theorem 8.3.

Theorem 5.14 ([154, Theorem 4.3]). We have the inequality Bx () > DNA(F) for any
linearly bounded multiplicative filtration ¥ .

SIn [31, Lemma 3.8], it is noticed that we indeed always have By (¥) = DNA(F).
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Proof. Denote by i := px,1(F), Amax := Amax(F) and we have p < Apax. If 4 = Amax,
then it is clear that
B(F) = J"NF) = DMA(F).

Hence, we may assume that Ap,x > @ in what follows. In particular, 7, 5 # 0 for some
A > um.

For each m, the ideal I, ;;m+ does not depend on the choice of € > 0 as long as € is
sufficiently small and we set a,, = Iy ym+e Where 0 < € < 1. Itis easy to see that a, is
a graded sequence of ideals on X. By the definition of u, we have

m-let(X; a,) =m- ]Ct(X; Im,/Lm+e) < lct(X; ].(u+e/m)) <

~N | =

for all m. It follows that Ict(X ; ae) < % and hence by [72, Theorem A] there is a valuation v
over X such that

a:=Ax() < %v(a.) < 00. (20)

For each A € R, we set f(A) = v(].m). Since Amax > U, there exists some € > 0 such
that f(1) < coforall A < u + €. Since the filtration ¥ is multiplicative, we know that f
is a non-decreasing convex function. It follows that f is continuous on (—oo, 1 + €) and
from the construction we see that

f() < via) < lim f(3) = f(u).

hence f (1) = v(ae) > ar by (20). We then have

S _}{(M_h) o1

O = fw)+EA—p)zar+§(A—p) where§ := hlirng
for all A by the convexity of f. We claim that £ > 0. Indeed, it is clear that £ > O since f
is non-decreasing. If £ = 0, then f must be constant on (—oo, w]; but this is a contra-
diction since f(¢) > ar > 0 while we always have f(e—) = 0. Hence, £ > 0 as desired.

Replacing v by £~ 1v, we may assume that § = 1 and (21) becomes
S =A+ar—pu. (22)

Now let ¥ be the valuation on X x A! given by the quasi-monomial combination of v
and X, with weight (1, 1). Using the same notation as in Definition 5.8, we have

—me_+l)+(me—i)
m

Fﬁ(lm,mef+i ‘tme—i) > mf(
<me_ +i
m
=m(ex +ar—u) (Vi eN),

>m

—i—ar—u)—i—(me—i)
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where the first inequality follows from the definition of f(A) and the second inequality
follows from (22). It follows that ¥(/,,,) > m(e4+ + ar — ) and hence by definition of ¢,
we obtain

5(Im) _ertar—p _ p—ey

cm < Ax,ayxar (V) — oy =a+l . = +1

forall m € N. Thus, ¢oo < ((t —e4)/r) + 1 and we have

€+—S(?)_1<M—S($)
- r

DM (F) = coo + =B(¥)

as desired. [

Proposition 5.15. Let v be a valuation over X with Ax (v) < oo, and ¥, the induced
filtration on R, then
Bx (v) = Bx (F) = DN} (Fy).

In particular, if X is Ding-semistable, then Bx (v) > 0 for any Ax (v) < oo.

Proof. To see the first inequality, since v(I.(t)) > t, we know when ¢ > rAx (v), then
Iet(X; I.(t)) < % which implies that

pr =rdAx(v) and  B(v) = B(Fv).

The second inequality follows from Theorem 5.14.
The last statement then follows from Corollary 5.12 which implies DN (%) > 0if X
is Ding-semistable. |

Combining Theorem 5.3 and Proposition 5.15, we have the following theorem.
Theorem 5.16 ([58,93, 154]). We have the following equivalence

(X is K-semistable) <= (Xis Ding-semistable) <= (Bx(E) > 0,VE/X),

and the latter is also equivalent to Bx (¥) > 0 for any linearly bounded multiplicative
filtration on R := @,, H*(—rmKx).

To summarize, we have the following table indicating various invariants, and where
they can be defined.

test configurations X' filtrations & valuations v
Fut  Def. 2.2 (or [48, 145]) unknown unknown
Ding Def. 5.1 (or [12]) Def. 5.8 (or [55]) ok

Bx ok Def. 5.13 (or [154])  Def. 3.1 (or [58,93])




C. Xu 306

Under the correspondence of Theorem 4.10, in which for a Z-valued valuation v that
is an Ic place of a Q-complement, which precisely corresponds to a weakly special test
configuration X with an irreducible central fiber, there is an equality

Ding(X) = 2 - Fut(X) = Bx (v).

5.3. Revisit uniform stability

We already have seen the equivalent definitions of K-semistability and K-stability; see
Theorem 3.2 and Theorem 5.3. We have seen the following:

Theorem 5.17. Notation as above. For a Q-Fano variety X, the followings are equiva-
lent:

(1) (uniform K-stability) there exists some 1> 0, such that for any test configuration
(X, L),
Fut(X: £) > n- JN(X: £);
(2) (uniform Ding-stability) there exists some >0, such that for any linearly bounded
filtration ¥,
DYY(F) = - JA(F);
3) §(X) > 1;
@) Bx (v) > 0 for any quasi-monomial valuation v over X ;

(5) there exists § > 1 such that Bx 5(¥) > 0 for any linearly bounded filtration ¥ .

Proof. The equivalence between (1) and (2) follows from a similar argument as for Theo-
rem 5.3; see [24,58]. The equivalence between (2) and (3) is proved in [58, Theorem 1.4];
between (3) and (4) in Theorem 4.17. Finally, the equivalence between (3) and (5) follows
from in [154, Theorem 1.4 (2)]. ]

It is also natural to look for a ‘uniform’ version when Aut(X) is not discrete. The
key is to define a norm JN¥* which should module the group action. In [68], the reduced
J?A—functional for a torus group 7' C Aut(X) is defined, and play the needed role.

Let X be a Q-Fano variety with an action by a torus T = G3,. Fix some integer r > 0
such that L := —rK}y is Cartier and as before let R = R(X, L). Let M = Hom(T, G,,) be
the weight lattice and N = M™* = Hom(G,,, T') the co-weight lattice. Then T naturally
acts on R and we have a weight decomposition R,, = @,cpr Rm,a, Where

Rmo =1{s € Rn|p(t)-s= %99 s forallp e N and 1 € k*}.

Consider a T-equivariant filtration # on R = @,, H(X,mL),i.e.s € F*R if and only
if g-5 € FAR forany g € T. We then have a similar weight decomposition

F*Rm = D (F* Rn)a,
aeM

where (37'1Rm)a = F*R,, N R
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Definition 5.18. For § € Ng = N ®z R, we define the £-twist F¢ of the filtration F in
the following way: for any s € Ry, o, we have

s € f""gARm if and only if s € F*R,,, where 1o = A — (o, &),

in other words,
FRn = P FURN Ry
oaEM
One can easily check that ¥ is a linearly bounded multiplicative filtration if ¥ is.
Let Z = X //chow T be the Chow quotient (so X is T-equivariantly birational to Z x T').
Then the function field k(X)) is (non-canonically) isomorphic to the quotient field of

k(Z)M] = @ k(2)-1°.

0eEM

For any valuation u over Z and £ € Ng, one can associate a T-invariant valuation v,, ¢
over X such that

vg(f) = min (n(fo) + (§, @) (23)

forall f =3 cp fo - 1% € k(Z)[M]. Indeed, every valuation v € Val” (X) (i.e. the set of
T -invariant valuations) is obtained in this way (see e.g. the proof of [28, Lemma 4.2]) and
we get a (non-canonical) isomorphism Val” (X) 2 Val(Z) x Ng. For any v € Val” (X)
and £ € NR, we can therefore define the twisted valuation vg as follows: if v = v, ¢, then

Vg = Up g+t

One can check that the definition does not depend on the choice of the birational map
X --> Z x T. When p is the trivial valuation, the valuations wtg := v, ¢ are also inde-
pendent of the birational map X --> Z x T.

Definition 5.19. Let 7" be a torus acting on a (Q-Fano variety X. For any T -equivariant
filtration & of R, its reduced J-norm is defined as:

NA . NA
F):= inf Fe).
PAE) = int )
The reduced J-norm J¥A(X, £) of a T-equivariant test configuration (X, £) of X is
defined to be the reduced J-norm of its associated filtration (Example 5.6).
Definition 5.20. Notation as above. We define the reduced B for a T-equivariant valua-

tion v with Ax (v) < oo, which is not of the form wtg, to be

B(v)
Sx,t(v) =1+ sup
T geNg (T) Sx (Vg)

and 87(X) = infdy,7(v),

where v runs through all such valuations.

We can define a Q-Fano variety X to be reduced uniformly K-stable if one of the
following is true.
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Theorem 5.21. Notation as above. Let T C Aut(X) be a maximal torus. Then the follow-
ings are equivalent:

(1) (reduced uniform K-stability) there exists some n > 0, such that for any T -equi-
variant (X; L),
Fut(X: £) = 0+ I £);

(2) (reduced uniform Ding-stability) there exists some 1 > 0, such that for any linearly
bounded T -equivariant filtration ¥,

D(F) = n- JJAF);

(3) there exists § > 1 such that for any linearly bounded T -equivariant filtration ¥,
we can find § € NR such that By s(F¢) > 0;

(4) X is K-semistable and supge y,, Px (ve) > O for any T -invariant quasi-monomial
valuation v which is not induced by the torus;

(5) $7(X) > 1.

Proof. The equivalence between (1) and (2) are given in [91] for test configurations.
And (2) was extended to general filtrations in [154]. The last three characterizations were
proved in [154, Theorems 1.4 (3) and A.5]. [ |

Our definition clearly does not depend on the torus 7' since any two maximal tori
are conjugate to each other. When X is K-semistable, and it is not reduced uniformly K-
stable, i.e. §7(X) = 1 for a maximal torus 7" C Aut(X), then by [154, Theorem A.5], we
can find a T-equivariant quasi-monomial valuation v which is not on the torus, such that
8x,7(v) = 8x (v) = 1. Thus the following conjecture follows from Conjecture 4.18.

Conjecture 5.22. A Q-Fano variety X is K-polystable if and only it is reduced uniformly
K-stable.®

One direction is obvious: if X is reduced uniformly K-stable, then the only special test
configuration X with Fut(X; £) = 0 satisfies that JI;{A(X ; £) = 0, which implies (X; £)
is isomorphic to the product test configuration induced by a G,,-subgroup of 7'.

When k = C, it has been shown in [91] that a Q-Fano variety X is reduced uniformly
K-stable if and only if it admits a (weak) Kihler—Einstein metric.

Notes on history

K-stability was first defined in [145] for Fano manifolds. A key observation by Tian is to
consider all C*-degenerations realized in the embeddings of | — rKx|: X — P/ for all
large r. Then in [48], Donaldson formulated it in algebraic terms and extended it to all
polarized projective varieties. In [129], Ross and Thomas investigated the notion from a

SThis conjecture has been recently proved in [107].
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purely algebraic geometric viewpoint, and compared it with GIT stability notions. The
intersection formula of the generalized Futaki invariant, as first appeared [145, equa-
tion (8.3)], was proved in [116, 148]. All these are discussed in Section 2.1. Later the
uniform version of K-stability was introduced in [28,42]; see Theorem 5.17 (1).

In [117], the MMP was first applied to show that any K-semistable Fano varieties
have only kit singularities. Then a more systematic MMP process was introduced in [101]
to study a family of Fano varieties as in Section 2.2. Theorem 2.12 was proved there and
became one of the major ingredients in the latter development of the concept of K-stability.

The next stage of the development of the foundation theory of K-stability is largely
around the valuative criterion. Different proof of Theorem 3.2 were given and took a few
intertwining steps. In [12], a corresponding notion of Ding-stability was formulated by
Berman inspired by the analytic work of [43]. After first only considering divisors that
appear on the Fano variety [53], an earlier version of S(E) for any divisor E over X was
defined in [55]. Moreover, it was shown there that Ding semistability will imply nonnega-
tivity of B(E) (this is the direction which needs more input, as the converse follows easily
from [101] and a straightforward calculation; see the discussion in Section 3). During the
proof one key property of Ding invariant was established in [55], namely one can define
Ding(¥') for any bounded multiplicative filtrations ¥ and the corresponding m-th trun-
cation J, satisfies that Ding(¥,) converges to Ding(¥F'); see K. Fujita’s approximation
Lemma 5.10).

Using filtrations to study K-stability questions was initiated in [149] and extended to
general filtrations in [139], however, there is a difficulty to define the generalized Futaki
invariants in this generality; see Remark 5.11. A striking application found in [55] is
that the exact upper bound of the volumes of n-dimensional Ding-semistable Fano vari-
eties is shown to be (n + 1)". The ultimately correct formulation of S(E) as in (5) was
found by Fujita in [58] and Li in [93] independently. It was shown there that the various
nonnegativity notions of f are equivalent to the corresponding different notions of Ding-
stability. The latter was also proved to be the same as the corresponding K-stability notions
in [24,58], by using the argument in [101] to reduce to the special test configuration X
where Ding(X) and Fut(X) are simply the same; see Section 5.

Another new feature developed by Li in [93] is that he related the K-stability of a Fano
variety to the study of the minimizer of the normalized volume function (defined in [94])
for cone singularities. For this purpose it is natural for him to extend the original setting
which was only for divisorial valuations to all valuations; see Section 3.A. In [93], he also
found the derivative formula; see Lemma 4.28. This allows [103] to use a specializing pro-
cess in the local setting for normalized volume as in Section 4.A.2, and give an alternative
proof of the valuative criterion of K-semistability, which does not have to treat general
filtrations. In Section 4, we use an argument which is based on some latter developments
in [19,21]. In particular, a new perspective is introduced in [21] (partly inspired by [98]),
which is to use complements as an auxiliary tool to connect degenerations and valuations;
see Theorem 4.10. In [24,28,29], these invariants are extended to an even more general
setting, namely non-Archimedean metrics. We did not discuss these notions here.
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One conceptual output from the valuative approach, as discussed in Section 3.2, is the
formulation of the stability threshold §(X) in [19], and it is shown that it is the same as
the invariant defined in [59], which can be estimated in many cases; see Section 9. Then
it became clear to develop the theory further, e.g. proving the equivalence between uni-
form K-stability and K-stability, one needs to understand the minimizing valuations of 8y,
i.e. the valuations computing §(X). In [21], we proved when §(X) < 1, they are always
quasi-monomial. In [22, 23], one also proved that if it is a divisorial valuation, then it
indeed induces a non-trivial degeneration of X. Conjecturally, out of a quasi-monomial
valuation, we can produce a divisorial one. When the automorphism group is non-discrete,
one can define the notion of reduced uniform K-stability following [68] which is devel-
oped in [91, 154]; see Theorem 5.21. The analogue definition of § and the study of its
minimizer was proceeded in [154], where we obtained in this setting a similar result as
in [21].

A striking new development is the local K-stability theory, built on Li’s definition
of the normalized volume function in [94] defined on valuations over a klt singularities,
and the study of its minimizer. This gives a local model of K-stability theory and many
well studied global question for K-stability of Fano varieties can find its local counterpart.
As briefly discussed in Section 4.A.1, the picture was given by the Stable Degeneration
Conjecture which consisted of a number of parts formulated in [94] and [102]. They
were pursued by many works, and by now only one part remains to be open; see Con-
jecture 4.21. In [93, 95, 103], the cone singularity case is thoroughly investigated. The
existence of the minimizer is proved in [17], then in [151] it is shown that they are all
quasi-monomial and in [153] the uniqueness of the minimizer (up to rescaling) is con-
firmed. In the divisorial case, both [17, 103] independently showed the minimizer is given
by a Kollar component; and it was shown in [102, 103] that in general if assuming the
associated graded ring is finite generated, then it indeed yields a K-semistable (affine) log
Fano cone. In [105], by generalizing the argument in [55] (see Example 3.10), an inter-
esting inequality is shown to connect the volume of a K-semistable Fano variety with the
volume of any arbitrary point on it. We will see its applications in Section 10.

Finally, let us remark on some progress made in the analytic side. After the solution
of the Yau-Tian—Donaldson Conjecture for Fano manifolds (see [38, 137, 147] etc.), one
may naturally ask the same question for all Q-Fano varieties. It seems there are essential
difficulties to extend the original argument using metric geometry to the singular case.
However, in [24], Berman—Boucksom—Jonsson initiated a variational approach, which is
strongly inspired by a non-Archimedean geometric viewpoint. This is indeed conceptually
closely related to the foundational progress that people made to understand K-stability in
the algebraic side. As aresult, in [97] and [91] the approach of in [24] was fully carried out,
and it was proved that a Q-Fano variety X with |Aut(X)| < oo (resp. positive dimensional
Aut(X)) has a KE metric if and only if X is uniformly K-stable (resp. reduced uniformly
K-stable). So for Fano varieties, to complete the solution of the Yau-Tian—Donaldson
Conjecture in the singular case, what remains is to show (reduced) uniform K-stability is
the same as K-(poly)-stability.
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Part I1
K-moduli space of Fano varieties

In this part, we will discuss some questions about K-(semi,poly)stable Fano varieties. In
the author’s opinion, currently there are three central topics in algebraic K-stability theory.
In Part [, we have intensively discussed the research topic on understanding K-stability and
related notions.

Another two topics are using K-stability to construct a project moduli space, called
K-moduli; and verifying a given example of Q-Fano variety is K-stable or not. This will
be respectively discussed in Part IT and Part III. Naturally, the progress we achieved in
the foundation theory, as discussed in Part I, will help us to advance our understanding of
these two questions.

To give a general framework for intrinsically constructing moduli spaces of Fano vari-
eties is a challenging question in algebraic geometry, especially if one wants to find a
compactification. So when the definition of K-stability from complex geometry (see [145])
and its algebraic formulation (see [48]), first appeared in front of algebraic geometers,
though the connection with the existence of Kéhler—Einstein metric provides a philo-
sophic justification, technically it seemed bold to expect such a notion would be a key
ingredient in constructing moduli spaces of Fano varieties, as it is remote from any known
approaches of constructing moduli.

We recall that there are two successful moduli constructions that one can consult with.
The first one is the moduli space which parametrizes Kolldr—Shepherd—Barron (KSB)
stable varieties, that is projective varieties X with semi-log-canonical singularities (slc)
and ample wy ; see [80]. The main tools involved in the construction is the Minimal Model
Program. While it has been worked out in KSB theory for how to define a family of higher
dimensional varieties, which in particular solves all the local issues on defining a family of
Fano varieties, however, there are two main differences between moduli of Fano varieties
and moduli of KSB-stable varieties: firstly, if we aim to find a compact moduli space of
Fano varieties, we often have to add Fano varieties with infinite automorphism group,
which is a phenomenon that does not happen in the KSB moduli case; secondly, a more
profound issue is that Minimal Model Program often provides more than one limit for a
family of Fano varieties over a punctured curve, thus it is unclear how to find a MMP
theory that picks the right limit.

The second moduli problem is the one parametrizing (Gieseker) semistable sheaves
on a polarized projective scheme (X, Ox (1)) with fixed Hilbert polynomial; see [69, Sec-
tion 4]. This moduli space is given by the Geometric Invariant Theory which, as we have
noted, is not clear how to apply to the moduli of Fano varieties. Nevertheless, there have
been a lot of recent works (see e.g. [4,06,7]) to associate a given Artin stack ¥ with a good
moduli space 7: Y — Y, such that the morphism 7 has the properties shared by the mor-
phism from the quotient stack of GIT-semistable locus [X**/ G] to its GIT-quotient X // G.
This is the framework we will use to construct the moduli of K-(semi,projective)stable
Fano varieties.
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The first main theorem is the following, which is obtained using algebro-geometric
approach, is a combination of the recent progress [5,21,23,71,98,151, 153].
Theorem (K-moduli). We have the following moduli constructions:

(1) (K-moduli stack) The moduli functor %55‘5, of n-dimensional K-semistable Q-Fano

varieties of volume V, which sends S € Schy to

Flat proper morphisms X — S, whose fibers are
BEES‘S, (S) = { n-dimensional K-semistable kit Fano varieties with
volume V, satisfying Kolldr’s condition

is represented by an Artin stack I{E‘f, of finite type.
(2) (K-moduli space) .%,Ifsf, admits a separated good moduli (algebraic) space
DAL — X,
(in the sense of [4]), whose closed points are in bijection with isomorphic classes

of n-dimensional K-polystable Q-Fano varieties of volume V.

We call such moduli spaces to be the K-moduli stack of K-semistable Q-Fano varieties
and the K-moduli space of K-polystable Q-Fano varieties. The main remaining part is the
following.

Conjecture (Properness). The good moduli space X f ‘; is proper.

We also have a projectivity theorem (see [39, 154]) which implies the projectivity
of X rlf ‘;ﬁ, up to the above Properness Conjecture and Conjecture 5.22.

Theorem (Projectivity). Any proper subspace of X ,If }3 whose points parametrize reduced
uniformly K-stable Fano varieties, is projective.

With more effort, the above results on moduli can be extended to the case parametriz-
ing log Fano pairs; see Remark 8.4 for further explanation.

6. Artin stack x}fs;

In this section, we will show that families of K-semistable Fano varieties with a fixed
dimension n and volume V' are parametrized by an Artin stack E}Erlfsf, of finite type. The
local issue has been solved in KSB theory; see [81]. The boundedness and openness fol-
lows from an interplay between the foundation theory of K-stability as in Part I and the
MMP theory, see e.g. [14,63].

6.1. Family of varieties

It is a subtle issue to give a correct definition of a family of higher dimensional varieties
over a general base. While for the construction of the moduli space, we need the definition
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of a family over a general base to determine the scheme structure, once that is achieved,
the rest of the difficulties are all for families over a normal (or even smooth) base. Since
Q-Fano varieties only have klt singularities, which is a smaller class of singularities than
the singularities KSB varieties allow to have, on our luck all the subtleties brought up
by giving the correct definition which we have to face in the construction of %5‘;, have
already been addressed; see [76, 81]. Therefore, in this survey, we will only deal with
families as in Definition 6.1.

Definition 6.1. A Q-Gorenstein family of Q-Fano varieties w: X — B over a normal base B
is composed of a flat proper morphism : X — B satisfying:

(1) 7 has normal, connected fibers (hence, X is normal as well),
(2) —Kx 7 is a w-ample Q-Cartier divisor, and
(3) X;iskltforallt € C.

In [83, Theorem 11.6], it is shown that the above condition on —Ky,7 being Q-
Gorenstein is equivalent to the volume (—Kx, )" being a local constant on ¢.

Remark 6.2. For a general base B, we can also define a family of Q-Fano varieties X
over B. Then one should post the Kollar condition, which requires that for any m € Z the
reflexive power w)[Z]S commutes with arbitrary base change; see [76, Corollary 24]. This
condition first appeared in the study of families of KSB stable varieties, and now is well
accepted as a right local condition for a family of varieties with dimension at least two

over a general (possibly non-reduced) base; see [76,81].

Definition 6.3. We call 7: X — B as in Definition 6.1 a Q-Gorenstein family of K-semi-
stable Q-Fano varieties if

(4) forany ¢ € B, X; is K-semistable.

Remark 6.4. We note here ¢ can be a non-closed point. It was subtle to study K-stability
notions over a non-algebraically closed field since they a priori could change after tak-
ing a base change of the ground field. Nevertheless, the issue was resolved in [155,
Theorem 1.1] where it is shown that a Fano variety X defined over a (possibly non-
algebraically closed) field k is K-semistable (resp. K-polystable) over k if and only if Xz
is K-semistable (resp. K-polystable) where k is the algebraic closure of k.

6.2. Boundedness

In moduli problems, boundedness is often a deep property to establish. Fortunately, deep
boundedness results in birational geometry have been established in [14, 15,63]. Then we
can apply it to obtain the boundedness for K-semistable Q-Fano varieties with volume
bounded from below. The implication was first settled in [71].

Theorem 6.5 (Boundedness). Fix n € N and V > 0. All n-dimensional K-semistable
Q-Fano varieties with volume at least V, are contained in a bounded family.
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The first proof of Theorem 6.5 in [71] heavily relies on [14]. Here following [153], we
give a different argument using normalized volume, in particular, we will show that the
weaker boundedness theorem as in [63, Theorem 1.8] is enough for our purpose.

First, in the course of generalizing [55] (see Example 3.10), in [105, Theorem 1],
Yuchen Liu found that there is an inequality connecting the local volume and global
volume for a K-semistable Fano variety. Such an inequality was later generalized to an
arbitrary Q-Fano variety X in [19].

Theorem 6.6 ([19,55,105]). Let X be a Q-Fano variety, then for any x € X, we have

ol X) - ("nil)" > (“Kx)" - 8(X)".

Proof. See [19, Theorem D]. [

Therefore, if we bounded (—Kx)" and §(X) from below, we have a lower bound
of \70\1(x, X).

By the proof of the uniqueness of the minimizer in [153] (see Theorem 4.20 (2)), we
know that if we take a finite cover f:(y € Y) — (x € X) which is étale in codimension 1,
then

vol(y.Y) = deg(f) - vol(x, X):

see [153, Theorem 1.3]. Applying this locally to the index-1 cover of Ky, since
vol(y,Y) <n"

by [106, Theorem 1.6], the Cartier index of any point x € X is bounded from above
by n" /vol(x, X). Thus, the Cartier index of X is bounded from above, therefore we know
all such X form a bounded family by [63, Theorem 1.8].

Remark 6.7. A strong conjecture predicts that x € X with volume bounded from below,
always specialize to a bounded family of singularities with a torus action.

6.3. Openness

By Theorem 6.5, there exists a positive integer M such that —M K is a very ample Cartier
divisor for any n-dimensional K-semistable Q-Fano variety X, i.e. | — MKx|: X — PV
for some uniform N. Thus there is a finite type Hilbert scheme Hilb(P?), such that any
embedding | — MKx|: X < P gives a point in Hilb(P¥ ). Then there is a locally closed
subscheme W C Hilb(P) such that a map T — W factors through W if and only if the
pull back family Univr is a Q-Gorenstein family of Q-Fano varieties and O (—M Kyniy,/7)
~1 O(1).

Next, to know that %,Ifsls, is an Artin stack of finite type, we will show the K-semistab-
ility is an open condition in a Q-Gorenstein family of Q-Fano varieties. Thus, there is an
open subscheme U C W, and ¥}, = [U/PGL(N + 1)].
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In [151] and [21], two different proofs respectively using the normalized volume and
8-invariants are given. Both proofs use Birkar’s theorem on the existence of bounded com-
plements [14], respectively in the local and global case.

Theorem 6.8 (Openness, [21,151]). If X — B is a Q-Gorenstein family of Q-Fano var-
ieties, then the locus where the fiber is K-semistable is an open set.

We have indeed shown two stronger statements, each of which implies Theorem 6.8.

Theorem 6.9. For a point s € B. We have the following:
(1) If X — B is a Q-Gorenstein family of Q-Fano varieties, then the function

(s € B) — min{8(X;), 1}

is a constructible, lower-semicontinuous function, and

(2) for a family of kit singularities w: (B C X) — B, the function
(s € B) — vol(s, X;)
is a constructible, lower-semicontinuous function.

Sketch of Proof for (1). We give a sketch of the proof for the global result.
By [155], we know that

min{§(Xy), 1} = min{§(X5), 1},

where § — s corresponds to an algebraic closure k (s) — k(s). Thus we can replace §(X)
by §(X5) in the statement, which was shown in [21], by a similar argument to the one for
Theorem 4.17.

In [20], it is showed that 6(X;) is a lower semi-continuous function in Zariski topology
ont € B for a Q-Gorenstein family of Q-Fano varieties X — B. Therefore, we only need
to show the constructibility of §(X;).

Combining Proposition 4.4 and Lemma 4.13, for any X;, if §(X;) < 1, then

8(X,) = inf 220 ()
Sx, (Er)
for all E; which is an Ic place of an N-complement of X;, where N only depends on the
dimension of X;.

In particular, we can apply the argument of Paragraph 4.15 and conclude there exists
a finite type scheme S/ B (in particular, S has finitely many components) and a family of
divisors © C Xg := X xp § over S with D ~5 —NKyx /s such that (X, D) admits a
fiberwise log resolution

fs: (Y. Ay = Ex(fs) + (fs): (D)) — (Xs. D),
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i.e. restricting over any s € S, (¥s, Ay,) — (X, Dy := Ds x5 {s}) is a log resolution,
and for any ¢ € B, and any N-complement D € | — NKy, |, there exists a point s € S,
such that (X5, O5) = (X¢, D).
Applying the argument as in Paragraph 4.16, using [62, Theorem 1.8], we conclude
that for a fixed s,
a; :=inf —AXX(ES)
Sx. s (Es) ,
where the infimum runs over all divisors E corresponding to points on Wg, only depends
on the component S; of S containing 5. And Lemma 4.4 implies that

8(X) = min {a; | there exists s € S; such that X; =~ X}.

Then we can conclude by Chevalley’s theorem that the image of S; to B are all con-
structable sets. ]

As we discuss at the beginning of Section 6.3, by combining Theorem 6.5 and 6.8, the
following theorem holds.

Theorem 6.10 (Moduli of K-semistable Q-Fano varieties). The functor %fg‘s, is repre-
sented by an Artin stack of finite type.

7. Good moduli space X :plf

In this section, we discuss the existence of a good moduli space X,If ‘;ﬁ of %ESIS, Recall
an algebraic space Y is called a good moduli space of an Artin stack ¥, if there is a
quasi-compact morphism 7: ¥ — Y such that

(1) 4 is an exact functor on quasi-coherent sheaves; and

(2) 74(Oy) = Oy;
see [4, Definition 4.1]. A typical example of good quotient arises from the GIT setting: if
a reductive group G acts on a polarized projective scheme (X, L), and let X* C X be the
semistable locus, then the stack [X*/G] admits a good moduli space which is the GIT
quotient X // G.

For an Artin stack, admitting a good moduli space is a quite delicate property and
it carries strong information of the orbit geometry. In a trilogy of works [5, 23, 98], this
was established for ffrlfs‘s,, using the abstract theory developed in [7] and tools from the
MMP to obtain finite generation. The key is to show that, for special kinds of pointed
surfaces 0 € S, a family of K-semistable Fano varieties over the punctured surface S \ {0}
can be extended to such a family over the entire surface S.

7.1. Separated quotient

In this section, we will discuss one key property that K-stability grants in the construc-
tion of the moduli space. As we have already seen in Example 2.15, a family of Q-Fano
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varieties X ° over a punctured curve C° = C \ {0} could have many different fillings to
be Q-Fano varieties X over C. Therefore, we have to only look at the fillings which are
K-semistable. Moreover, since a K-polystable Q-Fano could have an infinite automor-
phism group, i.e. in general we can not expect the extension family is unique, but what
one should expect from separatedness of X ,If ‘;‘; is that any two K-semistable fillings are
S-equivalent.

Definition 7.1. Two K-semistable Q-Fano varieties X and X’ are S-equivalent if they
degenerate to a common K-semistable log Fano pair via special test configurations.

Thus, we aim to show for a punctured family of Q-Fano varieties, the K-semistable
filling is unique up to a S-equivalence (Theorem 7.3). This has been quite challenging for a
while. In [98], the case when X — C arises from a test configuration was solved, i.e. it was
proved that any two K-semistable degenerations X and X’ of a same K-semistable Q-Fano
variety, are S-equivalent. Therefore, the orbit inclusion relation for an S-equivalence class
of a K-semistable Q-Fano varieties behaves exactly in the nice way as the GIT situation;
see [113, Theorem 3.5]. In particular, this gives the following description of K-polystable
Q-Fano variety as the minimal element in the S-equivalence class.

Theorem 7.2 ([98]). A Q-Fano variety X is K-polystable if it is K-semistable and any
special test configuration X of X with the central fiber X being K-semistable satis-
fies X >~ Xo.

The argument in [98] later was improved in [23] where we show that any two K-semi-
stable fillings of a Q-Gorenstein families of Q-Fano varieties over a smooth curve are
S-equivalent. For this more general situation, we have to elaborate the argument in [98]
into a relative setting. We will discuss more details in the proof of the theorem below.

Theorem 7.3 ([23]). Let n: X — C and n': X' — C be Q-Gorenstein families of log
Fano pairs over a smooth pointed curve 0 € C. Assume there exists an isomorphism

¢: X xc C° — X' x¢c C°
over C°:= C \ {0}. If Xo and X, are K-semistable, then they are S-equivalent.

Proof. We separate the proof into a few steps.

Step 1. Defining the filtrations. Let m: X — C and ’: X’ — C be Q-Gorenstein families
of Q-Fano varieties over a smooth pointed curve 0 € C. Assume there exists an isomor-
phism

¢: X xc C° — X' x¢c C°

over C° = C \ {0} that does not extend to an isomorphism X ~ X’ over C. After shrink-
ing, we may assume C is affine and there exists a local uniformizer ¢.
From this setup, we will construct filtrations on the section rings of the special fibers.
Set
L:=—-rKxy and L' :=-—rKy,
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where r is a positive integer so that L and L’ are Cartier. For each non-negative integer m,
set

Rm = H*(X,O0x(mL)), R, = H'(X',Ox(mL")),
Ry = H°(Xo,O0x(mLy)), R, := H°(X{.Ox(mLy)).

Additionally, set

5R:=@5Rm, R:=€BR,,,, R’::GBJ%;W and R’:=@R;n.
m m m

m

Fix a common log resolution X of X and X’

X
D
X - X
and write X, o and X’ o for the birational transforms of X¢ and X, on X. Set

a:=Axx,(X'o) and a':= Ay x;(Xo). (24)

Observe that X, #* X', since otherwise ¢ would extend to an isomorphism over C as
—Kx and —Kx are ample. Moreover, a,a’ > 0 since Xy and X(’) are klt, and we can
apply inversion of adjunction.

For each p € Z and m € N, set

FPRm = 1{s € R |ordg, () = p} and FPR,, :={s € Ry |ordg (s) > p}.
We define filtrations of R and R’ by setting
FPRy :=im(FPRy — Ry) and F'PR, :=im(F?R,, — R,),

where the previous maps are given by restriction of sections. It is straightforward to check
that ¥ and ¥ are filtrations of R and R’.

Note that a section s € Ry, lies in 7R, if and only if there exists an extension
5 € Ry of s such that § € F#R,,. The analogous statement holds for F”.

Step 2. Relating the filtrations. Since p*(Xo) = q*(X{) have multiplicity one along Xo
and X', we may write

K¢ =y*(Kx)+aX'o+F and Kg =y (Kx)+a'Xo+ F',
where the components of Supp(F) U Supp(F’) are both - and ¥'-exceptional. Now,
FPRy ~ HO()/(\, Og(my*L — pX'0))
= HO()?, Og(my™L + (mra — )Xo —mra'Xo +mr(F — F'))).
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Hence, for s € 7R, multiplying y*s by t""4~? gives an element of
Ho(f, Og(my™ L — (mr(a+a") — p)fo)),

which can be identified with ™" @+a) =P R/
As described above, for each p € Z and m € N, there is a map

(pp,m:-{f'vpﬁm . 37mr(a+a/)7pﬁ;n’

which, when R, and R, are viewed as submodules of K(X) = K(X’), sends s € FP? R,
to t™74~P (¢~ 1)*(s). Similarly, there is a map

(101/7,”1: 371132;” - ?mr(a'f‘a,)_]?ﬁm’

which sends 5" € FP R/, to ™" P y*(s").

Lemma 7.4. The map ¢y, is an isomorphism. Furthermore, given s € ¥ P R,,,
(1) s vanishes on Xg if and only if gp m(s) € F'Mr@+a)=r+1 Q! " and
(2) @p,m(s) vanishes on X if and only if s € FPHIR,.

’
mr(a+a’)—p,m

tiplication by (7@ ~(mr(a+a)=p)ymra=p — | Hence, @p,m is an isomorphism.
For (1), fix s € ¥ P R,, and note that s vanishes on X if and only if

’
mr(a+a’)—p,m

Proof. The map ¢ is the inverse to ¢, 5, since ¢ O ¢p,m is mul-

W*S S HO()?, (Df(mlll*L — pj(v/() — i;()))
The latter holds precisely when
(mrahyrg e HO()?,(D)?(mW*L/ —(mr(a+d)—p+ 1)X,)),

which is identified with ™7 (@+ta)=p+1R.  Statement (2) follows from a similar argu-
ment. |

Proposition 7.5. The maps (¢p,m) induce an isomorphism of graded rings

D Defrn D DR 25)

meN peZ meN peZ

that sends the degree (m, p)-summand on the left to the degree (m, mr(a + a’) — p)-
summand on the right. Hence, gr‘;. Ry, and gr‘;,R;n vanish for p > mr(a + a’).

Proof. Consider the map

FPRy — gl @O PRI (26)
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defined as follows. Given an element of s € £ ? R,,, choose § € P R,, such that § is an
extension of s. Now, send s to the image of ¢, n (5) under the composition of maps

o~ n_ o~ n_ +a)—

gmr(a+a) pr;n _, gmr(a+a’) pR;n _ grr;t‘(a a’) PR;n.
This map can be easily seen well defined.

Using Lemma 7.4, we see that (26) is surjective and has its kernel equal to F?T1R,,.
Indeed, the surjectivity follows from the fact that ¢, ,,, is an isomorphism. The description
of the kernel is a consequence of Lemma 7.4.2. Therefore,

+a')-
grprm N gr';,r(“ a’) pR;n
is an isomorphism. The previous isomorphism induces an isomorphism of graded rings,
since ©p,,m, (S1)@par.ms (52) = Opi+pymy+m, (S1852) for sy € FPIR,,, and s, € FP2 R,

To see the vanishing statement, observe that gr’} R,, and gr:g R, vanish for p < 0.

Hence, the isomorphism of graded rings yields the vanishing for p > mr(a + a’). ]

Remark 7.6. The above filtration defined in [23] was trying to extend the filtration defined
in [28]; see the proof of Lemma 3.4) for test configurations into a more general relative
setting. In hindsight, this indeed coincides with the canonical filtration introduced in [7]
when considering S-completeness for vector bundles; see [7, Remark 3.36].

The connection between the above filtration with K-stability can be seen by the fol-
lowing statement.

Proposition 7.7. Let
o0 o0
B =ar"(—Kx,)" —/ vol(F'R)dt and p'=a'r"(—Kx;)" —/ vol(F""R")dt.
0 0
Then B+ B’ =0.

Proof. Applying Proposition 7.5, we see

mr(ata) mr(ata)-p
dim FPR,, = Z g R = Z g Ry,
i=p j=0

= dim R,, — dim F™r@ta)=pFipg:

for p € {0,...,mr(a + a’) + 1}. Therefore,

mr(a+a’) mr(a+a’)
Y dmFPR,+ Y dimFPR, =mr(a+a’)dimR,,.
p=0 p=0

Then we conclude by dividing both sides by ;m"*! and let m — oo. n
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Let ae(F) be the base ideal sequences for ¥ on X, i.e. a, = a, (ordg,o); and be ()
the restriction of ae(¥') on Xo. Then the inversion of adjunction implies that

let(X, Xo; ae(F)) = lct(Xo; be (F)).

Since we have a > lct(X, Xo; ae(F)) and by, D I, p 1= I, p(F) (see Definition 5.8 for
the definition of I, ,) for any m (and the equality holds for m >> 0), we have

a > lct(Xo; be(F)) = pux, (F).
Similarly, we can define
a’ > 1et(Xo; be(F')) = pux; (F).

Now since X and X are K-semistable, and 8 > Bx,(¥)>0and g’ > 0. Thus, B =’ =0
and
a = let(Xo; ba(F)) = pxo(F), @' = 1et(Xg; be(F")) = px; (F').

Step 3. Finite generations. The remaining part of the proof is to show that the graded ring
in (25) is finitely generated and yields normal test configurations, since then by [101],
this will imply that the Proj of the graded ring yields a K-semistable QQ-Fano variety.
In [23], this is the most involving part of the proof, using the cone construction. Based on
a better understanding of filtrations for K-stability problems, now we have an argument
which significantly simplifies the technical one in [23] as follows, though the underlying
strategy remains the same.’
We know that there is a sufficiently large m and sufficiently small € > 0, such that

1
1Ct<X, Xo; —Im,(a—e)m) > 1.
m

Thus, for a general divisor D € (“_E)mﬁm, (X , Xo + #D) is log canonical. On the
other hand,
~ 1
A X'9) =a— —ordy/ (D) <e.
X,X0+#D( 0) mr XO( ) <

Thus, from [16], we know that there exists a model pu: Z — X, which precisely
extract X, and the ring

B P H(Z. u*(-mrKx) — pX})
meN peN

is finitely generated. Its restriction on R yields @p F PR, which is finitely generated and
the graded ring in (25) yields test configurations ¥ and Y’ of X, and X{).

Claim 7.8. Y and Y’ are normal test configurations.

"This argument is suggested by Harold Blum.
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Proof. To see the claim, we want to use the construction in Section 7.2.1. We know that
the above argument yields a family

X := Proj @ (ll.= (n:(—rme°)))

over ST(R); see (27). Then the two test configurations Y (resp. Y’) are given by s = 0
(resp. t = 0). Denote by D the closure of D on X. Since ¢ yields a family

7°:X° — ST(R) \ 0,

which is normal, and X \ X° is of codimension 2, we conclude that X is normal. We con-
sider X’ the family over ST(R) obtained by the trivial isomorphism X — X, and D’ the
divisor on X’ which is obtained by gluing D on X using the trivial isomorphism. In par-
ticular, (X, %D’ ) is a Q-Gorenstein family of log canonical log CYs over ST(R).

On X', t = 0and s = 0 are two divisors Z and Z’ (isomorphic to Xo x A!). Let

6/ = AX’,#D’-‘,—Z-}-Z/(Y/) = AX,$D+X0(X/O) S €,

then (X, %D + Y + (1 —¢€')Y’) is crepant birationally equivalent to (X, %D’ +Z+27),
which in particular implies that (X, Y + (1 — €’)Y”) is log canonical. As €’ — 0, we know
(X,Y + Y’) is log canonical, which implies Y and Y’ are normal. ]

Since 0 = B(¥) > Ding(Y) by Theorem 5.14, it implies Ding(Y) = 0. Thus, Y is

a special test configuration by Theorem 2.12, and the special fiber Yy is K-semistable;
see [98, Lemma 3.1]. Similarly, X, degenerates Y, via the special test configuration Y.
(]

Remark 7.9 (Minimizing CM degree). The analysis in Step 2 of the proof of Theorem 7.3
can be considered as a relative version of the filtration introduced in [28, Section 5], where
they looked at the trivial family and a test configuration.®

Then if 7: X — C and n’: X’ — C are families of Q-Fano varieties over a smooth
projective curve C such that

X X¢ CoéX/XC Co,

by an argument as in [28, Section 5] (or combining Lemma 7.4, equation (28) and the
proof of [154, Lemma 2.28]), the difference of the CM degrees (see Definition 8.2)

deg(hr) —deg(Ar) = (— Kx + 10 1(0))" " = (= Kxr + 1/~ (0))" ™"

is identical to (n + 1)(—Kx,)" - B (see Proposition 7.7), where ¢ >> 0 is chosen so that
—Kx +t/71(0) and —Kx’ + ¢ f'~'(0) are ample.

8The result here is from a discussion with Harold Blum, and it is also independently obtained by Chi Li and
Xiaowei Wang.
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One interesting application is the following: Since we have shown 8 > 0 if Xy is
K-semistable (see the end of Step 2 in the proof of Theorem 7.3), combining with [101],
we know the following is true: If X is K-semistable, then A, has the minimal CM-degree
among all families X’/ C satisfying

X x¢c C° = X' x¢c C° where C° = C \ {0}.

Conversely, if a family of QQ-Fano varieties 7: X — C satisfies that
(1) the fibers over C° are K-semistable, and

(2) for any finite morphism d: C’ — C and a family 7’: X’ — C’ with
X' xcrnH(C°%) = X xc n71(C?),
we have deg(A,) - deg(d) < deg(Ar/),

then X is K-semistable. This fact can be proved using the argument as in [98, Proof of
Lemma 3.1].

7.2. The existence of a good moduli space

In this section, we will sketch the argument that %5315, admits a good moduli space. For
smoothable QQ-Fano varieties, this is done [100], using the criterion in [6]. In [7], two
elegant evaluative criteria were formulated. This makes checking that a stack of finite
type admits a good moduli space a lot more transparent.

Let R be a DVR with n = Spec(K) the generic point. Let ¥ be an Artin stack over k.

Definition 7.10 (S-completeness; see [7, Definition 3.37]). Fix a uniformizer = of R.
Following [7, equation (3.6)], denote by

ST(R) := [Spec(R[s.t]/(st — ))/Gm]. (27)

where the action is (s,7) — (-5, u~' - ¢). Let 0 = [(0,0)/G,,], then ST(R) \ 0 is iso-
morphic to the double points curve

SpeC(R) USpec(K) SPGC(R)-

Then a stack ¥ is called to be S-complete if any morphism 7°: ST(R) \ 0 — ¥ can be
uniquely extended to a morphism 7: ST(R) — ¥.

Definition 7.11 (©-reductivity; see [7, Definition 3.37]). Let ©:=[A!/G,,] with the mul-
tiplicative action. Set 0 € ®g to be the unique closed point. Then we say ¥ is ©-reductive
if a morphism ®x \ 0 — ¥ can be uniquely extended to a morphism @r — ¥.

Theorem 7.12 ([7, Theorem A]). Let Y be an Artin stack of finite type with affine diagonal
over Kk, then ¥ admits a good moduli space if Y is S-complete and ©-reductive.

In [5], we put the argument in [23] in the context of [7], then the results are enhanced,

so that one can show any K-polystable Q-Fano has a reductive automorphism group, and

moreover, any S-closed finite substack of ?Xifs“, has a good moduli space.
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7.2.1. S-completeness. We will explain that the S-completeness of %5“;, essentially fol-
lows from Theorem 7.3, as observed in [5].

Let R be a DVR with n = Spec(K) the generic point. Consider two families X and X’
of K-semistable Q-Gorenstein Fano varieties over Spec(R) such that there is an isomor-
phism

¢: X XSpec(R) SPeC(K) =X XSpec(R) SPeC(K)

Thus, ¢ yields a family 7°:X° — ST(R) \ 0. We want to show this can be indeed extended
to a family 7: X — ST(R), which is precisely the claim of S-completeness for the functor
of K-semistable Fano varieties with fixed numerical invariants.

Denote by i: ST(R) \ 0 C ST(R) the open inclusion, then since 78 (—rmKyxe) is a
vector bundle on ST(R) \ 0 and 0 in ST(R) is of codimension 2, then i (78 (—rmKxe)) is
a vector bundle over ST(R). Moreover, a key calculation (see [5, Proposition 3.7]) shows
that for any m we have

i (n:(—rmeo)) |0 o~ @ gr; Ry
DPEZ

see Proposition 7.5. Thus, we can define

X := Proj @ (ix(mg(—rmKxe))),

and the rest is identical to Step 3 of the proof of Theorem 7.3; see Remark 7.6.
An important consequence of S-completeness is the following theorem.

Theorem 7.13 ([5]). For any K-polystable Fano variety, Aut(X) is reductive.

Proof. This follows from the S-completeness. In fact, if we apply the above discussion
to Aut(X)(K), then any g € Aut(X)(K) can be used to glue two trivial families X x
Spec(R), to get a family X over ST(R). The special fiber over 0 2= [Spec(k)/G,,] is iso-
morphic to X as it is K-polystable together with a morphism A: G,, — Aut(X). We can
use A to cook up a trivial torsor X, . Moreover, we can show X and X, are isomorphic tor-
sors over ST(R), which exactly says there are two elements a and b in Aut(X)(R) such
that g = a - A - b. In other words, the Iwahori decomposition

Aut(X)(K) = Aut(X)(R) - Hom(G,,, Aut(X)) - Aut(X)(R),
holds for Aut(X), but this implies that Aut(X) is reductive. |

When X is smooth with a KE metric, the above theorem was proved by Matsush-
ima [111]. When X is a Q-Fano variety with a weak KE metric, this is an important step in
the proof of Yau-Tian-Donaldson Conjecture; see [38, 147], see also [13]. Theorem 7.13
gives a completely algebraic treatment.
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7.2.2. O-reductivity. To check ®-reductivity, we need to establish the following:

Theorem 7.14 ([5, Theorem 5.2]). Let R be a DVR of essentially finite type and 1 the
generic point of Spec(R). For any Q-Gorenstein family of K-semistable Fano varieties X g
over R, any special K-semistable degeneration X /A,l7 of the generic fiber X; can be
extended to a family of K-semistable degenerations X/ A}e of Xg.

This is proved in [5, Section 5] by generalizing the arguments developed in [98], using
a local method. Here we sketch a global argument.

Sketch of the proof. Denote by k the residue field of R. Let

R =D Rm = P H(Xr. —rmKxy)
m m

for a sufficiently divisible r. The special test configuration X, induces a special divi-
sor E;, which yields a filtration ¥, := ?Eﬂ on Rg = R ® K(R). For each m and i,
there is a unique extension of F'R,, C R, of 5”',7’ (Rg)m as an R-submodule, such
that Ry /F' R is a free R-module. Denote by F,° Ry the restricting filtration of #*
on Ry =RQk,ie.

317](’ Ry = Im(?iﬁk — R — Ryp).

Then ¥,” yields a multiplicative filtration on Ry.

Since Fut(X;) = 0, u(F;) = S(F5). On the other hand, u(Fx) < u(Fy) by the
lower semi-continuity of Ict and S(F%) = S(F), we have u(F) < S(Fx), which implies
w(Fx) = S(Fr) as Xy is K-semistable; see Theorem 5.16. In particular, u(F,) = u(Fr).

Then we can mimic the proof of Step 3 of Theorem 7.3 to produce a test config-
uration X, which extends X as follows. For any arbitrary positive €, we can find a
divisor D € HO(XR, —rmKy) such that (XR, X + #D) is a log canonical pair and
AanﬁDn (Ey) < €. From this, we can easily conclude that the closure Eg of E; is a
dreamy divisor over X g, whose induced filtration coincides with % . Therefore, we can
produce such a test configuration X. ]

To summarize, applying the main theorem of [7], we conclude the existence of the
K-moduli space.

Theorem 7.15 ([5]). The finite type Artin stack ffssf, admits a separated good moduli
space ¢: X555, — XK ’
D v,V n,V:

Let %fs‘;,’sm be the open locus, where the corresponding K-semistable Fano varieties are
smooth, and X '11< "™ the closure of ¢(I£f;s,’sm) in X ,If ', which is the locus parametrizing
K-polystable Fano varieties that can be smoothable in a Q-Gorenstein deformation.

8. Properness and projectivity

In this section, we discuss briefly the properness and projectivity of X ,]f ﬁ;.
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8.1. Properness
The following statement is equivalent to the properness of the good quotient moduli space.

Conjecture 8.1 (Properness). Any family of K-semistable Fano varieties over a punctured
curve C° = C \ {0}, after a possible finite base change, can be filled in over 0 to a family
of K-semistable Fano varieties over C.°

When k = C and the K-polystable Fano varieties X; are all smooth for t € C° it
follows from that a K-polystable/KE limit exists [45]. Similar arguments appear in [38,
147] in a log setting. It follows that X\ 5™ is proper. In fact, it can be shown that the
limit X for # — 0 is the Chow limit of [X ;] € Chow(P¥) induced by Tian’s embedding,
i.e. embeddings X, — PV given by | — mKy,| for m > 0 with the orthonormal bases
under the Kihler—Einstein metrics on X;; see [38, 100, 147].

To give a completely algebraic treatment, we can follow the strategy of [7, Section 6],
which is an abstraction of the Langton’s argument of proving the properness of the moduli
space of stable sheaves; see [87]. As a consequence, in [18] we show that if Conjec-
ture 3.15 is true, then one can define a unique optimal degeneration with respect to a
lexicographical order

[X]m ™ 112
and prove that it yields a ®-stratification (see [66]) on the stack of all Q-Fano varieties.
Then Conjecture 8.1 would follow from it.

(Fut(X) Fut(X))

8.2. Projectivity

On X V there is a natural Q-line bundle, called the Chow—Mumford line bundle or the
CM- lzne bundle. People expect Acy to be positive on X, KP* because when the family
parametrizes smooth fibers, the curvature form of the Qulllen metric on the CM line bun-
dle is given by the Weil-Peterson form; see e.g. [51, 142, 145] for increasing generality.
This differential geometric approach is pushed further in [99] to show Acy is big and nef
on X, Kps *™ and ample on X, Kpb *™_ Later in [39], an algebraic approach to study the posi-
tivity of Acm Was mtroduced It is proved that Acy is nef on any proper space of X, P A
and ample if all points of the proper space parametrize uniformly K-stable Fano varletles.
In [154], we developed a number of new tools to enhance the strict positivity result of [39]

to a version which allows the fibers to have non-discrete automorphism groups.

Definition 8.2 (see e.g. [39,98,127]). Let f: X — T be a proper flat morphism of varieties
of relative dimension n such that the general fiber is normal, and L an f-ample Q-Cartier
Q-divisor on X . Consider the Mumford—Knudsen expansion of Ox (rL) for a sufficiently

divisible r:
n+1

q
detf: (Ox (qrL)) = R M
i=0
where M; are uniquely determined bundles on 7.

9This conjecture has been recently proved in [107].
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We define the CM line bundle to be

)tf,rL = MZSf;rl)Jr”(rL) ® M;Z(n+l)’

where
—nKyx, - (rL)™* !

u(rL) = L)

for a general fiber X;, and
1
)tf,L = r—n/\f,rL

as a Q-line bundle. It clearly does not depend on the choice of r.
If both X and 7" are normal and projective, we can write it as an intersection

App = fu(u(@) - L™+ (n + DL - Kyy7),

and if L = —Kx,7, we denote Ay := — fyx(—Kx,7)" 1.
When T = %55‘5, and X — T is the universal family, we can descend Acy to get the

CM (Q)-line bundleon T = %5515,, and one can show that Ay can be descent to X ,If $.

Theorem 8.3 (Projectivity, [39, 154]). The restriction of Acm on any proper subspace

of X, ﬁi whose points parametrize reduced uniformly K-stable Fano varieties, is ample. In
particular, Acm| gxossm is ample.
n,V

Putting together Properness Conjecture 8.1 and Conjecture 5.22, Theorem 8.3 predicts
that Acy is ample on X :l( [;, i.e. we have the following implications:

Conjecture 5.22

/

Conjecture 4.18 + == Projectivity

T~

Conjecture 3.15 == Conjecture 8.1

Outline of the proof of Theorem 8.3. We give a sketch of the main ingredients in the proof.

Step 1. Harder—Narashimhan filtration Consider a family of Q-Fano varieties f: X — C
over a smooth projective curve. One remarkable idea in [39] is to relate the positivity of A ¢
to the Harder-Narashimhan filtration of f.(—mrKx,c). This becomes more transparent
in [154]. One can consider the Harder—Narashimhan filtration 5‘77151\1 of the @ -algebra

R := P fel=mrKx/c),

where Fif C fu(—mrKx/c) is defined to be the union of all subbundles with slope at
least A. Restricting to a fiber Xy, and putting all A and m together, we obtain the Harder—
Narashimhan filtration Ff on R = @,,cny H®(—mrKx,), which can be easily proved
to be a multiplicative linearly bounded filtration.
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In [39], the proof uses the characterization of §-invariants as the limit of the log canon-
ical thresholds of basis type divisors; see equation (10). In [154], it is observed that

2 S(FHN)

deg(Ay) = —(n 4+ D(—Kx,) (28)

so it suffices to show

deg(Ar) = —(n + 1)(—Kx,)" B(Fun),

which is equivalent to saying pux,(Fu~x) < 0. In fact, for any r > 0 and any section of
Dy € Fi{ Ry (for m sufficiently large with zm > 2g + 1) can be extended to a section

D e | —rme/c —f*P|.

Therefore, (X 0s # Do) can not be log canonical since otherwise Ky ;¢ + D ~q —# f*pP
and the pushforward of its multiple would violate the semi-positivity of the pushforward
of the log canonical class. This implies that the log canonical slope (x, (Fun) < 0.

Step 2. Twist the family. This is an extra step which is special for a family of reduced
uniformly K-stable Q-Fano varieties, i.e. when there is a positive dimensional torus acting
fiberwisely on the family.

Let f: X — C be a Q-Gorenstein family of Q-Fano varieties f: X — C where a gen-
eral fiber is reduced uniformly K-stable with respect to a torus 7'. Fixed a general fiber X;.
Then there exists a § > 1 which only depends on X such that for the Harder—Narashimhan
filtration Fyn, by Theorem 5.21 there exists a twist & such that B5((Fun)g) > 0. A some-
what subtle property is such & can be chosen to be in N(T")q; see [154, Proposition 5.6].
After a further finite base change C’ — C, we can assume £ € N(T'). Consider

R = @ Rm = @ Se(=mrKx/c),
meN meN
which can be decomposed into weight spaces

R=P Ru= P Rune

meN meN,aeM

Now we can pick up any point ¢ € C, and construct the twisting family
Je: Xg :=Projo (Re) — C,

where
Re= P Rma®0c((E.)-c).
meN,aeM
It is easy to check Ay ~q Ay, as a general fiber is K-semistable, and that the Harder—
Narashimhan filtration of the twisting family fz: X¢ — C is (Fun)e; see [154, Corol-
lary 5.3].
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Then from B5((Fun)e) > 0, we can show

—Kx,/c + fe Q)

(n+ D(=Kx)"(—1)
is nef; see [ 153, Proposition 4.9].

Step 3. Ampleness lemma. In this step we want to show that if there is a Q-Gorenstein
family f: X — T of Q-Fano varieties with maximal variation such that general fibers are
reduced uniformly K-stable, then Ar is big. By [27], it suffices to show that there exists
an Q-ample line bundle H such that for any covering family of curves {C} of T,

)Lf-CzH-C.

Using Kolladr’s ampleness lemma in [78, 86] and the product trick, it is shown in [39]
that this is true if there is a uniform constant ¢ such that —Kx.,c + c¢f*Ay is nef. (More-
over, they show if X; is uniformly K-stable, such uniform constant M exists.)

In our case, applying the construction of the Step 2, we can twist the family to get
Xcg — C such that B5((Fun)e) = 0 for a uniform constant § > 1 (see Theorem 5.21),
which only depends on X/C. Then we can take

)
CcC =
(n+ D(=Kx)"@—1)
and we know that —Kx../c + c¢f*Ay is nef.

To conclude, we have to track the proof of the ampleness lemma to strengthen it to a
version that includes all twists. For more details, see [154, Section 6]. [

Remark 8.4 (Case of log pairs). Unlike Part I, in various steps of the moduli theory, to
treat the case of log pairs could post substantial new difficulty. Among them, maybe the
most difficult one is to give an appropriate definition of a family of log pairs over a general
base. This is settled in [77], by considering K-flat pairs over the base. While to generalize
the boundedness and openness to the log pair case, the argument is essentially the same.
To get the good moduli space, extra care has to been took for the subtle degeneration
behaviour for the divisors. And for projectivity, it needs one more step to get the positivity
of the CM line bundle from the ampleness lemma. In the KSB case, this is worked out
in [86]. For K-moduli, see [128] and [154, Section 7].

In the table below, we give a comparison of the ingredients appeared in the construc-
tion of KSB and K-moduli spaces.

Notes on history
It has been a long mystery for algebraic geometers to find an intrinsic way to construct

moduli spaces of Fano varieties. An appropriate definition of families of arbitrary dimen-
sional varieties (or even log pairs) is made in [77,81]. This was originally worked out for
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KSB moduli K-moduli
Local closedness [1,76,77] Contained in the KSB case
Boundedness [64] [71] after [14],
or [153] after [63]
(see Theorem 6.5)
Openness — [151] or [21]
(see Theorem 6.8)
Separatedness easy [23]
(see Theorem 7.3)
Existence of [74,79] [5,7]
the good moduli (see Theorem 7.15)
Properness [16,65,82] unknown
Projectivity and positivity  [52,78, 86, 125] [39,154]

of CM line bundles (see Theorem 8.3)

the construction of the KSB moduli, but one can use them to define a family of QQ-Fano
varieties (or even log Fano pairs) as well. However, more global conditions are needed
than only the canonical class being anti-ample, since otherwise, the geometry of the mod-
uli space would be too pathological (e.g. highly non-separated). Given the canonicity
of the Kihler—Einstein metric (see [10]), one might naturally wonder whether they are
parametrized by a nicely behaved moduli space, i.e. the K-moduli (of Fano varieties). In
the deep analytic works, e.g. [38,45,47, 143, 145, 147], one could see some main ingre-
dients of the construction of K-moduli already appeared, but only for smooth KE Fano
manifolds and their degenerations.

Built on Donaldson’s theorem that all Fano manifolds with a KE metric and a finite
automorphism group are asymptotically GIT stable [47] as well as [45], one can show
such Fano manifolds can be parametrized by a quasi-projective variety; see [44, 114].
Then the K-moduli conjecture for all smoothable K-(semi,poly)stable Fano varieties was
intensively studied in [100] (also see [118,135] for results on partial steps), and it was con-
firmed except the projectivity which was established a few years later in [154]. All these
heavily depend on the analytic tools developed in the solution of Yau-Tian—Donaldson
Conjecture in [38, 147].

Another direction started from [110, 144] is for specific examples, writing down a
moduli space which pointwisely parametrizes KE/K-polystable Fano varieties, i.e. con-
structing explicitly examples of K-moduli spaces. This has been achieved in [110, 121]
for all smoothable del Pezzo surfaces, even before the general construction of X ,If I;i was
known. Later it is also done in [134] for intersection of two quadratics, and in [104, 106]
for cubic threefolds/fourfolds. In [8,9], moduli spaces for log Fano pairs were considered,
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where the authors invented the framework of varying coefficients of the boundary divisor
to establish wall-crossings connecting various compactifications. Especially, the examples
of low degree plane curves were worked out in details; see Section 10.

The progress on a purely algebraic method becomes attainable once the valuative crite-
rion was established (see Part I), combining with main achievements in other branches of
algebraic geometry, e.g. MMP, moduli theory etc. In [71], it was observed that the bound-
edness of K-semistable Fano varieties with a fixed volume follows from the very general
boundedness results established in [14, 15]. Later the boundedness is also shown in [153],
which only uses [63] together with the uniqueness of the minimizer of the normalized
volume function; see Theorem 6.5. Then in [21, 151], it is realized that the existence of
bounded complements proved in [14] combining with the invariance of log plurigenera
proved in [62], can be used to deduce the openness of the K-semistable locus in the base
parametrizing a family of Fano varieties; see Theorem 6.8. All these results together yield
the K-moduli stack }Z,Ifs‘s, as an Artin stack of finite type, which is indeed a global quotient
stack.

To construct a good moduli space of %,Ifsf,, we need to understand its orbital geometry,
which was established in a trilogy. First in [98], we prove that the original definitions
of K-semistability/K-polystability indeed coincide with the semistability/polystability in
the sense of S-equivalence classes; see Theorem 7.2. In [23], this is generalized to the
case of a relative family and the uniqueness of the S-equivalence class of a K-semistable
degeneration is proved, which amounts to saying that the good moduli space if exists has
to be separated; see Theorem 7.3. In both papers, the valuative criterion of 8 was adopted,
to conclude MMP type facts. Finally, in [5], it was realized that the criteria found in [7] to
guarantee the existence of a good moduli, namely S-completeness and ®-reductivity, can
be verified for %fs;, based on improvements of the arguments in [23] and [98]. As a result,
the moduli space X ,]f l;j as a separated algebraic space is constructed purely algebraically;
see Theorem 7.15.

Partial results on positivity of the CM line bundle for families of smoothable KE Fano
varieties were established in [99] in an analytic manner, using the fact that the curva-
ture form of Deligne’s metric of the CM line bundle is given by a current extending the
Weil-Petersson form on the open locus parametrising smooth Fano manifolds. It was first
shown in [39], with an algebro-geometric argument, that the CM line bundle is nef. More
precisely, in the current language, for a family X of Q-Fano varieties over a curve C, if
we restrict the Harder—Narashimhan Fyy filtration to a general fiber, the non-negativity
of the CM degree can be deduced from the K-semistability of the fiber, together with the
classical results on the positivity of the push forward of pluri-log canonical classes. This
implication was analyzed further in [154], and indeed it inspired the definition for 8 of an
arbitrary filtration; see Definition 5.13. Moreover, in [39], the strict positivity of the CM
line bundle was obtained for complete families of uniformly K-stable Fano varieties with
maximal variation, where the condition of § > 1 for a general fiber is used to get a uniform
nef threshold for —Kx,c with respect to f*(P) so that one can apply a version of Kol-
lar’s ampleness lemma as in [78, 86]. The log case of [39] was also treated in [128]; see
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Theorem 8.3. All these results were extended to families of reduced uniformly K-stable
varieties in [154], where to get the uniform nef threshold, the key construction of twisting
the family, which does not change the CM line bundle on the base, is invented.

Part I1I
Explicit K-stable Fano varieties

Telling whether an explicitly given Q-Fano variety is K-(semi,poly)stable is a quite chal-
lenging question. The case of smooth surfaces was solved by Tian in [143] decades ago,
but in higher dimension, the knowledge is incomplete. In [38], the authors noted:

On the other hand, we should point out that as things stand at present the result
is of very limited use in concrete cases, so that there is no manifold X known
to us, not covered by other existence results and where we can deduce that X
has a Kdhler—Einstein metric. This is because it seems a very difficult matter to
test K-stability by a direct study of all possible degenerations. However, we are
optimistic that this situation will change in the future, with a deeper analysis of
the stability condition.

As one will see, the situation indeed has changed a lot since then. With the develop-
ment of foundational theories, verifying K-stability for Fano varieties becomes a rapidly
moving forward subject.

One guiding question is to look at all smooth hypersurfaces. Since the Fermat hyper-
surfaces are known to have KE metrics by [146, pp. 85-87] (an algebraic approach is given
in [155]), we know a general smooth hypersurface is K-stable. The following folklore con-
jecture is then natural.

Question. Are all smooth degree d hypersurfaces with3 < d < n in P*T1 K-stable?

The recent progress provides strong tools to verify the K-stability of concrete Fano
varieties. For instance, combing [2,56,104, 106], it is proved that smooth hypersurfaces of
degree at least 3 up to dimension four are all K-stable; see Corollary 9.3 and Theorems 9.7,
10.2 and 10.3. When dimension is larger than four, besides the simple case of degree 1
and 2, all degree n and n + 1 smooth hypersurfaces in P”*! are known to be K-stable;
see [56, 136] or Corollary 9.3 and Theorem 9.7.

Below, we will discuss two ways of showing Fano varieties are K-(semi,poly)stable.
The first one is estimating (X)) by studying the singularity in | — Kx|g, and the second
approach is constructing explicit K-moduli spaces.

Both of them had a long history. The first approach dated back to the invention of
o-invariant in [141] (and also [120]), which gave a sufficient condition. Then after the
8-invariant (see Section 3.2) was defined in a similar fashion in [59], a number of ways
were developed to estimate §(X) for a Fano variety X, see e.g. [2, 56, 136]. In partic-
ular, the recent paper by [2] provides a powerful approach, namely proving K-stability
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by ‘adjunction’. The second approach, namely, the moduli method, first appeared implic-
itly in [143] and then explicitly in [110]. Thereafter, various cases were established in [104,
106, 121, 134]. A new perspective, which considers the setting of varying coefficients
and describes the wall crossing birational maps between moduli spaces, was investigated
in [8, 9] (see also [61]), and put a number of moduli spaces constructed from other per-
spective into a uniform framework.

9. Estimating §(X) via | — Kx|q

For a long time, there have been a very limited number of methods to prove that a given
Fano manifold admits a KE metric. Among them, probably the most well known one is
Tian’s a-invariant criterion which says if «¢(X) > n/(n + 1), then X is K-polystable;
see [141] (and also [120] for an algebraic treatment). It established the philosophy that if
members in | — Kx|q is not ‘too singular’, then X should be close to be K-stable.

By now, we have the new invariant §(X ), which is precisely computed by the infimum
of log canonical thresholds of basis type divisor in | — Kx|g; see equation (10). Com-
puting § for general X is a challenging problem. Nevertheless, by the machinery we have
developed, there are many new cases including which people have speculated for a long
time that now one can verify the K-stability.

9.1. Fano varieties with index one

In this section, we discuss two classes of examples, which one can prove the K-stability in
a rather straightforward way. However, historically these examples had been mysterious
to people for a while. Only after the development of the foundational theory, e.g. Theo-
rem 3.2 was established, the proof became accessible.

9.1.1. Fano manifolds with « = n/(n 4+ 1). The first class of examples provided by the
new theory are Fano manifolds with «(X) = n/(n 4 1). It has been known for a long time
that any Q-Fano variety X with o(X) > n/(n + 1) is K-stable and «(X) > n/(n + 1)
is K-semistable; see [120, 141] or the proof Theorem 9.1 and Example 9.9 for another
proof. In [56], Fujita used the valuation criterion to study the equality case, and obtained
the following somewhat surprising fact.

Theorem 9.1 ([56]). If X is an n-dimensional smooth Fano manifold, (X)) =n/(n + 1),
then either X = P! or X is K-stable.

Proof. If X is not K-stable, then we know there exists a divisor £ over X such that
8(E) = 8(X) = 1. We want to show that this implies X =~ P!.
Consider the restricted volume function

1d
0= _;EVOI(_M*KX —tE) fort €[0,7),
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where t := 7(FE) is the pseudo-effective threshold of E with respect to —Kx. The main
property we need about Qﬁ is that it is a concave function which follows from that it
is equal to the restricted volume and the latter is log concave; see [50]. Moreover, Q is
smooth on [0, 7) and can be extended to a continuous function on [0, t]. We have

fOTtQ dt _ %fOtVOI(M*(—Kx)—[E) dt _ B
foerl‘ B %(_Kx)n = Sx(E) = Ax(E) > o

as B(E) =0and a(X) = n/(n + 1). We denote by A := Ax(E).
By the concavity, we know that

T, 29)

t\n—1
Q(t)z(z) 0(A) forz € [0, A], and
o) < (%)n_lQ(A) for € [A, 7].
So,

o:/o (t — A)Q(t)dt

o [ (L) a
_ Q(A)f”( T A)

A1 \n+1 n
<0.

IA

This implies that A = (n/(n + 1))z and Q(t) = (t/A)* 1 Q(A) for ¢ € [0, 7].
To proceed, since £ computes §(X) = 1, we know we can find a model u: Y — X
only extracting E, so we know that forr < 1,

[0) =—livol(—M*KX—tE) =E-(—M*KX—[E)n_1-

ndt N’ =to
Compared to Q(t) = (t/A)" "1 Q(A), we know
El (W Kyx)"™ =0
forall 0 <i < n — 1, which in particular implies E is mapped to a point. Moreover,

Q — tn—l(_E|E)n—l7

which implies, for ¢ € [0, 7],
T
Vol( — Ky — tE) = n/ Qdu=@G"—t"VE(—E)" ! = (—Kx)" —t"E(-E)"" L.
t

This implies © = €, which is the nef threshold of E with respect to — Ky .
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Since E is dreamy by Theorem 4.8, we know u*(—Kx) — tE is semi-ample but not
big. Since u*(—Kx) — tE is ample on E, we know a sufficiently divisible multiple of
uw*(—Kx) — tE will give a fibration structure p: Y — Z, whose restrict on E is finite.
Thus, a general fiber of p is a curve /. Since Y is normal, / is in the smooth locus. Thus,

Ky -1 =-2 and Oz(u*(—KX)—rE)-I=2—<1+ llr)E-l,

n+
which implies £ -/ = 1,7 =n+1land A = n.SoY — X is the blow up of the smooth
point, and we know the Seshadri constant at this point is # 4 1, therefore X = P” by [11,
109]. Then a(P*) = 1/(n + 1). [

Remark 9.2. The smooth assumption in Theorem 9.1 is indeed necessary. In [108], they
found a class of singular Q-Fano varieties X with «(X) = n/(n + 1), but they are only
strictly K-semistable.

Corollary 9.3. For n > 2, smooth degree n + 1 hypersurfaces in P*"+1! are all K-stable.

Proof. For any such hypersurface X, we have a(X) > n/(n + 1) (see e.g. [32]), thus we
can apply Theorem 9.1. ]

9.1.2. Birationally superrigid Q-Fano varieties. A special class of Fano varieties, called
birationally superrigid Fano varieties, has been studied for a long time, dated back to Gino
Fano.

Definition 9.4. A Fano variety X with terminal QQ-factorial singularities, Picard number
one is said to be birationally superrigid if every birational map f: X --> Y from X to a
Mori fiber space Y is an isomorphism.

The Noether—Fano method is a criterion to determine a Fano variety to be birationally
superrigid. We have the following equivalent characterization of birational superrigidity.

Theorem 9.5 (Noether—Fano method; see [85, Section 5]). Let X be a terminal Fano
variety, which is Q-factorial with Picard number one. Then it is birationally superrigid if
and only if for every movable boundary M ~g —Kx on X, the pair (X, M) has canonical
singularities.

By the above characterization, we know being birationally superrigid posts a very
strong restriction on the mobile linear subsystem of | — Kx|g. So it is natural to ask
whether all of them are K-stable. After some early partial result in [119], in a recent
work [136], the question is affirmatively answered under a mild assumption. The following
result is a gentle improvement of [136].

Theorem 9.6 ([136] + ¢). Let X be a birationally superrigid. Assume a(X) > 1/2,
then X is uniformly K-stable.
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Proof. First we assume o(X) > 1/2. We claim

n+1 n—l—l}>1
n+l4 g =2 n '

8(X) > min{

Otherwise, assume F satisfies that

n+1
n+14+ g -2

A(F) <aS(F) fora=

By Theorem 9.5, we know there is only one Q-divisor D ~g —Kx with irreducible
support, such that ordgp D > Ax (F) =: A. We denote the pseudo-effective threshold by
T =ordr (D).

We define Q the restricted volume function as in Theorem 9.1. Then by our assump-

tion
b fo 10 dt
- Jo Qdt

If A < . Using the concavity again (see Theorem 9.1), we know for ¢ € [0, 4],

1
= Sx(F) > —A.
a

t

00 = (£)" o).

Fort € [A, 1],
T—1

T—A

00 =(=15)" o)

since

_ —A
" (Kx) —1F = T (=t (Kx) = A F) + = (= u*(Kx) =+ F).

Thus,

0= /Or([ —b)Q(t)dt

.
T—24 +A—b) 3 Q(A)tA(§—2+l 1)

nn+1) n n n+1 o

= [Ce-n(ty owar+ [Tu-n(ZL) o

- Q(A)r( <0,

since A/t > a(X). This is a contradiction.
If A>t,then A >t > ((n + 1)/n)S(F). Thus we have

A o { n+1 n—l—l}
——— > min , .
S(F) n+l+ g =2 n

Next we consider the case a(X) = 1/2.'° By [14, Theorem 1.6], we know there exists
a uniform ¢ > 0 which only depends on X, such that Ict(X, M; M) > ¢ for any movable

10This argument was suggested by Ziquan Zhuang.
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Q-linear system M ~g —Ky since (X, M) is canonical by Theorem 9.5. Fix a divisor F.
Let n be the movable threshold of F' with respect to —Ky, then A > (1 + ¢)1. We claim

t+1 1
50y > L DEED
2t +n+1
In fact, a similar calculation as above implies that
T—2n
n+1

Since A > (1/2)7,and A > (1 4 t)n, we have

+(—5b)=>0.

n—1
24 Db—n—-1 Nb———4A4
>m+Db—(m—-1n= @+ Db A

(t+1)(n+1) . b

which implies A > 527

Combining with [40], this gives a different proof on Corollary 9.3. So far all known
birationally superrigid Fano varieties satisfy a(X) > 1/2. In [75], Theorem 9.6 is applied
to get K-stability for many quasi-smooth hypersurfaces in 4-dimensional weighted pro-
jective spaces.

9.2. Index 2 Fano hypersurfaces

In this section, we will discuss the work in [2] which introduced an induction framework to
verify K-stability of Fano varieties, using some ideas from [157]. This is a quite powerful
method. While we will start with the general strategy, by the end we will focus on one
main case, which is given in the following theorem.

Theorem 9.7 ([2]). Any degree n smooth hypersurface X in P"+! is K-stable.

This was only previously known for n < 3; see [106, 143]. In the rest of this section,
we will give a sketch of the proof of Theorem 9.7, following [2]."

9.2.1. Double filtrations. The starting point in [2] is the following useful observation
that if we can always choose basis which are compatible for two filtrations.

Lemma 9.8. Let V be a finite dimensional vector space, and ¥ and '§ are two filtrations
of V by subspaces, then we can picture up a basis {ey, ..., emn} of V compatible with
both ¥ and §, i.e. for any i (resp. j ), we can find a subset of {e1, . .., em} which forms a
basis of 'V (resp. §7V).

Proof. Left to the reader. ]

So when we compute S(¥), we can always choose an auxiliary filtration §.

n a very recent paper [3], the authors improve the method in [2] and show that any hypersurface with Fano
index d(:=n + 2 —deg(X)) < n'/? is K-stable.
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Example 9.9 ([2, Lemma 4.2]). We choose § to be the filtration induced by a general
element H € | — rKx| for a sufficiently divisible r. Then for any m-basis type divisor
Dy, ~g Kx compatible with §, we can write D, = a Hy + I', where Supp(I'), where

1

1 1
m - 1—x)"dx = ——.
a _>r/(;( x)" dx r(n + 1)

This implies that if ¥ is induced by an ordg for some divisor, then choosing H not
containing the center of E, we have ordg (D,,) = ordg(I'};,) < (1 — ram,)T(E), thus

S(E) < ;457 T(E). In particular,

Ax(E)>n+l,fo(E)_n+l
S(E) = n B T(E)

§(X) = inf a(X),

which gives a proof of Tian’s a-invariant criterion.

Definition 9.10. For a subvariety Z C X, we define §z(X) = infg (Ax (E)/S(E)), where
the infimum runs over all divisors whose center on X contains Z. In fact, we allow Z to
be reducible, then we define

0zm(X) :=sup {)L | Z £ Nlc(X, ADy,) for any m-basis type diVisor}

and 6z (X) = limsup,, o §Z.m-

Similarly to equation (10), we can prove when Z is irreducible and reduced, the above
two definitions coincide.
Then we have the following lemma, which is a combination of various estimates.

Lemma 9.11 (see [156, Theorem 1.6]). Let X be an n-dimensional Fano manifold. Then
X is K-stable if

(1) 8z(X) = (n + 1)/n for any positive dimensional variety Z,
(2) B(Ex) > 0 for any ordinary blow up of x € X.

Proof. For any divisor F over X, let ¥ = FF be the induced filtration and § as chosen
in the notation of Example 9.9. We want to show S(F) > 0. By our first assumption, it
suffices to assume that the center of F' is a smooth close point x and F # E,. Using the
notation there, we know for we can choose a sequence of constant u, — 1, such that
(X, m "1’1 Dyy,) is Klt in a punctured neighborhood of x and ., (1 — ra,) <n/(n + 1).
We claim the following fact, which implies what we need.

Claim 9.12. Sy (F) < Ax(F) forany F # E,.
Proof. Since (X, m%) is plt with the only Ic place Ex, for any F # E,,

Ax (F)

=—>n.
ord g (1my) "
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Let B := am"niDm. If (X, B) is kit then ord (B) < Ax (F). Otherwise, (X, B) is not
klt and the multiplier ideal 4 (X, B) cosupports on x. Since
H®(X.0x) — H°(X.0x /J(X. B))

is surjective by the Nadel Vanishing Theorem, as —Ky — B is ample, which implies the
multiplier ideal 4 (X, B) = my. In particular, by the definition of the multiplier ideal,

b 'Ax (F) = ordp (my) > ordr B — Ax (F).

This implies ordr (B) < ((b + 1)/b)Ax (F).
Thus, we have

n nb+1)
ordrp(Dy) = ————ordp(B) < —————Ax(F) form > 0.
F(Dm) TES. F()_( Db x(F)
Since b > n, Sx (F) = limsup,, ordr (D,,) < Ax (F). The claim is thus proved. |
This completes the proof of Lemma 9.11. |

9.2.2. Adjunction. Next we will introduce a key idea from [2], namely taking the adjunc-
tion of a filtration, and apply inversion of adjunction to get an estimate of §.

Given two prime divisors where E is a Cartier divisor on X and F either a Cartier
divisor or a divisor which is the exceptional divisor from a plt blow up 7: ¥ — X. Let
Vin := H®(—mKx) for some sufficiently divisible m. For a fix j, the following linear
systems on F

Wiy = FRFEVa))/ FLTHFLEVim))
=~ Im(|n*(-mKx — iE) — jF| — |n*(-mKx — iE) — jF|F).

form a decreasing filtration of W;,, ; := (W), indexed by i € N.

Therefore, if we denote R := ,, H*(—mrKx) and Rf := ,, Win, where Wy, =
@j Wi, j, we obtain an N2-filtration on each W, (by i and ), which is clearly multi-
plicative if we put all m € N together. Then we can show the following; see [2, Section 2].

Definition—-Lemma 9.13. For each m, we can define

Cl(Wm): Z D,]7

m- dlm(Wm en?

where {D; ;} is a basis type divisor compatible with the N2-filtration of W,,. And we
define

1 o .
Sm(R F) i= e > J - (dim(FL Vi) — dim(FL T Vin)) (= rSm(F)).
m l,]

Then ¢y (We) := limy, ¢; (W), S(R; F) := lim,, Sy (R; F) exist and we have

(=rKx — S(R; F)F)|F ~r c1(Ws).



C. Xu 340

Proof. See [2, equation (3.1)]. ]
For W, as above and any prime divisor G over F, we can define

S(We,G) = lim ( sup ordg Dm),
m *p.
where D, is an m-basis type divisor of W,,, and similarly define

.. Ax(G)
SWe) =it Sov. 6

and the local version §z/(W,) for subset Z’' C F.
The following (inversion of) adjunction type result is a key to establish the estimate.

Proposition 9.14. Notation as above,

8z(X) > min {%X(—(P{;),én(p)mz(Wo)}.

Proof. For any prime divisor G over X, by Lemma 9.11, it suffices to prove

. . (Ax(F
lim glrf lctz (X, D) > min {%F)),Sn(mz(W.)},

where D is running through all m-basis type divisor compatible with the filtration induced
by F.

Fix such an m-basis type divisor D,,. Then n*D,, = a;m F + Ty, and T, |F gives a
basis type divisor of W,,. Thus,

7" (Kx +ADp) = Ky + (1 —Ax(F) + A -am)F + Alp,.
From our assumption, if we choose A < 8, (r)nz(Ws) and m >> 0, we know that
(F.Diffp(A - Tim)|F)
is klt along the preimage of the generic points of 7 (F) N Z, which implies that
Y, Al + F)

is kit along the preimage of the generic point of 7 (F'). If moreover, A < Ax (F)/S(F),
then form > 0,
1—Ax(F)+A-am <1

as dy < Sy (F). Thus, (X, AD,,) is kit. This is true for any m-basis type divisor as long
as m is sufficiently large, therefore, we conclude. [

Remark 9.15. The restricted linear system (W,,);,; is often not a complete linear system,
therefore to compute the corresponding §-invariant could be involving. Nevertheless, there
are cases that the asymptotic invariant §(W,) is easy to compute; see note 9.16.
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9.2.3. Flags. To proceed, we need to inductively apply the discussion in Section 9.2.2 to
consecutively cut down the dimension.

9.16 (Induction and flags). We choose aflag ¥} D Y, D --- D ¥,. (We will impose more
assumptions later.) We can inductively applying the adjunction result Proposition 9.14
(for X =Y; and F = Y, ). Moreover, we replace the filtration by E of the linear system
by a N”-filtration given by the vanishing order along the flags, which we can still apply

Lemma 9.8. Thus, for any @ = (ai,...,a;) € N, we can consider the linear system
W, 2 C (- ((mKx —aV)y, —azYa)y, = —aiYi)y
onY;.

One issue in general is that W' 7 15 is not a complete linear system. However, one will
see in our specific case, if we put all a € N together and let m — oo, the limit W/ is
almost complete in the sense that ¢; (W) is the same as the one if we replace W,; = by
the complete linear system

Wrﬁz,? - (((—mKX —a1 )y, _a2Y2)Y2 —---—aiY,')Yi.

To apply Proposition 9.14 repeatedly, we know that:
Proposition 9.17. §7(X) > min {mini<;<, 1/(Sy,(Yi=1)).8zny,_, (Ws)}.

To apply this in our situation, we choose two distinct points y; and y, on Z (as
dim(Z) > 1).

Lemma 9.18. Let Y C P” be a smooth subvariety and y1, y» € Y. Then a general hyper-
plane section containing y1 and y, is smooth, except dimY = 2 and the line passing
through y1 and y, is contained in Y .

Proof. Left to the reader; see [2, Lemma 4.25]. [

We first assume the line connecting y; and y, is not contained in X . Then we choose
Yi1,...,Y,—1 general hyperplane section on X passing though y; and y, and Y, a general
point on Y,_;. We easily see the graded linear system W/ is almost complete for all .
Now we calculate, for1 <i <n —1,

Jer WDy, =2(1- —=) Oy,

; 1
At = (1~ =53

and S(W/71,Y;) =2/(n + 1). Taking i = n — 1, we have

wrh = % oa ,

(W™ = =<0,

which has degree 4n/(n + 1). Then a calculation on the curve shows that

2-#(ZNYy—1) _nt 1
degWr=1) ~— »n

$zav,, (W) =

’
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hence we can conclude by Lemma 9.11 and the fact that S(E,) > 0 for any exceptional
divisor E, of the blow up of a smooth point x € X; see [2, Lemma 4.24].

Now we consider the case where the line connecting y;, y, is contained in X . Thus,
we choose Y7, ..., Y,_5 as above, but Y,,_; 2 P! the line, and ¥, a general point on Y,
which is distinct from yy, y, (if ¥Y,—; C Z, then we do not need Y, ). We still can easily
see the graded linear system W/ is almost complete for i < n — 2. To see the same thing
fori = n — 1, we need to make a computation of the invariants on the smooth projective
surface Y, _»; see the proof of [2, Lemma 4.28] for more details. Then we can make a
similarly conclude that §zny, , (W1 > (n + 1)/n.

Remark 9.19. In [155], it is proved that equivariant K-semistability (resp. equivariant K-
polystability) for any group G (any reductive group G) acts on X implies K-semistability
(resp. K-polystability). This provides a powerful tool to verify K-(semi,poly)stability of a
Fano variety X when it has a large symmetry; see e.g. [41].

10. Explicit K-moduli spaces

We can also prove a Q-Fano variety is K-(semi,poly)-stable by showing that they appear
on a K-moduli stack/space. Note that although we have not yet known the algebraic
construction of the compact K-moduli space, we can use the analytic depended construc-
tion [100] for the closed component parametrising smoothable Q-Fano varieties. Here
the compactness is crucial, since often we prove X is K-(semi,poly)stable by showing it
is a limit of a family of K-stable Fano manifolds, and all other possible limits are not
K-(semi,poly)stable. This approach first appeared explicitly in [110] where they solved
the case of degree 4 del Pezzo surface. Then in [121], all cases of smoothable surfaces
were completed. In [134], the authors settled the case of intersections of two quadrics.
In [106] and [104], the compact K-moduli of cubic threefolds and fourfolds are proved to
be the same as the GIT moduli of cubic threefolds. More recently in [8, 9], cases of log
surfaces are also studied, and by varying the coefficients of the boundary, a sequence of
birational moduli spaces were established; see also [61].

10.1. Deformation and degeneration

We start with a Fano manifold X« which is a fiber of a family X — B over an irreducible
base, and assume we know that X;+ is K-semistable. Then we know that there is a Zariski
open set B% c B such that for any f € BY, the fiber X, is K-semistable; see [21, 151].
However, usually we do not a priori know how large B is. Nevertheless, let C — B be
a map from a curve whose image contains #y. Then by the compactness of the K-moduli
space, we know that for any s € C, we can extend the family of ¥ x (BN C) — (B° N C)
over s such that the special fiber X is K-semistable.



K-stability of Fano varieties 343

To determine what X is, the local restriction could be useful: By Theorem 6.6, we
know that any point x € X, is a smoothable singularity with

vol(x. X0 = (—Kx)" - (=) (30)

When (—Kx,)" is large, this local condition could post strong restrictions for possible Xj.
For instance, by [102, 153], we know that

n n
(e Xy = 0 < LD
vol(x, Xs) — (—Kx,)"

(3D

and the first inequality holds if and only if x € X is a quotient singularity. Here,
71 (x, X$™) is the fundamental group of U \ Sing(U), where U is the analytic germ
of x € X, and its finiteness follows from [30, 150].

For surfaces, the above approach gives a robust method. In [121] this approach has
been used to identify the singular surfaces parametrized by the boundary of the moduli
space of smooth del Pezzo surfaces of degree 1, 2 or 3.

However, in higher dimension, in general it is much harder to explicitly write down a
compact K-moduli space. There are two difficulties: first there are not that many known
compact moduli spaces parametrizing Fano varieties, which could be a candidate of K-
moduli; secondly, to calculate the normalized volume of kit singularities of dimension
larger or equal to three is difficult. One technical result in dimension three is the following.

Theorem 10.1 ([106]). For any three dimension singularity x € X, \7(;1()6, X) <16, and
the equality holds if and only if x € X is the rational double point.

The proof of Theorem 10.1 relies heavily on the classification of three-dimensional
canonical and terminal singularities, which is classical in MMP. This is a key ingredient to
prove the following theorem, which gives the first example of using the explicit K-moduli
space to find out new smooth K-stable Fano manifolds in dimension at least three.

Theorem 10.2 ([106]). The GIT moduli of cubic threefolds is the same as the K-moduli.

Sketch of the proof. By the discussion above, the volume of any x € X is at least 81/8;
see (30). So by Theorem 10.1, it is either %( 1,1,0) or the local fundamental group
71 (x, X,) is trivial. In each case, we can easily show that the degeneration of the hyper-
plane class O (1) on Xj is still a Cartier divisor. Then a classical result by Takao Fujita
shows that X is indeed also a cubic threefold.

Then we know it is GIT (semi,poly)stable if it is K-(semi,poly)stable. ]

In [134], it was shown that the compact K-moduli space of the intersection of two
quadrics in P”*2 is identical to the GIT moduli. In fact, (30) directly yields that for any
point x on the K-semistable degeneration X, we have \70\1()6, Xs) > n" /2, which implies
that the degeneration of (1) is Cartier, and Xj is also an intersection of two quadrics.

An analogue result of Theorem 10.2 for cubics in higher dimensions would follow a
similar result of Theorem 10.1 in higher dimensions, but the latter seems to be hard to
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establish in general. Nevertheless, in [104], by combining Theorem 10.1 and the effective
non-vanishing theorem (see [73]) to analyze the linear system (1) and @ (2) on Xj, Liu
also solved the 4-dimensional case.

Theorem 10.3 ([104]). The GIT moduli of cubic fourfolds is the same as the K-moduli.

Remark 10.4. From a computational viewpoint, an explicit description of the boundary
point of the K-moduli should often be easier to reach than the KSB moduli case, since the
limit has to be klt, in particular normal.

Remark 10.5. While the approach in Section 9 is mostly for Fano varieties with a small
volume, the approach in this section is mainly for Fano varieties with a big volume. How-
ever, it seems there is still a gap between these two approaches, and we do not know how
to deal with general Fano varieties with intermediate volumes; see Remark 10.7.

10.2. Wall crossings and log surfaces

One interesting new direction is to consider the moduli space of log Fano varieties (X, A),
and vary the coefficient 7. This reminisces the work in [67] which studies a similar setting
for KSB stable log curves (C, D).

In [8], the authors develop the framework: first they show that the moduli space M
which parametrizes n-dimensional K-semistable log Fano pairs

sm,Kss
ncV,r

(X,cD) with (—Kx)" =V

that can be deformed to smooth Fano manifolds X; with a smooth divisor D; €| — rKY, |
for some r € Q, is represented by an Artin stack of finite type. Moreover, it admits a proper
good moduli space M;nlf,pi While this is a straightforward generalization of [100] into
the log situation, the main new structure, established in [8], is that there is a wall crossing

if we vary c in the following sense.

Theorem 10.6 ([8, Theorem 3.2]). There exists a sequence of rational numbers
) 1
O=co<c1<cr<---<cp =m1n{1,—},
r

such that eA/_(:lmc’KI;Sr is the same for any ¢ € (ci—1, ¢;). And for any 0 < j < k, we have

(7 sm,Kss (7 sm,Kss (7 sm,Kss
Mn,c]-—e,V,r — ‘Mn,c]-,V,r — ‘Mn,Cj+e,V,r’
which when pass to good moduli space gives projective morphisms admitting a local VGIT
description; see [6, Definition 2.4].

One natural case to consider is the compactification of the family containing (P",cD)
where D is a degree d hypersurface. It can be easily shown that for a general D € |O(d)|,
and c <min{1,%t1} (P" ¢ D) is K-semistable. Then it follows for the different choice of c,
we get compactifications which are birational to each other. Moreover, when 0 < ¢ < 1,



K-stability of Fano varieties 345

the compactification is the same as the GIT moduli of degree d hypersurfaces; see [8,
Theorem 1.4]. When one increases from ¢ < 1 to find the walls, in general, such a com-
putation will be difficult. In [8], the authors worked out all walls for the case n = 2 and
d = 4,5, 6, using the strategy in Section 10.1 but in the log setting.

Using a similar framework, in [9] the authors worked out the case for (4, 4) curves
in P! x P! and showed the moduli spaces are identical to the ones constructed in [88]
constructed from a variation of GIT process.

Remark 10.7 (Fano threefolds). The Kéhler—FEinstein problem for smooth del Pezzo sur-
faces has been completely answered by Tian [143]. So it is natural to take a look at all
smooth Fano threefolds which are classified by Iskovskih when p(X) = 1 (see [70]) and
Mori—-Mukai when p(X) > 2 (see [112]).

When p(X) = 1, there are nineteen families. Among them, the one with genus 12
(i.e. (—Kx)? = 22) which contains the famous Mukai—Umemura manifold has attract lots
of interests; see [35] for recent progress.

Let

r(X) := {r | —Kx ~ —rH, for H generator of Pic(X)}

be the Fano index. There are seven families with r(X) > 2 and they are all known to be
K-polystable or K-stable.
It is tempting to speculate the following:

Conjecture 10.8. All smooth Fano threefolds with p(X) = 1 are K-semistable.

Using the classification of smooth Fano threefolds, it is indeed an active research
topic to completely determine all their K-(semi,poly)stability. For p(X) > 2, in [53, Sec-
tion 10], B-invariants for divisors on X itself are computed, and many cases are shown to
be K-unstable.

Question 10.9. For Fano threefolds with p(X) = 1 and (X)) = 1, it will be very interest-
ing to connect various compactifications of moduli of K3 surfaces of genus g (1 < g <10
and g = 12) and the K-moduli of the corresponding Fano threefolds with the volume
2g — 2, i.e. to extend the well studied correspondence to the boundary of the moduli
spaces.

The higher dimensional analogue of Conjecture 10.8, as originally proposed in [119,
Conjecture 5.1] which predicted that smooth Picard number 1 Fano manifolds in any
dimension are K-semistable, was disproved in [54], where it is shown that a del Pezzo
manifold X of degree five with dimension four or five are K-unstable.

Notes on history

For a long time, Tian’s a-invariant criterion, established in [141] (see also [120]), and
its equivariant version was the main tool that people used to verify the existence of a KE
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metric on a given Fano manifold. There is a long list of literature, in which people estimate
the lower bound of the «-invariant for various Fano manifolds; see e.g. [32,33,35,36] etc.

However, the «-invariant criterion is only a sufficient condition, and there are many
Fano manifolds which can not be treated using it. The Fujita—Li’s criterion (see [58, 93]
or Theorem 3.2) provides a necessary and sufficient condition. Using it Fujita shows that
a Fano manifold X with ¢ = dim(X)/(dim(X) + 1) is always K-stable if dim(X) > 2;
see [56]. As far as I know, this is the first result that one can show certain Fano manifolds
are K-stable, before differential geometers find KE metric on them. Then the proof of the
K-stability of a birational superrigid Fano manifold X if a(X) > 1/2 (see [136, 156])
gives another example that the new criterion can be adapted to verify cases that people
have wondered for a while.

The basis type divisor introduced in [59] gives an explicit way to check the Fujita—Li’s
criterion. Quickly after it was invented, it has been used to estimate the §-invariant of a
number of families of del Pezzo surfaces, hence reverify their K-stability algebraically;
see [37,124] etc. Then in the remarkable work [2], a powerful method, using inversion of
adjunction for the basis type divisor, was established, and it is used to prove the K-stability
of all smooth degree n-Fano hypersurfaces in P**1 (n > 3).

The moduli method was already implicitly contained in [143], when he tried to estab-
lish the KE metric on a smooth del Pezzo surface (of degree at most 4) by continuously
extending the KE metrics on a sequence of nearby del Pezzo surfaces. It was first explicitly
applied in [110] to find all K-(semi,poly)stable degree 4 smoothable del Pezzo surfaces.
Then in [121], the case of K-(semi,poly)stable smoothable del Pezzo surfaces was com-
pletely solved. In [8, 9] (see also [61]), the log surface cases were studied. In particular,
the cases of P2 and P! x P! together with low degree curves were systematically stud-
ied. As a result, the wall crossing phenomena arose when one varies the coefficients, and
put a natural framework to connect various moduli spaces, many of which have already
appeared in the literatures by construction from different theories.

In higher dimensions, there are few examples which one can identify the entire com-
pact moduli space, including the singular ones. The known examples include the intersec-
tion of two quadratics (see [134]), cubic three/fourfolds (see [104, 106]), and (P”, c¢D)
when ¢ < 1 (see [8]).
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