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We live in a world that changes on many timescales. To learn

and make decisions appropriately, the human brain has

evolved to integrate various types of information, such as

sensory evidence and reward feedback, on multiple

timescales. This is reflected in cortical hierarchies of timescales

consisting of heterogeneous neuronal activities and expression

of genes related to neurotransmitters critical for learning. We

review the recent findings on how timescales of sensory and

reward integration are affected by the temporal properties of

sensory and reward signals in the environment. Despite

existing evidence linking behavioral and neuronal timescales,

future studies must examine how neural computations at

multiple timescales are adjusted and combined to influence

behavior flexibly.
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Introduction
Animals adapt their physiological responses according to

the changes in its environment. Environmental changes

occur on many timescales, ranging from milliseconds to

years, and mechanisms to accomplish this adaptability

vary greatly across species. These adaptive mechanisms

are shaped by many factors, including the animal’s life-

span, the range and precision of sensors that detect the

changes in the environment, behavioral repertoire, and

the computational machinery available to identify and

select the most desirable response [1]. For many animals,
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the last element is implemented in the brain, and thus,

the spatial and temporal organizations of the brain reflect

the evolutionary history of adjustments to changes in the

environment.

Learning appropriate behavioral responses is not trivial,

because the animal’s environment is always stochastic

and a particular behavioral response in a certain environ-

ment seldom leads to the same outcome [2]. In rare cases,

the probabilities of different outcomes for each response

might be fixed, which is referred to as expected uncer-

tainty, and this can simplify and even hard-wire certain

learning algorithms in the brain through evolution. This

still leaves the main challenge for the animal to properly

weigh reward probabilities relative to other reward attri-

butes based on the animal’s current physiological state.

By contrast, in a non-stationary environment in which

outcome probabilities are unknown, which is referred to

as unexpected uncertainty, the animals need to adjust

their learning and behavioral strategies [2]. Furthermore,

sensory signals provide the information about the ani-

mal’s environment only probabilistically. Thus, the time-

scales for integrating sensory signals can also vary sub-

stantially. More importantly, different factors that are

crucial for some behaviors, such as the traffic laws and

road conditions for driving, must be learned over different

timescales.

This review provides an overview of behavioral and

neural adaptations on multiple timescales. We consider

how animals adjust their behaviors according to time-

scales of changes in the environment, and how these

adjustments rely on integration of relevant information

over multiple timescales in the brain. We also examine

how hierarchy and heterogeneity of intrinsic timescales in

neural response and gene expression throughout the brain

could support such adaptive behavior. We conclude with

remaining questions about the timescales of brain and

behavior and how they can be studied.

Timescales of brain and behavior
Behavioral timescales might be matched to the timescales

of important changes in the animal’s environment using

several different mechanisms (Figure 1). For example,

information about regularities in the environment might

be stored in synaptic connections between neurons [3].

Therefore, different types of changes in the synaptic

weights across multiple timescales, such as short-term

and long-term plasticity, might allow flexible behavioral

adjustments to environmental changes [3]. In addition,
www.sciencedirect.com

mailto:daeyeol@jhu.edu
http://www.sciencedirect.com/science/journal/23521546/41
https://doi.org/10.1016/j.cobeha.2021.09.003
https://doi.org/10.1016/j.cobeha.2021.03.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cobeha.2021.03.003&domain=pdf
http://www.sciencedirect.com/science/journal/23521546


Timescales of cognition in the brain Soltani et al. 31

Figure 1

(a)

(b)

(c)
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Timescales of environmental changes, synaptic plasticity, and neural response. (a) Changes in the environment across multiple timescales. (b)
Different forms of synaptic plasticity at different timescales. (c) Different timescales of spiking activity in an example cortical neuron.
neuronal activity often displays multiple concurrent time-

scales that might support behavioral changes at different

timescales, although the range of experimentally mea-

sured timescales of neural activity is relatively small

compared to the full range of possible behavioral time-

scales. For example, neurons in the primate prefrontal

cortex display activity related to multiple timescales of

reward integration in that neuronal activity modulated by

a reward outcome decays at different rates across neurons

[4]. Moreover, these neuronal timescales are correlated

with the behavioral timescales for integration of reward

feedback during decision making [5,6��]. Concurrent

integration of reward feedback on multiple timescales

is also manifest in the activity of neurons in the of lateral

habenula and dopamine neurons in substantia nigra pars

compacta [7], serotonergic neurons [8], and hemodynamic

signals in the human anterior cingulate cortex [9��].

Timescale of behavioral changes associated with reward

integration is often estimated using the learning rates of

reinforcement learning models fit to choices. A single

timescale of reward integration is parsimonious and com-

putationally convenient, but often relies on the assump-

tion that the learning rate can be optimized in a given

environment. By contrast, multiple timescales of reward

integration can be inferred from a better fit of choice

behavior by models that incorporate multiple time

averages of reward outcomes [10–12], reward-dependent
www.sciencedirect.com 
modulations of value representation [13��], or average

reward prediction error [14]. Several well-known behav-

ioral observations, such as spontaneous recovery and

motor memory, also suggest that multiple memory traces

with different timescales might be widespread in the

brain [15].

Previous studies also demonstrated a substantial level of

heterogeneity in the observed timescales within and

across brain areas, suggesting that learning might proceed

in parallel at multiple timescales [6��]. This implies that

the values of different options or actions would vary

according to the timescales of different learning algo-

rithms, and therefore requires mediation to match time-

scales of neural circuits to those of the environment for

guiding behavior, similar to the mechanisms proposed for

the arbitration between model-based versus model free

reinforcement learning algorithms [16]. It remains an

open question how the brain adapts to changing environ-

mental timescales through adaptation of neuronal time-

scales or selection of an appropriate timescale.

Volatility and reward integration
Reward may not arrive due to the probabilistic nature of

reward outcome or actual changes in the environment,

but these two scenarios require very different responses

from the animal, namely, no update or faster update,

respectively. Actual changes in the environment could
Current Opinion in Behavioral Sciences 2021, 41:30–37
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Figure 2

(a)
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Adaptability-precision tradeoff in the integration of reward feedback.

(a) Different timescales of reward integration allow different speeds for

updating estimated values (adaptability) and different levels of

accuracy for those estimates (precision). (b) Learning about multi-

dimensional stimuli/options could be achieved by strategies with

different levels of adaptability and precisions. (c) Accuracy in

estimated values over time using feature-based or object-based

learning in two environments with different levels of generalizability.

With more generalizability, it takes longer for the object-based strategy

to surpass the level of precision achieved by the feature-based

strategy.
happen with different frequency or rate, often quantified

as volatility [2,17,18]. In hierarchical Bayesian models,

volatility can be equated with a parameter to measure the

width of distribution for transition probability between

different values of reward probability [17,19]. Experi-

mentally, volatility can be controlled in various ways,

but has been mainly manipulated by changing the block

length in probabilistic reversal learning tasks [2,17,20].

Although some studies have reported higher learning

rates in a volatile environment [17,21], other studies in

monkeys [20] and humans [22] have not observed similar

changes in learning rates. The reasons for this discrepancy

should be investigated further.

Volatility and uncertainty can modulate learning and

choice through means other than a change in the learning

rate [12,22,23]. For example, a modeling study showed

that reward-dependent metaplasticity can allow continu-

ous adjustments in learning without an overall change in

the learning rates [23]. In this model, reward integration is

performed by transitions between states on multiple

timescales, allowing the model to incorporate the history

of reward feedback and thus volatility. In addition, more

detailed examinations of learning and choice behavior in

monkeys and humans have revealed that uncertainty

results in fundamental changes in valuation and choice

strategies, instead of a change in the overall timescale of

reward integration [22]. These results suggest that inte-

gration of reward feedback might not happen on a single

timescale adjusted by volatility. Instead, reward integra-

tion might happen on multiple timescales across many

brain areas.

Adaptability-precision tradeoff
Regardless of the complexity of the learning mechanism,

there is always a tradeoff between how fast and how

accurate new information can be acquired. This adapt-

ability-precision tradeoff has important implications for

timescales of reward integration. On the one hand,

increasing the timescale of reward integration or, equiva-

lently, reducing the learning rate can improve the preci-

sion in estimating the value of a given action or option,

but also results in less adaptability (Figure 2a). On the

other hand, shorter timescales of reward integration can

improve adaptability but at the cost of precision.

It has been suggested that specific structures of meta-

plasticity [24] or the addition of a surprise-detection

system [12] can partially mitigate the adaptability-preci-

sion tradeoff. However, neither mechanism can overcome

the adaptability-precision tradeoff completely. In gen-

eral, adaptability or precision must be prioritized at dif-

ferent points relative to a change in the environment.

Therefore, the agent should choose adaptability or preci-

sion depending on internal or external factors such as

hunger or threat, rather than trying to optimize a single

learning rate. Integration of reward feedback on multiple
Current Opinion in Behavioral Sciences 2021, 41:30–37 
timescales could allow additional flexibility in managing

the adaptability-precision tradeoff because the brain

could adjust its priority on different timescales at differ-

ent time points.
www.sciencedirect.com
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In addition to integration over multiple timescales, uncer-

tainty requires that reward feedback should be integrated

based on different models of the environment. This

becomes more important in the real world where stimuli

and objects have numerous features or attributes, making it

difficult to determine what reliably predicts reward out-

comes. For example, one can learn reward values of indi-

vidual features and combine this information to estimate

values associated with each option [25,26]. Such feature-

based learning reduces precision, since individual features

often do not predict reward consistently across many sti-

muli. Nevertheless, this strategy allows much faster learn-

ing because values of all features of the chosen option/

stimulus can be updated after each feedback (Figure 2b,c).

Indeed, recent studies showed that learning strategy

depends on volatility, generalizability, and dimensionality

of the environment [26,27]. These findings suggests that

timescales and strategies for integrating reward feedback

are adjustedaccording topropertiesof the environment,and

that this adjustment depends on how attention is deployed

among many features or attributes of a choice option.

Perceptual decision making
Similar to reward learning, perceptual decision is com-

monly postulated to rely on the integration of sensory

signals over time. Although earlier models assumed perfect
Figure 3

(a)

(b) 

Behavioral and neural timescales during perceptual decision making. (a) Te

timescales of evidence integration. (b) Recency effect in decision weight ma

intrinsic timescales in rodent dorsal cortex during evidence integration [39].
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integration and hence an infinitely long timescale, percep-

tual decision making in dynamic environments requires the

timescale of evidence integration to be flexibly adjusted,

not only by reflecting the timescale of the change in sensory

signals itself [28], but also by exploiting multiple sources of

information other than the sensory signal.

The timescale of evidence integration can be estimated

by examining how the weight of evidence on decision

varies with the time lag between evidence and decision

(Figure 3a). For time-varying stimuli, the evidence pre-

sented close to the decision (late evidence) tended to

have stronger influence compared to earlier evidence,

consistent with leaky, rather than perfect, integration

(Figure 3b) [29,30��,31��,32]. Although leaky integration

can limit the accuracy of decisions by using partial evi-

dence, this enables flexible and strategic modulation of

the integration process. For example, the onset of inte-

gration can be delayed to make it aligned with the timing

of relevant evidence by considering internal processing

delays and the temporal structure of dynamic stimulus

[31��,33]. Computationally, this can be achieved by time-

varying urgency [31��]. In addition, the integration gain

can be dynamically modulated by the temporal statistics

of the evidence, signal duration, and task demands

[34–36]. Although available descriptive models can
(c)
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account for sensory integration and its interaction with

other choice processes such as urgency [31��], it remains

unknown whether timescales associated with these pro-

cesses can be distinguished reliably.

Despite behavioral evidence for flexible evidence integra-

tion, neural mechanisms for adjusting the timescale of

neural integration remains poorly understood. Neverthe-

less, similar to the timescales of reward memory signals

observed in the primate cortex, integration of sensory

evidence might be performed across multiple timescales

in parallel. For example, heterogeneous timescales for

evidence integration were reported within and across cor-

tical regions [37,38]. A recent study has also found a

hierarchy of intrinsic timescales in the rodent dorsal cortex

during a perceptual decision-making task (Figure 3c) [39].

Hierarchy of neuronal timescales
The possibility that the timescales of cognitive computa-

tions might be adjusted strategically according to
Figure 4

(a)

(c) (d) 

Hierarchical variation in intrinsic timescales across primate cortex. (a) Intrins

of the macaque cortex, from sensory to association areas [4]. (b) Intrinsic ti

follow the same hierarchy as those of spiking activity [40��]. (c) A spiking-ne

subpopulations of pyramidal neurons with strong recurrent excitatory conne

spiking fluctuations in model pyramidal neurons (d) and strength of persiste

recurrent structure.
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statistics of the environment and task demands raises

the question of how a diversity of timescales might be

generated in the brain. One possibility is that different

brain regions exhibit distinct characteristic timescales in

their intrinsic activity, which in turn can shape the func-

tional specialization of regions in terms of reward and

sensory integration. In support of this possibility, a grow-

ing literature has found that timescales of neuronal spik-

ing activity, related to intrinsic dynamics and cognition,

vary across cortical areas. For instance, the intrinsic time-

scale of spiking fluctuations increases across the cortical

hierarchy in the macaque brain, from faster in sensory

areas to slower in association areas [4,6��]. A similar

hierarchical pattern of increasing timescales from sensory

to association areas was also found in electrocortico-

graphic recordings in monkeys (Figure 4a,b) [40��]. These

findings are also in line with timescale hierarchies in

human cortex measured by various methods including

electrocorticography [40��,41], magnetoencephalography

[42], and functional MRI [43].
(e)

(b)

Current Opinion in Behavioral Sciences 

ic neuronal timescales in spike-train recordings from multiple regions

mescales of electrocorticographic recordings in the monkey cortex

uron model of an association cortical circuit that contains

ctions, parameterized by w+ [45]. (d) and (e) Intrinsic timescales of

nt activity related to working memory (e) increases with the strength of
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Regional specialization in intrinsic timescales can arise

from regional differences in the strength of recurrent

connectivity within cortical circuits, which in turn can

support functional specialization for cognitive processes

such as working memory and decision making [44]. This

circuit mechanism can be demonstrated in a canonical

association cortical model that performs working memory

and decision-making functions (Figure 4c) [45]. As recur-

rent structure is strengthened, intrinsic timescales of

spiking fluctuations increases as seen in empirical data

(Figure 4d). Strength of recurrent structure also controls

the working-memory computations in the circuit, as it

transitions the circuit among different regimes of persis-

tent activity (Figure 4e). This spiking circuit model

provides a mechanistic hypothesis for variation in intrinsic

timescales. Different intrinsic timescales reflect differ-

ences in local cortical microcircuitry, leading to functional

differences across areas, such as their capacity for persis-

tent activity.

In line with this theoretical proposal, studies have char-

acterized intrinsic timescales at the single-neuron level,

and found that longer timescales are associated with

neurons that support persistent delay activity in working

memory tasks [46,47]. Interestingly, during a decision-

making task, single-neuron intrinsic timescales were not

correlated with timescales of memory related to rewards

or actions [6��]. Thus, neuronal and circuit mechanisms

for dissociation of intrinsic and functional timescales

remain open questions.

Another important neural circuit property that varies

across the cortical hierarchy is the relative amount of

intracortical myelination in that sensory areas are more

highly myelinated than association areas. In structural

MRI, T1w/T2w map follows the cortical topography of

intracortical myelination [48]. This measure also corre-

lates with cortical hierarchical levels in monkeys and with

the dominant topographical pattern of transcriptomic

variation in humans that reflects regional specialization

of cellular and synaptic processes [49]. One intriguing

possibility is that this hierarchical gradient in myelination

may contribute to a hierarchical gradient in synaptic

plasticity for learning. High myelination in sensory corti-

cal areas means less axonal area available for structural

plasticity to form new synaptic connections, whereas the

relatively unmyelinated axons in association areas can

more readily form new synaptic connections in support of

learning and memory.

Conclusion
The diversity of timescales related to cognitive functions

across cortical areas raises the question of what neural

mechanisms may contribute to these patterns and how

signals generated by these diverse timescales are com-

bined to determine choice behavior. Areal specialization

for timescales of learning is potentially shaped by
www.sciencedirect.com 
gradients in the densities of receptors for neuromodula-

tors thought to play a role in learning and decision

making, including dopamine and serotonin [49]. Linking

neuronal and regional differences in synaptic and neuro-

modulatory physiology to functional differences in time-

scales related to cognitive processes is crucial for under-

standing neural mechanisms underlying the generation of

diverse timescales [50].

Recent findings on the independence of timescales and

selectivity to task-relevant signals within individual neu-

rons in a given area suggest that multiple mechanisms

must underlie the generation of these timescales [6��]. If

representations of learning and choice behavior are dis-

tributed, independence among timescales in different

signals can generate less correlated signals that allow

higher dimensional representations and easier decoding

of signals from relevant ensembles of neurons. Nonethe-

less, how such distributed representations can be adjusted

according to the reliability of different signals remains

unknown.

Future experiments that examine learning behavior

under conditions with different timescales of changes

in reward environment can be used to address whether

behavioral adjustments emerge from adaptation of single

or multiple timescales to the environment, or from dif-

ferent arbitrations between systems with different time-

scales. This requires the development of new methods for

estimation of multiple timescales in behavior to accom-

pany multiple existing methods for estimation of neural

timescales.
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