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We live in a world that changes on many timescales. To learn
and make decisions appropriately, the human brain has
evolved to integrate various types of information, such as
sensory evidence and reward feedback, on multiple
timescales. This is reflected in cortical hierarchies of timescales
consisting of heterogeneous neuronal activities and expression
of genes related to neurotransmitters critical for learning. We
review the recent findings on how timescales of sensory and
reward integration are affected by the temporal properties of
sensory and reward signals in the environment. Despite
existing evidence linking behavioral and neuronal timescales,
future studies must examine how neural computations at
multiple timescales are adjusted and combined to influence
behavior flexibly.
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Introduction

Animals adapt their physiological responses according to
the changes in its environment. Environmental changes
occur on many timescales, ranging from milliseconds to
years, and mechanisms to accomplish this adaptability
vary greatly across species. These adaptive mechanisms
are shaped by many factors, including the animal’s life-
span, the range and precision of sensors that detect the
changes in the environment, behavioral repertoire, and
the computational machinery available to identify and
select the most desirable response [1]. For many animals,

the last element is implemented in the brain, and thus,
the spatial and temporal organizations of the brain reflect
the evolutionary history of adjustments to changes in the
environment.

Learning appropriate behavioral responses is not trivial,
because the animal’s environment is always stochastic
and a particular behavioral response in a certain environ-
ment seldom leads to the same outcome [2]. In rare cases,
the probabilities of different outcomes for each response
might be fixed, which is referred to as expected uncer-
tainty, and this can simplify and even hard-wire certain
learning algorithms in the brain through evolution. This
still leaves the main challenge for the animal to properly
weigh reward probabilities relative to other reward attri-
butes based on the animal’s current physiological state.
By contrast, in a non-stationary environment in which
outcome probabilities are unknown, which is referred to
as unexpected uncertainty, the animals need to adjust
their learning and behavioral strategies [2]. Furthermore,
sensory signals provide the information about the ani-
mal’s environment only probabilistically. Thus, the time-
scales for integrating sensory signals can also vary sub-
stantially. More importantly, different factors that are
crucial for some behaviors, such as the traffic laws and
road conditions for driving, must be learned over different
timescales.

This review provides an overview of behavioral and
neural adaptations on multiple timescales. We consider
how animals adjust their behaviors according to time-
scales of changes in the environment, and how these
adjustments rely on integration of relevant information
over multiple timescales in the brain. We also examine
how hierarchy and heterogeneity of intrinsic timescales in
neural response and gene expression throughout the brain
could support such adaptive behavior. We conclude with
remaining questions about the timescales of brain and
behavior and how they can be studied.

Timescales of brain and behavior

Behavioral timescales might be matched to the timescales
of important changes in the animal’s environment using
several different mechanisms (Figure 1). For example,
information about regularities in the environment might
be stored in synaptic connections between neurons [3].
Therefore, different types of changes in the synaptic
weights across multiple timescales, such as short-term
and long-term plasticity, might allow flexible behavioral
adjustments to environmental changes [3]. In addition,
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Timescales of environmental changes, synaptic plasticity, and neural response. (a) Changes in the environment across multiple timescales. (b)
Different forms of synaptic plasticity at different timescales. (c) Different timescales of spiking activity in an example cortical neuron.

neuronal activity often displays multiple concurrent time-
scales that might support behavioral changes at different
timescales, although the range of experimentally mea-
sured timescales of neural activity is relatively small
compared to the full range of possible behavioral time-
scales. For example, neurons in the primate prefrontal
cortex display activity related to multiple timescales of
reward integration in that neuronal activity modulated by
a reward outcome decays at different rates across neurons
[4]. Moreover, these neuronal timescales are correlated
with the behavioral timescales for integration of reward
feedback during decision making [5,6°°]. Concurrent
integration of reward feedback on multiple timescales
is also manifest in the activity of neurons in the of lateral
habenula and dopamine neurons in substantia nigra pars
compacta [7], serotonergic neurons [8], and hemodynamic
signals in the human anterior cingulate cortex [9°°].

Timescale of behavioral changes associated with reward
integration is often estimated using the learning rates of
reinforcement learning models fit to choices. A single
timescale of reward integration is parsimonious and com-
putationally convenient, but often relies on the assump-
tion that the learning rate can be optimized in a given
environment. By contrast, multiple timescales of reward
integration can be inferred from a better fit of choice
behavior by models that incorporate multiple time
averages of reward outcomes [10-12], reward-dependent

modulations of value representation [13°°], or average
reward prediction error [14]. Several well-known behav-
ioral observations, such as spontaneous recovery and
motor memory, also suggest that multiple memory traces
with different timescales might be widespread in the
brain [15].

Previous studies also demonstrated a substantial level of
heterogeneity in the observed timescales within and
across brain areas, suggesting that learning might proceed
in parallel at multiple timescales [6°°]. This implies that
the values of different options or actions would vary
according to the timescales of different learning algo-
rithms, and therefore requires mediation to match time-
scales of neural circuits to those of the environment for
guiding behavior, similar to the mechanisms proposed for
the arbitration between model-based versus model free
reinforcement learning algorithms [16]. It remains an
open question how the brain adapts to changing environ-
mental timescales through adaptation of neuronal time-
scales or selection of an appropriate timescale.

Volatility and reward integration

Reward may not arrive due to the probabilistic nature of
reward outcome or actual changes in the environment,
but these two scenarios require very different responses
from the animal, namely, no update or faster update,
respectively. Actual changes in the environment could
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happen with different frequency or rate, often quantified
as volatility [2,17,18]. In hierarchical Bayesian models,
volatility can be equated with a parameter to measure the
width of distribution for transition probability between
different values of reward probability [17,19]. Experi-
mentally, volatility can be controlled in various ways,
but has been mainly manipulated by changing the block
length in probabilistic reversal learning tasks [2,17,20].
Although some studies have reported higher learning
rates in a volatile environment [17,21], other studies in
monkeys [20] and humans [22] have not observed similar
changes in learning rates. The reasons for this discrepancy
should be investigated further.

Volatility and uncertainty can modulate learning and
choice through means other than a change in the learning
rate [12,22,23]. For example, a modeling study showed
that reward-dependent metaplasticity can allow continu-
ous adjustments in learning without an overall change in
the learning rates [23]. In this model, reward integration is
performed by transitions between states on multiple
timescales, allowing the model to incorporate the history
of reward feedback and thus volatility. In addition, more
detailed examinations of learning and choice behavior in
monkeys and humans have revealed that uncertainty
results in fundamental changes in valuation and choice
strategies, instead of a change in the overall timescale of
reward integration [22]. These results suggest that inte-
gration of reward feedback might not happen on a single
timescale adjusted by volatility. Instead, reward integra-
tion might happen on multiple timescales across many
brain areas.

Adaptability-precision tradeoff

Regardless of the complexity of the learning mechanism,
there is always a tradeoff between how fast and how
accurate new information can be acquired. This adapt-
ability-precision tradeoff has important implications for
timescales of reward integration. On the one hand,
increasing the timescale of reward integration or, equiva-
lently, reducing the learning rate can improve the preci-
sion in estimating the value of a given action or option,
but also results in less adaptability (Figure 2a). On the
other hand, shorter timescales of reward integration can
improve adaptability but at the cost of precision.

It has been suggested that specific structures of meta-
plasticity [24] or the addition of a surprise-detection
system [12] can partially mitigate the adaptability-preci-
sion tradeoff. However, neither mechanism can overcome
the adaptability-precision tradeoff completely. In gen-
eral, adaptability or precision must be prioritized at dif-
ferent points relative to a change in the environment.
Therefore, the agent should choose adaptability or preci-
sion depending on internal or external factors such as
hunger or threat, rather than trying to optimize a single
learning rate. Integration of reward feedback on multiple
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Adaptability-precision tradeoff in the integration of reward feedback.
(a) Different timescales of reward integration allow different speeds for
updating estimated values (adaptability) and different levels of
accuracy for those estimates (precision). (b) Learning about multi-
dimensional stimuli/options could be achieved by strategies with
different levels of adaptability and precisions. (c) Accuracy in
estimated values over time using feature-based or object-based
learning in two environments with different levels of generalizability.
With more generalizability, it takes longer for the object-based strategy
to surpass the level of precision achieved by the feature-based
strategy.

timescales could allow additional flexibility in managing
the adaptability-precision tradeoff because the brain
could adjust its priority on different timescales at differ-
ent time points.

Current Opinion in Behavioral Sciences 2021, 41:30-37

www.sciencedirect.com



In addition to integration over multiple timescales, uncer-
tainty requires that reward feedback should be integrated
based on different models of the environment. This
becomes more important in the real world where stimuli
and objects have numerous features or attributes, making it
difficult to determine what reliably predicts reward out-
comes. For example, one can learn reward values of indi-
vidual features and combine this information to estimate
values associated with each option [25,26]. Such feature-
based learning reduces precision, since individual features
often do not predict reward consistently across many sti-
muli. Nevertheless, this strategy allows much faster learn-
ing because values of all features of the chosen option/
stimulus can be updated after each feedback (Figure 2b,c).
Indeed, recent studies showed that learning strategy
depends on volatility, generalizability, and dimensionality
of the environment [26,27]. These findings suggests that
timescales and strategies for integrating reward feedback
are adjusted according to properties of the environment, and
that this adjustment depends on how attention is deployed
among many features or attributes of a choice option.

Perceptual decision making

Similar to reward learning, perceptual decision is com-
monly postulated to rely on the integration of sensory
signals over time. Although earlier models assumed perfect
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integration and hence an infinitely long timescale, percep-
tual decision making in dynamic environments requires the
timescale of evidence integration to be flexibly adjusted,
notonly by reflecting the timescale of the change in sensory
signals itself [28], but also by exploiting multiple sources of
information other than the sensory signal.

The timescale of evidence integration can be estimated
by examining how the weight of evidence on decision
varies with the time lag between evidence and decision
(Figure 3a). For time-varying stimuli, the evidence pre-
sented close to the decision (late evidence) tended to
have stronger influence compared to earlier evidence,
consistent with leaky, rather than perfect, integration
(Figure 3b) [29,30°°,31°°,32]. Although leaky integration
can limit the accuracy of decisions by using partial evi-
dence, this enables flexible and strategic modulation of
the integration process. For example, the onset of inte-
gration can be delayed to make it aligned with the timing
of relevant evidence by considering internal processing
delays and the temporal structure of dynamic stimulus
[31°°,33]. Computationally, this can be achieved by time-
varying urgency [31°°]. In addition, the integration gain
can be dynamically modulated by the temporal statistics
of the evidence, signal duration, and task demands
[34-36]. Although available descriptive models can
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Behavioral and neural timescales during perceptual decision making. (a) Temporal changes in the weight of sensory evidence that reflect different
timescales of evidence integration. (b) Recency effect in decision weight may reflect imperfect integration in humans [30°°]. (c) Heterogeneous
intrinsic timescales in rodent dorsal cortex during evidence integration [39].
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account for sensory integration and its interaction with
other choice processes such as urgency [31°°], it remains
unknown whether timescales associated with these pro-
cesses can be distinguished reliably.

Despite behavioral evidence for flexible evidence integra-
tion, neural mechanisms for adjusting the timescale of
neural integration remains poorly understood. Neverthe-
less, similar to the timescales of reward memory signals
observed in the primate cortex, integration of sensory
evidence might be performed across multiple timescales
in parallel. For example, heterogeneous timescales for
evidence integration were reported within and across cor-
tical regions [37,38]. A recent study has also found a
hierarchy of intrinsic timescales in the rodent dorsal cortex
during a perceptual decision-making task (Figure 3c¢) [39].

Hierarchy of neuronal timescales
The possibility that the timescales of cognitive computa-
tions might be adjusted strategically according to

statistics of the environment and task demands raises
the question of how a diversity of timescales might be
generated in the brain. One possibility is that different
brain regions exhibit distinct characteristic timescales in
their intrinsic activity, which in turn can shape the func-
tional specialization of regions in terms of reward and
sensory integration. In support of this possibility, a grow-
ing literature has found that timescales of neuronal spik-
ing activity, related to intrinsic dynamics and cognition,
vary across cortical areas. For instance, the intrinsic time-
scale of spiking fluctuations increases across the cortical
hierarchy in the macaque brain, from faster in sensory
areas to slower in association areas [4,6°°]. A similar
hierarchical pattern of increasing timescales from sensory
to association areas was also found in electrocortico-
graphic recordings in monkeys (Figure 4a,b) [40°°]. These
findings are also in line with timescale hierarchies in
human cortex measured by various methods including
electrocorticography [40°°,41], magnetoencephalography
[42], and functional MRI [43].
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Hierarchical variation in intrinsic timescales across primate cortex. (a) Intrinsic neuronal timescales in spike-train recordings from multiple regions
of the macaque cortex, from sensory to association areas [4]. (b) Intrinsic timescales of electrocorticographic recordings in the monkey cortex
follow the same hierarchy as those of spiking activity [40°]. (c) A spiking-neuron model of an association cortical circuit that contains
subpopulations of pyramidal neurons with strong recurrent excitatory connections, parameterized by w, [45]. (d) and (e) Intrinsic timescales of
spiking fluctuations in model pyramidal neurons (d) and strength of persistent activity related to working memory (e) increases with the strength of

recurrent structure.
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Regional specialization in intrinsic timescales can arise
from regional differences in the strength of recurrent
connectivity within cortical circuits, which in turn can
support functional specialization for cognitive processes
such as working memory and decision making [44]. This
circuit mechanism can be demonstrated in a canonical
association cortical model that performs working memory
and decision-making functions (Figure 4c) [45]. As recur-
rent structure is strengthened, intrinsic timescales of
spiking fluctuations increases as seen in empirical data
(Figure 4d). Strength of recurrent structure also controls
the working-memory computations in the circuit, as it
transitions the circuit among different regimes of persis-
tent activity (Figure 4e). This spiking circuit model
provides a mechanistic hypothesis for variation in intrinsic
timescales. Different intrinsic timescales reflect differ-
ences in local cortical microcircuitry, leading to functional
differences across areas, such as their capacity for persis-
tent activity.

In line with this theoretical proposal, studies have char-
acterized intrinsic timescales at the single-neuron level,
and found that longer timescales are associated with
neurons that support persistent delay activity in working
memory tasks [46,47]. Interestingly, during a decision-
making task, single-neuron intrinsic timescales were not
correlated with timescales of memory related to rewards
or actions [6°°]. Thus, neuronal and circuit mechanisms
for dissociation of intrinsic and functional timescales
remain open questions.

Another important neural circuit property that varies
across the cortical hierarchy is the relative amount of
intracortical myelination in that sensory areas are more
highly myelinated than association areas. In structural
MRI, T1w/T2w map follows the cortical topography of
intracortical myelination [48]. This measure also corre-
lates with cortical hierarchical levels in monkeys and with
the dominant topographical pattern of transcriptomic
variation in humans that reflects regional specialization
of cellular and synaptic processes [49]. One intriguing
possibility is that this hierarchical gradient in myelination
may contribute to a hierarchical gradient in synaptic
plasticity for learning. High myelination in sensory corti-
cal arcas means less axonal area available for structural
plasticity to form new synaptic connections, whereas the
relatively unmyelinated axons in association areas can
more readily form new synaptic connections in support of
learning and memory.

Conclusion

The diversity of timescales related to cognitive functions
across cortical areas raises the question of what neural
mechanisms may contribute to these patterns and how
signals generated by these diverse timescales are com-
bined to determine choice behavior. Areal specialization
for timescales of learning is potentially shaped by
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gradients in the densities of receptors for neuromodula-
tors thought to play a role in learning and decision
making, including dopamine and serotonin [49]. Linking
neuronal and regional differences in synaptic and neuro-
modulatory physiology to functional differences in time-
scales related to cognitive processes is crucial for under-
standing neural mechanisms underlying the generation of
diverse timescales [50].

Recent findings on the independence of timescales and
selectivity to task-relevant signals within individual neu-
rons in a given area suggest that multiple mechanisms
must underlie the generation of these timescales [6°°]. If
representations of learning and choice behavior are dis-
tributed, independence among timescales in different
signals can generate less correlated signals that allow
higher dimensional representations and easier decoding
of signals from relevant ensembles of neurons. Nonethe-
less, how such distributed representations can be adjusted
according to the reliability of different signals remains
unknown.

Future experiments that examine learning behavior
under conditions with different timescales of changes
in reward environment can be used to address whether
behavioral adjustments emerge from adaptation of single
or multiple timescales to the environment, or from dif-
ferent arbitrations between systems with different time-
scales. This requires the development of new methods for
estimation of multiple timescales in behavior to accom-
pany multiple existing methods for estimation of neural
timescales.
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