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ABSTRACT

How much nitrogen and light noble gases are recycled in modern subduction zones is unclear.
Fumaroles act as a means for passive degassing in arcs. They receive variable contributions of volatiles
from arc magmas, themselves sourced from the mantle wedge. The gas compositions reflect the
extent of volatile enrichment in sub-arc mantle sources and constrain slab dehydration. However,
contributions from atmospheric components in fumaroles are unavoidable. For N, neon and argon,
the atmospheric components are challenging to discern from slab-derived components. Here, we report
15NN measurements from eight fumaroles and seven bubbling springs, along the Central American
arc. Our new °’N'°N data are coupled with noble gases measurements and show that air-derived
components in volcanic gas discharges can easily be underestimated, in both fumaroles and springs,
using conventional stable isotope or noble gases methods. We show that, in the absence of °N'°N data,
previously used tracers for air (e.g., 81°N, No/Ar, N,/He, among others) may lead to erroneous conclusions
regarding the origin of volatiles in mixed gases. In contrast, ’N'°N data provide quantitative constraints
on the nature and contributions of both atmospheric and magmatic components. Most springs are heavily
dominated by air-derived N3, while fumaroles show substantial contributions of volcanic endmembers.
Based on the fumarole data, we show that magma sources beneath the central American arc are enriched
in all volatiles relative to 3He, by two to three orders of magnitude compared to the MORB source. We use
new NN data to obtain source Ny /3He, 3He/?%Ar and 3He/*2Ne ratios which we then use to compute
volcanic Nj, Ar and Ne degassing fluxes. Using this approach, we show that outgassing fluxes appear to
match subduction fluxes in the Central America subduction zone. We determine an N, outgassing flux of
between 4.0 x 10% and 1.0 x 10° mol Ny/y, comparable to the subduction flux of 5.7 x 10% mol Np/yr
determined previously. We obtain a similar conclusion for 22Ne and 3®Ar. Overall, the volatile fluxes in
the central American subduction zone no longer seem to require net transfer of Ny, Ar, and Ne, to the
deep mantle.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The origin of volatiles emitted from convergent margins pro-
vides fundamental constraints on how plate tectonics redistributes
volatiles between terrestrial reservoirs (Bekaert et al., 2021; Hilton
et al, 2002; Plank et al, 2013). The nitrogen cycle is under-
constrained, partly because quantifying degassing N, fluxes in arcs
is challenging. For instance, basalt glasses are virtually absent in
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subduction zones, impeding quantification of nitrogen elemental
abundances in the underlying mantle wedge. The systematic study
of metamorphic rocks has suggested nitrogen is quantitatively re-
tained within minerals in downgoing slabs (Bebout et al., 2013;
Busigny et al., 2003). The latter is based on the composition of
rocks from the European alps, where sediments underwent meta-
morphism in a cold subduction zone (630°C at 100 km, Busigny
et al., 2003). In those rocks, nitrogen is hosted in the structures
of clay minerals including micas and illites, as NHI substituting
for potassium (Bebout and Fogel, 1992; Busigny et al., 2003). Ex-
perimental work confirms that the fluid/rock nitrogen partition
coefficient in a cold P-T pathway is in favor of N retention in
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minerals (Jackson et al., 2021). However, under warmer conditions,
fluid/rock partitioning favors N accumulation in fluids, potentially
limiting nitrogen subduction to the mantle (Jackson et al., 2021).
Subduction temperature gradients were likely steeper in most of
the Proterozoic and Archean (Martin and Moyen, 2002). Therefore,
it is unclear how modern fluxes determined in cold subduction
zones should be extrapolated back into deep time.

The Central American Volcanic Arc (CAVA) is relatively well-
characterized with evidence for sedimentary and igneous compo-
nents from the slab variably contributing to mantle sources across
the arc (Patino et al., 2000). It is a “warm” subduction zone, with
predicted slab interface temperatures of ~800°C at 100 km depth
beneath Costa Rica (Peacock et al., 2005), resulting in sporadic
slab melting (Hoernle et al., 2008). Thus, it may be considered
an analog for subduction zones at a time when subduction tem-
perature gradients were steeper. In Central America, metamorphic
rocks cannot be used to constrain net subduction fluxes because
no section of metasediments having undergone the subduction P-
T pathway is known to occur in the geological record. Instead,
net subduction fluxes of volatiles are estimated from comparing
their concentrations and isotopic compositions in the offshore al-
tered oceanic crust (Li and Bebout, 2005; Busigny et al., 2019) with
their concentrations and isotopic compositions in arc fumaroles
that represent volcanic outgassing fluxes. This mass balance cal-
culation can be hampered by ubiquitous infiltration of air into
most fumaroles, as evidenced by noble gases systematics: although
fumaroles typically show mantle-like helium isotope ratios, neon
and argon budgets are overwhelmed by atmospheric components
(Hilton et al., 2002; Snyder et al., 2003). This is also a problem for
nitrogen. Historically, SO2/N; ratios from fumaroles and the over-
all SO, outgassing flux have been used to determine a total Ny
volcanic outgassing flux for the central American arc, yielding a
value of 1.7 x 10° mol Ny/yr, or 3.4 x 10° mol N/yr (Hilton et al.,
2002; Fischer et al., 2002). This is comparable to an estimate of the
central American subduction nitrogen flux of ~1.1 x 10° mol N/yr
(equivalent to ~5.7 x 108 mol Ny/yr) from Busigny et al. (2019).
These flux estimates are given with no uncertainties, but they ap-
pear comparable within a factor of 2. Taken at face value, this
would support inefficient N recycling from the surface to the deep
mantle. However, fumaroles incorporate air-derived N, after the
infiltration of meteoric water within subsurface hydrothermal sys-
tems and/or because of sampling techniques (Fischer et al., 2002).
Thus, the outgassing N fluxes based on raw N,/SO; ratios in fu-
maroles are overestimates of the outgassing N flux. As a remedy,
the volcanic fraction of Ny in fumaroles was quantified on the basis
of Nj/Ar ratios: air-saturated waters have a known Nj/Ar ratio of
~40 at STP but most hydrothermal gases in the CAVA have ratios
>80 (Hilton et al., 2002; Fischer et al., 2002; Elkins et al., 2006;
Snyder et al., 2003; Zimmer et al.,, 2004). The N, amount in ex-
cess of air-saturated water, termed N3, was suggested to reflect the
volcanic N; fraction (Hilton et al., 2002; Fischer et al., 2002). A vol-
canic nitrogen degassing flux of 2.9 x 108 mol N3 /yr was estimated
for the central American arc (Fischer et al., 2002). This degassing
flux estimate is lower by a factor of 2 than the subduction nitrogen
flux of ~5.7 x 108 mol Ny /yr (or ~1.1 x 10° mol N/yr), suggesting
N, sequestration into the deep mantle by subduction, even in a
warm subduction zone (Busigny et al., 2019; Li and Bebout, 2005).

Here, we take a new approach to constrain the origin of Ny
as well as light noble gases in CAVA fumaroles and springs. We
use the newly-developed >N'>N tracer of atmospheric contami-
nation (Labidi et al., 2020; Yeung et al., 2017; Young et al., 2016).
Specifically, we use Asg, the >N'>N concentration relative to a
random distribution of N and >N atoms among N, molecules, as
a tracer of surficial atmospheric contamination. The Asg tracer is
defined as Asg =3R/(**R)2 — 1 (%), where 3°R = 1>NT°N/14N14N
and PR = 1>N/14N for the gas of interest. At relevant temperatures
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ranging from 200 to 1000 °C, equilibrium among N, isotopologues
results in Aszg values from 0.5 to 0.1%, respectively (Yeung et
al., 2017). This applies for any magmatic and crustal N, whether
it is mantle-derived, inherited from the slab, or shallow crustal
reservoirs (Labidi et al., 2020). In contrast, air has a pronounced
disequilibrium NN enrichment, leading to an atmospheric A3g
value of 19.1 &+ 0.3%0 (207) (Yeung et al.,, 2017). We make use of
this disequilibrium as a tracer for air contributions in natural fluids
and identify the compositions of mantle sources for N, and light
noble gases for 15 fumaroles and gases bubbling from springs in
Costa Rica, Panama, Nicaragua, and El Salvador. Our '>NI°N data
allows determination of the N/>He, 3He/*®Ar and 3He/??Ne ra-
tios for the CAVA mantle sources. Using an updated 3He outgassing
flux for the region, we provide a new range of estimates for the Ny
outgassing flux along the Central American arc. Our result has im-
plications for the net subduction flux of nitrogen, suggesting that
the net sequestration of nitrogen to the mantle is within error of
zero.

2. Geological context and samples

The CAVA results from the eastward subduction of the Cocos
Plate beneath the Caribbean Plate. Abundant literature describes
the spectrum of sub-arc mantle sources, incorporating slab sed-
imentary components beneath Nicaragua, to volcanic seamounts
derived from Galapagos underneath Costa Rica and Panama (Carr
et al., 2003; Gazel et al., 2009; Hoernle et al., 2008; Patino et al.,
2000; Ranero and von Huene, 2000; Schwarzenbach et al., 2016).

Eight gas samples from fumaroles were collected from Pods
and Momotombo volcanoes during several field expeditions in the
early to mid-2000’s with gas chemistry and isotope data pub-
lished in Zimmer et al. (2004), Elkins et al. (2006), De Leeuw et
al. (2007) and Fischer et al. (2015). Fumaroles had outlet tem-
peratures ranging from 98°C to 747°C. Samples were collected
in pre-evacuated Giggenbach bottles filled with 5N NaOH solution
(Giggenbach, 1992). Gas splits were taken from the headspace of
the bottles with sealed glass tubes shortly after sample collection
and stored until analyzed for this work. Five gases from the Pods
crater were collected between 2003 and 2006, from the fumarolic
sites “Official” and “Naranja”, at temperatures between 98 °C and
158°C. For these, we report new N; isotopologue and “°Ar/36Ar
data. 3He/*He of these samples are 7.0 + 0.2 Ry (Hilton et al,
2010) where Ry is air >He/*He or 1.384 x 10~6. Gas chemistry is
available from previous work (Fischer et al.,, 2015). One fumarole
sample was collected at Santa Ana Volcano (Salvador), with a vent
temperature of 400°C. It has a helium isotope ratio of 7.5 + 0.1
Ra (De Leeuw et al., 2007). The He-Ne-Ar abundances are known
(De Leeuw et al., 2007). No “°Ar/36Ar is available but other gases
from El Salvador all have near-atmospheric 4°Ar/3%Ar ratios (Sny-
der et al.,, 2003). We additionally discuss two fumarole gas samples
collected at Momotombo in Nicaragua, at an outlet temperature of
~750°C. For these two samples, we report new “°Ar/3Ar isotope
measurements. Ny isotopologues, helium isotopes, He-Ne-Ar and
major gas chemistry data for these samples are available from pre-
vious work (Elkins et al., 2006; Yeung et al.,, 2017). Hot springs
found in the flanks of volcanic arcs are the most accessible sam-
ples, and hence are routinely used to characterize volcanic end-
members (e.g. Snyder et al., 2003). As a means to compare these
to our fumaroles, we also report data from seven gases from bub-
bling springs in Costa Rica and Panama, collected in 2018 as part of
the Biology Meets Subduction initiative. Sample collection sites are
shown on Fig. 1. Samples were collected in 15 cm® copper tubes
following standard procedures. Waters in the springs had tempera-
tures between 29 °C and 55 °C. For these, we report major element
gas compositions, N, isotopologues and He-Ne-Ar systematic data.
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Fig. 1. Location of all the samples studied here. Green, red and blue symbols are
fumarole locations from Santa Ana, Momotombo and Pods (Data in Table 1). Yel-
low symbols are springs (Data in Table 2). (For interpretation of the colors in the
figure(s), the reader is referred to the web version of this article.)

3. Methods

Gas aliquots were split up to three ways and processed for (1)
gas chemistry, (2) Ny, and (3) noble gases systematics. Inorganic
gas components (such as Ny, He, Ar and O,) and methane were
separated and quantified on a TCD gas chromatograph coupled
with a quadrupole mass spectrometer as in earlier work (Fischer et
al., 2015). This allowed determining the N;/He and N;/Ar ratios of
each gas splits. Nitrogen isotopologues were determined via high-
resolution mass spectrometry at the University of California, Los
Angeles (Young et al., 2016). Noble gas analyses were conducted at
the University of Oxford (UK) and at the University of New Mex-
ico using standard methods (Barry et al., 2016; Lee et al., 2017).
Details may be found in the supplementary online file.

4. Results

We present an integrated dataset that includes concentrations
of He, Ne, Ar, N2, O, and CHy, elemental ratios of those gases,
noble gas isotope compositions, and N isotopologue ratios. Data
for the fumaroles (n = 8) are in Table 1 and data for the springs
(n = 7) are in Table 2.

4.1. 815N and Asg relationships

Newly determined Asg values vary between 19.3 = 0.4%0 and
3.5+ 1.0%0 (10 uncertainty, Fig. 2). Two previously published data
points from Momotombo extend the range down to 1.5 & 0.6%o
and are plotted on Fig. 2 (Yeung et al., 2017). The highest Asq is
similar to the air value of 19.1 & 0.3%¢ (20'). The range in As3q val-
ues suggests samples incorporate variable amounts of atmospheric
nitrogen, contributing between ~8 and ~100% of the total Nj.
Fumaroles from Poas and Momotombo have the lowest A3g val-
ues, indicating that these fumaroles have the lowest air-derived
N> contributions. A range of 815N values is observed, with values
of between —3.7 + 0.3%¢ and +4.2 + 0.3% (Fig. 2). For Pods and
Momotombo, 8'°N values are +0.4 + 0.3%¢ and +5.4 % 0.3%o re-
spectively, where air contributions are at their lowest values (min-
imum Asg). The §°N values as a whole (with both low and high
Azp) are within the range of §!°N values of between —3.0 £ 0.6
and 6.3 + 0.3%. (n = 73) reported previously for central Ameri-
can gases (Elkins et al., 2006; Fischer et al., 2015, 2002; Snyder et
al., 2003; Zimmer et al., 2004). The §'>N values exhibit a negative
correlation with A3q values (Fig. 2).
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Fig. 2. The nitrogen isotopic composition of volcanic discharges in central America.
Variable A3p values establish that our samples incorporate variable amounts of at-
mospheric nitrogen. Fumaroles from the Pods and Momotombo have the lowest A3g
values indicating they have the lowest air-derived N, contributions while the hot
springs from Costa Rica have the highest air contributions. Variable §°N values are
observed, between —3.7 + 0.3%0 and +4.2 + 0.3%o. At an air Asg values, variable
815N must be caused by a mass-dependent isotope fractionation, presumably associ-
ated with hydrothermal degassing. The high-temperature components have positive
515N values.
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Fig. 3. Measured 3He/*He ratios versus “He/2°Ne ratios of the samples, normalized
to air by convention (De Leeuw et al., 2007). Most samples indicate simple two-
component air-magma mixing. Three Costa Rica hot springs (HS) however show
additions of crustal He.

4.2. Noble gas isotopes

Concentrations of He, Ne and Ar vary over 4 orders of mag-
nitude and are correlated (Table 1 and 2). We observe CAr/36Ar
ratios between 297 5 and 342 £+ 5 for our samples (Table 1 and
2), far from the upper mantle value of ~25,000 (Moreira et al.,
1998) but close to air at 298.5 (Lee et al., 2006). This is compa-
rable to the known range of values for Central American rocks
and gases of between 292 + 7 and 310 &+ 5 (Fischer et al., 2005;
Kennedy et al., 1991; Snyder et al., 2003; Staudacher and Allégre,
1988). The?°Ne/?2Ne and 2'Ne/%2Ne ratios are known only for the
hot springs, and data appear indistinguishable from air (Table 2).

The 3He/*He ratios vary substantially, between 0.3 and 7.6 £0.1
Ra. Unlike Ne and Ar, the He budget is not significantly af-
fected by atmospheric components and instead reflects appreciable
deep contributions. The 3He/*He ratios are broadly correlated with
4He/?ONe ratios (Fig. 3). Most of the data are explained by two-
component mixing between air (3He/*He = 1 Ra by definition,
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Table 1
Nitrogen and light noble gases isotope and concentrations for central Americans fumaroles.
PO 06-1-3 PO 03-2 Pnar06-1 PO 06-1-1 PO 06-1-2 ES02 10 Nic-3 Nic-2
Poas Poas Poas Poas Poas Santa Ana Momotombo Momotombo

dates of collection 11/5/06 3/31/03 2/24/06 2/24/06 2/24/06 1/5/02 1/5/02
latitude 10.12 1012 10.12 10.12 10.12 13.5111 12.2519 12.2519
longitude —84.1359 —84.1359 —84.1359 —84.1359 —84.1359 —89.3748 —86.3224 —86.3224
temperature (°C) 113 98 153 113 113 400 747 747
quantity of processed N, 10~ mol 21 2.2 8.8 8.0 5.8 224
N vol fraction (ucla) x1072 9.21E-01 8.47E-01 3.10E-01 7.43E-01 6.01E-01 7.14E-01
815N vs. air -3.69 0.35 -138 -138 -17 0.2 541 3.89
A3zp vs. stochastic 17 343 10.92 10.25 11 155 15 3.9
1 se §1°N 0.032 0.018 0.02 0.021 0.022 0.008 0.1 0.1
1 se Azp 0.496 0.527 0.288 0.309 0.307 0.138 0.3 0.2
CO, 0.992 0.990 0.975 0.993 0.990 0.983 0.859 0.861
He 4.56E-05 5.00E-06 5.59E-06 4.97E-06 8.53E-06 6.54E-06 7.61E-06 1.66E-05
Hy 1.17E-04 3.25E-04 1.40E-02 6.62E-05 7.05E-05 4.64E-03 1.24E-01 1.20E-01
Ar 2.42E-04 1.12E-04 1.24E-04 3.10E-04 4.21E-04 9.98E-05 1.52E-04 3.70E-05
0; 4.19E-04 1.25E-05 1.45E-04 5.28E-04 7.90E-04 4.54E-06 1.14E-05 8.93E-06
Na 6.70E-03 1.00E-02 1.06E-02 6.56E-03 8.94E-03 1.20E-02 1.62E-02 1.88E-02
CHy4 6.44E-06 1.25E-06 1.20E-04 7.24E-06 9.48E-06 1.95E-05 8.88E-06 7.66E-06
He/Ar 1.89E-01 4.44E-02 4.50E-02 1.60E-02 2.03E-02 6.55E-02 5.00E-02 4.48E-01
N3 /He 1.47E+02 2.00E+03 1.91E+03 1.32E+03 1.05E+03 1.83E+03 2.13E+03 1.13E+03
N /Ar 2.77E+01 8.89E+01 8.58E+01 2.11E+01 2.12E+01 1.20E+02 1.07E+02 5.07E+02
02/N3 6.25E-02 1.25E-03 1.36E-02 8.04E-02 8.83E-02 3.80E-04 7.03E-04 4.76E-04
N3 /CHg 1.04E+03 8.00E+03 8.87E+01 9.06E+02 9.43E+02 6.14E+02 1.83E+03 2.45E+03
40Ar/35Ar 297 293 305
3He/*He (Ra) 6.44 715 6.96 715 715 7.56 6.99 6.99
Ny /3 He 1.63E+07 2.00E+08 1.96E+08 1.32E+08 1.05E+08 1.73E+08 2.18E+08 1.16E+08
No /36Ar 8.49E+03 2.72E+04 2.62E+04 6.47E+03 6.49E+03 3.26E+04 1.78E+05
4He/*°Ne 8.93E+00 1.90E+02 3.61E+02 1.56E+02 1.56E+02 6.66E+01 2.75E+02 2.75E+02
3 He/22 Ne 8.04E-04 1.90E-02 3.52E-02 1.56E-02 1.56E-02 7.05E-03 2.69E-02 2.69E-02
X value 28 596 1133 488 488 209 864 864
22Ne/*CAr 6.47E-01 7.16E-03 3.81E-03 3.15E-03 3.98E-03 5.55E-03
3He/*%Ar 5.20E-04 1.36E-04 1.34E-04 4.90E-05 6.20E-05 1.50E-04
4He[*Ar 1.89E-01 4.46E-02 4.51E-02 1.61E-02 2.03E-02 5.02E-02

4He/?°Ne = 0.3188) and a magmatic endmember. The magmatic
component has a 3He/*He of ~7 (Fig. 3). The “He/?°Ne ratio of
the magmatic component must be at least as high as the highest
value from our dataset, ~270. Three Costa Rican springs show a
clear offset from the two-component mixing line, showing much
lower 3He/*He ratios at a given “He/2°Ne value. Similar features
in other Central American gases were interpreted to result from
mixing with gases from crustal fluids (De Leeuw et al., 2007).

4.3. Nitrogen, oxygen and methane concentrations

Nitrogen concentrations vary from 0.2 vol% to 93 vol% in the
springs, and from 0.6 vol% to 1.9 vol% in the fumaroles (Table 1
and 2). Oxygen concentrations are variable, resulting in O,/N; ra-
tios ranging over two orders of magnitude, between 3.8 x 10~* to
1.1x 107" (Supplementary Fig. 1). The 0,/N; ratios are not directly
correlated with Asg values (supplementary Fig. 1), suggesting that
02/N; is not a reliable indicator of the presence of nitrogen from
air. Methane concentrations are below 0.1 vol% for most samples,
with the exception of two of the Costa Rica hot springs, where CHy4
concentrations are as high as ~80 vol%, suggesting contributions
from shallow crustal gases (Snyder et al., 2003). N, /CHy4 varies over
5 orders of magnitude, between ~1.2 x 10~1 to ~2.1 x 10%, but
remains uncorrelated with Asg values (Supplementary Fig. 1).

4.4. Nitrogen - noble gas ratios

We compute Ny/Ar, N2/3%Ar, No/He and N,/3He ratios, with a
+20% relative uncertainty on individual samples. Ny /Ar ratios are
between 21 and 120 for most samples, with one sample from Mo-
motombo at 507 (Fig. 4). For comparison, the air value is ~84,

air-saturated water (ASW) at STP is ~41, and MORB gases have
N, /Ar ratios of 55 + 5 (Javoy and Pineau, 1991), although a higher
estimate of ~120 + 40 (Marty and Dauphas, 2003) was derived
from MORB samples with unusually radiogenic 4°Ar/36Ar ratios
(data from Marty and Zimmermann, 1999). For samples where
40Ar/36Ar was measured, Np/36Ar ratios vary between 1.2 x 10*
and 4.2 x 10%. Assuming the 4°Ar/3®Ar is atmospheric as for other
Central American gas samples (Snyder et al, 2003), the Ny /36Ar
range extends to between 6.5 x 10° and 1.5 x 10° (Fig. 4). This
includes values below and above both air (2.5 x 10%) and air-
saturated water at STP (1.3 x 10%). The highest Ny /36Ar value re-
mains well below estimates of the convective mantle of ~2 x 108
(Labidi et al., 2020; Marty and Humbert, 1997) even for samples
where Asg is low.

The Ny/He ratios vary between 1.5 x 10 and 4.2 x 104, below
the value of air of 1.5 x 10° or air-saturated water ~3.0 x 10°
(Fig. 5). Similarly, Np/>He ratios vary between 1.6 x 107 and
1.1 x 10'! (Fig. 5), mostly below the value of air and ASW of
1.0 x 10" and ~2.0 x 10! respectively (Ballentine et al., 2002).
The Ny/He (and Ny/?He ratios) are correlated with Aszg values and
are described by two-component mixing hyperbolae between air
(or air-saturated waters) and high-temperature components with
elevated N/He (and N;/?He ratios) relative to MORB gases (Fig. 5).

4.5. Noble gas ratios

The 3He/?%Ne ratios range over 4 orders of magnitude, between
8.9 x 107% and 2.7 x 102 (Fig. 6). These values are between air,
at 4.5 x 1075, and upper-mantle gases at ~5.5 x 10' (Moreira
et al., 1998). The “He/2°Ne ratios are also ranging between air
and the upper-mantle value (Supplementary Figure 2). 3He/??Ne
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Table 2

Nitrogen and light noble gases isotope and concentrations for central American springs.
sample ID LH180406 PX180416 PS180405 BS180407 HA180403 CW180415 XF180416
spring name Los Pozos San Juan PraxAir  Playa Sandalo  Bajo Mended  Hatillo Cauhita San Juan PraxAir
latitude 8.870954 10.488755 8.575544 8.66645 9.360224 9.735746 10.485523
longitude —82.689901  —84.113598 —83.36416 —82.349098 —83.916639  —82.825737  —84.113229
temperature (°C) 55 29 31 41 33 35 29
quantity of processed N, 10~% mol 18.0 38.0 28.0 588.0 556.0 39.2 2.8
N> vol fraction (ucla) x1072 2.89E-02 6.10E-02 4.49E-02 9.44E-01 8.92E-01 6.29E-02 4.49E-03
81N vs. air -1.38 0.20 0.71 419 022 0.34 1.30
Asg vs. stochastic 1839 19.35 18.42 8.73 7.29 18.47 15.09
1se §°N 0.029 0.007 0.008 0.004 0.004 0.004 0.031
1 se Asp 0.825 0.22 0.24 0.168 0.077 0.097 0.617
CO, 0.997 0.944 0.082 0.031 0.054
He 1.47E-07 1.97E-06 1.90E-06 4.19E-04 1.04E-05
H, 9.07E-07 9.81E-08 1.51E-05 7.48E-05 1.62E-05
Ar 4.79E-05 3.52E-04 1.07E-03 6.90E-03 1.71E-03
0, 5.75E-04 1.19E-02 2.77E-03 3.12E-02 1.10E-02
N 2.04E-03 4.41E-02 5.03E-02 9.30E-01 9.92E-02
CHy4 9.62E-08 2.66E-06 8.64E-01 3.09E-04 8.34E-01
He/Ar 3.07E-03 5.60E-03 1.77E-03 2.57E-03 6.07E-02 6.09E-03 3.85E-02
Na/He 1.39E+04 2.23E+04 2.65E+04 4.23E+04 2.22E+03 9.56E+03 1.21E+03
Nz /Ar 4.27E+01 1.25E+02 4.69E+01 1.09E+02 1.35E+02 4.64E+01 4.64E+01
0,/N; 2.81E-01 2.69E-01 5.50E-02 3.36E-02 1.11E-01
N2 /CH4 2.12E+04 1.65E+04 5.82E-02 3.01E+03 1.19E-01
4He x107° cc/ccSTP  3.21E+01 1.12E+03 1.65E+02 2.23E+04 3.98E+05 4.40E+03 3.72E+03
20Ne x1079 cc/ccSTP  2.24E+00 6.81E+02 3.98E+02 1.58E+04 7.07E+03 6.15E+02 5.85E+01
40Ar %1076 cc/ccSTP  3.85E+00 3.95E+02 4.83E+02 8.67E+03 6.35E+03 7.49E+02 9.65E+01
36Ar x1079 cc/ccSTP  1.28E+01 1.29E+03 1.59E+03 2.67E+04 2.06E+04 2.43E+03 3.16E+02
40Ar38Ar 301 305 304 325 308 309 306
3He/*He (Ra) 748 6.52 1.55 0.27 1.82 2.05 7.59
20Ne/22Ne 10.00 9.82 9.84 9.85 9.87 9.91
21Ne/%2Ne 0.023 0.029 0.029 0.029 0.029 0.029
N3 /3He 1.33E+09 2.45E+09 1.22E+10 112E+11 8.72E+08 3.33E+09 1.14E+08
N2 /36Ar 1.29E+04 3.83E+04 1.43E+04 3.53E+04 4.17E+04 1.80E+04 1.42E+04
4He/[*°Ne 1.43E+01 1.65E+00 4.15E-01 1.41E+00 5.63E+01 7.15E+00 6.37E+01
3He/%2Ne 1.50E-03 1.48E-04 8.85E-06 5.34E-06 1.41E-03 2.02E-04 6.70E-03
X value 45 5 1 4 177 22 200
22Ne/*6Ar 6.49E-03 1.06E-01 1.32E-01 3.39E-02 5.00E-02
3He/?%Ar 9.70E-06 1.57E-05 117E-06 3.16E-07 4.78E-05 5.41E-06 1.25E-04
4He[*Ar 3.08E-03 5.62E-03 1.77E-03 2.50E-03 6.09E-02 6.11E-03

(and “He/?%Ne) ratios are correlated with Asq values (Fig. 6, Supp.
Fig. 2). At A3p = 0 the high-temperature component appears to
have He/Ne ratios lower than MORB gases by about four orders
of magnitude (Fig. 6, Supp. Fig. 2). The 3He/3®Ar ratio ranges be-
tween 1.6 x 107% and 1.7 x 10~ (Fig. 6). This is higher than the
air value of 2.5 x 10~7, but considerably lower than the upper-
mantle value of ~5.0 x 10~! (Moreira et al., 1998; Raquin et al.,
2008). A similar observation can be made of the “He/*°Ar ratio
(Supp. Fig. 2). The variations in 3He/?8Ar (and #He/4CAr) ratios are
correlated with A3 values and at A3p =0, the high-T component
shows 3He/36Ar ratios lower than MORB gases by about three or-
ders of magnitude (Fig. 6, Supp. Fig. 2). Most 22Ne/3SAr ratios in
fumaroles and springs range between 1.3 x 10! and 3.1 x 1073
(with one outlier at ~6.5 x 10~!, the Poas gas with the A3 value
closest to air). The higher values are similar to the air and MORB
values of 5.0 x 1072 and 1.0 x 10~!, respectively (Mukhopadhyay,
2012) and are observed for samples with air-like A3p values. At
A3z = 0, much lower 22Ne/3%Ar values are observed, lower than
both MORB and air by one to two orders of magnitude (Table 1
and 2).

5. Discussion

Our rationale is that correlations between Asg and various iso-
tope and element ratios can be used to identify and correct for
air components and reveal pristine high-temperature endmembers.
Air is identified with a A3p of 19.1 +0.3%0, while any N, produced

by a geologic process such as magmatic degassing has Asg ~ 0%o
(Labidi et al., 2020). Arguments against re-ordering and crustal
contamination are given in the supplementary discussion.

5.1. Atmospheric No may easily go unnoticed

CAVA gas Asg values are variable, indicating commensurately
variable contributions of air to the Ny budgets in hydrothermal dis-
charges. Based on A3 data, air accounts for 40 to 100% of the N,
in the springs. In fumaroles, air accounts for 8 to 90% of the N;. At-
mospheric Ny is therefore ubiquitous. Systematics involving §1°N,
[02], O2/N3, Na/He and Ny/Ar ratios may disentangle magmatic
N, from air-derived N, in gas discharges (Sano et al., 2001; Fis-
cher et al., 2002; Elkins et al., 2006). The rationale for all of those
approaches is that air has known §°N, 0;/N3, N /He and Ny /Ar ra-
tios, that are different from magmatic components. Our Asg data
present a series of challenges to these previous approaches. For
example, samples with high “He/?°Ne ratios were suggested to
illustrate a volatile budget largely uncontaminated by air, espe-
cially when a number of other criteria are met, e.g., 02/N, ratios
<1073, high outlet temperatures, or non-atmospheric Ny /Ar ratios
(Elkins et al., 2006). The Santa Ana volcano fumarole is vented at
400°C, a “He/?°Ne ~200 times higher than air and a 0,/N; ratio
of ~10~% (Table 1, Fig. 3), which would suggest minimal air con-
tamination. However, the near-air Azg of 15.5+0.3%c requires that
~80% of N, is from air in this sample, showing that high “He/2°Ne,
even in conjunction with high vent temperature and low 03/Ny, is
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Fig. 4. Measured Ny/Ar and N,/36Ar ratios versus Asg values. Mixing lines are
shown for mixtures between the high-temperature component observed at both
Momotombo and Pods, and variably fractionated atmospheric components, includ-
ing air, air-saturated water (ASW), and degassed water. The high-temperature end-
members with Asp = 0%o defined by the data from Momotombo and Poas have
similar Ny/Ar and N/3Ar ratios of ~100 and ~10%, respectively. Here, we adopt
values of ~100 and 3 x 104 for Ny /Ar and Ny /3®Ar ratios for the high-T endmem-
ber at Momotombo. Nitrogen and argon have indistinguishable solubilities in silicate
melts and thus are not fractionated by magmatic degassing at ~1200°C (Libourel
et al., 2003). Thus, the low N;/>6Ar at Momotombo is not resulting from fraction-
ations during magmatic degassing. Instead, it may be a feature of the Momotombo
mantle source. At Pods, fumarole samples are consistent with the same N3/Ar ratio
for the high-temperature component as at Momotombo. If hydrothermal degassing
affected the high-T volatiles at Pods, the pristine Na/Ar and Ny />6Ar for high-T gases
at Poas could be higher than the observed values. Note that combining a 3He/?6Ar
ratio of ~10~* (see Fig. 6B) to the observed N;/>He of ~10% (Fig. 4) returns to a
N3 /?6Ar of ~104, consistent with the conclusion of a low N3 /Ar in our sampling of
high-temperature endmembers (see section 5.4).

not necessarily sufficient evidence that N; is dominantly magmatic
(See supplementary discussion).

5.2. Atmospheric N, undergoes isotopic fractionation in hydrothermal
systems

Nitrogen isotope ratios could be a direct tracer of atmospheric
Ny, since air and magma-derived nitrogen are thought to have
distinct §'°N values (Fischer et al., 2002; Sano et al,, 2001). The
A3o data confirm the veracity of this approach for most, but
not all, samples. Gases (except those from Podas) fall on a single
two-component mixing trend between air and a high-temperature
component with near-zero Asp and 8°N of ~5% (Fig. 2). For
those, the air component appears unfractionated with respect to
815N. When mixed with high-temperature volatiles, §'>N increases
and As3g values decrease (Fig. 2).

Earth and Planetary Science Letters 571 (2021) 117112

20

[ . Momotombo

[ @ Poas

H @ santa Ana

L © springs - no crust

°
§ 10 OSprings-with crust
=3
@
<

5
MORB CAVA volatiles
0 : ; ; ‘ ‘
100 10 102 103 104 10° 10¢
N2/He
20
15 |

A3o (%0)
)

CAVA volatiles

108 107 108 10° 10 1om 101

N2/3He

Fig. 5. Measured Ny/He and N,/3He ratios versus Asg values. Mixing lines are
shown for mixtures between air and three high-temperature components: MORBs,
and two variably N,-enriched endmembers required to fit the data. Springs with
additions of crustal “He are shown in the smallest symbols. They are not used for
fluxes calculations - see discussion in the supplementary discussion.

Samples from Podas are different. They form a unique linear
mixing trend where both air-derived and high-temperature N, are
distinct from elsewhere in the arc system, with §'°N endmember
values of —4.0 + 0.3%0 and +1.0 4 0.3% for air and the high-T
component, respectively (Fig. 2). This represents a ~4%. shift for
both endmembers compared to values observed elsewhere on the
arc. Our observation creates ambiguities at Poas, since there, and
there only: (1) high-temperature §'°N is only marginally higher
than air; and (2) air-derived N, has a §'°N very similar to the
MORB value of —5 4=2%o (Javoy and Pineau, 1991; Marty and Zim-
mermann, 1999).

The data from Poas require that atmospheric N, experienced
a ~4% mass-dependent °N/14N fractionation in the sub-surface.
This may result from the degassing of once air-saturated waters.
The isotopic fractionation associated with Ny dissolved in water
was experimentally documented to be +0.9 to —0.4%o from 6 to
60°C (Lee et al., 2015). The dissolved-gas isotope fractionation was
shown to cross over at about 40°C, from a positive to a negative
sign (Lee et al.,, 2015). Above 40 °C, the isotopic difference between
dissolved and gaseous N increases: isotopically light N5 is increas-
ingly partitioned in the dissolved fraction as temperature increases.
This behavior indicates that a kinetic isotope effect attends N, dis-
solution/degassing in geothermal waters (Lee et al.,, 2015). Using
the experimental results of Lee et al. (2015), we calculate the con-
sequences of N isotope fractionation during open-system degassing
using Rayleigh fractionation. At 60°C, with a gas/dissolved-gas
I5N/14N fractionation factor of 1.0004, the lowest §1°N values of
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Fig. 6. Measured 3He/?2Ne and 3He/3®Ar ratios versus Asg values. Springs with ad-
ditions of crustal “He are shown in the smallest symbols. They are not used for
fluxes calculations - see discussion in the supplementary discussion. Mixing lines
are the same as in Fig. 3 and 4. They are shown for mixtures between air and high-
temperature components: MORB, and a N,-36Ar-22Ne enriched endmember that fits
the data. The mixing relationships are curved because of the logarithm scale, but
also because of how distinct the N, /Ne of the mixing endmembers may be. Air has
a Ny /%0Ne ratio of air is 4.5 x 10%. We calculate a N3/2°Ne of 1.3 x 106, This is
based on a Ny/3He of 3 x 108 for the MORB mantle (Javoy and Pineau, 1991). We
combine this Ny/3He estimate with 3He/*He and “He/2°Ne values for the MORB
mantle from Moreira et al. (1998). Using the 3He/?2Ne ratio of the MORB mantle
(Moreira et al., 1998), we derive a N»/22Ne of 1.7 x 107. Conversely, we here derive
N3/3He, 3He/?2Ne ratios of the central American high-temperature volatiles. Com-
bining those with 3He/*He of ~7 from Fig. 3, we derive N,/2°Ne and N;/22Ne ratios
of 3.4 x 10° and 3.3 x 10%, respectively. On panel b, the curvatures are function the
N3 /Ar of the mixing endmembers, which are estimated on Fig. 4.

~—3.5%0¢ with air-like A3 require that the N, sampled by the fu-
maroles is the residuum left over after degassing of about 99.98%
of the dissolved nitrogen. Extrapolating the temperature depen-
dence of the fractionation factor to 100°C, 97% degassing of Ny
is required to account for a §1°N of ~—3.5%.

We envision the hydrothermal degassing to be the natural con-
sequence of hydrothermal systems experiencing continuous de-
gassing in the absence of continuous meteoric (air-saturated) wa-
ter recharge. It is puzzling however that among the sites we sam-
pled, air nitrogen undergoes isotopic fractionation only at Poas. In
order to explain this observation, we suggest a restricted set of
conditions is met in the Pods subsurface, but not elsewhere. Gases
from Momotombo and Santa Ana are vented at temperatures be-
tween 747°C and 400°C, respectively. No liquid water remains
stable at those temperatures. Thus, isotope partitioning between
water and gas is not occurring, and N; remains unfractionated.
Spring gases are vented at temperatures between 29°C and 59°C
(Table 2), at temperatures where degassing is probably limited. In
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contrast, at Pods, the fumaroles are vented at ~100-150 °C (Fischer
et al., 2015). At these temperatures, liquid and gaseous water are
stable and water/gas partitioning can occur. These conditions are
comparable to those observed for hydrothermal gases from Iceland
or Yellowstone, where negative §'>N values were previously ob-
served in conjunction with air like Asg values (Labidi et al., 2020).
Our conclusion is also consistent with the observation of sporadi-
cally negative 81N (with no available A3y data) in Poas fumaroles
sampled in 2001. Values as low as ~—3.0%c were observed in fu-
marole vented at temperature between 76 and 108 °C (Fischer et
al., 2002). In other fumaroles (89-101°C) sampled between 1998
and 2001, while unfractionated air-like §'°N and N,/Ar values
were reported (Vaselli et al., 2003). More work is warranted to fol-
low the potential A3q_8'°N evolution of a given fumarole through
time, but in the interim, we suggest caution in interpreting §'°N
data at Pods in the absence of Asg.

5.3. Is high-temperature nitrogen also fractionated?

Whether high-temperature components with Aszg ~ 0%o also
experience §'°N isotope fractionation in hydrothermal systems
is an open question. At Momotombo, fumaroles have a high-
temperature endmember with §'°N ~+45%c (Fig. 2). There, vent
temperatures are >700°C. This precludes liquid water to exist
even at depths, ruling out the possibility of any water/gas isotope
exchange. This is consistent with a previous observation of un-
fractionated §'°N for fumaroles when they are vented at >300°C
(Fischer et al., 2005). At Poas however, the interpretation is not
as straightforward, where the high-temperature endmember has a
815N ~+1%o (Fig. 2), which is lower than at Momotombo by ~4Y%y,
implying that a fractionation similar to that for the air component
could have occurred. It is conceivable that high-T volatiles have
been delivered to the water table prior to hydrothermal degassing,
where they would experience '>N/14N fractionation together with
the air-derived gases. In this interpretation, the high-T §'°N value
of ~+1%o obtained by extrapolation to A3y =0 would not record
the actual magmatic §'°N value at Poas, and the Poas trend would
be parallel to the main array as the result of a fractionation equally
affecting both the atmospheric and high-T volatiles. However, with
our dataset alone, we cannot exclude that high-T volatiles had been
delivered to the fumaroles after hydrothermal degassing. If so, the
Poas high-T endmember could be truly unique in §!°N, and the
Poés trend being parallel to the main array (Fig. 2) would be fortu-
itous. This latter scenario relies on a coincidence, and thus appears
unlikely, although it cannot be fully ruled out.

5.4. N,/Ar ratios place independent constraints on hydrothermal
degassing

The solubilities of argon and nitrogen are distinct by about a
factor of 2 in geothermal waters at temperatures between 20 and
100 °C (Ballentine et al., 2002). Thus, water/gas processes may be
tracked with Ny/Ar ratios, independently of nitrogen isotopes. Low
Ny /Ar ratios for air-like As3p values are observed at Pods, while
most other samples have near-air values for Ny/Ar at air-like Asg
(Fig. 4), confirming that at Pods liquid-gas partitioning occurred in
the sub-surface. We can again use a Rayleigh fractionation calcu-
lation to infer the amount of degassing implied by the N;/Ar ratio
data, where

N /Ar = (N2/Ar)o f*~! (1)

and

o = (Kn, /Kar), (2)



J. Labidi, E.D. Young, T.P. Fischer et al.

where f is the fraction of remaining Ar in the water, (N, /Ar)y the
known starting composition of ASW, and « is the fractionation co-
efficient given for a gas/liquid system given by Equation (2), and
K; is the Henry’s-law constant for species i, as compiled in Ballen-
tine et al. (2002). Taking (N/Ar)g to be 41, we find that the lowest
N> /Ar value of ~10 implied by our data occurs for about 94% de-
gassing of Ny (75% degassing of Ar) prior to sampling (Fig. 4). To
first order, this degree of degassing is consistent with estimates
made on the basis of >N/14N values (section 5.2).

There is a caveat to this interpretation. Data for >N and N;/Ar
appear consistent with fractionation within hydrothermal systems,
but no direct correlation is observed between §'°’N and Nj/Ar
(Table 1). This is perhaps because degassing may yield variable
ISN/1¥N and Ny/Ar fractionations depending on the exact tem-
perature and pressure conditions (Lee et al, 2015; Warr et al,,
2015). Under conditions making the gas behavior non-ideal, de-
gassing may change the N,-Ar solubility relationship, as suggested
for heavier noble gases (Labidi et al, 2020; Warr et al., 2015).
Additionally, small contributions of high-temperature volatiles are
likely to cause shifts in >N with no obvious increases in Ny/Ar
ratios (Fig. 4). This is because high-temperature endmembers with
A3g = 0% appear to have Ny/Ar and N/3%Ar ratios of ~100 and
~10%, respectively (Fig. 4). These values are essentially similar to
air, consistent with pioneer work on the CAVA (Hilton et al., 2002;
Snyder et al., 2003), but remain lower than volcanic endmem-
bers at other arcs (Taran, 2009; Zelenski and Taran, 2011). We
note that one of the Momotombo fumaroles has a high Nj/Ar of
~500, higher than other high-temperature gases by a factor of 5.
The significance of variable N;/Ar ratios in Central American high-
temperature endmembers must be systematically investigated in
future work, with A3 data.

5.5. 813N-N,/He relationships constrained by Asq data

In contrast to argon, the solubility of helium in geothermal
waters is nearly indistinguishable from that of nitrogen in the
relevant temperature range (Ballentine et al., 2002). Data can be
accounted for by mixing between air and an endmember with
N3 /?He ratios ~108 (Fig. 5). This is higher than MORB gases that
are characterized by N;/>He ratios of about 108 (Javoy and Pineau,
1991; Marty and Zimmermann, 1999). The Pods fumaroles involve
a mixing scenario that is similar to the one for Momotombo, in-
volving high-T endmembers with a Ny/3He of ~108 (Fig. 5). This
observation argues against a significant contribution of MORB de-
rived volatiles to Poas volcanic gas discharges. Overall light §'°N
values from Pods were previously suggested to reflect a contribu-
tion from MORB-derived volatiles, contrary to the majority of other
CAVA gas discharges that showed predominantly slab-derived N
(Fischer et al., 2002; Elkins et al., 2006). Our new A3g data suggest
a revision to the interpretation of >N depletions and show that
they rather reflect contributions of fractionated air (Fig. 2) mixed
with a predominantly non-MORB magmatic component with ele-
vated N;/He ratios (Fig. 5).

5.6. Magmatic endmembers throughout the arc are enriched in N,

In an attempt to characterize subduction volatiles, we con-
strain the high-temperature endmembers for nitrogen isotopes
and Nj/Ar, Ny/He, He/Ne and He/Ar ratios. Endmember compo-
sitions are calculated assuming two-component mixing with air
constrained by Asg values, as described above. We focus on fuma-
role data to constrain endmember compositions, since they show
the lowest Aszg and no evidence of crustal contamination (see sup-
plementary discussion).

The derived Ny/He ratios are higher than MORB by two or-
ders of magnitude. In contrast, He/Ne, He/Ar and Ny /36Ar are all
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lower than MORB by two to three orders of magnitude (Fig. 4-6).
The simplest explanation is that slab-derived N, Ne and Ar were
added to a depleted mantle source with an unmodified helium sig-
nature (Fig. 7). A straightforward quantification of slab-derived Ny,
Ar and Ne to the mantle wedge is possible using N,/>He, 3He/>2Ne
and 3He/3SAr ratios. This approach is viable if 3He subduction
is negligible (Staudacher and Allegre, 1988), notwithstanding that
slab components are required to contribute minute “He ingrowth
from subducted uranium (Hilton et al., 2002).

The high-T, arc magma endmembers at Pods and Momotombo
have Ny/?He ratios two orders of magnitude higher than MORB,
requiring nitrogen addition to mantle sources in these arc sys-
tems. Sedimentary nitrogen may be a straightforward contributor
to the Momotombo source, explaining the high §'°N of + 5%
there (Fig. 7). Sediments on the modern oceanic crust directly off-
shore of Central America are likely candidates, since they have an
average 81°N of ~5%y (Li and Bebout, 2005). Poas volcano is more
complicated, because the lower §!°N (Fig. 2) may not be a genuine
representation of the Pods mantle source. We note that because
N,/3He are indistinguishable between Pois and Momotombo, they
must have received a comparable amount of slab-derived N.

Sub-arc magmatic endmembers have lower 3He/?’Ne and
3He/36Ar ratios by 2 to 3 orders of magnitude compared to those
of MORBs. Like nitrogen, this likely requires substantial addition
of slab-derived neon and argon to a mantle source. Samples with
near-zero Asg have 22Ne/3®Ar lower than both MORB and air by
one to two orders of magnitude (Table 1), with values trending
toward ~0.7 x 10~2. This is similar to the median ratio of an en-
tire section of altered oceanic crust and sediments of ~1 x 102
(Chavrit et al, 2016). The similarity in 22Ne/3®Ar between the
magmatic endmembers at CAVA and the slab is consistent with a
mantle wedge being overwhelmed by the addition of slab-derived
neon and argon. Samples with near-zero Aszgp also have atmo-
spheric 4°Ar/36Ar values (Table 1), indicating that Ar from the
mantle wedge has retained the noble gas isotopic signature of
its subducted atmospheric source. This is likely explained by the
contribution of surface-derived argon with atmospheric 4°Ar/36Ar
ratios to the mantle wedge. This sheds new light on atmospheric
40Ar/3%Ar observed systematically in all known Central American
fumaroles (Snyder et al., 2003) and essentially all gas discharges
sampled to date from subduction zones (Hilton et al., 2002; Sano
and Fischer, 2013): A likely origin for the atmospheric Ar in high-T
endmembers is devolatilizing subducted protoliths that are other-
wise known to have atmospheric Ar isotopic signatures (Chavrit
et al,, 2016; Holland and Ballentine, 2006; Staudacher and Allé-
gre, 1988). Our high-T data shows that not all of the subducted
air-derived Ar is transferred into the deeper mantle and that some
of it is released via arc volcanism. Our data also dispels the notion
that atmospheric Ar-isotope signatures of arc-gases are exclusively
the result of shallow atmospheric contamination in the hydrother-
mal system.

5.7. Revisiting volatile fluxes in the central American subduction zone

The perspective that volatiles from the mantle wedge incorpo-
rate recycled argon is problematic, as it limits the use of nitrogen
excesses, N3, calculated on the basis of Ny/Ar ratios (Fischer et al.,,
2002; Hilton et al., 2002). We show here that magmatic volatiles
deliver measurable amounts of argon (with atmospheric 4°Ar/3Ar)
to the fumaroles. Consequently, assumptions on Nj may naturally
underestimate the outgassing flux of N;. Estimates for the fluxes of
N3, Ar, and Ne can be obtained from 3He degassing fluxes. Using
a combination of S/CO,, He/CO, and 3He/*He ratios, and an SO,
flux of 21.3 x 10° mol/yr, Hilton et al. (2002) derived a 3He flux of
5.4 mol/yr for the entire CAVA. Using the CAVA CO; flux from Fis-
cher et al. (2002) of 94 x 10° mol/yr, and a CO,/3He ratio of 21010
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Fig. 7. Cartoon representing various processes and reservoirs constrained in this study. Scales are grossly exaggerated, especially for melt conduits and magma chambers.
A slab with sediments, basalts, and oceanic lithospheric mantle is shown to enter subduction. The slab composition is not constrained here but is likely enriched in all
volatiles relative to 3He (Busigny et al., 2019; Chavrit et al., 2016). In the slab, nitrogen is fixed as NH;r (Busigny et al., 2019 and references therein) so no Asg values are
defined; Asg is only relevant for N, molecules. Both slab devolatilization and slab melting are shown for illustration. Any slab melting would be relevant underneath Costa
Rica (Hoernle et al., 2008) while slab devolatilization and sediment-derived fluids would contribute to sources underneath Nicaragua and El Salvador (Patino et al., 2000).
The melting region is characterized as the high-temperature endmembers constrained in this work (Fig. 7). Melts and super-critical fluids are suggested to host dissolved
N, (Libourel et al., 2003; Mikhail and Sverjensky, 2014). Upon partial melting of a NHs-bearing mantle source, magmatic N, would form with a Asg of 0%o. The high-T N;
is then contributed to hydrothermal systems in the sub-surface by near-quantitative magmatic degassing. Air circulation in the sub-surface allows air-saturated waters to

undergo degassing, and subsequent gas release with fractionated compositions.

(Kagoshima et al., 2015), we obtain a 3He flux 4.7 mol/yr. Here,
we take a 3He flux of 5.0 mol/yr for the sake of illustration. We
combine our new elemental ratios estimates for the CAVA source
(Fig. 4-6) with 3He fluxes to derive new estimates for Np, 36Ar,
and 22Ne outgassing fluxes in the central American arc.

We derive N/>He ratios between 8 x 107 and 2 x 108 for
magmatic volatiles in Central America (Fig. 5), from samples with
A3zg < 5%. This results in a Ny flux between 4.0 x 10 and
1.0 x 10° mol NyJy (or 1.1 x 10'° and 2.8 x 1019 g N/y). This
range for the nitrogen mass flux is higher than previous estimates
of 8.2 x 10° g Njy (Fischer et al., 2002; Hilton et al., 2002). Our
derived range of nitrogen fluxes overlaps the estimated flux of
subducting nitrogen of 1.6 x 101° g NJy (1.1 x 10° mol N/y, or
5.7 x 108 mol Ny/yr), given with no uncertainty in Busigny et al.
(2019) and Li and Bebout (2005). This suggests that in the Central
American subduction zone, the Ny cycle is not required to be out
of equilibrium. Instead, the revisited fluxes being identical within
uncertainty, they allow N to be quantitatively recycled through
the mantle wedge and returned to the surface by degassing rather
than being delivered to the deep mantle. An additional source of
outgassing underestimation, here, is that we ignore forearc de-
volatilization for Ny, known to occur in the CAVA (Inguaggiato et
al., 2004). Future work will be necessary to constrain this fraction

of the Ny flux that will inevitably increase the outgassing flux fur-
ther. In any case, our newly defined N, outgassing fluxes are high,
and in the range of subducting fluxes. Because this subduction
zone is relatively “warm” and therefore more similar to subduction
zones in the past over geological timescales (Keller and Schoene,
2018; Martin and Moyen, 2002), the finding that nitrogen is re-
cycled by subduction and arc magmatism in the Central American
system suggests that nitrogen subduction could have been ineffi-
cient through geological time. This conclusion is also in agreement
with recent experimental work suggesting warm subduction zones
limit nitrogen recycling in the deep mantle (Jackson et al., 2021).
We estimate the 3He/3®Ar of magmatic inputs to be ~10~*
(Fig. 6). A 3He/30Ar ratio of ~1074 leads to a degassing 3Ar flux
of ~5.0 x 10% mol/y (1.8 x 108 g 36Ar/y) in Central America. Using
1.4 x 10'® g of subducted crust, depths of ~6 km of oceanic crust
and ~500 m of sediments, and the noble gases abundances in the
oceanic crust (Chavrit et al, 2016), we derive a 3®Ar subduction
flux of 1.1 x 108 cm® STPJy, or 4.5 x 10* mol 3®Ar/y. Because of
the large uncertainties in 36Ar concentrations in rocks (Chavrit et
al., 2016), this subduction flux estimate is probably associated with
a ~50% uncertainty, and is presented here for illustration only. We
note however that subduction and outgassing 36Ar flux compare
favorably. Like nitrogen, our flux analysis seems to allow quantita-
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tive release of slab-derived 3®Ar to the mantle wedge, which would
not require substantial 36Ar recycling into the deep mantle in this
subduction zone. The same conclusion holds for neon. Using a
3He/%2Ne of ~2 x 102 (Fig. 6), we obtain a 22Ne degassing flux of
~2.5%10% mol/y (5.5x 10 g 22Ne/y). The 22Ne/36Ar of subducting
components is largely variable, around a mode of ~10~2 (Chavrit
et al., 2016). This yields a 22Ne subduction flux of 1.1 x 10 cm?
STPJy, or 4.5 x 10> mol 2?Nefy. Again, although large uncertain-
ties must be taken into consideration, the neon subduction and
degassing fluxes appear equivalent, arguing in favor of quantita-
tive 22Ne recycling in the central American subduction zone back
to the surface.

The simplest interpretation of the fluxes derived here is that
the Central American subduction zone acts as a subduction barrier
for N, Ar, and Ne: volcanic fluxes for Ny, Ar, and Ne, determined
with the >N'>N approach, no longer require subduction of these
elements past the sub-arc melting region in the central American
subduction zone.

6. Conclusion

Gas discharges in Central America are volatile mixtures involv-
ing contributions from at least three endmembers: air (+fraction-
ated air), crust, and mantle-derived components. Using Asp as a
tracer of nitrogen from air in fumaroles and springs, we show that
03/N; ratios are unreliable tracers of air in these systems. We also
show that §'°N and N,/Ar ratios experienced fractionation during
water degassing at depth, rendering these unreliable as signatures
of air where liquid water is thermodynamically stable. This is prob-
lematic since the degassing fractionation may lead to §'°N values
that insidiously mimic MORB gases. This does not seem to affect
magmatic components, but more work is needed on Pois - where
interaction with the hydrothermal system may be significant, be-
fore a firm conclusion can be reached. A preliminary conclusion is
that without Aszg data, the §'>N-N,-Ar systematics may be decep-
tive, and can lead to confusion with regard to the origin of Ny in
mixed gases.

We derive estimates of N, /He, He/Ar and He/Ne ratios that reli-
ably exclude atmospheric components. N, Ar and Ne enrichments
by two or three orders of magnitude compared to a MORB source
are observed. They are attributed to mantle wedge sources incor-
porating slab-derived gases. Using known 3He degassing fluxes, we
calculated N3, Ne and Ar degassing fluxes for the Central American
arc that could balance subduction fluxes, within uncertainties, no
longer requiring the Central American arc to have heavily imbal-
anced volatile cycles.
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