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Abstract—Biometric authentication is becoming popular in a
varied range of applications because of its unique specificity for
an individual user. In this context, electro-encephalogram (EEG)
signals from a user is an interesting candidate for authentication.
In this work, we specifically focus on the EEG signal correspond-
ing to the human eye-blink to create an authentication system that
could be used to distinguish between multiple users accurately
and efficiently while also being burden-less and convenient to the
users. We use a dataset of eye-blink related EEG signals, collected
from 20 users, to study our solution. Our results show that blink
signals can be used for accurately distinguishing between different
users and hence can be used for authentication.

Index Terms—EEG, blink, authentication, biometric

I. INTRODUCTION

Biometric authentication has fast evolved to be the default

authentication mechanism on smartphones and other mobile

devices. Apple’s reported statistics show that 89% of its users

have a Touch ID enabled smartphone use the Touch ID [1].

There are distinct advantages to using biometrics, including

the fact that biometrics are much harder to manipulate and that

the burden on the user is very light unlike in password-only

authentication where the user is expected to remember long

and obfuscated passwords. With users facing an authentication

challenge dozens of times in a single day ( [1]), there is a

distinct need for an approach that is both lightweight in terms

of user burden and strong in terms of secureness. There are two

types of attacks that authentication challenges protect against.

The first is against a casual attack, where someone randomly

picks up the mobile device and tries to use the device. Current

biometric authentication approaches like Touch ID and Face

ID are reasonably secure against such casual attacks. However,

existing approaches have a bigger vulnerability to targeted

attacks. In theory, an attacker can rely on a high-resolution

photograph of the user’s fingerprint to compromise Touch ID

in a matter of minutes [2], [3]. While Face ID is a much newer

biometric authentication mechanism, there already have been

successful attempts to compromise certain aspects of it [4]. One

of the drawbacks of such morphological biometric solutions

is that the biometric template used for the authentication is

static and hence any means to get access to that template

is sufficient to compromise the authentication process. Thus,

there is considerable motivation to continue to develop newer

and safer biometric authentication solutions. There are other

biometric solutions such as those that rely on the user’s voice

[5] where the authentication challenge can be a randomized

prompt thus making it difficult to compromise. However, voice

biometric solutions have some obvious limitations such as the

voice of the user changing because of a cold, etc. [6]. Another

class of biometrics is one that relies on physiological data

of the user rather than simply morphological data. Extreme

examples of physiological data include DNA or saliva com-

position. While these are more robust in terms of secureness,

they have a high cost of implementation both during initial

setup, and for every authentication verification. In this paper,

we consider a more accessible physiological data for a user

– the user’s electroencephalogram (EEG) data for a specific

action – blinking. With EEG growing to be a bonafide and

easy to use [7] input modality in several applications such as

communication [8], lifestyle [9], wellness [10], RL [11] and

the consequent wider availability of EEG headsets off-the-shelf,

access to a user’s EEG data is easier than it has ever been. At

the same time, it is shown that blinks are actions for which the

EEG signals are strongly identifiable [12].

Thus, the key question we answer in this paper is the

following: Can the user’s EEG signals, captured when the user

blinks, be used as accurate and secure biometric authentication

data? We answer this question by relying on a dataset of

EEG signals collected through controlled experiments [12]

with twenty users where the users are prompted to blink,

and the corresponding EEG signals are captured through a

commercial On-The-Shelf (OTS) EEG headset. We show that

a naive approach that relies only on simple features of the

blink signal is not accurate enough. We then present a set of

systematic strategies to improve the features and show that it is

indeed possible to devise an effective authentication solution

that relies on a user’s EEG signals captured when the user

is blinking. We use the dataset to evaluate the algorithm, and

show that the solution has an accuracy of about 92%. The rest

of the paper is organized as follows:

In section II, we briefly cover our motivation behind using

EEG and blink signals and provide a mathematical definition

of the problem. In section III, we describe the data collection

methodology and explain the eye-blink anatomy on EEG. In

section IV, we discuss our methodology in detail and evaluate1

2 the system along with comparing it against related works. In

section V, we summarize the related work in this domain, and

finally conclude in section VI.

1Code: https://github.com/EkanshGupta/blink auth
2Data: http://gnan.ece.gatech.edu/eeg-eyeblinks/
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II. BACKGROUND AND PROBLEM DEFINITION

A. Biometric approaches

Biometric authentication is based on the physiological or

behavioral characteristics of an individual and is more secure,

and harder to fake over traditional authentication approaches

like passwords or smart-cards. Today, facial recognition, voice

recognition, fingerprints, and iris tracking are widely used and

popular authentication technologies. In these methods, a unique

template of the user biometric is stored locally on a device (e.g.,

the mathematical representation of a fingerprint measurement),

and is compared against the measurement obtained when

someone is attempting to unlock the device. If they are found

to be nearly identical, device access is granted to the user.

B. EEG and Blinks

Despite the promise and ubiquity of popular biometric ap-

proaches (particularly fingerprint and face recognition), these

systems are shown to be vulnerable. Face recognition based

authentication systems can easily be falsified using artificially

printed 3D masks [13], [14]. Fingerprint systems are prone to

security leaks based on artificial or gummy fingerprints [15].

Given the exposure of these traits (i.e., face pictures, touch

prints) to the external world, it is easy to forge and steal the

biometric traits of an individual user, e.g., face from social

media pictures, and fingerprint from the objects that a user

touches. These vulnerabilities motivate the design of a novel

biometric authentication system which is unique for the users,

and also much harder to clone or fake.

EEG (Electroencephalography) is the measurement of the

electrical activity of the brain, captured from the outer surface

of the scalp using metal electrodes. Inside the human brain,

billions of neurons communicate with each other through

electrical impulses, resulting in the residual EEG on the scalp.

This neuronal firing pattern captured through EEG is known

to be unique [16], and can be used as novel information

for biometric-based authentication. Individual differences in

human eye-blinking patterns are studied in terms of rate,

patterns, frequency, strength, etc [17], [18]. Eye-blink wave-

forms on EEG present a very high variability across users

[12]. The anecdotal evidence is obtained for the feasibility of

developing an eye-blink based authentication system [19]. This

modality holds the promise of providing a fast and user-friendly

experience to identify and authenticate the users.

C. Discussions on limitations of EEG

One of the major challenges of using EEG as an authentica-

tion mechanism is the stability of these signals. Physiological or

psychological states can have a significant impact on the EEG.

EEG signals in states such as fatigue, feeling angry or upset,

may not match the unique EEG template of the user, created

while training, and hence would reduce the True Positive

Rate (TPR) of the system, essentially restricting the user to

access their device. It demands and motivates the research in

understanding the variability of EEG under different mental

states, and enabling the authentication systems with robustness

against such physiological and psychological states.

Another limitation is that the system requires the user to

wear an EEG wearable headset. Today, biometric sensors are

embedded in mobile and computing devices, enabling secure

authentication without any external hardware requirements.

However, in recent years, these devices have become commer-

cially relevant for day-to-day applications, including education,

gaming, self-regulation and entertainment. It is expected that in

a decade time-frame, EEG wearables are going to be ubiquitous

and will augment the current communication devices.

D. Problem definition and key assumptions

In this work, we consider N users, u1, u2, · · · , uN . Our goal

is to develop a system S, such that the local copy of S on ith

user device, i.e., Si, gives access to only blinks of user ui

and restricts all other users to access the device through their

blinks. Hence, for an ideal authentication system design S, the

below should hold,

Si(ui) = 1, ∀i ∈ [1, N ]

Si(uj) = 0, ∀i, j ∈ [1, N ], i �= j

In our work, we make the following assumptions while a

user is trying to authenticate the system with blinks:

• We assume that the electrode-cap placement for each user

is consistent across trials.

• We also assume the consistency of the physiological and

psychological state of the user. E.g., the user is not

involved in mental-strenuous tasks or is not physically

moving her head or facial muscles.

III. DATA COLLECTION METHODOLOGY AND DATASET

To study and characterize the individual differences of blink

patterns of users, we have used the EEG-IO dataset collected

in our previous work [12]. In EEG-IO, a total of 20 subjects

were recruited in the age range of 22 to 30 years old following

the approval of the Institutional Review Board (IRB). Subjects

were asked to sit in front of a computer screen and wear

an electrode-cap (BIOPAC CAP100C was used). We used the

electrode gel to establish contact between Fp1, Fp2 electrodes

with the scalp. Two additional ear electrodes were used to serve

as a reference and noise removal. The electrode cap was further

attached to the OpenBCI board [20], sampling the raw EEG

signals at 250Hz. The OpenBCI device transmitted the sampled

EEG to a computer device over the wireless channel.

Subjects were asked to perform a single eye-blink when

presented with a green-cross on the screen. A total of 25 such

external stimulations were presented for each subject every

3-4s (depending on the subject’s preference). We used the

Blink algorithm to extract the eye-blink signatures from the

continuous EEG signal [12].

Eye-Blink profile on EEG: The act of eye-blinking distorts the

electric field around the eyes (due to opposite polarities of the

cornea and the retina), and interferes with the EEG signals on

the frontal electrodes (mainly Fp1 and Fp2 according to a 10-

20 electrode system). This results in a trough-shaped pattern

on the EEG captured from the frontal electrodes. The shape
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Figure 1: Eye-Blink EEG profile

(a) blink 1 (b) blink 2

Figure 2: Noisy and inconsistent blinks

of a typical blink signal waveform is shown in Fig. 1 (Signal

baseline corrected to zero-level). The manifestation of an eye-

blink on EEG is highly asymmetric in time and can be divided

into closing and opening of eyes. The blink slope is directly

correlated with the velocity of eye-lid movements while closing

or opening the eyes. The strength of the eye-blink is reflected

as the amplitude of the signal. Blink duration is the total time

taken by the human during the blinking process.

IV. BLINK BASED AUTHENTICATION

In this section, we explore the variations of the physiological

behavior of the users while the user is performing an eye-

blink and its manifestation on the blink profile on EEG. We

explore such variations with the goal of handcrafting features

that can help us distinguish between users based on their eye-

blink patterns.

A. Pre-processing

We relied on the Blink algorithm in [12] to extract the

eye-blink signatures from the continuous EEG dataset which

learns the blink template in an unsupervised manner. We

removed the high-frequency components from the EEG blink

data by passing it through a low-pass filter. All the frequency

components above 10 Hz were discarded. We also manually

reviewed the blink patterns of users and removed the data

for four users from any further evaluations. These users had

very noisy and distorted blink waveforms (as shown in Fig. 2),

which could be due to a lot of movement during the experiment,

or improper placement of the electrode cap.

B. Naive features

[21] performed blink-based authentication with an accuracy

of 97.3% on their collected dataset. However, we could not

access the dataset collected by the authors. Hence, we used

the features described in [21] on our dataset and used them

to classify the 16 users based on their eye-blink signals.

(a) Features with means (b) Features with variances

(c) Features with peak, length and area (d) Features with 3 FFT bins

Figure 3: Feature separation based on features

Specifically, we consider the mean, variance, slope, energy,

area, amplitude and duration of the signal.

We implemented the problem in the form of a multi-class

classification. A Support-Vector Machine (SVM) with a Radial

Basis Function (RBF) kernel was used as the classifier to train

this multi-class data. Each of the 16 users contributed about

50 blinks (taken from 2 channels for approximately 25 blinks

each) taking the total number of blinks to 800. 80% of each

user’s blinks were used for training the multi-class classifier

and the remaining 20% of each user’s blinks were used for

testing. The training data was then passed through a Principal

Component Analysis (PCA) block to extract a combined set of

features that would retain 90% of the total variance of all the

features. This classification (averaged over 5 different trials)

performed with a mean True Positive Rate (TPR) of 53% with

the minimum average accuracy for a user going as low as 27%.

This can be explained by the distribution of the blink data

with respect to these features. Fig. 3 (a),(b),(c) shows that the

extracted features are non-separable for users when we consider

(a) mean, (b) variance, and (c) peak, duration and area, as the

features. Here, each colored cluster of points represents blink

signals from a specific user.

We also extended the blink signal into its left and right neigh-

borhoods to gauge if user-separability can be achieved with

features extracted from the neighboring signals. We considered

Fourier transform and energy bins as the additional features,

but the mean TPR remained at 53%. Fig. 3 (d) presents the

Fourier bins (summed for three intervals). It can easily be seen

that Fourier features also do not present separability across

users.

C. Features capturing finer variations in a blink

The inferior performance of the features discussed above is

due to the simplifying assumptions made on the blink patters.
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The features discussed in the above sections, consider eye-

blink as an atomic process and computes features based on

central tendency measures, or summary statistics. This fails to

capture some of the user-specific variations that happen only

during a brief duration. For e.g., during the onset of a blink,

the waveform could dip quickly and then slowly reach the

minimum or vice versa. This could also be true for a brief

duration during the offset. 2 blinks may have the same duration

yet one might be relatively flatter or sharper than the other. [22]

studied human blinks data and established the fine granularity

of temporal and spatial characteristics of human blinks.

Since these details deal with the distribution of points within

limited and specific subsets of the entire blink signal, they

can be visualized and described using histograms. For e.g.,

a flatter blink signal will have more data points with values

closer to the peak than a sharper blink. Similarly, a slow rising

and a slow dropping blink can be differentiated based on a

histogram calculated using their slope (single derivative). A

blink signal which shoots up fast from the minimum and then

rises slowly will have the same average slope as the blink signal

which starts slowly from the minimum but becomes steep going

forward. However, as shown in Fig. 4, there will be a significant

difference between the histogram profiles of the two blinks,

showing a more pronounced left extreme in the value histogram

for the blink that starts slowly from the minimum.

Based on these intuitions, we incorporated the value-

histogram (histogram calculated on the blink signal values) and

slope-histogram (histogram calculated on the single derivative

of the blink signal) and used their bins (range of values for

which the frequency of values is calculated) as additional

feature vectors. We see that this increases our True Positive

Rate (TPR) of single blink detection to 71%. A more detailed

comparison with [21] is presented in Fig. 5 with respect to True

Positive Rate and False Positive Rate per user. As seen in the

figure, the users show significantly better TPR and FPR (false

positive rate) compared to the algorithm in [21]. Our average

FPR was 2.03% as opposed to 3.2% of [21] while their average

TPR was 52.4% compared to our average TPR of 71%.

D. Multiplicity

To achieve a frustration-free and usable system, the TPR

should at least be 90%. Redundancy can help increase the

reliability of a system. To reduce the prediction error, we rely

on the multiplicity of blinks, i.e. we would bundle k−blinks,

and the user would have to blink k−times to access the system.

Based on the number of blinks (i.e., k) we would bundle,

each test sample would comprise k blinks. Each blink in this

set would be separately used for evaluating the probability

vector of the blink belonging to a particular user and then a

summation of these probability vectors would be used to decide

whether the whole set (of k blinks) belongs to a particular

user. There have been similar attempts to use multiplicity to

increase the accuracy of blink detection. [21] generates a test

sample after averaging 25 blinks from a user. While it fetches

a TPR of about 96%, not only is it burdensome and extremely

undesirable for a user to blink 25 times to gain access into a

(a) blink 1 (b) blink 1 value and slope histograms

(c) blink 2 (d) blink 2 value and slope histograms

Figure 4: differentiating blinks based on histograms

system, we show here that our approach can beat this score in

as low as 5 blinks.

However, there is a trade-off between the TPR and user

convenience, when we increase the required number of blinks

by adding redundancy in the system. We ran experiments for

multiple values of k and show in Fig. 6 that TPR increases

rapidly for a multiplicity value of 2 and 3 after which it starts

to taper off and converge. In an independent study performed in

[23] to calculate user comfort score for multiple blinks, 3-blinks

were rated as comfortable by the users. The confusion matrix

for this case is shown in Fig. 7 and the user-specific values

for true positive and false positive percentages are shown in

Fig. 8. With our proposed algorithm, the system achieved an

aggregate TPR of 92% with 3-blinks, with an aggregate per-

user False Positive Rate (FPR) of 0.7%. Hence, we conclude

that 3-blinks based authentication is comfortable while being

reliable and relatively convenient for a user to manage. With

an aggregate accuracy of 92% with 3 blinks, we think this is

a sweet spot that can be used.

E. A purely local approximation

In the previous subsection, we have achieved the system

TPR of 92%. However, the implementation of the proposed

approach requires the training data of all users to be stored

in a cloud. This approach explicitly demands that the system

needs to be re-trained whenever a new user is added, which is

computationally expensive and not scalable, practically.

Another interesting and competing approach would be to

have a system authenticating a user using only the user’s data.

Through this approach, a local copy of the trained classifier

weights (trained solely on corresponding user blinks), can be

stored locally on the user device to allow the authentication.

The local approximation system would be desirable due to its

massively reduced computational costs and will also ensure
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Figure 5: Performance comparison of proposed features vs [21]
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Figure 6: Average TPR as a function of blinks combined

Figure 7: Bundling blinks confusion matrix for multi-class

classification

user-privacy. However, as the classification algorithm (i.e. one-

class SVM in this case) is not exposed to the blinks of other

users, it is less accurate.

We tested our algorithm on a one-class SVM model to see

its performance. We tested this using two modes. In the first

approach, we train a classifier per-user using 80% of the blink

signals for that user and tested it one blink at a time. In the

second approach, we bundled multiple blinks during the testing

phase and combined their individual predictions using a hard
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Figure 8: Performance Evaluation for multi-class SVM

Figure 9: Bundling blinks in one class classifier

voting mechanism. Each blink within the sample test case set

was classified using the one-class SVM and a decision on the

whole set was taken based on the class (whether it is an outlier

or not) the majority of the blinks were classified into. We used

3, 5 and 7 blinks to test the aforementioned bundling approach

and the results are presented in Fig. 9

The TPR for the one blink one-class case was 60% with an av-

erage per-user false positive rate (this estimates the probability

of an average user to be able to break into a legitimate user’s

system) of about 5.79%. While the true positive accuracy in

the cases for 3 and 5 blinks is roughly 73% which improves

to about 80% for 7 blinks, the main advantage is seen as the

average per-user false positive rate goes down to 4.04% in the

3 blink system, 2.7% in the 5-blink system and to 2.2% in the

7-blink system. This progression of the FPR getting lower can

be observed in Fig. 9 where, as we increase the number of

blinks in the test set, we see that the non-diagonal elements of

the matrix (which correspond to misclassifications) reducing

in number and also getting darker (indicating a decrease in

their percentage occurrence). This shows that an unsupervised

approach for blink-based authentication can be realized by

combining a set of blinks.
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V. RELATED WORK

[21] proposes a novel biometric authentication system

using eye-blink waveforms collected through the Neurosky

Mindwave EEG headset on Fp1 electrode (We use Fp1 and

Fp2). For 25 subjects, [21] achieved the identification accuracy

of 97.3% and error rate of 3.7%. Here, data collection is

performed with 6-8 trials on each subject, with 8-12 natural

eye blinks in each trial (20-second duration for each trial).

It assumes that eye blinks are the signals with maximum

peaks and hence is prone to any other EMG based artifacts.

It also averages 25 user blinks to generate a test sample

which would be very burdensome to a user. [24] builds upon

this work and combines eye-blinks based authentication with

EEG signals during relaxation and visual stimulation (VEPs -

visually evoked potentials) to boost the accuracy to 99.4%.

[25] combined ERPs obtained through Rapid Serial Visual

Presentation (RSVP) with eye-blinks to increase accuracy from

92.4% to 97.6% with a mean false accepted rate (FAR) of

3.90% and a mean false rejected rate (FRR) of 3.87% on 40

subjects. [26] relied on EOG recordings (placing electrodes

around the eye corners) and eye-movements to authenticate

users. The system was tested on 40 users with accuracy ranging

from 96% to 100% across users. [27] also uses EOG to achieve

90% to 100% accuracy across 30 subjects. In both works, EOG

signals were recorded from users while following a moving

target with their eyes producing rapid vertical or horizontal

eye movements known as saccades.

VI. CONCLUSIONS

In this paper, we have shown that an efficient and accurate

blink-based authentication method can be developed using

features that capture granular differences in user blinks, as

opposed to the central tendency measures or summary statistics.

We show that such a system can either be a cloud-based

infrastructure that uses the data of multiple users or it could

also operate in an unsupervised manner while only using the

concerned user’s data. Our work performs on a multi-class

classification while combining 3 blinks with a TPR of 92%

and an average per-user FPR of 0.7%. The performance for

the unsupervised classification yields a TPR of 80% and an

average per-user FPR of 2.2%. We plan to extend the future

work in two main directions - (i) consider a more diverse set

of features to improve the TPR while reducing the FPR of the

system (ii) thorough testing of the system for a broader set of

users, with multiple trials, and across different environmental

conditions and mental states.
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