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Abstract—Providing Reinforcement Learning (RL) agents with
human feedback can dramatically improve various aspects of
learning. However, previous methods require human observer
to give inputs explicitly (e.g., press buttons, voice interface),
burdening the human in the loop of RL agent’s learning process.
Further, providing explicit human advise (feedback) continuously
is not always possible or too restrictive, e.g., autonomous driving,
disabled rehabilitation, etc. In this work, we investigate capturing
human’s intrinsic reactions as implicit (and natural) feedback
through EEG in the form of error-related potentials (ErrP),
providing a natural and direct way for humans to improve the RL
agent learning. As such, the human intelligence can be integrated
via implicit feedback with RL algorithms to accelerate the
learning of RL agent. We develop three reasonably complex 2D
discrete navigational games to experimentally evaluate the overall
performance of the proposed work. And the motivation of using
ErrPs as feedbacks is also verified by subjective experiments.
Major contributions of our work are as follows, (i) we propose
and experimentally validate the zero-shot learning of ErrPs,
where the ErrPs can be learned for one game, and transferred to
other unseen games, (ii) we propose a novel RL framework for
integrating implicit human feedbacks via ErrPs with RL agent,
improving the label efficiency and robustness to human mistakes,
and (iii) compared to prior works, we scale the application of
ErrPs to reasonably complex environments, and demonstrate the
significance of our approach for accelerated learning through real
user experiments.

I. INTRODUCTION

AI systems are increasingly applied to real-world tasks that

involve interaction with humans. And humans are often in the

loop of the RL agent’s learning process. Self-driving cars learn

with humans ready to intervene in dangerous situations. Face-

book’s algorithm for recommending trending news stories has

humans filtering out inappropriate content. Therefore RL with

human-in-the-loop has inspired several research efforts where

either an alternative (or supplementary) feedback is obtained

from the human participant, such as human rankings or ratings

[22], human robot interaction and rehabilitation engineering

for the disabled [37], [41], or the learning is performed through

human demonstrations [46]. Such approaches with explicit

human input despite being highly effective, severely burdens

the human interacting with RL agent. Further, it is difficult

or even impossible to obtain the explicit human feedback in

various situations, e.g., autonomous driving, disabled users,

etc.

* co-first authors. Part of this paper has been published in AAAI Workshop
on Reinforcement Learning in Games.

In this work, we investigate an alternative paradigm to

obtain the human feedback in an implicit manner (by tap-

ping directly into the intrinsic brainwaves) that substantially

increases the richness of the reward functions, while not

severely burdening the human-in-the-loop. We study the use

of electroencephalogram (EEG) based brain waves of the

human-in-the-loop to generate the auxiliary reward functions

to augment the learning of RL agent. Such a model will

benefit from the natural rich activity of a powerful sensor

(the human brain), but at the same time not burden the

human since the activity being relied upon is intrinsic. This

paradigm is inspired by a high-level error-processing system

in humans that generates error-related potential (ErrP) [56],

[10], a negative deflection in the ongoing EEG signals. When a

human recognizes an error made by an agent, the elicited ErrP

can be captured through EEG to inform agent about the sub-

optimality of the taken action in the particular state. Human

feedback obtained in this manner is direct and fast while being

natural and easy for humans. This widens the applicability of

such RL-human interactive systems where the RL agents are

deployed in the real-world environment, and increased latency

of human feedback could create unwanted situations. Further,

obtaining large amount of explicit feedback is infeasible due

to the increased cognitive load [51]. Additionally, EEG-based

feedback allows disabled users to provide the feedback, where

explicit communication pathway is not available.

Previous works have [18], [54] demonstrated the benefit

of error-potentials in a very simple setting (i.e., very small

state-space, and two actions), and used ErrPs as the only

reward. As a baseline contribution, we scale the feasibility

of capturing error-potentials (of a human observer watching

an agent learning to play games) to reasonably complex en-

vironments, and then experimentally show that decoded ErrPs

can be appropriately used as an auxiliary reward function to a

RL agent. In order to validate the motivation of using ErrPs as

feedbacks, we make a case for using ErrPs by specifying the

advantages it offers over other brain potentials and perform

user studies to show that obtaining human feedback implicitly

through ErrPs outperforms explicit human labeling in terms

of labeling accuracy, latency of feedback and user comfort.

We also show that the full access approach, inquiring human

feedback on every state-action pair visited by RL agent, can

significantly speedup the learning of the RL agent.

Despite the accelerated performance of full access approach,

it is not scalable to complex environments with many state-
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action pairs. Since the full access relies on the implicit human

feedback on each and every state-action pair, it would be

extremely inconvenient, impractical, and time consuming for

the end-user (even when the user is providing the feedback

without any explicit actions). Furthermore, the EEG-based

implicit feedback is stochastic, (i.e., the error rate of decoding

human feedback is not perfectly zero) which could possibly

diverge the training of the RL agent when the feedback has

relatively high error rate.

In this context, we first argue that the definition of ErrPs

can be learned in a zero-shot manner across different environ-

ments. We experimentally validate that ErrPs of an observer

can be learned to decode for a specific game, and the definition

can be used as-is for another game without requiring re-

learning of the ErrP decoding. This is notably different from

previous approaches [18], [54], where the labeled ErrPs are

obtained in the same environment the RL agent is trying to

solve. We contend that previous approaches are not practical,

since ErrP decoder cannot be trained and tested in the same

environment.

We develop a framework to integrate deep RL (DRL) model

with the implicit human feedback mechanism (via ErrP) in a

practical, sample-efficient manner. Our proposed framework

allows humans to provide their feedback implicitly prior to

the agent training, reducing the cognitive load on humans,

and hence the cost of human supervision. In the presented

framework, prior to the training of RL agent, we present

randomly generated demonstrations to a human for giving

feedback (implicitly via ErrP), and learn an auxiliary reward

function to reflect the human decision and intelligence hidden

behind ErrP labels. We then pass this auxiliary reward to the

RL agent to accelerate the learning process in sparse-reward

environments.

Similar previous work lies in the streamline of human-agent

interaction via reward shaping [12], [14], [39], [59], [64], [67].

However, the stochasticity (or erroneous nature) in the human

feedback was not specifically accounted in previous methods.

Hence, false ErrP labels (errors due to the collection and

decoding of brainwaves) make the training less robust and

unstable. Thus, we learn the auxiliary reward from human

feedback in a way of being robust to wrong ErrP labels. It

is assumed that human feedbacks coming from the optimal

policy according to human intelligence. In order to tackle

wrong feedbacks, we model that optimal policy as a soft-

Q policy [33] and learn the corresponding Q function via

maximum likelihood with ErrP labels, where the probabilistic

modeling has higher robustness than deterministic one. Then

in order to make the learned Q function more compatible with

the state space, we introduce a baseline function to smoothen

that. Finally, at the RL agent side, the environmental reward

(sparse) and the auxiliary reward learned from human feedback

are combined to form the received reward.

We present results of real ErrP experiments to evaluate

the acceleration in learning, and sample efficiency, of the

proposed frameworks. We show that such implicit feedback

approach can accelerate the training of RL agent by 2.25x,

while reducing the number of queries required by 75.56%. In

summary, the novel contributions of our work are,

1) We demonstrate the zero-shot learning of error-potentials

over various visual-based RL problems (discrete grid-

based navigation games, studied in this work), enabling

the estimation of implicit human feedback in new and un-

seen environments without re-training of ErrP decoder. We

also verify the superiority of ErrPs over manual feedback

by subjective experiments, in terms of labeling accuracy,

latency of feedback and user comfort.

2) In order to reduce the sample complexity of ErrP labels, we

propose a new framework of integrating human feedback

into RL via reward shaping. It is a novel approach specif-

ically considering robustness against mistakes in human

feedback. We first generate a set of random trajectories

by Monte Carlo Tree Search (MCTS), balancing explo-

ration and exploitation. Then we collect ErrP labels in

experiments by demonstrating these trajectories to human

observers. By learning optimal Q function with decoded

labels, we derive an auxiliary reward function to augment

the learning of the following RL agent.

3) We scale the implicit human feedback (via ErrP) based

RL to reasonably complex environments. With subjective

analysis of ErrP decoding errors and ablation study, we

demonstrate the significance of our approach through ex-

periments on various human subjects.

Our work demonstrates the potential of intuitive human

robot interaction, facilitating robotic control by implicit human

feedback in the form of ErrPs. We believe the contribution

presented in this work, i.e., zero-shot learning of ErrPs and

RL framework to reduce the human cognitive load, would

inspire such implicit human feedback system to be deployed

in practical robotic applications, such as autonomous driving

or end-user applications for disabled, where explicit human

feedback is not available.

II. RELATED WORK

The impact of feedback provided by a human to an agent in

RL settings has been investigated by multiple researchers. A

survey of recent research in using human guidance for deep RL

tasks is presented in [69]. We summarize related work in some

of these techniques that are most relevant to us. In addition to

rewards from environment, reward shaping learns an auxiliary

reward function to accelerate the learning process of the agent

[16], [17], [61]. [39] presented a framework called TAMER

(Training an Agent Manually via Evaluative Reinforcement)

that enabled shaping (interactively training an agent via an ex-

ternal signal provided by a human). Then the author extended

this work to enable human feedback to augment an RL agent

that learned using an MDP reward signal [40], [41]. Recently

an architecture called Deep-TAMER [64] has extended the

TAMER framework to environments with high-dimensional

state spaces. DQN-TAMER [5] modeled other characteristics

of human observers, such as facial expressions, from which

human reward was inferred.

Human preference [19], [66] is another approach to commu-

nicate complex goals to allow systems to interact with real-

world environments in a meaningful way. This allowed the

RL agent to directly learn from expert preferences. However,
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this approach is limited by assumptions on the existence of a

(total) order among the set of trajectories. The author proposed

a framework called Human-Agent Transfer (HAT) [59]. It

directly used demonstrations provided by a human operator

to synthesize a baseline policy, which is to guide the learning

of the agent. CHAT [63] extended HAT to consider uncer-

tainty in summarizing demonstrations and further improve the

performance.

‘Potential functions’ is also used in Potential-based reward

shaping (PBRS) methods to accelerate the learning process,

while preserving the identity of optimal policies [46], [65],

[68]. The potential function was designed to encode ‘rules’ of

the environment of the RL agent. However, potential functions

will typically need to be pre-specified. This has restricted the

use of PBRS to tabular / low-dimensional state spaces.

In previous reward-shaping work mentioned above, human

feedback is explicit, requiring active human labeling or atten-

tion, and the mistakes in human feedback are not specifically

tackled. Here we propose to read implicit human feedback

from error-potential hidden in human brain waves, and deal

with wrong feedback in a robust approach. Recently, there

is a long line of papers studying reinforcement learning from

human feedback, such as [21], [22], [62], [66], [19]. However,

they are only about explicit human feedback or labeling, and

they all assume human feedback is noiseless. In this work, we

use reward function learned by imitation learning to augment

the following RL agent.

Numerous works [15], [36], [35] have studied a high-level

error-processing system in humans generating the error-related

potential/negativity (ErrP or ERN).

Interaction, response, and feedback ErrPs have been heavily

investigated in the domain of choice reaction tasks, where

human is actively interacting with the system [55], [11], [50],

[26], [27] and the error is made either by the human or by

the machine. [38] demonstrated the use of ErrP signals in an

interactive RL task, when the human is actively interacting

with the machine system. [26] explored the ErrPs when human

is silently observing the machine actions (and does not actively

interact). Works at the intersection of ErrP and RL [18], [54]

demonstrate the benefit of ErrPs in a very simple setting (i.e.,

very small state-space), and use ErrP-based feedback as the

only reward. Moreover, in all of these works, the ErrP decoder

is trained on a similar game (or robotic task), essentially using

the knowledge that is supposed to be unknown in the RL task.

In our work, we use labeled ErrPs examples of very simple and

known environments to train the ErrP decoder, and integrate

ErrP with DRL in a sample-efficient manner for reasonably

complex environments.

III. PRELIMINARIES AND SETUP

A. RL and the Q-function

Definitions: Consider a Markov Decision Process (MDP)

problem M , as a tuple < X ,A, P, P0, R, γ >, with state-

space X , action-space A, transition kernel P , initial state

distribution P0, accompanied with reward function R, and

discounting factor 0 ≤ γ ≤ 1. In this work, we only

consider MDP with discrete actions and states. In model-free

RL method, the central idea of most prominent approaches is

to learn the Q-function by minimizing the Bellman residual,

i.e., L(Q) = Eπ
[(

Q(x, a) − r − γQ(x′, â)
)2]

, and temporal

difference (TD) update where the transition tuple (x, a, r, x′)
consists of state, action, reward and next state respectively,

i.e., a consecutive experience under behavior policy π.

Bayesian Deep Q Network: The Q function model adopted

in this paper is Bayesian DQN [6]. It is a neural architecture

where the Q-function is approximated as a linear function,

weighted by ωa, a ∈ A, of the feature representation of

states φθ(x) ∈ Rd, parameterized by neural network with

weights θ. The weights ωa follow the Gaussian distribution

from Bayesian linear regression.

B. Games and EEG

Using a game as a proxy for a real-life environment is

beneficial in the context of human assisted RL algorithms.

Games are a fertile ground for the definition, understanding,

and improvement of RL algorithms in a low overhead and

speedy fashion. Games have now evolved to help understand

the world around us and make optimal strategies to tackle

various difficult and high-risk real-world situations. For ex-

ample, Foldit is an online puzzle video game about protein

folding. The users of the game helped to solve the structure

of a protein-sniping enzyme critical for reproduction of the

AIDS virus. A curious planet with four stars was discovered

through another game, Planet Hunter, along with the discovery

of 40 other planets with the potential of having life-forms [60].

Motivated by these studies, we use games as environments for

gathering ErrP data from humans in order to accelerate our RL

algorithm.

Specifically, we use electroencephalogram (EEG) signals

to generate the implicit feedback that can be used by the

RL algorithm. Electroencephalography (EEG) is a mecha-

nism to detect electrical activity in a human brain using

small, metal discs (electrodes) attached to the scalp. Brain

cells communicate via electrical impulses and EEG helps in

recording this activity. EEG is growing to be a bonafide and

easy to use [3] input modality in several applications such as

communication [1] [31], lifestyle [2], RL [4] etc. and due to

the wider availability of EEG headsets off-the-shelf, access to

a user’s EEG data is easier than it has ever been. We use EEG

because error potentials, which are an outcome of a high level

error-performance system, manifest themselves as a negative

deflection in the EEG signal activity of a human [56], [10],

[47]. This is then detected and used into the reward function of

the reinforcement learning algorithm. We also make the case

for using error potentials over manual labeling in section IV.

C. System Setup and Data Collection

1) BCI for implicit feedback: We designed and developed

an experimental protocol, where a machine agent plays a

computer game, while a human silently observes (and as-

sesses) the actions taken by the machine agent. These implicit

human reactions are captured by placing raw electrodes on

the scalp of the human brain in the form of EEG potentials.

The electrode cap (BIOPAC CAP-100C) was attached with
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Algorithm 1: Riemannian Geometry based ErrP clas-

sification algorithm

Input : raw EEG signals EEG
1 Pre-process raw EEG signals ;

2 Spatial Filtering: xDAWN Spatial Filter (nfilter) ;

3 Electrode Selection: ElectrodeSelect (nelec,
metric=’riemann’) ;

4 Tangent Space Projection : TangentSpace(metric =

“logeuclid”) Normalize using L1 norm ;

5 Regression: ElasticNet ;

6 Select decision threshold by maximizing accuracy

method can significantly accelerate the learning of the RL

agent. However, obtaining the human feedback for every state-

action pair is time-intensive and not practically feasible. In the

next section, we provide our novel contributions to practically

obtain and integrate the implicit feedback with the learning of

RL agent.

Interaction, response, and feedback ErrPs have been heavily

investigated in the domain of choice reaction tasks, where

human is actively interacting with the system [55], [11], [50],

[26], [27] and the error is made either by the human or by

the machine. [38] demonstrated the use of ErrP signals in an

interactive RL task, when the human is actively interacting

with the machine system. [26] explored the ErrPs when human

is silently observing the machine actions (and does not actively

interact). Works at the intersection of ErrP and RL [18], [54]

demonstrate the benefit of ErrPs in a very simple setting (i.e.,

very small state-space), and use ErrP-based feedback as the

only reward. Moreover, in all of these works, the ErrP decoder

is trained on a similar game (or robotic task), essentially using

the knowledge that is supposed to be unknown in the RL task.

In our work, we use labeled ErrPs examples of very simple and

known environments to train the ErrP decoder, and integrate

ErrP with DRL in a sample-efficient manner for reasonably

complex environments.

VI. TOWARD SMARTER INTEGRATION OF RL WITH

IMPLICIT HUMAN FEEDBACK

In this section, we propose two approaches to enable the

deployment of ErrP-augmented RL into practical systems.

Firstly, we show that we can learn the ErrPs of an observer

in a zero-shot manner, i.e. We can train an ErrP decoder

for a specific game, and use the trained decoder as-is for

another game without re-training the ErrP decoder. To combat

with the practical issues with obtaining ErrP labels for every

state-action pairs, we propose an RL framework (motivated

by imitation learning approaches) allowing humans to provide

their feedback on a few trajectories prior to the learning of the

RL agent. This dramatically reduces the number of feedback

labels required from the human observer.

A. Robust Reward Shaping using Human Feedback

RL algorithms deployed in the environment with sparse

rewards demand heavy explorations (require a large number

Fig. 4: Robust Reward Shaping with Human Feedback. The dashed
arrow shows trajectories in D ∪DR are all used in reward learning

of trial-and-errors) during the initial stages of training. In such

environments, using human feedback can be very efficient for

accelerating the learning process. Previous work on reward

shaping with human feedback [14], [39], [59], [64], [67] build

a specific model to generalize human feedback in state space,

without tackling wrong feedback. Inspired by soft Q policy

[33], we develop a novel framework of learning the auxiliary

reward from human feedback to accelerate the training of the

RL agent, with robustness to mistakes in ErrP labeling.

In this framework, we require implicit human feedback via

ErrP on all state-action pairs along trajectories (demonstra-

tions) randomly generated initially. Before RL agent starts

learning, we ask the human subjects to observe a number

of trajectories, and record their implicit feedbacks in the

form of ErrP on corresponding state-action pair in a dataset.

Then we learn the auxiliary reward function ra(·, ·) from

these trajectories labeled by human feedback. During the

RL training, the learned reward function acts as a proxy

for the human feedback, compensating the sparse reward

from the environment. The flowchart of the proposed learning

framework is shown in Figure 4. Different from the naive

baseline full access method discussed earlier, in this approach,

we require the queries for human feedback (ErrP labeling) only

on trajectories generated initially, instead of querying every

learning step during the training. Hence, the total number of

ErrP queries are reduced significantly, further reducing the

load for the human in the loop.

Trajectory Generation: Constraint by the coherence require-

ment in EEG experiments, the trajectories for ErrP labeling

have to be complete, containing every state-action pair from

the beginning to the end of the game. Further, the selected

trajectories have to cover state space as much as possible, and

cannot be too far away from the optimal solutions. This is

essentially the trade-off between exploitation and exploration.

So we propose to use Monte Carlo Tree Search (MCTS)

[13], [42], [57] to generate random trajectories for ErrP

experiments. It is to tackle exploration-exploitation trade-off

by Upper Confidence Bound (UCB) method [42], and does

not require to know the optimal solution a priori. MCTS is a

general game playing technique with recent success in discrete,

turn-based, and non-deterministic game domains. We choose

MCTS as a trajectory sampling algorithm for its proven high-

level performance, domain generality, and variable computa-

tional bounds.

In MCTS, there is one node in the tree for each state s,

containing a value Q(s, a) and a visit count N(s, a) for each

action a, and an overall count N(s) =
∑

a N(s, a). Each

node is initialised to Q(s, a) = 0, N(s, a) = 0. The value is

estimated by the mean return from s in all simulations where
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action a was selected in state s, and the only reward r here

is the result of the game, i.e., 1 for winning and 0 for losing.

At each state s of the trajectory, the action is selected to be

the maximizer of the objective Q(s, a)+ c
√

logN(s)
N(s,a) , where c

is to trade off between reaching the target and exploring more

state space [42]. By the end of generating each trajectory, the

return is back-propagated into Q values along the trajectory,

i.e., Q(st, at) := r + γQ(st+1, at+1). Only first K generated

trajectories are used in ErrP experiments.

In experiments for collecting ErrPs, the human subject

provides implicit feedback (via ErrP) over all the generated

trajectories, labeling every state-action pair as a positive (if a

correct action according to perceived human intelligence) or

a negative sample. With decoded ErrP labels over trajectories

as input, we propose a novel reward shaping method to incor-

porate ErrP labels into the reinforcement learning framework.

It specifically tackles the problem of robustness against wrong

ErrP labels, with details explained in the following section.

Reward Learning Since implicit human feedback via ErrP

is noisy, different from previous work [14], [39], [59], [64],

[67], instead of modeling human feedbacks by neural networks

directly, we assume that human give feedbacks according

to his probabilistic policy, modeled by a soft-Q policy with

Q function Qh,θ (with weights θ), under the max-entropy

principle [70]. Our method is to define operators first go-

ing from demonstrations labeled by human feedbacks to the

optimal Q function Qh,θ, and then from that Q function to

the auxiliary reward function ra(·). Here we assume that

optimal Q function defines a soft-Q policy [32], [33], and

learn it by solving a probabilistic classification problem via

maximizing log-likelihood of human feedbacks. Following the

principle of maximum entropy [70], the soft-Q policy giving

human feedbacks and the corresponding value function can be

expressed as follows,

πh,θ(a|s) = exp((Qh,θ(s,a)− Vh,θ(s))/α),

Vh,θ(s) = α log
∑

a

exp(Qh,θ(s,a)/α) (1)

where α is a free parameter, tuned empirically. Define positive

samples as state-action pairs with correct labels in human

feedbacks while negative samples as those with wrong labels.

According to the maximum entropy principle [70], the likeli-

hood of positive and negative samples are denoted as πh,θ(a|s)
and 1− πh,θ(a|s), respectively. When trajectories and human

feedbacks (ErrP labels) are ready, we learn Qh,θ(·, ·) by

maximizing the likelihood of both positive and negative state-

action pairs in the trajectories, which is to maximize the objec-

tive (3) in Algorithm 2, where the binary variable ErrP(s, a)
denotes the human feedback label. To derive auxiliary reward

from the learned Q function, a naive choice is the Bellman

difference, i.e., Qh,θ(s,a) − γmaxa Qh,θ(s,a). However,

due to the scarce of ErrP labels on exact state-action pairs,

the function Qh,θ learned by maximum likelihood may not

have the shape compatible with the state dynamics of the

target MDP (environments in experiments). And the derived

auxiliary reward function can destabilize the learning process

of RL agent.

In order to refine the reward shape and attenuate the gradient

variance, we introduce another baseline function tφ(s) only

dependant on the state, to incorporate the state transition

information, parametrized by φ. Hence, the Q function is

augmented as QB(s,a) := Qh,θ(s,a)+t(s). It can be proved

that QB(·, ·) and Qh,θ(·, ·) induce the same optimal policy

[46]. The baseline function t∗(·) can be learned by optimizing

t∗ = argminφ J2(φ), defined in (4), where the loss function

l(·) is chosen to be l1-norm via empirical evaluations .

For learning function tφ(·), in addition to the demonstration

D in Figure 4, we incorporate another set of demonstrations

DR, containing transitions that are randomly sampled from

environment without the reward information. The set DR is to

help the learned auxiliary reward function to incorporate the

state dynamics information, without the need of any human

labeling. After learning both Qh,θ(·, ·) and tφ(·), for any

transition tuple (s,a, s′), the auxiliary reward function can

be represented as

ra(s,a) = Qh,θ(s,a) + tφ(s)− γ max
a

′∈A
[Qh,θ(s

′,a′) + tφ(s
′)]

(2)

This ra is then used to augment the RL agent. In order to

further attenuate the negative influence of wrong ErrP labels,

when combining environmental reward re and auxiliary reward

ra, we propose a coefficient β(e), exponentially decreasing in

terms of training episodes e, i.e., β(e) := ae−e/b. Finally,

the RL agent receives the shaped reward in the form of

re(st,at) + β(e)ra(st,at). Empirically, the best coefficient

function is β(e) = 3e−e/80 in experiments.

Algorithm 2: Robust Reward Shaping with Human

ErrP

Input : Trajectories Given Initially

1 Conduct EEG Experiments for human ErrP to label the

state-action pairs along trajectories;

2 With ErrP data collected, use Algorithm 1 to decode

ErrP labels, i.e., ErrP(·, ·);
3 Initialize the Q function Qh,θ(·, ·) and baseline tφ(·);
4 Learn Qh,θ(·, ·) by optimizing θ

J1(θ) :=
∑

(s,a)∈D

πh,θ(a|s)(1− ErrP(s, a))

+(1− πh,θ(a|s))ErrP(s, a) (3)

where the relationship between πh,θ and Qh,θ is

defined in (1) ;

5 Learn the baseline function tφ(·) by optimizing φ

J2(φ) :=
∑

(s,a,s′)∈D∪DR

l(Qh,θ(s,a) + tφ(s)

−γ max
a

′∈A
(Qh,θ(s

′,a′) + tφ(s
′))) (4)

Then pass the auxiliary reward function ra (2) to the

RL agent ;

6 RL agent employs any RL framework using the

modified reward function re(s, a) + β(e)ra(s, a).
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TABLE III: Accuracy and standard deviations per subject for ErrP
and non-ErrP SAPs

Subject ErrP SAPs ErrP SAPs non-ErrP non-ErrP
mean std dev SAPs mean SAPs std dev

S12 0.79 0.27 0.75 0.17
S07 0.8 0.3 0.85 0.16
S02 0.73 0.29 0.77 0.15
S08 0.6 0.25 0.56 0.14
S01 0.8 0.25 0.77 0.16
S04 0.78 0.25 0.63 0.16
S16 0.73 0.3 0.78 0.14
S03 0.65 0.25 0.61 0.13
S06 0.73 0.3 0.64 0.17
S05 0.75 0.3 0.72 0.13
S09 0.71 0.27 0.66 0.13
S15 0.67 0.31 0.65 0.1

Average 0.73 0.28 0.70 0.14

acteristics of error-potential based on the users and provided

stimulations. The EEG samples recorded for the Maze experi-

ment can be presented along two independent dimensions, (i)

users and (ii) state-action pair of the agent (i.e., stimulation).

Within the state-action pairs (or SAPs for short), if the action

is correct, it is called a non-ErrP SAP, otherwise an ErrP SAP.

Please note that the term non-ErrP state-action pair or non-

ErrP SAP refers to a correct action taken by the agent given a

state (due to the expected absence of an ErrP response in the

brain), and does not refer to a system where we do not use

implicit human feedback using EEG.

• Experiment 1: Subjectivity over correct and incorrect

actions. For each user, we divide the EEG trials into

two categories (a) ErrP SAPs, and (b) non-ErrP SAPs.

For each user and category, we compute the mean and

standard deviation of classification accuracy of EEG

trials, and present in Table III. We can observe that the per

user standard deviations for ErrP SAPs is roughly double

the standard deviations for non-ErrP SAPs. The aggregate

per user standard deviation across the ErrP SAPs is 0.28

and 0.14 for non-ErrP SAPs. This difference in per user

standard deviations is statistically significant (p<0.001).

We also calculate the standard deviations across our user

accuracy vectors for both ErrP SAPs and non-ErrP SAPs

and find that the standard deviations for the per user

accuracy vectors are 0.06 and 0.08 respectively.

• Experiment 2: Subjectivity over users. In this exper-

iment, for each unique state-action pair, we average the

performance of EEG trials of all users. We achieved a

mean and standard deviation of 0.75 and 0.13, and 0.75

and 0.07 for ErrP SAPs and non-ErrP SAPs respectively.

We use Levene’s test [43] to conclude that the difference

in variance between these two population samples is

statistically significant (p = 0.023 < 0.05).

• Experiment 3: Subjectivity over states. For each unique

state in Maze game, we plot the mean and standard

deviation of EEG trial performance in Fig. 9. We plot

the classfier accuracy for ErrP SAPs and non-ErrP SAPs

respectively based on their initial state on the maze. We

can visualize that the plot corresponding the standard

deviation for non-ErrP SAPs is darker (indicating lower

standard deviation) compared to the plot corresponding

to the deviations for ErrP SAPs. We can also see that

within a plot, there is also a gradation in the accuracy

(indicated by different shades of green) implying that

there is some dissimilarity among erroneous states and

hence subjectivity on the user’s part and diminishing the

argument that erroneous vs non-erroneous scenarios are

purely binary.

• Experiment 4: Errors of commission and omission. In

this experiment, we consider only the erroneous actions

(ErrP SAPs) and split the EEG trials into two categories,

(i) commission errors and (ii) omission errors. We do

this in order to better understand the impact on ErrPs,

based on the type of error committed. A commission

error is defined as an agent making an incorrect move

to a new cell, while omission error refers to the incorrect

action of agent by staying in the same cell grid. The

total state-actions pairs for commission and omission are

distributed fairly (out of 71 unique state-action pairs,

34 correspond to errors of omission and the remaining

37 correspond to errors of commission). However we

observe that among the state-action pairs which had very

high accuracies, state-action pairs corresponding to errors

of commission are disproportionately represented. Out of

the top 5 state-action pairs that have the highest accuracy,

all of them represent errors of commission and out of the

top 10 state-action pairs that have the highest accuracy,

9 of them signify errors of commission. This was also

indicated by the fact that errors of omission had a mean

accuracy of 72% whereas errors of commission had a

much higher mean accuracy of 77%. This implies that

the error scenarios that are the easiest to detect are likely

to be errors of commission. This has certain implications

that bolster the hypothesis that certain errors are indeed

more ”valuable” to a user than others and hence generate

a far more noticeable response in the brain.

These 4 experiments collectively lead us to 2 main insights.

(a) Per subject, owing to the differences in variances, there

is less variation in the non-ErrP accuracies compared

to the ErrP accuracies implying that erroneous scenarios

lead to more variation in the classifier accuracy and by

extension, in the brain’s response, than non-erroneous

scenarios. This further implies that there is a gradation

in error detection unlike it being a binary phenomenon

which makes certain errors easier to detect and certain

others more difficult to detect.

(b) The differences in variations in classifier accuracy be-

tween ErrP and non-ErrP SAPs diminishes when we

average the accuracies over the SAPs and represent them

as a function of users. This implies that the variation in

the accuracy of ErrP vs non-ErrP is impacted more by

differences in SAPs compared to the differences in users.

4) Robustness Evaluation: Because the generation process

and decoding of brain signal are stochastic, the robustness

to wrong ErrP labels is important when incorporating human

feedback (via EEG) into reward shaping method. We are going

to show that modeling the human policy as soft Q policy, as we
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in (2), corresponding to no-baseline curves in Figure 10, where

the auxiliary reward function is only the Bellman difference

of Q function between adjacent states. The comparison result

is shown in Figure 10. We can see that the baseline function

can improve the convergence speed in all cases, and it can

even do better than simple method in some cases, showing the

importance of the baseline function here.

In addition, we also conduct the ablation study on the

combining coefficient β(·). The benchmark method is to

directly sum auxiliary reward ra and environmental reward

re together. The coefficient in the proposed method is set

to β(e) = 3e−e/80. Comparison result is shown in Figure

10 where no-beta curves corresponding benchmarks on com-

bining coefficients. We can see this exponentially decreasing

coefficient can stabilize the training process significantly, and

hence improve the convergence speed.

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we investigated an interesting paradigm to

obtain and integrate the implicit human feedback with RL

algorithms. We first demonstrated the feasibility of obtaining

implicit human feedback by capturing error-potentials of a

human observer watching an agent learning to play several

different visual-based games, and then decoding the signals

appropriately and using them as an auxiliary reward function

to help an RL agent. Then we argued that the definition of

ErrPs could be learned in a zero-shot manner across different

environments, eliminating the need of re-training over new

and unseen environments. We validated the acceleration in

learning of games through augmenting the RL agent by ErrP

feedback using a naive approach, i.e., full access method. We

then proposed a novel RL framework, improving the label effi-

ciency and reducing human cognitive load. We experimentally

showed that the proposed RL framework could accelerate the

training of RL agent by 2.25x, while reducing the number of

queries required by 75.56%.
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