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Abstract—We provide a new algebraic construction for packing
subspaces in complex Grassmannian space with respect to the
chordal distance metric. The proposed method extends the con-
struction of character-polynomial (CP) subspace codes, recently
proposed by the authors, to higher dimensions. Our results in-
dicate the superiority of the packings derived from CP codes
in the real Grassmannian space compared with existing explicit
construction. Furthermore, we propose a concatenation method in
Grassmannian space and characterize the rate and the minimum
distance of a concatenated Grassmann code in terms of those of
its underlying inner and outer codes. This result is then utilized
to arrive at the counterpart of Zyablov bound in Grassmannian
space. Finally, we construct Grassmann codes with asymptotically
large blocklength simultaneously attaining non-vanishing rate and
normalized minimum distance. In particular, we propose a family
of concatenated Grassmann codes having CP inner codes that
surpass the Zyablov bound in the low-rate regime.

I. INTRODUCTION

One of the central problems studied extensively in the field
of coding theory is the sphere packing problem [1], i.e., the ar-
rangement of non-overlapping identical sized spheres in a given
metric space. The problem can be also regarded as designing a
code in the considered metric space with codewords apart from
each other by at least a certain distance, measured in terms of
the provided distance metric and referred to as the minimum
distance of the code. We consider packing in the space of m-
dimensional linear subspaces of a real/complex ambient vector
space of dimension n with respect to the so-called chordal
distance. For the case m “ 1, this problem is reduced to picking
a set of lines passing through the origin in an n-dimensional
real/complex vector space where the distance between two lines
is captured by their angular separation.

The notion of chordal distance was first introduced for real
Grassmannian spaces in [2] and was extended to the complex
spaces in [3]. Packing in real Grassmannian space was also
studied in [2] and some of these constructions were observed
to be optimal. However, the suggested construction methods in
[2] are numerical, making them computationally infeasible for
general parameters. Another numerical method for constructing
codes based on alternative projection is proposed in [4]. In
another line of work, motivated by quantum error-correcting
codes, constructions based on group structures are suggested
[5]–[9]. The problem of deriving bounds on the minimum
chordal distance of Grassmann codes was first studied by
Shannon for the special case of m “ 1 [10]. A lower bound
on the best rate of the Grassmann codes with a fixed minimum
chordal distance is derived by Shannon [10], assuming n Ñ 8

and later extended to higher dimensions, assuming a fixed m,
by Barg et al. in [3]. They also provide an upper bound on
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the largest achievable rate given a fixed minimum distance and
m while n Ñ 8, which was later improved in [11]–[13]. An
achievability bound for the minimum distance of the codes for
finite values of n was also derived in [14].

Grassmann codes have found applications in the design of
communication systems, mostly in the context of space-time
code design for MIMO channels [15], [16]. More specifically,
the problem of constellation design for communications over a
non-coherent MIMO channel is observed to be closely related
to the packing problem in the complex Grassmann space [17]–
[19]. Recently, in another direction, the authors have shown that
Grassmann codes enable reliable communication over wireless
networks in a non-coherent fashion [20]. This is mainly inspired
by the seminal work by Koetter and Kschischang [21]. In
particular, it is shown in [20] that the error correcting capability
of the underlying codes utilized to communicate over wireless
networks is characterized by the minimum chordal distance
between the subspaces spanned by the transmitted codewords.
A new algebraic construction for one-dimensional complex
Grassmann codes, referred to as character-polynomial (CP)
codes, has also been introduced in [20].

The objective of this paper is twofold. In the first part, we
extend the construction of CP codes to higher dimensions. In
particular, a certain property of the structure of one-dimensional
CP codes is observed and is then utilized to generalize its
construction to higher dimensions. We compare the trade-off
between the rate and the normalized minimum distance that the
CP codes offer at different values of n with the lower bound
characterized in [3], for n Ñ 8, and lower bounds derived
by Henkel [14] for finite values of n. It is observed that CP
codes improve the lower bound in the finite-length regime by
providing explicit constructions surpassing the one character-
ized in [14]. Furthermore, by utilizing a certain mapping that
constructs real Grassmann codes from the complex ones, we
compare the parameters of the proposed CP codes with those of
the closest explicit construction of Grassmann codes proposed
in [7]. Our results indicate the superiority of packings derived
from CP codes compared with the aforementioned explicit
construction.

In the second part, we propose a concatenation technique in
the Grassmannian space that enables constructing Grassmann
codes for asymptotically large blocklength by utilizing the
existing explicit code constructions in the finite-length regime.
Similar ideas have been utilized in various settings in coding
theory to construct codes with large blocklength by concatenat-
ing off-the-shelf code constructions with shorter lengths [22].
We characterize the parameters of the overall concatenated
Grassmann code in terms of those of its underlying inner
and outer codes. By using this result, we derive a bound for
Grassmann codes analogous to Zyablov bound for block codes
[23]. Finally, it is shown that the concatenation of CP codes



with algebraic-geometry (AG) codes achieve this bound in the
low-rate regime.

II. PRELIMINARIES

We start by establishing notations used in this paper. Matrices
are represented by bold capital letters. The row space of a
matrix X is denoted by xXy. Also, for a square matrix X,
the trace of X, denoted by trpXq, is defined to be the sum
of elements of X on the main diagonal. For a matrix A, ∥A∥
denotes the Frobenius norm of A. The ambient vector space is
denoted by W . The parameter n is reserved for the dimension of
W throughout the paper. Also, we have W “ Ln, where L can
be either R or C. Let PpW q denote the set of all subspaces of
W . For a subspace V P PpW q, the dimension of V is denoted
by dimpV q. The set of all m-dimensional subspaces of Ln is
denoted by Gm,npLq, which is referred to as Grassmannian
space in the literature.

The chordal distance dc : Gm,npLq ˆ Gm,npLq Ñ R was
first introduced for L “ R in [2] and was extended to L “ C
in [3]. Consider two subspaces U and V in PpW q . Let Qu and
Qv denote matrices with orthonormal rows spanning U and V
respectively, i.e.,xQuy “ U and xQuy “ U . Then, the matrices
PU “ QH

uQu and PV “ QH
v Qv are orthogonal projection

operators from Ln on U and V , respectively. Then the chordal
distance between U and V is defined as follows:

dcpU, V q
def
“

1
?
2
∥PU ´ PV ∥ . (1)

Alternatively, for V,U P Gm,npLq one can show that:

dcpU, V q “ pm ´
⃦⃦

QH
uQv

⃦⃦2
q

1
2 . (2)

Definition 1: A packing C in Grassmannian space Gm,npLq

is a subset of Gm,npLq. The size of C is denoted by |C|. The
minimum distance of C is defined as

dminpCq
def
“ min

U,V PC,U‰V
dcpU, V q,

where dcp¨, ¨q is the chordal distance, defined in (1). Alter-
natively, the packing C in Gm,npLq is also referred to as an
rn,m, |C|, dminpCqs Grassmann code.

As in conventional block codes, one can define rate, normal-
ized minimum distance and normalized weight for Grassmann
codes as follows.

Definition 2: Let C be an rn,m,M, dminpCqs Grassmann
code. The normalized weight λ, the rate R, and the normalized
minimum distance δ of C are defined as follows:

λ
def
“

m

n
, R

def
“

lnM

n
, δc

def
“

dminpCq
?
m

.

A lower bound on the largest achievable rate R, given a fixed
δc and m while n Ñ 8, was derived in [3]. Next, we recall this
result.

Lemma 1 (Theorem 2, [3]): Let n Ñ 8 and m be a constant.
Then there exist sequences of codes in Gm,npLq with normal-
ized distance δc and asymptotic rate R Á ´βm lnpδcq, where
β “ 1, 2 for L “ R,C, respectively.

This bound is referred to as Gilbert–Varshamov (GV) bound
in the rest of the paper. For finite values of n, an achievability

bound for dminpCq is derived in [14] in the complex Grassman-
nian space which is provided in the next lemma.

Lemma 2 ( [14]): There exists an rn,m,M, dminpCqs Grass-
mann code in Gm,npCq for all n ě m such that

dminpCq ě
2

π
|C|

´1
2mpn´mq .

III. CHARACTER-POLYNOMIAL GRASSMANN CODES

For a finite field Fq the additive character associated to j P Fq
is defined as

χjpαq “ ep
trapjαq

p
q, (3)

where p is the characteristic of Fq , and

trapγq
def
“ γ ` γp ` ¨ ¨ ¨ ` γpm´1

is the absolute trace function from Fq to Fp, where q “ pm. Note
that (3) implies that χjpαq “ χ1pjαq and the trivial additive
character is χ0pαq “ 1 for all α P Fq . Then, for a polynomial
f P Fqrxs of degree d ě 1 with gcdpd, qq “ 1, the Weil bound
[24], [25] states that

|
ÿ

αPFq

χpfpαqq| ď pd ´ 1q
?
q, (4)

for any non-trivial character χ. This bound has been utilized
in several coding theoretic contexts, e.g., to provide bounds
on the minimum distance of the duals of BCH codes [26] and
to estimate the covering radius of long BCH codes [27], [28].
In particular, it has inspired the design of certain families of
sequences with low correlation in [29]. Also, motivated by Weil
bound, we recently constructed one-dimensional Grassmann
codes, referred to as character-polynomial (CP) codes, and
showed their applications to communication over non-coherent
wireless networks [20]. In other words, this construction pro-
vides a family of one-dimensional complex Grassmann codes,
i.e., a packing of lines in G1,npCq. Next, we provide a slightly
different variant of one-dimensional CP codes that enables us
to provide a family of packings in Gm,npCq for m ą 1. Let

F def
“ tf P Fqrxs : fpxq “

ÿ

iPrks,i mod p‰0

fix
iu, (5)

for some k ă q. Note that |F | “ qrkpp´1q{ps. We fix n “ q.
Definition 3: The code CpFq Ď G1,npCq, referred to as a

character-polynomial (CP) code, is defined as follows:

CpFq
def
“ txpc1, c2, . . . , cnqy : ci “ χ

`

fpαiq
˘

,@f P F , u, (6)

where χ is a fixed nontrivial additive character of Fq , and αi’s
are distinct elements of Fq .

The definition of CP codes provided in [20] excludes the
zero element of Fq from the set of evaluation points. Including
the zero element in (6) leads to the observation of a certain
property for the structure of CP codes, defined in Definition 3,
that is provided in the following lemma. For any two sets of
orthonormal bases B1 and B2 for W , the mutual correlation
between B1 and B2 is defined as

∆B1,B2

def
“ max

v1PB1,v2PB2

v1 ¨ v2, (7)

where ¨ denotes the inner product.



Lemma 3: The set of normal vectors representing one-
dimensional CP codewords defined in Definition 3 can be split
into qrkpp´1q{ps´1, denoted by b, collections Bi’s, for i P rbs,
where each Bi is an orthonormal basis for W and the mutual
correlation between Bi’s is at most pk´1q

2

q , i.e.,

max
i,jPrbs,i‰j

∆Bi,Bj ď
pk ´ 1q

?
n

. (8)

Proof: The set of polynomials F , defined in (5), can be
split into disjoint subsets such that the polynomials belonging
to the same subset differ only in the coefficient of the degree
one monomial, i.e., the coefficient of x. Note that the constant
coefficient of all the polynomials in F is equal to zero according
to (5). Then, two distinct polynomials f and f 1 in F belong to
the same subset if and only if degpf ´ f 1q “ 1. Consequently,
it can be observed that F is partitioned into qrkpp´1q{ps´1 of
such subsets each of size q. Let c “ 1?

n
pc1, ¨ ¨ ¨ , cnq and c1 “

1?
n

pc1
1, ¨ ¨ ¨ , cn, q, where ci “ χ

`

fpαiq
˘

and c1
i “ χ

`

f 1pαiq
˘

for i P rns. Then,

c ¨ c1
“

ÿ

αPFq

χ˚
`

fpαq
˘

χ
`

f 1
pαq

˘ paq
“

ÿ

αPFq

χ
`

pf 1
´ fqpαq

˘
pbq

ď 0 (9)

where paq follows by (3) and pbq is by Weil bound, specified in
(4), together with noting that degpf ´ f 1q “ 1. Hence, each of
these subsets corresponds to q mutually orthogonal lines in W .
Consequently, the set of unit-norm vectors representing these
lines is an orthonormal basis for W . The upper bound in (8)
can be derived similarly by noting that degpf ´f 1q ď k for any
f and f 1 in F .

Inspired by Lemma 3, we provide a construction for packing
m-planes in Gm,npCq for m ą 1. Let vpiq

1 , ¨ ¨ ¨ ,vpiq
q denote the

orthonormal basis vectors in Bi, for i P rbs, where b is defined
in Lemma 3. Also, let

Φij “

»

—

—

–

vpiq
j
...

vpiq
j`m´1

fi

ffi

ffi

fl

, (10)

for all i P rbs and j P r
X

q
m

\

s. Then,

C def
“ txΦijy : @i P rbs,@j P rt

q

m
usu (11)

is a Grassmann code in Gm,npCq. Note that we have

|C| “ qrkpp´1q{ps´1t
q

m
u.

The normalized minimum distance of C is characterized in
the next theorem.

Theorem 4: The normalized minimum distance δc of the code
C, defined in (11), is lower bounded as

δc ě

c

1 ´
mpk ´ 1q2

n
. (12)

Proof: Consider two distinct codewords C1 “ xΦi,jy and
C2 “ xΦi1,j1 y P C. Note that the rows in Φi,j and Φi1,j1 are
orthonormal. Note also that for i “ i1, ΦH

i,jΦi1,j1 “ 0, since all
the rows of both matrices belong to the same orthonormal basis
which implies that δc “ 1 in this case. Otherwise, i.e., when
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Fig. 1: Comparison of the proposed code construction with lower-
bounds in terms of the trade-off between R and δc for m “ 2.

i ‰ i1, we have ⃦⃦
ΦH

i,jΦi1,j1

⃦⃦2
ď

m2pk ´ 1q2

n
, (13)

which holds by (8). The result then follows by utilizing the
alternative characterization of the chordal distance in (2) to-
gether with the definition of normalized distance provided in
Definition 2.

In Figure 1, we compare the trade-off between the rate R and
the normalized minimum distance δc that the codes defined in
(11) offer at different values of n with the lower bounds pro-
vided in Lemma 1 and Lemma 2. Note that these lower bounds
are of the same type as Gilbert-Varshamov bound and do not
yield explicit constructions. Nevertheless, it can be observed
that the proposed codes can outperform these lower bounds
at low rates, thereby improving these bounds while providing
explicit constructions.

Remark 1: Given a Grassmann code C Ď Gm,npCq one can
construct a code in G2m,2npRq by mapping a matrix Ci with
orthonormal rows such that xCiy P C to

„

ℜpCiq ℑpCiq

´ℑpCiq ℜpCiq

ȷ

, (14)

where ℜp.q and ℑp.q represent the real part and the imaginary
part of their input, respectively. It can be observed that this
mapping preserves the normalized distance between the code-
words. This mapping enables us to construct codes in the real
Grassmannian space using the proposed codes in the complex
space, while keeping the normalized minimum distance and the
size of the code the same, in order to have fair comparisons with
existing code constructions in the real Grassmannian space.

In Table I, we compare the parameters of our proposed codes
with those of the closest explicit construction of Grassmann
codes proposed in [7]. In [7], Calderbank et al. introduce a
group-theoretic framework for packing in G2i,2kpRq for any
pair of integers pi, kq with i ď k. By utilizing the mapping
specified in (14) for our codes in Gm

2 ,n2
pCq, we compare the

blocklength, logarithm of the code size, and the minimum



Our construction Calderbank et al. [7]
m n lnp|C|q d2min n lnp|C|q d2min

4 254 28.36 2.43 256 32.62 2
4 502 43.51 2.44 512 40.25 2
4 1018 74.09 2.10 1024 48.57 2
4 2042 110.2 2.37 2048 57.59 2
8 1018 48.47 4.92 1024 49.87 4
8 2024 81.76 4.3 2048 59.57 4
8 4078 120.5 4.47 4096 69.97 4
8 8186 189.9 4.22 8192 81.07 4
16 2042 53.34 9.86 2048 59.52 8
16 4078 89.36 8.40 4096 70.61 8
32 4078 58.19 19.67 4096 69.19 16
32 8186 97.03 16.86 8192 81.67 16

TABLE I: Comparison of the parameters of packings in Grassman-
nian space provided in this paper to that of proposed by Calderbank et
al. in [7, Theorem 1].

distance of the codes obtained in Gm,npRq with those of the
codes in Gm,npRq from [7]. In all the instances of n and
m “ 4, 8, 16, 32 in Table I, the normalized minimum distance
is equal to 1?

2
for codes from [7] while it is at least 1?

2
for

our codes. Note that n is equal to 2k for the construction in
[7], while for our codes we pick n “ 2p, where p is the
largest prime number with p ă 2k´1, for various choices
of k. It can be observed that our proposed construction offer
significantly larger code size and, consequently, rate comparing
to the explicit construction of [7], as n grows large.

IV. CONCATENATED GRASSMANN CODES

In this section we propose a family of Grassmann codes with
non-zero normalized minimum distance and non-vanishing
rate for asymptotically large blocklength by leveraging con-
catenation schemes that are well-explored in the context of
block codes. To the best of authors’ knowledge, the rate of
all codes with explicit constructions in Grassmannian space,
including those introduced in [7], [20], [30], approach zero as
n Ñ 8. The concatenation idea has been appeared first in
the construction of Elias’s product codes and further developed
later by Forney [22] in Hamming space. The idea has been
utilized since then in various settings in order to construct
codes of long block length from codes of shorter length. In this
section, we extend the concatenation idea from block coding
to Grassmannian coding. To this end, we propose a method to
concatenate a Grassmann code with small blocklength, such
as those introduced in Section III with a certain family of
outer codes in Hamming space and analyze the parameters of
the overall concatenated Grassmann code. This result is then
utilized to derive a bound for Grassmann codes analogous to
Zyablov bound for block codes [23]. Finally, it is shown that
this bound can be achieved in a certain regime by concatenation
of CP codes, proposed in Section III, with algebraic-geometry
(AG) codes.

Let Cin denote a code in Gm,n1
pLq with minimum chordal

distance dc, as defined in (1). Let Φi denote an m ˆ n1 matrix
with orthonormal rows spanning the subspace Ci P C, for
i “ 1, 2, . . . , |Cin|. Let Cout be a rn2, k, dH sq linear code over
a finite field Fq such that q ď |Cin|, where dH denotes the

minimum Hamming distance of Cin. For all codewords ci P Cout

where i P rqks, let ciplq P Fq denote the l-th coordinate
of ci. Then, the concatenation of Cin with Cout is a code in
Grassmannian space defined as follows:

Cout ˛ Cin
def
“ txΨiy : Ψi “

1
?
n2

rΦηpcip1qq| . . . |Φηpcipn2qqs,

(15)

@i P rqksu (16)

It can be verified that Ψi’s are m ˆ n1n2 full-rank matrices
having orthonormal rows. The rate and the minimum distance
of the concatenated code Cc

def
“ Cout ˛ Cin is characterized in the

following theorem in terms of parameters of Cin and Cout.
Theorem 5: Let Cin be a code in Grassmannian space with

the rate R and the normalized minimum chordal distance δc and
Cout be a q-ary code with rate r and the normalized minimum
Hamming distance δH . Then, the concatenated code Cc, as
defined in (15), is a code with rate rR and the normalized
minimum chordal distance δ1

c satisfying:

p1 ´
a

1 ´ δ12
c q ě δHp1 ´

a

1 ´ δ2c q.

Proof: Let Ψi,Ψj be matrices with orthonormal rows
spanning two distinct subspaces/codewords in Cc, as character-
ized in (15). Then one can write

ΨiΨ
H
j “

1

n2

n2
ÿ

l“1

ΦηpciplqqΦ
H
ηpcjplqq. (17)

Note that⃦⃦
ΨiΨ

H
j

⃦⃦
ď

1

n2

n2
ÿ

l“1

⃦⃦⃦
ΦηpciplqqΦ

H
ηpcjplqq

⃦⃦⃦
(18)

ď
pn2 ´ dHq

?
m ` dH

a

m ´ d2c
n2

(19)

“
?
mp1 ´ δHp1 ´

a

1 ´ δ2c qq, (20)

where (18) holds by applying the triangle inequality to (17),
and (19) is by the definition of chordal distance in (1) and
recalling that the minimum distance of the underlying codes Cin

and Cout are equal to dc and dH , respectively. By utilizing the
alternative characterization of the chordal distance provided in
(2), the definition of normalized chordal distance in Definition 2
and utilizing the upper bound derived in (20), one can write

δ1
c “

1
?
m

pm ´
⃦⃦
ΨiΨ

H
j

⃦⃦2
q

1
2 ě

a

yp2 ´ yq, (21)

where y
def
“ δHp1 ´

a

1 ´ δ2c q. By noting that y is less than or
equal to 1, (21) implies that y ď 1 ´

a

1 ´ δ12
c , i.e.,

p1 ´
a

1 ´ δ12
c q ě δHp1 ´

a

1 ´ δ2c q,

which completes the proof.
The lower bound obtained in Theorem 5 on the normalized

minimum chordal distance of the concatenated code Cc in
Grassmannian space resembles the well-known bound on the
normalized minimum Hamming distance of a concatenated
block code stating that it is less than or equal to the product
of the normalized minimum distances of the constituent codes.
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Fig. 2: Comparison of the Zyablov bound and GV bound in Grassmannian
space in terms of the rate R versus the normalized minimum distance δc.

Next, we characterize a lower bound on achievable rates of
Grassmann codes for fixed δc. A similar lower bound has been
obtained for concatenated codes in Hamming space and is
known as Zyablov bound [23]. This is done by constructing a
concatenated code having an inner code with rate meeting GV-
bound, as specified in Lemma 1 and an MDS outer code, e.g.,
Reed-Solomon code, and using the result of Theorem 5. The
result is provided in the following theorem.

Theorem 6: There exist concatenated Grassmann codes in
Gm,npLq having normalized chordal minimum distance δc and
the rate

R Á max
0ăδă1

βm lnp
1

δ
qp1 ´

1 ´
a

1 ´ δ2c
1 ´

?
1 ´ δ2

q (22)

for n Ñ 8, where β “ 1, 2 for L “ R,C, respectively.
Proof: Let Cin be a Grassmann inner code with the

normalized chordal minimum distance δ and the rate R meeting
the lower bound specified in Lemma 1. Let also Cout denote an
MDS code of normalized Hamming minimum distance of δH
and the rate meeting the Singleton bound, i.e., r “ 1 ´ δH .
Then (22) follows by noting that the result of Theorem 5 holds
for all 0 ă δ ă 1.

We refer to the lower bound introduced in Theorem 6 as
Zyablov bound in Grassmannian space or Zyablov bound in
short when the underlying metric space is clear from the
context. The Zyablov bound in the Grassmannian space is
then regraded as a benchmark to evaluate the performance
of concatenated Grassmann codes with explicit constructions
in terms of the trade-off between the rate and the minimum
distance. Note that the GV bound in the Grassmannian space,
characterized in Lemma 1, provides a lower bound on the rate
of Grassmann codes with no restriction on their construction.
These two bounds are compared in Figure 2. Note that both the
bounds scale linearly with β and m. Hence, we fixed β “ 2 and
m “ 2 in the plot in Figure 2.

In the last part of this section, we propose a family of
concatenated Grassmann codes having our proposed CP codes,
introduced in Section III, as the underlying inner code together
with a certain family of algebraic-geometry (AG) as its outer
code. Employing this certain family of AG codes as an outer
code is inspired by the fact that the concatenation of them
with binary inner codes provide a family of binary codes with

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

δc

R

CP (k “ 1, n “ 29)˛ AG
CP (k “ 2, n “ 7)˛ AG

CP (k “ 2, n “ 11)˛ AG
GV bound

Zyablov bound

Fig. 3: Comparison of the parameters of concatenated Grassmann codes
employing CP inner code and AG outer code with GV and Zyablov bound. The
parameters of the CP codes used are illustrated in the plot. Other parameters are
β “ 2 and m “ 1.

the largest known rate asymptotically for a fixed minimum
Hamming distance.

For a survey of the results on constructions and parameters
of AG codes see, e.g., [31]. In particular, we use the following
result, due to Katsman et al. [32] that enables us to provide an
explicit construction for concatenated Grassmann codes having
polynomially complex encoder and decoder. Next, we recall
this result.

Lemma 7 ( [32]): For any q “ p2l where p is prime and
l is a positive integer, there exist AG codes with polynomial
construction over Fq , the rate r and the normalized minimum
distance δH satisfying:

r ` δH “ 1 ´
1

?
q ´ 1

. (23)

In Figure 3 we compare the performance of concatenated
Grassmann codes with our CP codes as the inner code and AG
codes of [32], with parameters characterized in Lemma 7, as the
outer code. The plot illustrates that the concatenated Grassmann
codes introduced in this section surpass Zyablov bound in low-
rate/high-minimum-distance regime, implying that CP codes
offer Grassmann codes with good parameters for this regime.
Also, it shows the effectiveness of the concatenation method
proposed in this section to construct Grassmann codes in the
large blocklength regime.
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