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Abstract—Real-time sampling and estimation of autoregres-
sive Markov processes is considered in random access channels.
Two classes of policies are studied: (i) oblivious policies in which
decision making is independent of the source realizations, and
(ii) non-oblivious policies in which sources are observed causally
for decision making. In the first class, minimizing the expected
time-average estimation error is equivalent to minimizing the
expected age of information (Aol). Lower and upper bounds
are provided for the achievable estimation error in this class
and age-based threshold policies are shown to provide a two-
fold improvement compared to the state-of-the-art. In the second
class, an error-based threshold policy is proposed: a transmitter
becomes active when its error exceeds a threshold in which
case it transmits probabilistically following slotted ALOHA. A
closed-form expression is derived for the estimation error as a
function of the peak age, the transmission delay, a term which
we call the silence delay, as well as the source realization.
It is analyzed approximately by considering the underlying
source as a discretized Wiener process. The proposed threshold
policy provides a three-fold improvement compared to oblivious
policies and its performance is close to that of centralized greedy
scheduling.

Index Terms—Remote Estimation, Age of Information, Sam-
pling, Decentralized Systems, Random Access, Collision Channel,
Slotted ALOHA.

I. INTRODUCTION
A. Motivation

The Internet of Things (IoT) paradigm is changing our
conception of communications: It is no longer realistic to as-
sume that information is known and stored at a source, waiting
to be transmitted and replicated at the destination. Oftentimes,
information is to be collected and communicated real-time
within a decentralized network. For example, in applications of
remote estimation and control, physical processes are observed
at decentralized sensors that communicate wirelessly with a
fusion center. In such applications, it is not realistic to assume
a central scheduler that monitors all the sensors for decision
making. In this paper, we study the problem of decentralized
sampling and remote estimation of autoregressive Markov
processes over a wireless collision channel.

B. Related Work

Below, we discuss three major facets of the problem.
Sampling: Remote estimation of physical processes re-
quires efficient sampling and communication strategies that
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minimize not only the estimation error cost but also the sam-
pling and transmission costs. With this viewpoint, prior works
have studied optimal sampling strategies and their structural
properties for various point-to-point scenarios. [1] designs
optimal sampling strategies with limited measurements. [2]
studies the problem for continuous sources. [3] proves the joint
optimality of symmetric thresholding policies and Kalman-like
estimators for autoregressive Markov processes. [4] formulates
a two-player team problem and designs efficient iterative algo-
rithms. Systems with energy harvesting sensors are considered
in [5]. Noisy channels and packet drop channels are considered
in [6], [7]. The above-mentioned works have all considered
single-user channels and the developed methodologies do not
generalize to random access networks with multiple sensors.

Reliable v.s. Timely Communication: In estimation
and control applications, timeliness of communication is key
and that is why traditional rate-distortion frameworks and
channel coding paradigms that propose asymptotic block
coding solutions are not applicable. More importantly, it is
oftentimes observed that as the rate and/or reliability of com-
pression/communication schemes improve, their timeliness
decrease. This aspect of sampling and remote estimation is
barely studied in the estimation literature. One of the few
existing works in this direction is [8] which proposes and
optimizes a hybrid automatic repeat request (HARQ)-based
remote estimation protocol and improves the performance of
the remote estimation systems compared to conventional non-
HARQ policies. Recently, tradeoffs between reliability/rate
timeliness of communication have been looked at in the
context of age of information (Aol) — a metric of timeli-
ness defined in [9]. In channels with queue constraints, [10]
establishes a tradeoff between Aol and rate. [11] finds the
optimal blocklength of channel coding for minimizing Aol.
[12] provides a centralized scheduling framework to attain
tradeoffs between rate and Aol in broadcast channels. [13]
proposes decentralized transmission strategies for random ac-
cess channels that benefit from the availability of fresh packets
and improve both communication rate and Aol. It is known
that Aol is closely related to the expected estimation error
of schemes that are oblivious to the processes they monitor
[14]. Non-oblivious sampling schemes are, however, signal-
dependent and known to outperform oblivious schemes. In
[14], threshold policies are shown to be optimal for point-to-
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point channels with a random delay and closed form solutions
are found for the optimal threshold value. It is further shown
that the oblivious policies can be far from optimal. We build
on our prior work in [13] that concerned Aol minimization
and propose decentralized threshold policies for minimizing
estimation error in random access channels with many users.

Distributed decision making: In random access net-
works, a large number of sensors communicate with a single
fusion center over a wireless channel. To avoid collision, most
works in this direction have considered centralized oblivious
policies that do not observe the process realizations for deci-
sion making (see, e.g., [15]-[21] and the references therein).
In the IoT applications, however, it is not realistic to assume
a central scheduler that monitors all the sensors for decision
making. We seek decentralized solutions in which each sensor
decides when to sample and transmit information based only
on its local observations. In decentralized setups (and in the
context of control, rather than estimation) [22], [23] consider
wireless control architectures with multiple control loops over
a random access channel and optimize the access rate of
the sensors who randomly communicate. Policies that adapt
to the state of the systems are proposed in [24]. The work
[25] (which was carried out concurrently and independently)
designs decentralized policies for the remote estimation of i.i.d
processes over a collision channel. Decision making in both
[24] and [25] is thresholding and based on the realization of
the process (or a function of that). But since neither of the
two works exploits channel collision feedback, adaptations of
them (or other policies that impose a fixed rate on the channel)
are far from optimal in our setup.

C. Contributions

In this paper, we study sampling and remote estimation
of M independent random walk processes over a wireless
collision channel. As opposed to all prior works, we seek
decentralized solutions in which decision at each node is based
solely on its local observations and channel collision feedback.
Our goal is to minimize the estimation error, and specifically
a normalized metric that we call the normalized expected
weighted sum of estimation errors (NEWSEE). This metric
looks at the expected time-average estimation error, normal-
ized by the number of source nodes M. We are interested in
the asymptotic regime where M — oo.

Two general classes of policies are considered, namely
oblivious policies and non-oblivious policies. In the former
class, decision making is independent of the processes that are
monitored and we prove that minimizing the expected time-
average estimation error, in the class of oblivious policies,
is equivalent to minimizing the age of information. This
leads to lower and upper bounds on the minimum achievable
estimation error in this class along with efficient oblivious
policies that are age-based. In particular, the NEWSEE under
age-based policies is lower bounded by .8802 and upper
bounded by $o?.

We next ask if non-oblivious policies can provide a
significant gain by observing the processes as they progress.

Since all source nodes are provided with the channel collision
feedback, they can compute their age-function and reproduce
their respective estimated processes (at the destination) in each
time slot. Furthermore, using the collision feedback, the nodes
can implicitly coordinate for communication. We define the
notion of error process at each node which is a function of the
sample values and age. We then propose a threshold policy,
called error-based thinning, in which source nodes become
active only when their corresponding error process is beyond
a given threshold. Once a node becomes active, it transmits
stochastically following a slotted ALOHA policy.

To find an optimal threshold and find a closed-form solu-
tion for the resulting NEWSEE, we first provide a closed-form
expression for the NEWSEE that is a function of the peak age,
the transmission delay, a term which we call the silence delay,
as well as the process realization. We approximately find the
NEWSEE under an optimal threshold policy by considering
the underlying autoregressive Markov process as a discretized
Wiener process. An optimal threshold is then shown to be
approximately ov/eM and the resulting NWESEE to be %02.
The approximation error increases linearly as a function of the
variance of the innovation process and decreases as M gets
large.

Simulation results show that the proposed decentralied
threshold policy outperforms oblivious policies. Moreover,
oblivious policies are shown to outperform all state-of-the-art
policies (both oblivious and non-oblivious) that impose a fixed
rate (without using the collision feedback). Finally, it is nu-
merically shown that the performance of the optimal threshold
policy is very close to that of centralized greedy policies that
schedule transmissions according to the instantaneous error
reduction or age reduction.

The paper is organized as follows. In Section II, we
introduce the system model. Oblivious policies are studied in
Section III and non-oblivious policies are discussed in Sec-
tion IV. Simulation results are presented for various policies
in Section V and our assumptions and derivations are verified
numerically. Finally, we conclude in Section VI.

D. Notation

We use the notations E[-] and Pr(-) for expectation and
probability, respectively. Scalars are denoted by lower case
letters, e.g. s, and random variables are denoted by capital
letters, e.g. S. The notation A ~ B implies that A has the
same distribution as B and N(0, 0?) stands for the Gaussian
distribution with mean 0 and variance 0. The notations O(-)
and o(-) represent the Big O and little o notations according
to Bachmann-Landau notation, respectively.

II. SYSTEM MODEL

Consider a system with M statistically identical sensors
and a fusion center. We often refer to the sensor nodes as nodes
or transmitters and the fusion center as the receiver/destination.
Let time be slotted. Each node ¢, ¢ = 1,2,--- , M, observes
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a process {X;(k)}r>o which is a random walk process as
follows

Xi(k+1) = X;(k) + Wi(k) (D

where W;(k) ~ N(0,02). The processes {X;(k)}72, are
assumed to be mutually independent across ¢ and for simplicity
we let X;(0) = 0.

At the beginning of each time slot, the nodes have the ca-
pability to sample the underlying process and decide whether
or not to communicate the sample with the receiver. The
communication medium is modeled by a collision channel:
If two or more nodes transmit in the same time slot, then
the packets interfere with each other (collide) and do not get
delivered at the receiver. We use the binary variable d;(k)
to indicate whether a packet is transmitted from node ¢ and
delivered at the receiver in time slot k. Specifically, d;(k) =0
if node 7 does not transmit or if collision occurs; d;(k) = 1
otherwise. We assume a delay of one time unit in delivery for
packets. At the end of time slot k, all transmitters are informed
(through a low-rate feedback link) whether or not collision
occurred, which is indicated by an indicator ¢(k). If collisions
happen in time slot k, then ¢(k) = 1; if a packet is delivered
successfully at the receiver or no packet is transmitted, then
c(k)=0.

We assume that the buffer size of every transmitter is one
packet and that new packets replace older undelivered packets
at the transmitter. This assumption relies on the fact that the
underlying processes that are monitored are Markovian.

The receiver estimates the process in every time slot
based on the collection of the received samples. Denote by
X;(k) the estimate of X;(k) in time slot k. We define the
following normalized expected weighted sum of estimation
errors (NEWSEE) as our performance metric:

L™ (M) = lim E[L%]

K—o0

K
LROD = 57 22 ¢ 22 (60~ %)’

where M is the number of sources, m € II refers to the
sampling and transmission policy in place, and II is the set of
all decentralized sampling and transmission policies. Note that
the metric (2) is normalized by M. This allows us to study
the asymptotic performance in the regime of large M. The
minimum attainable NEWSEE is then denoted by L(M):

L(M) = min L™ (M). 3
(M) = min L™(M) 3)
Our objective is to design decentralized sampling and trans-

mission mechanisms to attain L(M).

Consider the " node. Let {kéi)}gzo be the sequence

of time slots at the end of which packets are received at the
destination from node 4. In any time slot &, ké?l <k< k(l),
the latest sample from node ¢ is received at ké?l and since
the delay is one time unit, it is time stamped at the beginning

of kéi)l So the age of information (Aol) [13] with respect to
node 7, denoted by h;(k), is

ha(k) =k — k.. &)

Without loss of generality, assume k:((f) = (. At the beginning
of time slot k, the receiver knows the information of all packets
delivered before time k, ie., {X;(j) ?;é and reconstructs
X, (k) by the minimum mean square error (MMSE) estimator:

-1
t=0] "
For the class of policies that we consider in this paper

(oblivious policies and symmetric thresholding policies), the
MMSE estimator reduces to a Kalman-like estimator:

Xi(k) =E [ X () [{ X (k")

Xi(k) =E[X(k)| X (k" )] = Xi (k). (5)

One of the major challenges in this problem arises from
the decentralized nature of decision making. A decentralized
policy is one in which the action of each node is only a
function of its own local observations and actions. In this
setup, the action of node 7 at time k£ depends on the history
of feedback and actions as well as casual observations of the
process {X;(j)}j<k-

We also consider a simpler class of policies I, called
oblivious policies, in which the action of each node depends
only on the history of feedback and actions at that node.
In particular, oblivious policies do not take into account the
realization (value) of the samples, but only the time they were
sampled, transmitted, and received (if successfully received).
We denote the minimum attainable NEWSEE in the class of
oblivious policies by

L(M) = min L™(M). (6)
well’

We argue in section III that this simplification equivalently
transforms the estimation problem into the problem of timely
communication of packets for age minimization. By addition-
ally exploiting the value of the samples, in Section IV, we
design and analyze decentralized mechanisms that outperform
oblivious schemes in minimizing the expected average estima-
tion error.

ITII. OBLIVIOUS POLICIES AND AGE OF INFORMATION

Oblivious policies are independent of the processes they
observe and they are therefore less costly to implement.
Moreover, they can still benefit from the channel collision
feedback to (i) quantify how stale the information at the
receiver has become (in order to decide when to sample and
communicate) and (ii) adapt to the channel state (for commu-
nication purposes). In this section, we show that minimizing
NEWSEE in the class of oblivious policies is equivalent to
minimizing the normalized expected weighted sum of Aol
(NEWSAOoI) as we have previously defined in [13].

First, we establish the following relationship between the
expected estimation error and the expected age.
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Lemma 1. In oblivious policies, the expected estimation error
associated with process i has the following relationship with
the expected age function:

E[(X;(k) — Xi(k))’] = B[ (k)]o>. (7)

Remark 1. Lemma 1 does not hold for non-oblivious policies.
As a matter of fact, finding E[(Xz(k)—XZ(k))Q] in closed-form
is non-trivial and its numerical computation can be intractable
when M is large. The reason is that even though the estimation
error is the sum of h;(k) Gaussian noise variables, once we
condition on h;(k), their distributions change because h;(k)
can be dependent on the process that is being monitored.

Proof. The proof of Lemma 1 is given in [26]. O
Lemma 1 is reminiscent of [27, Lemma 4]. Using

Lemma 1, the metric NEWSEE in (2) can be re-written as
follows:

L7(M) = lim o2 J™ (M) ®)
where
1 L1 &
J”(M):WZEZ]E[IJ(@}. )
=1 k=1

Note that J™(M) is only a function of the age function
hT (k). The metric in (9) is the NEWSAoI defined in [13]
and, threfore, the decentralized threshold policies of [13]
apply directly. In particular, [13, Algorithm 2] outlines a
stationary age-based thinning (SAT) policy in which a source
transmits only when the corresponding Aol is larger than a pre-
determined threshold. Using this algorithm, we can achieve the
following age performance in the limit of large M:

: SAT _ ¢
i 00 = 5 0
Jim LS(a1) = 202. (11)

Results from [13, Proposition 1] also lead to the following
lower bound on NEWSAol J7(M) for any decentralized
policy 7:

lim J™(M) > .88.

M — o0

12)

Using (11) and (12), we arrive at the following proposition.
Proposition 1. The minimum attainable NEWSEE in the class
of oblivious policies has the following bounds

880% < lim L(M) < —o°. (13)

T M—oo

N o

A. Comparison with Oblivious Centralized Policies

In this section, we compare the SAT policy in [13,
Algorithm 2] with an oblivious centralized policy — the Max-
Weight (MW) policy [12], [13], [28]-[30]. Denote 7" (k) =

{kj(-i) ?:0 with kjél) < k. We devise the MW policy using

techniques from Lyapunov Optimization. Define the Lyapunov
function

1 & o
L(k) = 57 2 (X:(k) = Xi(k)) (14)
and the one-slot Lyapunov Drift
LD(k) = E[L(k 4+ 1) — L(k)|TD (k). (15)

We devise the MW policy such that it minimizes the one-slot
Lyapunov Drift.

Definition 1. At the beginning of each slot k, the MW policy
chooses the action i* such that

hi« (k) = max h; (k). (16)
K3
Note that this policy is exactly the MW policy derived in
[30] for age minimization. From Lemma 2 in [28, Section III],
the policy defined in Definition 1 is optimal.

Proposition 2. The MW policy in Definition 1 minimizes the
one-slot Lyapunov Drift in each slot, and

o2

lim LMY(M) = —.

M—co 2 an

Proof. The proof of Proposition 2 is given in [26, Ap-
pendix A]. O

Comparing (11) with (17), we have

) LS AT ( M)

lim = =e€
The NEWSEE of the decentralized SAT policy is e times that
of the optimal centralized policy in the limit of large M. The
conclusion coincides with one’s intuition: the throughput of the
decentralized SAT policy in [13] is e~ !, while the throughput
of the centralized MW policy is 1, which implies the amount
of delivered fresh packets in the centralized MW policy is e
times that of the decentralized SAT policy. We illustrate their
performances through simulations in Section V.

IV. NON-OBLIVIOUS POLICIES

We now consider a more general class of policies in
which nodes can observe their corresponding Markov pro-
cesses for decision making. In other words, we seek to benefit
from not only the Aol, but also the process realization (in
a casual manner). Clearly, if all nodes try to transmit their
samples at every time slot, no packet will go through due
to collisions. The nodes, therefore, need to transmit packets
with a lower rate. This means that they have to decide,
in a decentralized manner, when to transmit. Motivated by
the optimality of threshold policies in various point-to-point
setups [1], [2], [5], [14], as well as their applications in age
minimization over many-to-one random access channels [13],
we propose threshold policies for decision making.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on April 15,2022 at 15:48:30 UTC from IEEE Xplore. Restrictions apply.



IEEE INFOCOM 2021 - IEEE Conference on Computer Communications

A. Error-based Thinning

Define the error process 1;(k) at node i as follows:

¥i(k) = | Xi(k) — Xi(k)|-

Since the transmitters have access to collision feedback, they
can calculate X;(k), and hence v;(k), in each time slot
and use this information for decision making. One way to
understand ;(k) is as follows. At time k, if the sample
of node i is successfully delivered, the estimation error will
reduce by ;(k). So ;(k) quantifies the amount of instanta-
neous estimation error reduction upon successful delivery from
transmitter z. With this viewpoint, we devise a threshold policy
in which transmitters prioritize packets that have large ;(k).
In particular, we design a fixed threshold /3 to distinguish and
prioritize nodes that offer high instantaneous gain.

The action of each node is thus as follows: node i
becomes “active” if the error process 1;(k) has crossed a
pre-determined threshold 3. Once a transmitter is active, it
remains active until a packet is successfully delivered from that
node. Active nodes transmit stochastically following Rivest’s
stabilized slotted ALOHA protocol [31, Chapter 4.2.3]. Denote
the number of active nodes and an estimate of the number
of active nodes in time slot k as N(k), N(k), respectively.
In particular, each active node transmits its sample with
probability py(k) which is calculated adaptively as follows
based on an estimate of the number of active nodes':

(18)

. 1
py(k) = min(1, W)

) min (N(k 1)+Ak) +(e 2) LM) ifek 1)=1
N(k) =
® min (i(k) + (N(k: 1) 1)+ ,M) if ek 1)=0.
(19)
Here, A(k) is an estimate of A(k), and A(k) is the sum arrival
rate in time slot k. It is well-known that the maximum sum
throughput of the slotted ALOHA is e 1 [31, Chapter 4.2.3]
and the regime of interest is A\(k) < e~! when k is sufficiently
large. In our setup, A(k) corresponds to the expected number
of nodes that become active in time slot k (see Definition 2
ahead). We refer to A(k) as the activation rate or the effective
arrival rate in time slot k.

So far, we have outlined a threshold policy in which a
node decides to become active if its local error process is
larger than a pre-determined threshold value 5. We call this
procedure Error-based Thinning (EbT). The main underlying
challenge is, however, in the design of an optimal 3. In the rest
of this section, we will find an (approximately) optimal choice
for 3 and analyze the corresponding NEWSEE approximately.
We start by some preliminaries.

B. Preliminaries

Consider node 7 and an inter-delivery interval (kg?l, kgi}]

(see Figure 1). The inter-delivery time I,gi) is given by [ gi} =

!Since the sensors have unit buffer sizes, the number of “backlogged”
nodes N (k) in Rivest’s algorithm is at most M. One notes that this has
been incorporated in (19).

i i
1 I' 1 1 1 T 1 1 -‘I
KR ko K
- — .
1Y

Fig. 1: an example of Jf), Ugi), and If). Packets are
generated at the beginning of every time slot, so Jg“) arrival-
s/generations means Jél) — 1 time slots.

kgi) - kgi_)l. For any time slot k, kgl <k< kgi}, we can
write the error process (k) as follows:
k—1
alk) = 1X(k) - Xa(k) = | 30 waGi)].

j=k{,

The term on the right hand side of (20) is the sum of h;(k)

independent Gaussian noise variables (see (4)). Indeed, (20)

demonstrates that 1;(k) contains both the information of

sample values as well as the age with respect to source 1.
We next define “active” nodes as follows.

(20)

Definition 2 (Active Nodes). If there exists a time slot ko €
(KD, k9] such that (i) i(5) < B for all k", < j < ko and
(ii) (ko) > B, then we say that node i is active in the entire

interval [ko, kgi}].

Definition 3 (Silence Delay and Transmission Delay). Let ky
be as defined in Definition 2. We define Jgi) = ko — ‘L?_}1 as
the silence delay, and Ugi) = k?) — ko +1 as the transmission
delay (see Figure 1).

An active source becomes inactive immediately after a suc-
cessful delivery. By the above two definitions, the inter-
delivery time I, F) consists of two components — the silence
delay Jgi) and the transmission delay Uf):

I =g 1409, @21)

In this equation, Jf} is the first time slot after kg?l at which
(k) > S (as defined in Definition 3). So Jg“) — 1 represents
the number of time slots in which node i is not active, and UF)
represents the number of time slots in which node 7 is in active
state. Recall that active nodes transmit with probability ps(k).
So UF) may be larger than 1 either because the node is active
and it does not transmit or because the node transmits and
experiences collision. By the stationarity of the transmission
scheme, the processes {Ié“)},;_.g, {Jf}}i,g, and {Utgi}}g,g are
statistically identical across ¢z and ¢. We define Ig, Jg, and
Ugs to have the same distributions as {I§')}i,g. {Jé')}i,g. and
{UD}, 4. respectively.

Let {W;}; be an i.i.d sequence with the same distribution
as {W;(k)};. Define

n

Sn=Y_W;

j=1
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Using the definition of h;(k) in (4), and by the stationarity of
{W;};. we conclude that

d),-(k) ~

Recall that Jg has the same distribution as Jf}. Then, Jg is
the smallest time index at which |S,| > 8. Jg is a stopping
time for Sy,. From [32, Chapter 7.5.1, Lemma 7.5.1], it follows
that Jg has finite moments of all orders. Moreover, using [32,
Chapter 7.5.2], we have

E[S2,] = 0?E[J5].

1She(i)l- (22

(23)

Finding an optimal /8 is non-trivial because /5 impacts
both Jg and Ug. In the remainder of this subsection, we
establish some useful expressions for the expectations of Ig
and Ug in an optimal design.

Let a(k) denote the number of newly active nodes at
time k. We have E[a(k)] = A(k), where A(k) is the expected
sum rate/throughput in time slot k& (imposed by our sampling
and transmission policy). Now recall that in a traditional
slotted Aloha-based random access channel, the maximum
sum throughput is asymptotically e~1. This is true also for
the case with buffer size 1 where only the latest packets are
stored, as discussed in [13, Appendix E]) and which applies
to our setting here. Define ¢(M) as the sum throughput when
the system contains M sources.

Definition 4. The random access system is stabilized® if Ay, =
limsupy_, ., A(k) < e !

We provide our analysis under the following two assumptions:

Assumption 1. Under an optimal 3, when M is sufficiently
large, {a(k)}32 , are approximately independent.

Assumption 2. Under an optimal 3, when M is sufficiently
large, the random access system is stabilized, and \, =~ e~ !,

c(M) =~ e L.

Assumptions 1, 2 are given for analysis tractablility, and
we will verify them for our proposed (3 later. In the rest of the
paper, let M be sufficiently large. We analyze the optimal 3
under assumptions 1, 2. To transmit as many fresh samples as
possible, 3 is designed such that A(k) is as large as possible.
Reca]l that we focus on the regime where )\(k) is close to
e~! when k is large. From Assumption 2, Am e~L. For
tractability in analysis, we let the estimate )\(k) e~ 1 for
all k.

Note that the system is stationary, so Uf) (or Ug) is a
random variable, hence Uf) (or Ug) is measurable. Recall that
Jg has finite moments of all orders. Then, Iz is measurable.
We remark that {1, él)}g is not independent but rather weakly
correlated across £ as we prove in [26, Appendix B]. We can
thus conclude that the strong law of large numbers holds for
{Ijgi)}g, see also [33].

2Here, contrary to traditional slotted ALOHA schemes, the term “stabi-
lized” does not refer to “stability of queues” in our problem setup. However,
similar to traditional slotted ALOHA schemes, the term “stabilized” implies
that the system is stationary, which has sum arrival rate less than e !
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Recall that N (k) is the number of active nodes at the end
of time slot k. The fraction of active nodes at the end of time
slot k is hence N (k)/M.

Definition 5. Define ag(k) as the expected fraction of active

nodes:

E[N (k)]
T

If 8 = 0, then all nodes are active and ag(k) = 1; if 8 = +oo,

then all nodes are inactive and o, (k) = 0. In the limit

of & — oo, we denote the expected fraction of active nodes
by ag:

as(k) = (24)

E[N(k)]
ap = Bim =5 (25)
Lemma 2. When the system is stabilized, ag exists, and ag =
E[Ug]
E[lg]*

Proof. The proof of Lemma 2 is given in [26, Appendix C].
O

Note that ag = L[% represents the probability of each

node being active when the system is steady. Since ag exists,
then, when k& — oo, the expected number of nodes that become
active in every time slot is (1 — ag)M ag, and

(1—ag)Mag = k]im A(k) =limsup A(k) = M- (26)
—roo k—yo0
Lemma 3. When the system is stabilized,
M
Ellsl= 2on @7
M
ElUg] = ——=ag =o(M 28
[ ,3] C(M) Qg 0( ) (28)

where ag is the expected fraction of active nodes in the steady
state as defined in (25).

Remark 2. Lemma 3 coincides with one’s intuition. Recall
that the throughput of the channel is ¢(M), so the throughput
for each node is M (due to the symmetry). From the
perspective of expectanon, every successful delivery takes
C(M) time slots, i.e., E[Ig] = . In addition, note that the
expected number of active noa; is Mag, so the throughput
of every active node is %%Bl. Again, from the perspective of
expeaation, every successful de!ivery from active nodes takes

maﬁ time slots, i.e., E[Ug] = maﬁ
Proof. The proof of Lemma 3 is given in [26, Appendix D].

O

C. The closed form of NEWSEE

We next derive a closed form expression for the attained
NEWSEE, LEPT(M). Using (22), we re-write (2) as follows.

M K
. 1
LPT(M) = lim E[zo > Sh )

i=1 k=1

(29)
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Define A;i) as the sum of Sii(k) in the interval k €
(ké?p kéi)]:

()
k/

Y Shw

k=k{, 41

Al = (30)

The next lemma shows that the expected time average in (29)
takes a closed form expression in terms of E[Ag] and E[I3].

Lemma 4. The proposed EbT policy attains the following
NEWSEE:

1 E[Ag]
LT (M) = — ==& 31
Proof. The proof of Lemma 4 is given in [26, Appendix E].
O

The NEWSEE in (31) can now be re-written as follows

1 E[T 5]

EbT
L M) =5 E[14]
el o
M E[1g]
SLEYT (M) + LEPT (M)
where
| E[T)2, 7]
EbT _ -
and (34)
LEYT (M) (35)
R[] y
M B[] 0
_ 1 2E[JB)(E[Up] — 1) + E[UF] —E[Ua}gg
M 2E|[I5] '
37

The equality in (37) is proved in [26, Appendix F]. Note that
LP'T is a function of the peak age Iz, the silience delay
Jg, the transmission delay Upg, and the process realization
through W;.

D. Optimizing 8 Approximately
Finally, we find approximate closed form expressions for
LEYT (M) and LEYT(M). Let M be sufficient large. From
(27) and (28) in Lemma 3, E[I5] = /i and E[Us] = o(M),
then (37) can be re-written as
|1 EwY
M 2E[Ig]
The following lemma comes in handy in our approxima-
tions.

LY (M o’ (38)

Lemma 5. Consider a Brown motion By. Define J = inf{t >
0,|Bt| > a}. The following holds:

(1) [34, Chapter 7,4 Theorem 7.5.5, Theorem 7.5.9] E[J] =
a? and E[J?] = 2%
J
(2) E[fo B2dt] = %E[ﬂ] = %a‘l.
Proof. The proof of Lemma 5 is given in [26, Appendix G].
O

.S . . . .
For any j, =2 is Gaussian with mean zero and variance

j. We propose to use B; as an approximation of % Letting
a = (/o in Lemma 5, we obtain

B 56!
E[Js] =~ ot E[J3] ~ 301 (39)
Jﬂ ) 54 1 )
E[) s3]~ o7 ~ 1gElA) (40)
j=1

The approximation error analysis is provided in Section IV-E.
Substituting (40) into (32), we find the following approx-
imation for LZT":
1 72 2
. E[J5]| +EU
2ME[I4]
Theorem 1. Let M be sufficient large. The optimal B* is
approximately given by

B =oveM,
and
LB = 52, 42)
6
Proof. The proof of Theorem 1 is given in [26, Appendix H].
O

Finally, assumptions 1, 2 are verified (approximately) for
£* when M is sufficiently large in [26, Appendix I].

It is interesting to compare the performance of the
proposed EbT policy with the oblivious decentralized and
centralized policies of Section III. From (8), (9), and (10),

: SAT _ ¢ 2
i L7 M) = 5o
Using (11) and (42), we obtain
LSAT(M)

im ——= ~3.

M=o0 [EVT(D[)
The NEWSEE of oblivious SAT policy is around three times
that of the EbT policy. From (13), the NEWSEE of thze
oblivious MW policy of Section III is asymptotically <%-
and comparing with £0% = 0.4550% one concludes that the
NEWSEE of the EbT policy is close to that of the oblivious
MW policy. We remark that since LET (M) is an estimate
of LEYT(M), these comparisons are not exact. We will also
compare the numerical performance of Algorithm 1 with
oblivious policies as well as other state-of-the-art algorithms
in Section V.

Algorithm 1 below summarizes the proposed decentral-

ized error-based transmission policy.
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Algorithm 1 Error-based Thinning (EbT)

Set the time horizon K. R
Set initial points: k£ = 1; h;(0) = 1, X;(0) = X;(0) =0
) p—

for i = 1,2,---, M; ¢(0 0; d;(0) = 0; pp(0) = 1,
N(0) = 0.

Set 8* = ov/eM.

repeat

Step 1: For each node 4, observe the collision feedback
c(k—1) and d;(k — 1) at the end of time slot £ — 1, and
update k;él)’s and X;(k), respectively.
Step 2: For each node i, observe X;(k) (which evolves
according to (1)) and compute v;(k) by (18).
Step 3: If ¢;(k) < *, then node ¢ does not transmit
packets; otherwise it transmits a packet with probability
po (k).
Step 4: Calculate p,(k) by (19) in which (k) = e~ 1.
until £t = K
Calculate

E. Approximation Error Analysis

Now we analyze the approximation error. In particular,
we discuss how the approximation error changes with o. The
approximation error of LT consists of (i) the approximation
error in (39) and (ii) the approximation error in (40), both of
which incurred when approximating an autoregressive Markov
process with a Wiener process. In other words, the approxi-
mation error is due to the discretization of the Wiener process.
This discretization is analyzed by the Langevin dynamics in
[35]. In particular, % = >, W; = B, can be regarded
as an overdamped Langevin dynamics with step size 1 to
approximate the Brownian motion. The approximation error
in each step remains constant due to the unit step size.

We first consider E[J3]. Substituting 3 = ov/eM into
a = (/o in Lemma 5, a = VeM is constant. So the
distribution of J in Lemma 5 does not change when ¢ changes.
Thus, the approximation error in (39) keeps invariant when o
changes.

Then, we consider (40). Jg is an approximation of .J, and

Js Js

2 _ 2 2/ 2
E Si=o0 E S5 /o
j=1 j=1

The distribution of J does not change with o, nor does the
distribution of Jg. The terms % ~ N(0,7) inside the sum
in (43) are independent of ¢. The distribution of Z]]i1 Sj2 /o
does not change with o. Thus, the approximation error in (40)
increases linearly with o2.

By Lemma 5 (2), we have E[J?] = 10]E[f0T B2dt). Recall
that the approximation error in (40) increases linearly with o2,
thus the approximation error in E[.J?] also increases linearly

(43)

with o2, Using (41), we conclude that the approximation error
in LEYT (M) increases linearly with o2.

V. NUMERICAL RESULTS

In this section, we verify our findings through simu-
lations. Figure 2 compares the NEWSEE of our proposed
policy with the state of the art for A/ = 500 under different
o?. In this plot, the green (plus) curve corresponds to an
optimal stationary randomized policy in which each node
transmits with an optimal pre-determined probability. The
performance of threshold policies like [24], [25] that impose
the optimal (fixed) transmission rate for each sensor also
coincides with this curve, i.e, the green (plus) one. These
policies do not exploit the available feedback for decision
making. The purple (diamond) curve shows the performance of
a standard pseudo-Bayesian slotted ALOHA. Slotted ALOHA
does use feedback, but treats all packets similarly, independent
of their corresponding sample values. The red (circle) and blue
(squared) curves correspond to oblivious (age-based) policies
[13, Algorithm 1] and [13, Algorithm 2], respectively. The
black (star) curve shows the performance of our proposed
decentralized policy in Algorithm 1 and the red (x) curve
shows the approximation we find in (42). The gap between
the two is small but increases linearly in o2 as discussed in
Section IV-E. On this plot, we have also included an oblivious
and a non-oblivious centralized policy. The former (green
dashed curve) schedules the transmitter with the largest age
and the latter (yellow smooth curve) schedules the transmitter
with the largest estimation error. Oblivious centralized poli-
cies are optimal (from [28, Section III]) while non-oblivious
centralized policies are not necessarily optimal (as they only
optimize one time step ahead), they are often observed to be
numerically very close to the optimal.

Optimal Stationary Randomized Policy
—— Slotted ALOHA
—&— Stationary Age-based Thinning in [13]
—e— Adaptive Age-based Thinning in [13]
—h— Error-based Thinning
16 Oblivious MW Policy
Non-oblivious Greedy Policy

14 Estimated LP'T in (42)

12

10

NEWSEE

Fig. 2: NEWSEE as a function of ¢ for various state-of-the-
art scheme with M = 500.

The numerical calculation and analytical approximation
of E[Jg], E[Zjil S%] and E[Up] are given in Figure 3,
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Figure 4 and Figure 5, respectively. Recall that ]E[J;] is 10

times ]E[Z;]il Sﬂ, so we only consider one of them. In
order to offset the effect introduced by the number of nodes,
we consider the normalized silence delay E[Jg]/M, the nor-
malized transmission delay E[Ug]/M, and E[Zjil S?1/M.
The estimation error of the normalized silence delay E[.Jg]/M
is invariant of o2 (Figure 3), while the estimation error of
IE[ZJJZI SJQ] /M increases linearly with o2 (Figure 4). This
coincides with the analysis in Section IV-E. In the simulation,
we numerically find the expected fraction of active nodes to
be ag = 0.0173. Substituting aig = 0.0173 into (28), we get
E[Ug]. From Figure 5, we can see that normalized transmission
delay E[Up] coincides with analytical results in (28).

——E[Jg]/M in simulation
E[Jg]/M ~ e

——

2.9

2.8 Fhe— e ke —de— e h—h—de—%

E[J5]/M

2.7

2.6

2.5

O.Z

Fig. 3: E[J5]/M as a function of o for M = 500.

4000 4 —f[5>72 | $2)/M in simulation
Js 202
—— B[, S3)/M - 2o
3,000
<
=
29,000
W
=
1,000
k-
0 4
1 2 4 5

0.2

Fig. 4: ]E[Zjil Sf]/M as a function of o2 for M = 500.

Finally, we show in Figure 6 that the gap between
LEYT (M) and LPYT(M) decreases as M gets large. In
other words, the influence of approximation error caused by
Langevin dynamics in Algorithm 1 weakens (but does not
vanish) as M increases.

VI. CONCLUSION AND FUTURE WORK

We considered the problem of decentralized sampling
and remote estimation over wireless collision channels with

1072

——E[Us]/M in simulation
]E[U,@]/J\J = ageé

——

ot

;#ﬁ*ﬁmﬁ—*—*ﬁmﬁﬂ#

E[Us]/M

Fig. 5: E[Ug]/M as a function of o2 for M = 500.

1072
‘—*The gap between L(M)EPT and LEYT (M)

2
'

(L(M)™¥T — LBV (M) o

100 200 300 400 500
M
Fig. 6: The gap (normalized by o) between LEYT (M) and
LEYT(M) as a function of M for o2 = 3.

M statistically identical source nodes, observing independent
random walk processes. The goal is to minimize a normalized
metric of estimation error, which we call the normalized
expected weighted sum of estimation error (NEWSEE) in
the regime of large M. We defined two general classes of
policies: oblivious policies and non-oblivious policies. We
showed in the former class that minimizing the expected esti-
mation error is equivalent to minimizing the expected age and
consequently proved lower and upper bounds on the optimal
estimation error. We then proposed and analyzed a (non-
oblivious) threshold policy in which (1) nodes become active
if their estimation error has crossed a threshold and (2) active
nodes transmit stochastically with probabilities that adapt to
the state of the channel (exploiting the collision feedback).
We showed that the NEWSEE performance of oblivious (age-
based) policies is at least twice better than the state-of-the-
art schemes (which impose a fixed rate of transmission at the
nodes) such as standard slotted ALOHA and optimal stationary
randomized policy. Moreover, our proposed threshold policy
offers a multiplicative gain close to 3 compared to oblivious
policies.

Future research includes generalizations to accommodate
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the following scenarios: 1) dynamic networks, i.e., the number
of sensors changes with time; 2) asymmetric networks, i.e.,
the sensors are no longer statistically identical; 3) adaptive
error-based thinning policies, i.e., the threshold (k) changes
with time k; 4) correlated sources, i.e., sensors are no longer
mutually independent. For the first scenario, we can simply
replace M with M (k) in every time slot. Subsequently, the
error-based threshold is also a time-variant variable, 3(k). For
the remaining three scenarios, the method we have proposed
can not be applied directly. In particular, in the second
scenario, we use the profile of all the sources to find an
estimate on any individual source. In the third scenario, the
nodes need statistical information about the sensors (and their
underlying processes) to decide which ones are of priority. In
the fourth scenario, the policies should change to account for
the correlation between the observations.
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