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Abstract—The state-of-the-art approaches to privacy-preserving
coded computing rely on quantizing the data into a finite field, so
that Shamir’s secret sharing can be employed. Such coded com-
puting solutions, however, are not properly scalable with the size
of dataset, mainly due to computation overflows. To address such
a critical issue, we propose a novel extension of certain coded
computing schemes to the analog domain. This includes distributed
polynomial evaluation and Lagrange coded computing (LCC) that
are widely used in the literature. All the operations in the proposed
protocols are done over the infinite fields of R/C but for practical
implementations floating-point numbers are used. We characterize
the privacy of data in our proposed protocols, against any subset of
colluding servers up to a certain size, in terms of the distinguishing
security (DS) and the mutual information security (MIS) metrics.
Also, the accuracy of outcome is characterized in a practical setting
assuming operations are performed using floating-point numbers.
Consequently, fundamental trade-offs between the accuracy of the
outcome and their privacy level are observed in the analog domain
and are numerically evaluated. Moreover, we implement analog
LCC (ALCC) to perform matrix-matrix multiplication over a batch
of matrices. It is observed that ALCC is superior compared to LCC,
implemented using fixed-point numbers, assuming both schemes use
an equal number of bits to represent data symbols.

I. INTRODUCTION

There has been a growing interest in recent years towards
performing computational tasks across networks of computa-
tional servers by utilizing their computational power in a parallel
fashion [1]–[5]. Computations over massive datasets need to
be carried out at an unprecedented scale that entails solutions
scalable with the size of datasets associated with a wide range of
problems including machine learning [6], optimization [7], etc.
A well-established network architecture to perform such tasks in
a distributed fashion consists of a master node together with a set
of servers having communication links only with the master node
[3], [4]. In such systems, a dataset is dispersed among the servers
across the network to perform a certain computational task over
the dataset. The master node then aggregates the results in order
to recover the desired outcome.

Dispersing data across a network gives rise to several funda-
mental challenges in practice. One of the major concerns in such
systems is to keep the data private as the computational tasks
often involve sensitive data such as patients recordings, financial
transactions, etc [8]–[10]. The servers are often assumed to be
honest-but-curious, i.e., they do not deviate from the protocol
but may accumulate the shares of data they receive and try to
deduce information about the data. In such settings, the challenge
is to utilize the computational power of the nodes while ensuring
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that almost no information about the dataset is revealed to them.
Furthermore, this restriction is often extended to preserving the
privacy against any subset of colluding nodes up to a certain size.

Several security metrics are considered in different contexts to
measure privacy/security of data. This includes semantic security
(SS) and distinguishing security (DS) in the cryptography litera-
ture [11], mutual information security (MIS) in communication
settings [12], differential security in machine learning [13], etc.
From the information-theoretic perspective, the perfect privacy
condition in a distributed computation setting is that no infor-
mation is leaked about the dataset to any of the servers/subsets
of colluding servers up to a certain size. To this end, Shamir’s
seminal secret sharing scheme is the main building block in
protocols providing perfect privacy in these settings [14]. In such
protocols, the data symbols are always assumed to be elements of
a finite field Fp leading to perfect privacy guarantees. However,
this often comes at the expense of substantial accuracy losses
due to fixed-point representation of the data and computation
overflows. Especially, this becomes a major barrier in scalability
of such protocols with respect to the dataset size.

In this paper, we provide a framework to construct the coun-
terpart of Shamir’s secret sharing scheme in the analog domain.
This framework is then used to construct a privacy-preserving
distributed polynomial evaluation protocol over real/complex
datasets. Moreover, we further elaborate these ideas to extend
the privacy-preserving LCC scheme to the analog domain and
refer to it as analog LCC (ALCC). It is assumed that all the
servers are honest-but-curious. All the operations in the proposed
scheme are done over the infinite fields of R/C but for practical
implementations floating-point numbers are used. The proposed
ALCC protocol enables privately evaluating a polynomial func-
tion over a batch of real/complex-valued dataset in parallel. We
characterize the performance of the proposed schemes in terms
of the accuracy of their outcome, when operations are performed
using standard floating-point numbers, and the privacy of data in
terms of the DS and MIS metrics when any subset of servers up to
a certain size can collude. Furthermore, a fundamental trade-off
between the accuracy of the outcome of the introduced protocols
in the analog domain and their privacy level is observed and
is numerically evaluated, in terms of various parameters of the
schemes, when implemented using the floating-point numbers.

For ALCC in particular, we illustrate that the choice of certain
parameters of Lagrange monomials leads to another new trade-
off between accuracy and privacy which is specific to ALCC and
does not have a counterpart in either our proposed polynomial
evaluation protocol or LCC with fixed-point implementation over
finite fields [4]. Hence, one has to carefully pick these parameters
besides picking parameters of noise terms added in the protocol
in order to avoid unnecessarily compromising accuracy/privacy
in practice. Also, experiments are shown in which ALCC is im-
plemented to perform matrix-matrix multiplication over a batch
of matrices. The results indicate the superiority of the proposed



ALCC compared to the state-of-the-art LCC implemented using
fixed-point numbers assuming both schemes use an equal number
of bits to represent each data symbol.

II. PRIVACY-PRESERVING POLYNOMIAL EVALUATION

Consider a setup with N computation servers/parties indexed
by 1, 2, . . . , N . Given a data symbol s, also referred to as
a secret, a D-degree polynomial function of s denoted by
fpsqdef“ řD

i“0 fis
i needs to be computed by utilizing the com-

putational power of the parties, while the secret remains private
assuming up to t parties can collude. The secret s is an instance
of a continuous random variable Z taking values in r´r, rs. No
further assumption is made on the probability distribution of Z.

In the considered protocol, given the secret s the polynomial
ppxq is constructed as follows: ppxq def“ s ` řt

j“1 njx
j , where

nj’s are i.i.d., drawn from a zero-mean circular symmetric com-
plex Gaussian distribution with standard deviation σn?

t
, denoted

by N p0, σ2
n

t q, where t is the maximum number of colluding
parties. For evaluating the precision of the protocol in practice,
the distribution of ni’s will be truncated, i.e., it is assumed that
they are drawn from a truncated Gaussian distribution with a
maximum absolute value, denoted by m, for m P R`. The
shares of the computation parties consist of the evaluation of ppxq
over certain complex-valued evaluation points ω1, . . . , ωN , i.e.,
yi “ ppωiq is given to server i, for i P rN s, where rN s “
t1, 2, . . . , Nu. These equations are written in the matrix form
as yNˆ1 “ ANˆpt`1qxpt`1qˆ1, where x “ ps, n1, . . . , ntqT,
y “ py1, . . . , yN qT, and A is the Vandemonde matrix associated
with ωi’s. Then server i computes zi “ fpyiq and returns the
result to the master node. The master then aims to recover fpsq.
Let

rBsij “ ωj´1
i , (1)

for BNˆpD̃`1q
with D̃ “ Dt. Then the system of equations

zNˆ1 “ BNˆpD̃`1q
a1ˆpD̃`1q

, (2)

where z “ pz1, . . . , znq and a represents coefficients of fpppxqq,
can be solved for a in order to recover fpsq “ fppp0qq. Note
that N ě D̃ ` 1 is the necessary and sufficient condition on the
number of parties in order to guarantee a successful interpolation
of f

`

ppxq˘

, which is of degree D̃. Equivalently, it is the necessary
and sufficient condition for recovery of a in (2). Throughout the
rest of this section, it is assumed that N “ D̃ ` 1, implying
that all shares yi’s are needed to be returned to the master
node for a successful recovery of the computation. Note that the
master node does not need to compute the entire a in (2) and
is only interested in recovering fpsq, the first entry of a. Let
b̃ denote the first row of B´1, which is well-defined due to B
being a Vandermonde matrix. Then the master node only needs
to compute b̃z to recover fpsq. Since ωi’s are fixed, b̃ is computed
once and is used every time the protocol is run.

Next, accuracy of the computation outcome of the proposed
polynomial evaluation protocol is characterized in terms of other
parameters of the protocol. In theory, if all the computations are
done over the complex numbers with infinite precision, then fpsq
is computed accurately. In practice, data is represented using
a finite number of bits, either as fixed point or floating point.

Floating-point representation consists of a fixed-precision part
and an exponent part specifying how the fixed-precision part is
scaled. Let v denote the number of precision bits in the floating-
point representation, i.e., the v most significant bits are kept in
the fixed-precision part. Let also q denote the number of bits used
to represent the power of the exponent part in the floating-point
representation.

In general, in a system of linear equations Ax “ y, where
x is the vector of unknown variables, the perturbation in the
solution caused by the perturbation in y is characterized as
follows. Let ŷ denote a noisy version of y, where the noise can be
caused by round-off errors, truncation, etc. Let also x̂ denote the
solution to the considered linear system when y is replaced by
ŷ. Let ∆xdef“ x̂ ´ x and ∆y

def“ ŷ ´ y denote the perturbation, also
referred to as error, in x and y, respectively. Then the relative
perturbations of x is bounded in terms of that of y as follows
[15]:

∥∆x∥
∥x∥

ď κA
∥∆y∥
∥y∥

, (3)

where κA is the condition number of A and ∥¨∥ denotes the l2-
norm. As mentioned earlier, the Gaussian distribution of ni’s is
truncated in practice. This together with (3) are used to provide
a deterministic (non-probabilistic) guarantee on the accuracy of
the computation result expressed in the following theorem. It
is assumed that the computations at the master and servers do
not impose any errors other than precision loss due to finite
representation of the results.

Theorem 1: Let ∆fpsq denote the perturbation of fpsq in
the protocol discussed in this section. Let mt ` r ě 1 and
c
def“ řD

i“0 |fi|. Then,

∆fpsq ď c
?
Npmt ` rqD κB

λmin
2´pv`1q, (4)

where t is the maximum number of colluding parties, m is the
truncation parameter of the Gaussian distribution, κB and λmin

respectively are the condition number and minimum singular
value of B given in (1), v is the number of precision bits, and
r is the bound on the absolute value of the secret. In particular,
by setting ωi “ exp p 2πji

N q for i P rN s and j2 “ ´1, we have

∆fpsq ď c
?
Npmt ` rqD2´pv`1q. (5)

The proofs of results in this section are omitted due to space
constraints and can be found in [16].

Next, we ensure the privacy of data against any subset of t
colluding computational parties. To this end, an upper bound on
the amount of information revealed about the data/secret to the
colluding parties is derived. Let T “ ti1, . . . , itu denote the
set of indices for the colluding parties. Then the MIS metric is
defined as the mutual information between S and all shares Yi’s
for i P T , in the worst case, i.e.,

ηc
def“ max

T
IpS;Yi1 , . . . , Yitq. (6)

DS metric, denoted by ηs, is another metric for security which is
defined using the total variation (TV) distance metric DTVp., .q.
In general, for any two probability measures P1 and P2 on a σ-
algebra F , DTVpP1, P2q is defined as supAPF |P1pAq ´ P2pAq|.



log10pσnq 5 11 18
log10p∆fpsqq ´9.80 ´4.80 0.196
log10pηsq ´2.36 ´7.35 ´12.4

TABLE I: Demonstration of the trade-off between DS security metric
and accuracy. The upper bound on ηs in (9) is calculated versus the upper
bound on ∆fpsq obtained in Theorem 1 at σn “ 105, 1010, 1018. Other
parameters are c “ 1, t “ 1, D “ 1, α “ 10, r “ 255 and v “ 52.

In particular, it is defined in our protocol as follows:

ηs
def“ max

i
sup

s1,s2PDS

DTVpPYi1
,¨¨¨ ,Yit |S“s1 , PYi1

,¨¨¨ ,Yit |S“s2q,
(7)

where DS is the support of S. It is known that the MIS and DS
metrics can be directly related to each other over the space of
discrete/continuous random variables [17], [18]. In particular, it
is shown that:

ηs ď a

2ηc. (8)

In the following theorem ηc is upper bounded using the known
results on the capacity of a single-input multiple-output (SIMO)
channel under equal power constraints [19] . Consequently, it
implies an upper bound on ηs as well due to (8).

Theorem 2: For the polynomial evaluation scheme proposed in
this section we have

ηc ď log2p1 ` r2t2

σ2
n

q, and, ηs ď
d

2 log2p1 ` t2
r2

σ2
n

q. (9)

Remark 1: Comparing the results of Theorem 1 and Theorem 2
indicates that increasing the variance of the noise σn improves the
privacy but at the same time reduces the accuracy of the compu-
tations. This demonstrates a fundamental trade-off between the
privacy and the accuracy of the proposed protocol in the analog
domain.

The results of Theorem 2 are derived by assuming the additive
noise terms nj’s are drawn from a Gaussian distribution. While
this assumption is valid in theory, such terms need to be truncated
in practice as they can not be arbitrarily large. Furthermore, as
shown earlier in this section, in order to provide guarantees on
the accuracy of the computations, nj’s need to be bounded, i.e.,
|nj | ď m for some m P R`. In the following theorem, we extend
the results on bounding the DS security metric in the proposed
protocol to the case where nj’s are drawn from a truncated
Gaussian probability distribution. To simplify the computation,
it is assumed that the truncation threshold is m “ ασn?

t
, for some

α P R`.

Theorem 3: The DS metric for the case where nj’s are drawn
from a truncated Gaussian distribution with truncation level ασn?

t
satisfies the following inequality:

η1
s ď 1

ρ
ηs ` 1

ρ
p2 expp´1

2
pα ´ 2r

?
t

σn
q2qqt,

where ρ “ p1 ´ 2 expp´α2

2 qqt.
Theorem 3 implies that picking, for instance, α “ 10 with

t “ 10, and already having a very small r
σn

is sufficient to obtain
almost the same bound on the DS metric as in the case where
the noise terms are not truncated. Hence, truncation of the noise
terms does not compromise the privacy of data in the protocol as
long as α is picked sufficiently large.

III. ANALOG LAGRANGE CODED COMPUTING

In this section, we extend the privacy-preserving LCC scheme
to the analog domain and refer to it as analog LCC (ALCC).
We also analyze the accuracy and privacy of ALCC using the
framework developed in Section II.

Consider a dataset X “ pX1, . . . ,Xkq with Xi P Rmˆn for all
i P rks, where rks denotes t1, 2, . . . , ku. Each entry of Xi’s is an
independent realization of the random variable S. We consider
the problem of evaluating a polynomial f : Rmˆn Ñ Ruˆh over
the dataset X while keeping the privacy of X. More specifically,
we say fp¨q is a D-degree polynomial function if all entries of the
output matrix are multivariate polynomial functions of the entries
of the input with total degree at most D.

The distributed computing setup is the same as that of polyno-
mial evaluation scheme, described in Section II. The goal of the
master node in ALCC is to compute fpXiq for all i P rks, where f
is a degree-D polynomial, using the computational power of the
parties. This is done in such a way that the dataset is kept private
from the parties assuming up to t of them can collude. Note that
this setup is similar to the one considered for LCC in [4] with the
main difference that in [4] the dataset and all the computations
are assumed to be over a finite field.

Next we discuss the encoding process in ALCC. Let
N1, . . . ,Nt denote random matrices with i.i.d. entries drawn
from N p0, σ2

n

t q. Let γ and ω denote the N -th and the pk ` tq-
th root of unity, respectively. In other words, γ “ expp 2πj

N q
and ω “ expp 2πj

k`t q, where j2 “ ´1. In ALCC, the Lagrange
polynomial is constructed as

upzq “
k

ÿ

j“1

Xj ljpzq `
k`t
ÿ

j“k`1

Nj´kljpzq (10)

where ljpzqdef“ ś

lPrk`tszj
z´βl

βj´βl
for all j P rk ` ts, are Lagrange

monomials. Furthermore, the parameters βj’s are picked to be
equally spaced on the circle of radius β centered around 0 in the
complex plane, for some β P R, i.e.,

βj “ βωj´1. (11)
The shares of encoded dataset to be distributed to the servers
consist of the evaluation of upzq over the N -th roots of unity
in the complex plane, i.e., Yi “ upαiq, where

αi “ γi´1, (12)
is sent to node i, for i P rN s.

Next, we discuss the decoding step during which the master
node recovers the desired outcome by collecting and processing
the results returned by a sufficient number of servers. The i-th
server computes fpYiq and returns the result back to the master
node. The master node then recovers fpXiq, for i P rks, in two
steps. In the first step, it recovers the polynomial fpupzqq by
using the results returned from at least pk ` t ´ 1qD ` 1 servers.
Note that this is the minimum number of returned evaluations
needed to guarantee a successful interpolation of fpupzqq since
fpupzqq has degree pk ` t ´ 1qD. For ease of notation, let
D̃ “ pk ` t ´ 1qD. In the second step, to recover fpXiq’s, the
master node computes fpβjq for j P rks.

The ALCC protocol can also take into account the issue
regarding stragglers same as how it is done in LCC [4]. Let
the maximum number of stragglers be denoted by s̄. Hence, the
number of computational parties is assumed to be N “ D̃`s̄`1.



The decoder’s task is to interpolate the polynomial fpupzqq
followed by evaluating it over αi’s, for i P rN s. Let fpupzqq “
řD̃

i“0 Viz
i, with Vi P Ruˆh. Let A “ ti1, . . . , iD̃`1u denote

the indices of the non-straggler users. The interpolation step at
the decoder is equivalent to inverting a pD̃ ` 1q ˆ pD̃ ` 1q
Vandermonde matrix C where

rCskl “ γpl´1qik . (13)

Let c denote the maximum absolute value of the coefficients
of fijp¨q for all i P rus and j P rhs, cdef“ maxi,j cij , and λmin

denote the minimum singular value of C, defined in (13).
Theorem 4: The absolute error on the entries of fpXjq, for j P

rks, in the outcome of ALCC is bounded as follows:

∆f j
gl ď β

cpmneqD
λmin

a

D̃ ` 1pkr ` tθσnqDκC2
´vp1 ` Op 1

σn
qq,

(14)
where β “ βD̃`2

´1
β2´1 , C is defined in (13), and v is the number of

precision bits in the floating-point representation.
The proofs of results in this section are omitted due to space

constraints and can be found in [20].
Theorem 4 provides an upper bound on the accuracy of the

outcome of ALCC with floating-point implementation for a
general polynomial function fp¨q. However, fp¨q often has a
certain structure in practice that can be leveraged to strengthen
the result of Theorem 4. More specifically, we say that fp¨q is
a matrix polynomial function, or simply a matrix polynomial,
if it can be expressed by matrix addition, multiplication, and
transposition as well as addition and multiplication by a constant
matrix/vector/scalar. For instance, fpXq “ aXXT, for some
vector a, is such a matrix polynomial function. The following
corollary provides a stronger accuracy bound on the outcome of
ALCC with matrix polynomial as its underlying function.

Corollary 5: Let fp¨q be a matrix polynomial function. Then,
the absolute error on the entries of fpXjq, for j P rks, in the
outcome of ALCC is bounded as follows:

∆f j
gl ď Cpkr ` tθσnqDκC2

´vp1 ` Op 1

σn
qq, (15)

where C
def“ β cmaxpm,nq

D

λmin

a

D̃ ` 1.
Remark 2: Note that when no stragglers are assumed, i.e.,

s̄ “ 0, picking αi’s in the proposed ALCC protocol according to
(12) implies that the matrix C, defined in (13), is a unitary matrix.
Hence, we have κC “ 1 which is the minimum possible for the
condition number κC. For the case of ALCC with stragglers, i.e.,
s̄ ą 0, one can utilize the upper bond κC ď OpN s̄`6q [21,
Theorem 1], This together with (14) leads to an upper bound on
the accuracy of ALCC scheme with s̄ stragglers.

Next, we analyze the privacy level of data in ALCC by
considering MIS and DS security metrics, same as in Section II.
For j P rks and i P rts, let Xj and Ni denote the pg, lq
element of the matrices Xj and Ni, respectively, for some fixed
g P rms and l P rns. Let also Yi denote the corresponding entry
of Yi, for i P rN s. For the sake of clarity, g and l are fixed
throughout this section. However, the analysis does not depend
on the specific choice of g and l. Recall that T “ ti1, ¨ ¨ ¨ , itu
denotes the set of indices for the colluding parties. Let X , N , and
YT denote pX1, ¨ ¨ ¨ , XkqT, pN1, ¨ ¨ ¨ , NtqT, and pYi1 , ¨ ¨ ¨ , YitqT,
respectively, where p¨qT is the transpose operation.

The following equation relates the encoded symbols received
by the colluding set of parties T to the dataset symbols and the
added noise symbols:

YT “ LTX ` L̃TN, (16)

where LT and L̃T are t ˆ k and t ˆ t complex-valued matrices,
respectively, such that

rLT sjr “ lrpαij q, and rL̃T sjr “ lk`rpαij q. (17)

The equation (16) resembles the input-output relation of a
MIMO channel with k transmit and t receive antennas. Then, off-
the-shelf results on the capacity of MIMO channel with equal-
power allocation constraint and correlated noise along with the
certain choice of βj’s are leveraged to provide an upper bound on
ηc in ALCC in the following theorem.

Theorem 6: In the proposed ALCC, the MIS metric ηc, defined
in (6), is upper bounded as follows:

ηc ď max
T

log2 |It ` r2t

σ2
n

Σ̃
´1

T ΣT |, (18)

where Σ̃T
def“ L̃T L̃

H

T and ΣT
def“ LT LH

T . Also, LT and L̃T are
specified in (17). In particular, for r “ opσnq we have

ηc ď 1

lnp2q max
T

trpΣ̃´1

T ΣT qr
2t

σ2
n

` op r
2

σ2
n

q. (19)

Combining the result of Theorem 6 together with the relation
between ηc and ηs, provided in (8), yields the following upper
bound on the DS metric ηs:

ηs ď
d

2max
T

log2 |It ` r2t

σ2
n

Σ̃
´1

T ΣT |. (20)

Remark 3: Note that both (18) and (20) imply that increasing
the standard deviation of the noise, i.e., σn, while other param-
eters of ALCC are fixed, improves bounds on the privacy level.
However, this improvement comes at the expense of degrading
the accuracy of the outcome, according to Theorem 4. This ex-
hibits a fundamental trade-off between the accuracy and privacy
of ALCC similar to the polynomial evaluation scheme in Section
II.

Finally, the DS metric is characterized for ALCC with trun-
cated noise terms.

Theorem 7: The DS metric, defined in (7), for the case where
the entries of Ni’s in (10) are drawn from a truncated complex
Gaussian distribution with truncation level θ σn?

t
satisfies the

following inequality:

η1
s ď 1

w
ηs ` 1

w
p2 expp´1

2
pθ ´ dmean

?
t

σn
q2qqt,

where w “ p1 ´ 2 expp´ θ2

2 qqt and dmean
def“ kr

k`t

p 1
β q

k`t
´1

p 1
β q´1

.

A numerical evaluation of the bound provided in Theorem 7
implies that, for instance, having θ “ 10 with t “ 10, together
with a very small r

σn
, which is often the case in practice, we

get η1
s « ηs. In other words, the privacy of dataset is not

compromised by truncating the noise terms as long as θ is large
enough, e.g., θ “ 10.

IV. NUMERICAL RESULTS AND EXPERIMENTS

In this section we numerically evaluate the bounds provided on
the accuracy and privacy of ALCC in Section III. Furthermore,
we demonstrate the performance of ALCC when applied to a
certain computational task through experiments.
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Fig. 1: Upper bounds on ηs and ηc for N “
15, k “ 4, t “ 4, σn “ 1023, r “ 1010.
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Fig. 2: Upper bound on the accuracy of ALCC
versus β for D “ 2, k “ 4, t “ 4, s “ 0, c “
1,m “ n “ 1000, r “ 1010, θ “ 3, σn “
1023 and v “ 200.
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Fig. 3: Comparison of the relative error in the
outcome between ALCC and LCC. For LCC,
different values of p are considered (p „ 225,
p „ 226, p „ 228). For ALCC, β “ 2 and
β “ 1.5 are considered for FLP1 and FLP2,
respectively. Also, in both protocols we have
k “ 5, t “ 3, s “ 0, N “ 15, σn “ 106, and
n “ 100.

The provided upper bounds on the MIS security metric, spec-
ified in (18), as well as the DS metric, characterized in (20), for
a certain set of parameters and the results are shown in Figure
1. Both ηs and ηc are plotted versus β. The plot indicates that
increasing β, in general, leads to enhancement in the privacy of
the ALCC protocol. However, the provided upper bound on the
accuracy of the outcome of ALCC, provided in (14) and (15),
implies that the precision loss would also grow by increasing β.
The upper bound on the absolute error in ALCC with general
underlying matrix polynomial function is plotted versus β in
Figure 2 for a certain set of parameters. Note that the terms op 1

σn
q

are discarded in the plot in Figure 2 since 1
σn

“ 10´23 is negli-
gible. This together with the plot in Figure 1 demonstrates a new
fundamental trade-off between the accuracy and the privacy of
the ALCC protocol which is specific to ALCC and is controlled
by the choice of β. It can be also observed from Figure 1 and
Figure 2 that a reasonable value for β, e.g., β “ 1.5, can be
picked for which the upper bounds on ηs and ηc are reasonably
low, e.g., „ 10´10 and „ 10´20, respectively, while the upper
bound on the error in the outcome is reasonable for practical
purposes, e.g., „ 10´3.

Next, we demonstrate the performance of ALCC when ap-
plied to a certain computational task through experiments. Our
experiments indicate that the precision of ALCC outcome closely
follows that of a centralized computation, that is when the com-
putations are done directly at a central node without any encoding
and decoding. In particular, it is shown that the accuracy of
ALCC is scalable with dataset size, i.e., the precision of the
results remains almost the same for a wide range of sizes of the
dataset. Moreover, the performance of LCC [4] employing fixed-
point representation applied to the same computational task is
demonstrated. It is shown that the error in the outcome of LCC
experiences a sharp increase due to overflow errors as the dataset
size passes a certain threshold.

We consider the task of performing a certain matrix-matrix
multiplication. For the sake of clarity, we consider computing
XTX where X P Rm1

ˆn is a tall real-valued matrix, i.e., m1 " n.
Such computation is one of the main building blocks in various
learning algorithms including training a linear regression model
[4], or a logistic regression model [16], [22], etc., where X

represents a dataset consisting of m1 samples in an n-dimensional
feature space. The matrix X can be represented as a batch of ma-
trices X “ pXT

1 , ¨ ¨ ¨ ,XT
kqT, where Xi P Rmˆn with m1 “ kˆm.

Then we have XTX “ řk
i“1 XT

i Xi. Hence, the task of computing
XTX is reduced to evaluating a degree-2 polynomial over a batch
of matrices, consisting of X1,. . . ,Xk, for which ALCC can be
utilized to provide speed up by leveraging the computational
power of distributed servers in parallel.

Let Y denote the result of computing XTX in a centralized
fashion employing floating-point operations. Let also Y1 denote
the result of a distributed computing protocol, e.g., ALCC. In
order to measure the accuracy loss of the outcome in the dis-
tributed protocol compared to the centralized one, we consider

the following notion of relative error: erel
def“ ∥Y1

´Y∥
∥Y∥ . In a sense,

erel measures how much the outcome precision is proportionally
compromised by utilizing a distributed protocol while providing
privacy/speed up. The entries of the dataset X in our experiments
are drawn independently from a zero-mean Gaussian distribution
with variance 1. We use 64 bits for both the fixed-point and
the floating-point numbers to implement both the LCC and the
ALCC protocols in our experiments, respectively.

In Figure 3, the relative error is plotted for both LCC and
ALCC versus the parameter m1, that is proportional to the size
of the dataset. For LCC, this is plotted for a few different choices
for the size of the underlying finite field p. Also, for ALCC, erel
is plotted for two values of β. It can be observed in Figure 3 that
for all the scenarios considered for LCC, there exists a certain
threshold for m1 after which the computation results become
very unreliable due to a very high erel. As discussed earlier, this
significant precision loss is mostly due to overflow errors that are
inherent to the fixed-point implementation employed by LCC.
As expected, the sharp increase in erel occurs at a larger value
for m1 when a larger p is picked. However, the choice of p is
limited by the number of bits available for representing fixed-
point numbers. Furthermore, the advantage of ALCC compared
to LCC is evident in Figure 3 by observing that the relative error
in the outcome of ALCC with floating-point implementation is
almost constant for the considered range of sizes of the dataset.
This motivates employing ALCC in certain problems involving
very large datasets.
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