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Abstract. In this paper we study hypergraphs definable in an algebraically closed field. Our goal
is to show, in the spirit of the so-called transference principles in extremal combinatorics, that if
a given algebraic hypergraph is “dense” in a certain sense, then a generic low-dimensional subset
of its vertices induces a subhypergraph that is also “dense.” (For technical reasons, we only con-
sider low-dimensional subsets that are parameterized by rational functions.) Our proof approach is
inspired by the hypergraph containers method, developed by Balogh, Morris, and Samotij and inde-
pendently by Saxton and Thomason (although adapting this method to the algebraic setting presents
some unique challenges that do not occur when working with finite hypergraphs). Along the way, we
establish a natural generalization of the classical dimension of fibers theorem in algebraic geometry,
which is interesting in its own right.
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1. Introduction

An active line of inquiry in combinatorics in recent years has been extending classical
results to the so-called sparse random setting, where the goal is to show that certain
known properties of “dense” combinatorial structures are inherited by their randomly
chosen “sparse” substructures. A typical example of this is the Sparse Szemerédi Theorem,
proved by Conlon and Gowers [7] and independently by Schacht [18]. Say that a finite set
S C Nis (g, t)-Szemerédi, where ¢ > Oand ¢t € N, ifevery subset A C S with |[4]| = ¢|S|
contains a nonconstant arithmetic progression of length . The following is a classical
theorem of Szemerédi:

Theorem 1.1 (Szemerédi [20]). For all ¢ > 0 and t € N, there exists ny € N such that
for eachn = ng, the set {1, ...,n} is (g,t)-Szemerédi.
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Conlon-Gowers and Schacht proved that the property of being (g, ?)-Szemerédi is
inherited, with high probability, by a fairly sparse random subset of {1, ..., n}:

Theorem 1.2 (Sparse Szemerédi; Conlon—Gowers [7], Schacht [18]). For all ¢ > 0 and
t € N, there exist ng € N and C > 0 such that the following holds: For each n = ny, fix
some py € [Cn_tf%, 1]. Let Sy, be the random subset of {1, ...,n} obtained by picking
each element i € {1, ..., n} independently with probability p,. Then

lim P[S, is (e, t)-Szemerédi] = 1.
n—o00
Remark. The lower bound on p, in Theorem 1.2 in sharp, up to the value of C.

For further examples see, e.g., the survey [6].

The remarkable success of this research program is largely due to the development of
powerful general techniques for proving random analogs of combinatorial theorems. One
of them is the so-called (hypergraph) containers method, introduced independently by
Balogh, Morris, and Samotij [2] and Saxton and Thomason [17] and based on the previ-
ous work of Kleitman and Winston [12] and Sapozhenko [16]. A (t-uniform) hypergraph
on aset V of vertices is a family E of t/element subsets of V', called the edges of E. A set
I C V of vertices is E-independent if it does not include any edge of E as a subset. The
starting point of the containers method is the observation that problems in extremal combi-
natorics often involve independent sets in specific hypergraphs (for instance, Szemerédi’s
theorem is a statement about independent sets in the ¢-uniform hypergraph on {1,...,n}
whose edges are the 7-term arithmetic progressions). Assuming that the edges of a given
hypergraph E are “well-distributed” in a certain technical sense, the containers method
puts an upper bound on the number of E-independent sets, and, furthermore, it does so in
a very “explicit” manner. Namely, each independent set I gets assigned a fingerprint F
that, in turn, encodes a container C, with the property that F € I € C, meaning that the
total number of independent sets is at most the number of distinct fingerprints times the
maximum number of independent sets in an individual container.

In this paper we combine the containers method with another recent trend in combi-
natorics: establishing versions of extremal results for (hyper)graphs that are definable in
model/theoretically tame structures; see, e.g., [1,5,9, 19,21] and the references therein
for a sample of related work. We shall specifically focus on the case when the ambient
structure is an algebraically closed field (although it would be interesting to know if our
results could be interpreted and proved in some more general context).

Let IF be an algebraically closed field and let E be a ¢-uniform hypergraph with vertex
set F”. For convenience, we shall view the edges of E as ordered tuples of length ¢ rather
than simply 7-element sets, so E is a subset of (F")! = F’". Thus, it makes sense to ask
whether E is a definable set (in the sense of first-order logic) in the field structure of F.
For instance, if E is the set of all -term arithmetic progressions in F”, then E is definable,
since (x1,...,x;) € E if and only if

(X3 — X2 = X2 = X)) Ao AXp — Xg1 = X1 — X—2) A (X1 # X2).

Given a definable hypergraph E on ", we wish to study the properties of the sub-
hypergraph of E induced by a “sparse random” definable set X C F". It is fairly clear
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what the word “sparse” should mean in this context: Since we are working in an alge-
braically closed field, there is a notion of dimension of definable sets, so “sparse” stands
for “low-dimensional.” It is somewhat less obvious how to interpret the word “random”
correctly. The approach we take in this paper is to consider only those subsets of " that
are parameterized by rational functions. Each such subset is described via a finite tuple of
elements of F — namely the coefficients of the parameterizing polynomials — and hence
can be encoded as a vector in the affine space F"V for some N € N. This enables us to
talk about a subset X C F” whose parameterization is given by generic x € F¥, and that
will be our notion of “randomness.” (For details, see Section 2.2.)
The motivating question can now be stated in reasonably precise terms:

Question 1.3. Suppose E C (F")! is a definable ¢-uniform hypergraph. What can be said
about the subhypergraph E[X] induced by a generic parameterized subvariety X C F”
of a given dimension k? In particular, what properties of £ would guarantee that every
definable E[X]-independent set / € X has dimension less than k?

Here and in what follows we use the words “less” and “greater” to mean “strictly
less” and “strictly greater,” respectively. Our main result is Theorem 2.7, which gives an
answer to Question 1.3 that is inspired by the analogous results for finite hypergraphs.
Our proof strategy is to adapt the ideas of the containers method and to control the sub-
hypergraph E[X] using a sequence of small “fingerprints.” However, while the standard
hypergraph containers method involves the so-called scythe algorithm — an iterative pro-
cedure that runs through the vertices of the hypergraph — we must use a different approach,
since our hypergraphs typically have infinitely many vertices. Similar considerations in
a different infinitary setting have previously led the current authors together with Henry
Towsner [4] to develop a nonalgorithmic proof of the containers theorem for finite hyper-
graphs. Unfortunately, the argument in [4] is still too “discrete” and not directly applicable
in our current framework. Thankfully, there are other tools available in the algebraic con-
text, most notably irreducibility, that allow us to replace induction over the vertex set with
induction on the dimension.

A crucial role in our arguments is played by Theorem 4.15 — a certain generalization
of the classical dimension of fibers theorem in algebraic geometry, that is interesting in
its own right. We state and prove Theorem 4.15 in Section 4; see Section 4.1 for a moti-
vational discussion. The remainder of the proof of Theorem 2.7 proceeds via a sequence
of applications of Theorem 4.15 and is presented in Section 5.

2. Main definitions and results

2.1. Basic notation, terminology, and conventions
Integers. We use N to denote the set of all nonnegative integers. For n € N, we define

[n] := {1,...,n}. By default, the variables d, i, j, k, m, n, r, s, t range over N.

Projections. For a family of sets (X;);ey and @ # S C I, let projs: [ [;e; Xi = [ljes Xi
be the projection onto the set S of coordinates. For brevity, given i € I, we write proj;
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instead of projy;,. The Cartesian power X ! of a set X is viewed as a product indexed
by [t].

Definable sets. Throughout, we work in a fixed algebraically closed field F. The word
“definable” always means “definable in (I, 4, -) with parameters.” We mostly work in
affine spaces F”, but sometimes we shall also use the projective n-space P” over IF. The
only topology we refer to is the Zariski topology (on F”, P”, etc.). The closure of a
set X C F" (in the Zariski topology on F") is denoted by X. We say that a definable
set X C F" is irreducible if X is an irreducible variety. An (irreducible) component of
a definable set X is any set of the form C N X, where C C X is an irreducible component
of X. The dimension dim X of a definable set X is equal to dim X, the Krull dimension
of the variety X (which coincides with the Morley rank of X, see [13, Section 6]). By
convention, dim @ := —1. Further algebraic-geometric and model-theoretic preliminaries
are reviewed in Section 3.

Genericity. For a definable set X C F” and a property 8 of elements of ", we say that
a generic point x € X satisfies B, in symbols V*x € X (L(x)), if the set

PAX) ={x e X Px)}

is definable and P(X) = X. This definition is equivalent to an (apparently stronger)
requirement that B(X) is a definable set that contains a dense relatively open subset of X .
Another convenient way to phrase this is that generic x € X satisfies P if and only if the
set (X)) is definable and has codimension 0 in every irreducible component of X. See
Section 3.4 for some basic properties of the V* quantifier.

2.2. Rational maps

By a rational map from F¥ to F” we mean an expression of the form

(xX1,...,xk) (xX1,...,xk)

f(xl,...,xk)z(pl 1 I . , 2.1)
po(x1,...,x¢) po(X1, ..., xg)

where po, p1,..., pn € F[x1, ..., xx] and pg is not identically zero. For convenience, we

identify each rational map f as in (2.1) with the tuple of polynomials (pg, p1,..., Pn)
rather than with the corresponding partial function F¥ — " (for instance, multiplying
every polynomial in (2.1) by the same element of IF \ {0, 1} produces a different rational
map). The set of all rational maps from F¥ to F” is denoted by R (k, n).

Given a nonzero polynomial g € F[xq, ..., xx], we write R4 (k,n;q) to indicate for
the set of all rational maps f of the form (2.1) with

Po=¢ and deg(p;) <d foralll <i <n.

In particular, R4 (k,n; 1) is the set of all polynomial maps from F¥ to F”" of degree at
most d. For brevity, let £(k,n) := Ry (k,n; 1) denote the set of all affine maps from F*
to F”. We will also use the shortcut £ . (n) = |, . L. 7).
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A rational map in R4 (k, n; q) can be described by a tuple of N :=n (kjl,'d) elements
of IF, namely the coefficients of the corresponding polynomials pq,..., p, in (2.1). As

mentioned in the introduction, we use this observation to identify Ry (k,n;q) with the
space FV, so it makes sense to talk about definable subsets of Ry (k,n;q) as well as the
properties of a generic element of R, (k,n; q).

2.3. Definable independent sets

Let =1 and E C (F")!. We say that a set I C F" is E-independent if EN 1" = @,
i.e., there are no xy,...,x; € I with (x1,...,x;) € E.

A common feature of the techniques for proving results in the sparse random setting is
their reliance on the corresponding theorems in the dense case. For instance, all the known
proofs of Theorem 1.2 treat Szemerédi’s theorem' as a black box. Proving a result in the
dense case can often be a challenging task in its own right; and indeed, the principal
obstacles to resolving several open problems in the theory of sparse random structures
lie in obtaining sufficiently strong “supersaturation” bounds in the dense setting (see,
e.g., [3,8]). However, the situation simplifies dramatically in the algebraic context, thanks
to the following proposition, which provides a convenient criterion for when a definable
hypergraph E admits a “large” definable independent set:

Proposition 2.2. Let t > 1 and let E C (F")! be a definable set. The following state-
ments are equivalent:

(1) the dimension of every definable E-independent set I C F" is less than n,

(ii) E has an irreducible component H C E such that for all i € [t], we have

dim proj; H = n.

Proof. First, consider the case when E is irreducible. To prove (i) = (ii), note that if
dim proj; E < n for some i € [¢], then F” \ proj; E is a definable E-independent set of
dimension n. Towards the other implication, assume (ii) and let / € [F” be a definable set
of dimension n. For each i € [f], let

E; := E Nproj; ' (I).

Since, by assumption, dimproj; E = dim/ = n and E is irreducible, the dimension of
fibers theorem (specifically, Corollary 3.10) yields dim E; = dim E. The irreducibility
of E then gives

dim(E N I') = dim(E, N --- N E;) = dim(E) > 0,

and hence [ is not E-independent.
Now let E be arbitrary. Since we have already verified the proposition for irreducible
sets, it remains to show that if every definable E-independent set is of dimension less

1Or, more precisely, its robust version, originally due to Varnavides [25] in the case of 3-term
progressions.
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than n, then E has a component H such that every definable H -independent set is
of dimension less than n as well. To that end, suppose that the components of E are
Hi,..., Hy and, for each j € [k], let [; C F” be a definable H;-independent set of
dimension n. Since £ = H; U---U Hj, we conclude that I; N --- N I} is a definable
E-independent set of dimension n, which finishes the proof. [

An immediate consequence of Proposition 2.2 is, for example, the fact that for any
t = 3, there is no n-dimensional definable set / € F" without a -term arithmetic pro-
gression, since the set

E:={(x1.....x;) € F") :xp —x; = +-- = x; — x;—1 and x| # X3}

is irreducible and satisfies proj; E = F” for all i € [¢]. It might perhaps seem strange that
this algebraic version of Szemerédi’s theorem is almost trivial, while Szemerédi’s theorem
itself is an extremely deep result. The explanation is simple. Any definable set / < F”
must fulfill one of the two alternatives: either dim I < n, or else, dim(IF” \ /) < n. This
is analogous, in the finite setting, to I either having density 0 or density 1. On the other
hand, the statement of Szemerédi’s theorem is only difficult for sets whose density is small
but positive — and they do not exist in the algebraic setting.

What makes Proposition 2.2 particularly useful is that, while property (i) is of primary
interest to us, it is not apparently first-order, due to the quantification over all definable
sets I C IF”; on the other hand, property (ii) is more “concrete,” and indeed, it is defin-
able in families (see Corollary 3.6). Notice however that, to be able to verify (ii), we
must have good control over the individual irreducible components of E, as it is not
enough to simply know that dim proj; £ = n for all i € [¢]. For instance, it may happen
that E is expressible as a union £ = E; U E; of two definable sets E1, E» C (F")’
with dim proj, £y = dim proj, £, = n but dim proj, E1, dim proj, £, < n, in which case
property (ii), and hence also (i), fails. (The simplest example of this situation is the set
E = (F" x {0}) U ({0} x F™) € (IF™)2.) This issue will be a source of some important
technical complications in our arguments.

2.4. The main result

Let E C (F™)! be a definable set. Given a definable map f:F*¥ — F”, we wish to con-
sider the subhypergraph of E induced by the subset f(F¥) C F” parameterized by f.
Since it will be more convenient to work directly in the parameter space F¥, we define
the subhypergraph of E induced by f to be the set E[f] € (F¥) given by

1,2, y0) € E[f] = (f(y1),.... f(y)) € E.

A peculiar feature of this definition is that it makes sense even when k > n; in other
words, the dimension of the vertex set of £[f] can exceed that of the vertex set of E.

We say that a definable set £ C (F")! is injective if for all (x1,...,x;) € E, the
elements xp, ..., X, are pairwise distinct. When E is thought of as a hypergraph on F”,
the injectivity of E means that it is “truly” ¢-uniform, i.e., every edge of E contains
precisely ¢ distinct vertices.
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The next definition is particularly important. We say that a definable set £ C (F")’ is
r-almost dense if for all subsets @ # S C [t], we have

dimprojgE = |S|n — (|S| — Dr. (2.3)
Observe the following chain of implications:

E = (F")' < E is0-almost dense = E is l-almost dense
= E is 2-almost dense

The notion of r-almost density for subsets £ C (F")’ is mostly interesting for r < n, as
if r = n, then

E C (F™)" is r-almost dense <= dimproj, E = n foralli € [t]. 2.4)

We emphasize that in (2.3), n is the dimension of the vertex set of E; for instance, when
we say that a definable set E C (F¥)? is r-almost dense, then n must be replaced by k.

Observation 2.5. Let t = 1 and let E C (F")! be an irreducible definable set. If E is
n-almost dense, then the dimension of every definable E-independent set I C F" is less
than n.

Proof. Immediate from (2.4) and Proposition 2.2. ]

The significance of the notion of almost density is demonstrated by the following
proposition, whose proof is deferred to Section 5.1:

Proposition 2.6. Let t = 1 and let E C (F")" be an injective definable set. If there
exist d =t — 1 and a nonzero polynomial q € F[xy, ..., xx] such that, for generic ele-
ment f € Rq(k,n;q), every definable E|[ f-independent set I C F* has dimension less
than k, then E has a k-almost dense irreducible component.

Now we are ready to state the main result of this paper, answering Question 1.3:

Theorem 2.7. Lett > 1 and let E C (F")" be an r-almost dense irreducible definable
set. Fix d =t — 1 and a nonzero polynomial q € F[x1,...,x¢]. If k = r + 1, then, for
generic element | € Ry(k,n;q), the following holds: Every definable E| f]-independent
set I C FX has dimension less than k. Furthermore, if E is injective, then every irre-
ducible component of E[ f] is r-almost dense.

‘We finish this section with a few remarks about the statement of Theorem 2.7.

Lower bound on d. Theorem 2.7 requires d to grow with ¢, the uniformity of the hyper-
graph E. Informally, one could say that the maps given by polynomials of low degree
are not “random enough” for the conclusion of Theorem 2.7 to hold. In fact, the lower
bound d =t — 1 is best possible, as the following construction shows. Take any ¢ > 2,
d <t—2,andn > t. Define

H:={(x1,....x) € "' :3f e Rg(1,n;1) (x1,...,x; € f(F))}.
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Set E := (F")" \ H. Using thatd <t —2andn > ¢, we obtain

dim H <dim(Rz;(1,m; D) xFY=nd+ 1)+t <n@t—1)+¢
< nt = dim(F")’,

and hence E = (F")’. But, on the other hand, E[f] = @ for all f € Ry(1,n;1) by
definition.

Lower bound on k. If, in the setting of Theorem 2.7, we let r be the smallest integer such
that £ is r-almost dense, then it follows from Proposition 2.6 that k must be at least r.
Actually, the conclusion of Theorem 2.7 can fail even when k = r (and hence the lower
bound k > r + 1 is best possible). To see this, take any k < n and define aset E C (F")?
as follows. Pick an arbitrary (n — k)-dimensional linear subspace V' C F” and put

(x,y)e E «= x#yandx—yel.

Since n — k > 0, we have proj; E = proj, £ = F” and dim E = 2n — k, so E is k-almost
dense. However, for a generic affine map £ € £(k,n), the set £(F¥) is a k-dimensional
affine subspace of F” that intersects every translate of V' in precisely one point — and
hence E[{] = @.

The codegree conditions. We now briefly comment on the relationship between the state-
ment of Theorem 2.7 and the sparse random results in the finite setting.

In order to establish a transference principle for a finite ¢-uniform hypergraph E, it is
typical to assume that £ has “many” edges, and that the edges of E are somehow “well-
distributed” over the vertex set. For example, in the containers method, these assumptions
take the form of the codegree conditions: The degree of each vertex of E is required to be
close to the average, and similar restrictions are put on the codegrees of all sets of fewer
than ¢ vertices.

In Theorem 2.7, the part that forces the edges of E to be “well-distributed” is the
assumption of irreducibility. For instance, it follows from the dimension of fibers theorem
(see Section 3.2) that if a definable set £ C (F")’ is irreducible and satisfies

dimproj; E =n foralli € [t],

then the “degree” of a generic vertex x € F” — i.e., the dimension of the set of all tuples
(x1,...,xs) € E such that x € {x1,...,x;} —1is equal to the “average” value dim E — n.
Since irreducibility takes care of the “uniform distribution” of the edges, there is no need
to explicitly bound the codegrees in the statement of Theorem 2.7, and the only numerical
assumption left is that £ has “many” edges — specifically, it must be r-almost dense.
Nevertheless, there are still some close parallels between the statement of Theorem 2.7
and, say, that of [2, Proposition 3.1]. Indeed, let E be a finite f-uniform hypergraph on
a set X and imagine that we wish to apply [2, Proposition 3.1] to E; in particular, let p
be a value between 0 and 1. The conclusion of [2, Proposition 3.1] is only interesting for
independent sets of size at least Q(p|X|). Setn := log|X| and r := log(p|X|). For each
s € [t], let ms be the logarithm of the number of s-element subsets of X that are contained
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in at least one edge of E. The codegree conditions of [2, Proposition 3.1] then imply
mg =sn—(s—1r+ 0(),
which should be compared to (2.3).

3. Preliminaries

3.1. Definability in algebraically closed fields

The following fundamental fact and its immediate consequences will be used without
mention:

Theorem 3.1 (Quantifier elimination [13, Theorem 3.2.2]). Every definable set X C F"
is constructible, i.e., it is a finite Boolean combination of closed sets.

For A C X xY and x € X, we let A, denote the fiber of A over x, i.e., the set
Ay ={y €Y :(x,y) € A}.

The next theorem follows from [14, Section 1.8, Corollary 3] and is a special case of the
fact that Morley rank is definable in strongly minimal theories [13, Lemma 6.2.20]:

Lemma 3.2 (Definability of dimension [14, Section 1.8, Corollary 3]). Let A C F" x F™
be a definable set and let k € N. Then the set {x € F" : dim Ay = k} is definable.

We shall also require certain more advanced facts concerning definability in alge-
braically closed fields, all of which are well-known and can be easily derived from general
results obtained by van den Dries and Schmidt in their foundational paper [24]. For addi-
tional information and alternative presentation, we also refer the reader to Chapter IV of
van den Dries’s thesis [23] and to Chapter 10 of Johnson’s thesis [11].

Lemma 3.3 (Fiberwise closure [11, Theorem 10_.2.1( D]). Let A CF"* xF™ be a defin-
able set. Then the set {(x,y) € F" xF™ : y € Ay} is definable.

Lemma 3.4 (Irreducible fibers [11, Theorem 10.2.1(2)]). Let A C F" x F™ be a defin-
able set. Then the set {x € F" : Ay is irreducible} is definable.

The next definability result will play a particularly important role in the sequel. For a
definable set X C F”, let 3(X) € X x X denote the relation given by

(x1,x3) € I(X) <= there is an irreducible component / of X such that x1, x, € I.

Note that I (X) is “almost” an equivalence relation: it is reflexive and symmetric, but not
necessarily transitive, as distinct irreducible components of X need not be disjoint.

Lemma 3.5 (Definability of components). Let A C F" x F™ be a definable set. Then the
set
X ={(x,y1,y2) € F" xF" xF™ : (y1,y2) € 3(Ax)}

is definable as well.
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Proof. Lemma 3.5 is a straightforward consequence of [24, Theorem 2.10] and other
results of that paper. For completeness, we include a direct derivation from Lemmas 3.3
and 3.4 here. This is the only place in the paper where we invoke nontrivial model-theoret-
ic machinery. Replacing [F by an elementary extension if necessary, we may arrange that
FF is R;-saturated.”* For a definable set Y € F™, let 3y 4(Y) denote the set of all pairs
(»1,y2) € Y x Y such that y; and y, belong to an irreducible component of Y cut out
from F™ by at most k polynomials of degree at most d. Clearly, 3(Y) = Uy 4 3k.a (Y),
and, since a closed set Z C F” is an irreducible component of Y if and only if Z is
irreducible, Z C Y,and Z € Y \ Z, by Lemmas 3.3 and 3.4, the set

Xig = {(x,y1.y2) € F" xF™ xF™ : (y1. y2) € 3x,a(4x)}

is definable. Hence, X = | J k.d X 4 is a countable union of definable sets. On the other
hand, let 3%9(Y) be the set of all pairs (y1, y2) € Y x Y such that every closed subset
Z C F™ cut out by at most k polynomials of degree at most d satisfies

M€Y\ Z = y,eZ.
Then 3(Y) = (g q k-4 (Y), and Lemma 3.3 yields that the set
R = {(x,y1,y2) € F" x F™ x F™ : (y1, y2) € 389 (45)}

is definable, so X = () 4 X% is a countable intersection of definable sets. Since F is
N -saturated, a set that is both a countable union and a countable intersection of definable
sets must itself be definable. [

Lemma 3.5 allows using quantification over irreducible components when forming
a definable set. Below we present, as an illustration, a typical example of how Lemma 3.5
can be applied:

Corollary 3.6. Let E C F" x (F™)! be a definable set. Then the set
{x € F" : the dimension of every definable E-independent set I C F™ is less than m}

is definable.

Proof. By Proposition 2.2, the set in question coincides with the set of all x € F” such
that £ has an irreducible component H with dim proj; H = m for all i € [t]. The exis-
tential quantification over the components of E, can be turned into a quantification over

2 Actually, every uncountable algebraically closed field is saturated, since the theory of alge-
braically closed fields of any fixed characteristic is uncountably categorical, hence w-stable; see
[13, Theorem 6.5.4].

3Here we use the fact that if K D FF is an algebraically closed field extending F and X C K”
is a set definable in K, then X N F” is definable in [F. This can be verified using quantifier elim-
ination (i.e., Theorem 3.1) and the fact that if X € K” is closed in K”, then X N F”" is closed
in F”. An analogous result holds more generally in arbitrary stable theories and is a consequence
of definability of types; see [15, Exercise 1.29].
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the points of E as follows: There is an element e € E, such that:

(a) forall hy, hy € Ey,if (e, hy) € I(Ey) and (e, hy) € I(Ey), then (hy,hy) € I(Ey),
(b) foralli € [t], dimproj;{h € Ex : (e,h) € S(Ex)} = m.

It remains to apply Lemmas 3.5 and 3.2. ]

Throughout the rest of this paper, arguments that are similar to and just as straightfor-
ward as the proof of Corollary 3.6 are omitted.

3.2. The dimension of fibers theorem and its consequences

A central role in the sequel is played by the so-called dimension of fibers theorem. It
is a fundamental result, with many versions and generalizations that fall far beyond the
scope of this article. We only give here the statements that will be explicitly used later on;
for a more thorough discussion, see, e.g., [14, Section 1.8] and [22, Section 11.4].

Theorem 3.7 (Dimension of fibers, ess. [14, Section L.8, Corollary 1]). Let A C F” x F™
be an irreducible definable set. For generic x € proj; A, the dimension of every component
of the set Ay is dim A — dim proj, A.

Since the above theorem is usually stated for varieties rather than definable sets, we
include here a derivation of the general case of Theorem 3.7 from the case when A is
a closed set:

Derivation of Theorem 3.7 from the closed set case. Let B := A \ A and note that
dim B < dim 4 = dim 4.

Since we assume that Theorem 3.7 holds for A, it suffices to argue that

V*x € proj, 4 A = (A),. (3.8)
Suppose that (3.8) fails. Since the set projlz is irreducible, we then have

V*x eproj;A Ay (A)y.

Hence, for generic x € projlz, at least one component of the fiber (4), is entirely con-
tained in By C (B)y. In particular,

dim proj; A = dim proj, B =: k.
However, Theorem 3.7, applied to the closed sets A and B, yields that, for generic element
X € proj; A, the dimension of every component of (A)y is dim A — k, while
dim(B), = dim B —k < dim A — k.
This contradiction completes the proof of (3.8). ]

Claim (3.8) is useful enough to be stated as a separate corollary:

Corollary 3.9. Let A C F" X F™ be a definable set. Then, for generic x € proj; A, we
have Ay = (A)y.
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The next result is a well-known and easy consequence of Theorem 3.7:

Corollary 3.10 (Fubini for dimension). Let A C F" x F™ be a nonempty definable set.
Then
dimA = max (k + dim{x € proj, A : dim A, = k}).
€

The following immediate consequence of Corollary 3.9 will be used repeatedly:

Corollary 3.11. Let A € F" x F™ be a definable set. Then proj; A = proj; A.

The following statement will play a crucial role in the later stages of the proof of
Theorem 2.7:

Corollary 3.12 (Generic indecomposability of fibers). Let A € F" x F™ be a nonempty
irreducible definable set and let B C A be a definable subset such that for generic element
X € proj, 4, the set By is a union of irreducible components of Ax. Then

either V*x € proj;A (Bx = @), or V*x € proj; 4 (Bx = Ax).
Proof. Suppose that, for generic x € proj; A, the set By is nonempty. Then, by Theo-
rem 3.7, we must have V*x € proj; 4 (dim By = dim A — dim proj, A), and therefore,
dim B = dimproj; A + (dim A — dim proj,; 4) = dim A.
Since A is irreducible, this yields B = A, and hence B, = A, for generic x € proj, A.

But if By is a union of components of Ay, then By = Ay is equivalent to B, = Ay, and
we are done. [

3.3. Anirreducibility criterion

To verify that certain sets appearing in the proof of Theorem 2.7 are irreducible, we will
need the following fact (it is the only statement in this paper that requires leaving the
realm of affine spaces):

Lemma 3.13 (ess. [22, Exercise 11.4.C]). Let A C F" x F™ be a nonempty definable set
and let A* be the closure of A in F" x P™. Suppose that proj, A is irreducible and all the
fibers Ay € P™ with x € proj; A are irreducible and of the same dimension. Then A is
irreducible.

Proof. Let X = proj; A and let d denote the common dimension of the fibers of A* over
the points in X . Then we must have

d =dimA —dimX.
Let B be any irreducible component of A* such that dim proj; B = dim X. Since P™" is

a complete variety [14, Section 1.9, Theorem 1], proj; B is closed in F", and, since X is
irreducible, X C proj; B. By [14, Section 1.8, Theorem 2], we obtain that for all x € X,

dim By = dim B — dimproj; B = dim A4 —dim X =d,

and thus dim By = dim A}. Since A} is irreducible, this implies By = A} and hence
B = A4*. [
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Corollary 3.14. Suppose that p1,...,pr € Flx1,..., X0, Y1,..., Ym] are polynomials
that are linear in the set of variables yi, ...,V and let Z C F" xF™ be the set of
common zeros of p1, ..., pr. If X C F" is an irreducible definable set such that dim Z
is the same for all x € X, then Z N (X x F™) is irreducible.

Proof. If Z, = D forall x € X, then Z N (X x F™) = & and there is nothing to prove.
Otherwise, let Z* be the closure of Z in F” x P™. For each x € F”, the set Z7 is cut
out from P by a system of homogeneous linear equations. Hence, the fiber Z7 is irre-
ducible and if Z, # @, then Z, is dense in Z%. The desired conclusion now follows by
Lemma 3.13. ]

3.4. Fubini-like properties of the generic quantifier

Now we state and prove some results that allow changing the order of multiple V* quan-
tifiers, in the spirit of the theorems of Fubini in measure theory and Kuratowski—Ulam in
general topology.

Theorem 3.15 (Fubini for V*). Let A C F" x F™ be an irreducible definable set and let
X = proj, A. Then, for any definable set B C A, the following statements are equivalent:
(i) V*xeXV*ye A, ((x,y) € B),

(ii)) V*x € X (dim By = dim A,),

(iii) V*(x,y) € A((x,y) € B), i.e., dim B = dim A.

Proof. Implication (i) = (ii) is clear. For (ii) = (iii), we use the dimension of fibers theo-
rem to observe that V*x € X (dim A, = dim A — dim X)), so if (ii) holds, then

dim B = dim X + (dim A — dim X) = dim 4,

as desired. Finally, to prove the implication (iii) = (i), consider the set C C A such that
for each x € X, the fiber Cy is the union of all the irreducible components of A, in
which By is dense. It follows from the results of Section 3.1 that C is definable, and, by
Corollary 3.12, we either have V*x € X (Cy = Ax) or V*x € X (Cx = @). In the former
case, statement (i) holds (and we are done), so assume that V*x € X (Cyx = @), ie.,
V*x € XV*y € Ax ((x,y) € B). Applying (i) = (iii) with A \ B in place of B yields
dim(A \ B) = dim A4, and hence dim B < dim A4, as desired. ]

Corollary 3.16. Let X CF", Y CF™, and A C X XY be definable sets. Then the
following statements are equivalent:

(i) V'xeXV*yeY((x,y)e A,
(i) V¥*y eYV*xe X ((x,y) € A),
(iii)) V*(x,y) € X x Y ((x,y) € A).
Proof. Since the components of X x Y are precisely the products of the components of

X and Y, we may assume that X and Y are irreducible. An application of Theorem 3.15
completes the proof. ]
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In the next corollary, it is instructive to think of A € X x X as being an equivalence
relation on X (and this is the context in which this corollary will be used later on).

Corollary 3.17. Let X C F” be an irreducible definable set and let A C X x X be an
irreducible definable set such that proj; A = proj,A = X. Then, for any definable set
Y C X, the following statements are equivalent:

(i) VxeXV*x ed,(x' e€Y),
(i) V*xeX(x€Y), ie,dimY = dimX.

Proof. By Theorem 3.15, condition (i) is equivalent to

@) dim(AN (X xY)) =dim A4,

and it follows from the dimension of fibers theorem that condition (i’) is equivalent to
dimY = dim X. [

4. Expansion in algebraic bipartite graphs

4.1. Overview

The central results of this section are Theorem 4.15 and its Corollary 4.23. They play
a key role in the proof of Theorem 2.7 and are also interesting in their own right as natural
extensions of the dimension of fibers theorem.

Consider an irreducible definable set A C [F” x F" such that dim proj; A = n. Given
an irreducible definable subset X C [F”, what is the dimension of the fiber of 4 over X,
i.e., of the set A N (X x F™)? For simplicity, assume that every component B of the set
AN (X xF™) is dominant, i.e., dimproj; B = dim X (the dimension of nondominant
components is harder to control). The “expected” answer is

dim(AN (X xF™) =dimA —n + dim X, “4.1)

and we hope that (4.1) holds for “typical” X. This hope is justified by the dimension
of fibers theorem. Indeed, let C be the closure of the set of all elements x € F” such
that dim A, # dim A — n. By Theorem 3.7, dim C < n, and if (4.1) fails, then X C C.
In other words, the dimension of fibers theorem gives us a “small” definable set C that
contains every counterexample to (4.1).

We wish to obtain a version of this result for the dimension of the second projec-
tion proj, (A N (X x F™)). Notice that proj, (A N (X x ™)) has a natural combinatorial
interpretation: If we think of A as the edge set of a bipartite graph with bipartition
(F™,F™), then proj, (A N (X x F™)) is the neighborhood of X in this graph (see Fig-
ure 1). There are two obvious upper bounds on dim proj, (A4 N (X x F™)): First,

dim proj, (4 N (X x F™)) < dim(A N (X x F™))2dim A — n + dim X ;
and second, since A N (X x F™) C A4,

dim proj, (4 N (X x F™)) < dim proj, 4.
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projp (A N (X x F™)) Fm

/
AR} s
< x ¥ F”

Fig. 1. A combinatorial interpretation of proj, (4 N (X x F™)).

The goal of this section is to show that, for “typical” X, at least one of these bounds must
be tight:

dim proj, (4 N (X x F™)) = min{dim 4 — n + dim X, dim proj, A}. 4.2)

In other words, algebraic graphs are “maximally expanding”: the dimension of the neigh-
borhood of a “typical” set in such a graph is as large as it can possibly be.

What is meant by a “typical” set here is a somewhat subtle issue. Based on the pre-
ceding discussion, it is tempting to conjecture that there should be a “small” definable set
C that contains every counterexample X to (4.2). This, however, need not be the case,
as the following construction illustrates. Suppose thatn =2, m = 1,and A C F? x F is
given by

A={(x,y,z) e F?xF:y=zxand x # 0}. (4.3)

Then A is an irreducible set of dimension 2 and proj, A = F. Thus, for this A and for any
1-dimensional set X C F2, (4.2) turns into dim proj,(4 N (X x F)) = 1. Butif X C F?
is a straight line passing through the origin (0, 0), then dim proj,(A4 N (X x F)) < 0, and
the union of all such lines is all of F2.

Our approach is to allow the “container” C to vary with X, but in a very limited
way. (This idea is inspired by the hypergraph containers method, where one builds a con-
tainer for a given independent set I based on a small fingerprint F € I.) To be more
precise, let ¥ be a family of k-dimensional counterexamples to (4.2). (As in the state-
ment of Theorem 2.7, we shall only work with parameterized sets, so ¥ is really a family
of definable functions rather than sets, but for the purposes of the current informal dis-
cussion, this technicality may be ignored.) Imagine that Alice and Bob are playing the
following game: Alice secretly chooses a set X € % . Then she picks an r-dimensional
subset Y C X, where r < k, and shows it to Bob. Bob’s goal is to find, based on Y alone,
a “container” C such that dimC < n and X C C. Corollary 4.23 asserts, roughly speak-
ing, that there is a definable construction that allows Bob to win for all X € ¥ and for
generic Y C X.

As an illustration, consider again the set A C F? x F given by (4.3) and let ¥ be
the family of all straight lines in IF? passing through the origin. Whatever X € F Alice
chooses, when she shows Bob a generic point y € X, he can win simply by making C be
the unique straight line passing through (0, 0) and y, in agreement with Corollary 4.23.
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Before we proceed to formal statements and proofs, there is one more detail that is
worth pointing out, namely what we mean by a generic r-dimensional subset ¥ C X.
As mentioned before, we only work with parametrized sets, so let f:F¥ — F” be the
parameterization of X. We can then pick a generic affine map £ € £(r, k) and take Y to
be the subset of X parameterized by the composition f o £:TF" — "  The reader may
be wondering why we restrict our attention to affine maps £ instead of allowing rational
maps of arbitrary degree. The reason, roughly speaking, is that we wish the subset Y C X
to contain “less information” than X itself. When £ is affine, this intuition is justified as
f o £ is amap of the same degree as f but in fewer variables. Note that this construction
can be iterated; in other words, given A € £(s, r), we can look at the triple composition
foloA:F* — ", which can be interpreted as picking a generic s-dimensional sub-
set of a generic r-dimensional subset of X. Unsurprisingly, this operation is essentially
equivalent to directly picking a generic s-dimensional subset of X (see Lemma 4.10; this
again relies on the fact that the maps £ and A are affine, so their composition £ o A is affine
as well), and this simple fact will be crucial for our arguments (in particular, in the proof
of Proposition 4.13).

4.2. Definable families of functions

By a definable family of functions from F¥ to F” we mean a pair (F, e), where ¥ is
a definable set (in some power of F) and e: ¥ x FX — " is a definable partial function,
called the evaluation map, such that V* f € ¥ V*y e F¥ (e(f, y) is defined). The evalu-
ation map is usually clear from the context, so we omit it and simply write ¥ instead of
(%, e). We write #:F¥ = F” to indicate that # is a definable family of functions from
F¥ to F". Each f € ¥ gives rise to the partial map

FC~F"y > e(fy).

which we also denote by f (so expressions like f(y) or f o g must be interpreted accord-
ingly). The basic example of a definable family of functions from F¥ to F” is Ry (k, n; q)
for a nonzero polynomial ¢ € F[xq,..., xg] (with the natural evaluation map).

Definition 4.4. A definable family of functions ¥:F¥ = F" is comprehensive if the
following statements are equivalent for every definable set C C F”:

(Cl) Y*f e FV*y e F¥ (f(y) € C),

(C2) V*x e F*(x € C),ie.,dimC = n.

For instance, the family R4 (k,n:q) is comprehensive, since for all y € F¥ with
q(y) # 0 and for all x, x’ € F",

dim{f € Rq(k.n:q) : f(y) =x} =dim{f € Ra(k,n:q): f(y) =x"};
indeed, the map
{f €eRatk.niq): f(y) =x} > {f € Ralk,niq) : f(y) =X},
fe a0 —x)/q

is a definable bijection.
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Proposition 4.5. Let F:F* = F" be a definable family of functions. If ¥ is irreducible
and satisfies the implication (C1) = (C2), then ¥ is comprehensive.

Proof. We have to prove (C2) = (C1). To that end, let C C F” be a definable set for
which (C1) fails. Since ¥ is irreducible, the negation of condition (C1) is equivalent to
V*f e FV*y e F¥ (f(y) & C), so applying (C1) = (C2) with F” \ C in place of C
yields dim(F” \ C) = n,i.e.,dim C < n, as desired. [

The following construction will be useful. Let :F*¥ = F” and ¢:F" = F¥ and
assume that § is comprehensive. Define ¥ ® §:F" = F”, the composition of ¥ and &,
as follows: Asaset, ¥ ® § isequal to ¥ x §, and the evaluation map on ¥ ® § is given
by

(fe)z):=(fog)z) forall fe¥F,ge§, andz e F".

Proposition 4.6. The above definition is correct; that is, for all families ¥ :F¥ = F*
and §:F" = F¥, if § is comprehensive, then ¥ ® § is a definable family of functions
fromF" to F".

Proof. Due to Corollary 3.16, we have to verify that
V¥fe¥F V*'ge§ V'zelF’ (f o g)(2) is defined.
Since the family ¥ is comprehensive, this is equivalent to
V¥fe¥ V*yeFFk f(y) is defined,
which holds by definition, since ¥ is a definable family of functions. [

Proposition 4.7. Let ¥:F* = F” and §:F" = F*. If ¥ and § are comprehensive,
thensois ¥ ® §.

Proof. For any definable set C C F”, we have
V'fe¥F V'ge§d V'zeF" (fog)z)eC
— V*fe¥F V'yeFr f(y)ecC [¢ is comprehensive]
— V'xeF" xeC [F is comprehensive]. |

4.3. Containers

A crucial concept for the results of this section is that of an r-container. Informally, an
r-container € for a definable family ¥ :[F¥ = F” is a definable rule that, given f € ¥
and £ € £(r, k), outputs a subset €74 C F” that only depends on the composition f o £
and not on f and £ themselves. Here is the precise definition:

Definition 4.8. Let #:FX = F” and let r < k. An r-container for  is a definable set
C CFxL(rk)xF"

such that for all f, g€ ¥ and £, A € £(r,k) with f of = go A, and for all x € F",
we have
(fil.x)e€C < (g.1.x) €C.
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If € is an r-container for ¥, then, for any definable map ¢: F" — F”, we write
Cp={xeF":(f,{,x) eCforsome f € F and £ € £(r, k) such that f o { = ¢}.

Definition 4.9. Let 7:FK = F" and r € {—1,0,1,...,k — 1}. The family ¥ is called
r-uncontainable if either r = —1 and ¥ is comprehensive, or else, r € N and the follow-
ing statements are equivalent for every r-container € for ¥

(Ul) V*f e FY*L e £(rk)V*y e FK (f(y) € Crop),
(U2) V¥f e FY* € £(r k) V*x € F" (x € Crop).

The implication (U1) = (U2) in Definition 4.9 can be informally summarized as, “It is
impossible to put most elements of ¥ into small containers,” hence the term “uncontain-
able.” The opposite implication (U2) = (U1) says that, conversely, “large containers must
capture most elements of 5 .” It is convenient to include the second implication as part of
Definition 4.9, even though in most cases of interest to us it will follow automatically, see
Proposition 4.12.

When working with r-uncontainable families, we often rely on the following basic
fact:

Lemma 4.10. Suppose thats <k, s < r and let A € £(s,r) be an injective affine map.
Then, for every definable set A C £(s, k), we have

Ve L(r,k) Loded < V'opeil(s,k) ¢eA.

Proof. Since s < k, a generic affine map ¢ € £(s, k) is injective, and, similarly, £ o A is
injective for generic £ € £(r, k). It remains to observe that for all injective ¢ € £(s, k),
the dimension of the set {{ € £(r,k) : £ o A = ¢} is the same. (]

Proposition 4.11. Let F:FX = F" and s, r € {—1,0,1,....k — 1}. Ifs < r, then
F is r-uncontainable —> ¥ is s-uncontainable.

Proof. Suppose that 0 < s <r <k and ¥ is r-uncontainable (the proof in the case
s = —1 is similar, and we omit it). Let € be an arbitrary s-container for ¥. Fix any
injective map A € £(s, r) and define an r-container € by @f04 = Cropop forall f eF
and £ € £(r, k). We claim that (Ul) and (U2) for € are equivalent to the correspond-
ing statements for @ which implies that ¥ is s-uncontainable. Indeed, (U1) for C takes
the form

V'feF YeX(rk) VyeFr  f(3)eCroponr.

By Lemma 4.10, this is equivalent to
VifeF Voel(s,k) V'yeFr  f(y)eCrop,
which is precisely (U1) for €. The argument for (U2) is similar. ]

Proposition 4.12. Let FFk=TF" and r € {—-1,0,1,...,k —1}. If ¥ is irreducible
and satisfies the implication (U1) = (U2), then ¥ is r-uncontainable.

Proof. The proof is the same, mutatis mutandis, as the proof of Proposition 4.5. ]
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The family £(k,n) is easily seen to be (k — 1)-uncontainable (this is a special case
of the more general Proposition 5.8 proved in Section 5). This fact yields the following
extension of Proposition 4.7:

Proposition 4.13. Let F:F* = F" and r € {—1,0,1,...,k — 1}. Suppose that s < k
andlett := min{r,s — 1}. If ¥ is r-uncontainable, then ¥ ® £ (s, k) is t-uncontainable.

Proof. The case t = —1 is handled by Proposition 4.7, so, from now on, assume that
t € N.
Let € be a t-container for ¥ ® £(s, k). Then (U1) takes the form

V¥fe¥F VekL(s,k) VieL(ts) VzeF*® (fol)(2) € Cropon.
Since £(s, k) is (s — 1)-uncontainable and ¢ < s — 1, this yields
VEfeF Ve(s,k) VAielLts) V'yeFr  f(y) e Cropon,
which, by Lemma 4.10, is equivalent to
V¥feF Voel(tk) V'yeFr  f(y)eCrop
Since ¥ is r-uncontainable and ¢ < r, we conclude that
V*fe¥F V'oelL(tk VixeF” x € Crop,
which, by Lemma 4.10 again, can be rewritten as
V'fe¥ VUelL(s.k) VAeLlt,s) V'xeF” x € Cropop.

But the last expression is exactly the relevant instance of (U2). ]

4.4. Typical dimension of neighborhoods

Let A C F" x F™ be a definable set. We say that A is dominant if dim proj; A = n. For
a definable map ¢: F¥ — F” | the fiber of A over ¢ is the set A, C F¥ x F™ given by

(r1.x2) € 4y <= (¢p(»1),x2) € A.

The following lemma is a precise statement of the corollary of the dimension of fibers
theorem discussed in the beginning of Section 4.1:

Lemma 4.14. Let A C F" x F™ be a dominant definable set and let ¥ :F*¥ = F". If ¥
is comprehensive, then, for generic f € ¥, the set Ay C F* x F™ is dominant and the
dimension of every dominant irreducible component of Ay is dim A —n + k.

Note that, by Lemma 3.5, the set of all elements f € ¥ that satisfy the conclusion of
Lemma 4.14 is definable.

Proof. Let C C F" be the set of all x € F” such that A, # @ and the dimension of
every irreducible component of A, is dim A — n. Since A is dominant, by Theorem 3.7,
dim C = n. Applying the implication (C2) = (C1), we obtain that for generic f € ¥ and
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for generic y € F¥, f(y) € C; in other words, (Ay)y # @ and the dimension of every
irreducible component of (Af), is dim A —n. Since (Ay), # @ for generic y € F,
we conclude that Ay is dominant. Let B € Ay be any dominant component of Ay.
For generic y € }Fk, we have dim B, = dim B — k. Since By, C (Ay),, this implies that
dim B < dim A —n + k. Suppose that dim B < dim A — n + k. Then, for generic y € F¥,
dim By, is less than the dimension of every irreducible component of (Ay),, and hence
the set B, is contained in the closure of (Ar), \ B),. This means that B C Af \ B,
contradicting the fact that B is a component of A¢. ]

We are now ready to state and prove the central result of this section:

Theorem 4.15. Let A C F" x F™ be a dominant irreducible definable set and suppose
that ¥ :F* = F" is an irreducible definable family of functions. Let

r := min{k, dimproj, 4 + n —dim A} — 1.

If ¥ is r-uncontainable, then, for generic [ € ¥, every dominant component B of A
satisfies
dim proj, B = min{dim A — n + k, dim proj, A}.

Proof. The proof is by induction on k. The base case k = 0 is a restatement of Theo-
rem 3.7, so suppose k = 1. Let :F¥ = F” be an r-uncontainable irreducible definable
family. It follows from Lemma 4.14 that, for generic f € ¥, every dominant compo-
nent B of Ay satisfies

dim proj, B < min{dim B, dim proj, A} 4.16)

= min{dim 4 — n + k, dim proj, A}. ’

Suppose that the conclusion of Theorem 4.15 fails for . Due to (4.16) and since ¥ is
irreducible, this means that for generic f € ¥, the set Ar has a dominant component B
with

dim proj, B < min{dim A — n + k, dim proj, A}. (4.17)
Consider the family ¥ ® £(k — 1,k): F¥~! = F". Since the families ¥ and £ (k — 1,k)
are comprehensive, so is ¥ ® L(k — 1,k) by Proposition 4.7. By Lemma 4.14, this
implies that for generic f € ¥ and £ € £(k — 1, k), every dominant component C

of Ay satisfies
dimC =dimA—n+k—1. (4.18)

We can use the inductive assumption and apply Theorem 4.15to ¥ ® £(k — 1, k). Set
s = min{k — 1,dimproj,A +n —dim A} — 1.

Then s = min{r, k — 2}, and, since ¥ is r-uncontainable, Proposition 4.13 yields that
F ® £(k — 1, k) is s-uncontainable. Hence, the conclusion of Theorem 4.15 holds for
F ® L£(k — 1,k); in other words, for generic f € ¥ and £ € £(k — 1,k), every domi-
nant component C of Ay satisfies

dim proj,C = min{dim A —n + k — 1, dim proj, A}. (4.19)
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Claim 4.15.1. The following statements are valid:
(a) dimproj,A = dim A —n + k, and hencer =k — 1,

(b) for generic f € ¥ and L € £(k — 1,k), there exist a dominant component B of Ar
and a dominant component C of Ay such that

proj, B = proj,C

and
dim proj, B = dim proj,C = dimA —n + k — 1.

Proof. Consider generic f € ¥ and £ € £(k — 1,k). Let B be an arbitrary dominant
component of Ay satisfying (4.17). Recall that, by Lemma 4.14,dim B = dim A —n + k.
Since the family £(k — 1, k) is comprehensive, we may apply Lemma 4.14 to B in order
to conclude that the set By is dominant and the dimension of every dominant component
of BgisdimB —k + (k — 1) =dim A — n + k — 1. Let B’ be any dominant component
of By. Since By C Afop, there is a (necessarily also dominant) component C of Afeg
such that B’ € C. From (4.18), we see that dim B’ = dim C, and hence the closures of B’
and C coincide. By Corollary 3.11, projections commute with closures, and therefore

proj, B/ = proj, B’ = proj,C = proj,C,
so
dim proj, B’ = dim proj, C.
Combining this with (4.17) and (4.19), we obtain the following chain of (in)equalities:
min{dim A — n + k, dim proj, A} > dim proj, B = dim proj, By = dim proj, B’

= dim proj,C (4.20)

= min{dim A —n + k — 1, dim proj, A}.
By comparing the first and the last terms in (4.20), we see that

dimproj,A = dimA —n + k

and
dim proj, B = dimproj,C =dimA —n + k — 1.

Since proj, B is irreducible and proj, B 2 proj,C, this yields proj, B = proj,C, and we
are done. ]

Now we define a (k — 1)-container € for the family & as follows: For each f € ¥
and £ € £(k —1,k), let €7, be the set of all x € F” such that the set Ao, has a domi-
nant component C with

dimproj,C =dimA—n+k—1 and dim(4A, Nproj,C) = dim A —n.
Note that € is definable due to Lemma 3.5 (and other results of Section 3.1).
Claim 4.15.2. The (k — 1)-container € satisfies (U1); in other words, we have
VifeF Velk-1,k) YyeFrF  f(y)eCro.
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Proof. Pick generic f € ¥ and £ € £(k — 1,k) and let B and C be dominant compo-
nents of Ay and Ay respectively with the properties specified by Claim 4.15.1 (b). Since
dim proj,C = dim A —n + k — 1, every y € F¥ with f(y) ¢ € #o¢ must satisty

dim(By N proj,C) < dim((Ar), N proj,C) < dimA —n. 4.21)

We claim that (4.21) fails for generic y € IFk, which gives the desired conclusion. Indeed,
we have dim B = dim A —n + k, so, for generic y € IF", dim By = dim A —n, and if
such y satisfies (4.21), then

dim(By \ proj,C) = dim A4 — n. (4.22)
If (4.22) holds for generic y € F¥, then
dim(B \ (F* x proj,C)) = dim A —n + k = dim B.
Since B is irreducible, Corollary 3.11 then yields
dim(proj, B \ proj,C) = dim proj, (B \ (F* x proj,C)) = dim proj, B,
which contradicts the fact that proj, B = proj,C. |

Since, by Claim 4.15.1 (a), the family ¥ is (k — 1)-uncontainable, we deduce from
Claim 4.15.2 that

Vfe¥ VH8etk—-1,k) Y*xeF" x € Crop.

Take any f € ¥ and £ € £(k — 1,k) such that V*x € F” (x € Cror). The set Arog has
only finitely many components, so we can choose a dominant component C of Aso¢ s0
that

dimproj,C =dimA4 —n +k — 1

e V*x € F" (dim(Ay N proj,C) = dim A — n).
Then we have
dim(A4 N (F" x proj,C)) = dim 4,
and, since A is irreducible, Corollary 3.11 yields
dim proj, C = dim proj, (A4 N (F" x proj,C)) = dim proj, A.
Butby Claim4.15.1 (a), dim proj, A = dim A —n + k > dim proj,C; a contradiction. m

To establish a connection between Theorem 4.15 and the motivating discussion in Sec-
tion 4.1, consider the contrapositive of Theorem 4.15. Let A C F” x F™ be a dominant
irreducible definable set and suppose that : F¥ = F” is an irreducible definable family
consisting of functions f that violate the conclusion of Theorem 4.15. Such a family &
cannot be r-uncontainable, and hence, by Proposition 4.12, there exists an r-container €
for ¥ such that for generic f € ¥ and £ € £(r, k), we have

dimCro <n, yet dim f_l((Sfoé) =k.



Independent sets in algebraic hypergraphs 23

In other words, based on f o £ alone, we can definably build a “small” set @fog that
contains “most” of f(IF¥). This result can be further strengthened in two ways: first, we
can actually do this forall f € ¥ (and not just for a generic subset); second, the family 5
need not be irreducible:

Corollary 4.23. Let A C F" x F™ be a dominant irreducible definable set and let
r = min{k, dim proj, A + n —dim A} — 1.

Let ¥:F% = F" be a definable family of functions such that for all elements f € F,
dimdom( f) = k. Suppose that for every f € ¥, either the set Ay is not dominant, or
else, Ay has a dominant component B with

dim proj, B # min{dim A — n + k, dim proj, 4}.

Then there is an r-container € for ¥ such that for all f € ¥ and for generic{ € £(r, k),
we have
dimCrop <n, yet dim f_l(@fog) =k.

Proof. For fixed A CF" x F™ and k, let ¥: F*¥ = F” be a counterexample to Corol-
lary 4.23 that minimizes dim ¥ and has the fewest irreducible components among all
counterexamples with dimension equal to dim % . Clearly, ¥ # @. Since for all f € ¥,
dimdom( f') = k, every definable subset of ¥ forms a definable family of functions with
the evaluation map inherited from % . Call a definable subfamily ¥’ C ¥ small if there
is an r-container € for ¥ such that for all f € ¥’ and for generic £ € £(r, k), we have
dim€yop < n butdim f~1(€sop) = k. By assumption, F itself is not small.

Claim 4.23.1. If #1, ¥, C ¥ are small definable subfamilies, then so is 1 U F5.

Proof. For each i € [2], let €; be an r-container for %; such that for all f € %; and for
generic £ € £(r, k), we have dim(C;)o¢ < n and dim f ' ((€;)sor) = k. We may in
fact assume that dim(C;)ro¢ < n for all £ € £(r, k), since otherwise we can replace €;
with € given by

(Gi)fog if dim(@:i)foe <n,

g otherwise.

(C))fot = {

Define an r-container € for #1 U 5, by setting Crop := (€1)rog U (€2) ror. It is easy to
see that € has all the desired properties. ]

We claim that ¥ is irreducible. Otherwise, we can write ¥ = %7 U %5, where each
of #1, ¥ is a definable family of functions that has fewer irreducible components than % .
By the choice of ¥, the families %7 and %, are small, and hence so is ¥ by Claim 4.23.1,
which is a contradiction.

If ¥ were r-uncontainable, we would be able to use Lemma 4.14 and Theorem 4.15
to conclude that for generic f € F, the set Ay is dominant and every dominant compo-
nent B of Ay satisfies

dim proj, B = min{dim 4 — n + k, dim proj, A}.
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This conclusion contradicts the assumptions on ¥, so ¥ cannot be r-uncontainable.
From Proposition 4.12, it follows that there exists an r-container € for ¥ that satis-
fies (U1) but fails (U2); in other words, for generic f € ¥ and £ € £(r, k), we have
dim f ! (€ror) = kbutdimCrop < n. Let

Fi={f €F :V* € L(r.k)(dim " (Csor) = k and dim C oy < 1)}

and

?2 =5 \ F 1-
The r-container € certifies that 7 is small. But dim ¥, < dim ¥, so % is also small by
the choice of ¥ . Claim 4.23.1 then implies that ¥ itself is small — a contradiction. ]

5. Proof of Theorem 2.7

5.1. Almost density is necessary

The following simple linear-algebraic fact will be rather useful (it is partially responsible
for the lower bound d = t — 1 in the statement of Theorem 2.7):

Lemma 5.1. Lett = 1. Fixd =t — 1 and a nonzero polynomial q € F[xy, ..., xy]. Let
Vi.-... s € F* be a sequence of pairwise distinct points such that q(y;) # 0 for all
i € [t]. Then, for any x1,...,x; € F",

dim{f € Ry(k.n:q): f(y1) =x1,..., f(yr) = x;} =dimRy(k,n;q) —tn

()

Proof. We can express each element f € Ry(k,n;q) as f = (p1/q,...,pn/q), where

P1s---, Pn are polynomials of degree at most d. For each i € [t], write
xi = (xi(1),....x;(m)) and y; = (yi(1),....yi(k)).
The conditions f(y;) = x1,..., f(¥:) = x; are then equivalent to
pji) =q(yi)-xi(j) foralli €[r]and j € [n]. (5.2)
This is a system of ¢n linear equations in the coefficients of the polynomials py,..., p,.

Therefore, the statement of Lemma 5.1 is equivalent to the assertion that equations (5.2)
are independent. Furthermore, it is enough to establish the independence of the equa-
tions corresponding to the same j € [n], since the equations corresponding to distinct j
share no common variables. Since the rows of a matrix M are linearly independent if and
only if the linear operator determined by M is surjective, it remains to show that for all
bi,...,b; € F, there exists a polynomial p of degree at most d such that

p(yi) =b; foralli € [t]. (5.3)
Foreachi € [t] \ {1}, choose some j; € [k] such that y; (j;) # y1(J;) and let

D re o) = — 2 = 202)) - g = Vi)
s . (yl(]z)—)’Z(]Z))(yl(fk)_J’k(]k))

e Flvy,..., vkl
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Then ¢, is a polynomial of degree t — 1 < d such that ¢;(y1) = 1 and ¢;(y;) = O for
all i € [t] \ {1}. Similarly, there exist polynomials ¢, ..., ¢, such that ¢;(y;) = 1 and
q;(yi) =0 for i # j. Clearly, the polynomial p := b1q; + -+ + bsq; is a solution to

equation (5.3), as desired. [
Recall that we call a set E € (F")" injective if for all (x1,...,x;) € E, the elements
X1,...,X; are pairwise distinct.

Lemma 54. Lett = 1 and let E C (F™)! be an injective definable set. Suppose that for
somed =t—1andq € F[xy,...,xx] \ {0}, we have V* f € Ry(k,n;q) (dim E[f] = k).
Thendim E = tn — (t — 1)k.

Proof. Consider the set

G ={(fiy1... veix1e X)) ERg (k) X FRY X E: f(y1)=x1..... f(y)=x:}.

By definition, (y1,...,y;) € E[f] when for some (x1,...,x;) € E, we have

(fiy1see s YeiX1,e. 0, X)) €6
Since V* f € Ry(k,n;q) (dim E[f] = k), this implies that
dim & = dim Ry (k,n;q) + k. (5.5)

On the other hand, consider any (f; y1,..., V¢ X1,...,Xx:) € &. By definition, we have
{r1,...,y:} S dom(f), i.e., g(y;) # 0 for all i € [t]. Since E is injective, the points
X1,...,Xs, and hence also yq, ..., y;, are pairwise distinct. By Lemma 5.1, if we choose
any (x1,...,x;) € E and any sequence yi,...,y; € F¥ of pairwise distinct points such
that g(y;) # O forall i € [¢], then

dim{f € Ra(k.n;q) : (f;y1,---, ye;X1,...,x¢) € &} =dim Ry (k,n;q) —tn.

Therefore,
dim & =dim E + tk +dim Ry (k,n;q) —tn. (5.6)

Combining (5.5) and (5.6) yields the desired conclusion. ]

With Lemma 5.4 in hand, we derive Proposition 2.6, restated below for the reader’s
convenience:

Proposition 5.7. Let t = 1 and let E C (F")" be an injective definable set. If there
exist d =t — 1 and a nonzero polynomial q € F[xy, ..., x| such that, for generic ele-
ment f € Rq(k,n:q), every definable E|[ f]-independent set I  F* has dimension less
than k, then E has a k-almost dense irreducible component.

Proof. First we show that E itself is k-almost dense. Let @ # S C [¢]. Since every
(projg E)[ f]-independent set is also E[ f]-independent, we conclude that for generic ele-
ment f € Ry (k,n;q), every definable (projg E)[ f]-independent set / < F* has dimen-
sion less than k. By Proposition 2.2, this implies that dim(projg E)[f] = k. Then, by
Lemma 5.4, dimprojg E = |S|n — (|S| — 1)k, as desired.
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Now suppose that the components of £ are Hy, ..., H, and consider any element
f € Ray(k,n;q). Notice that

E[f]= H:[f]U---U H[f].

and thus if there is no k-dimensional definable E[ f]-independent set, then there is also
no k-dimensional definable H;[f]-independent set for some i € [s] (as the intersection
of finitely many dense definable sets is dense). Since the set Ry (k,n;q) is irreducible,
there is some i € [s] such that for generic element f € R4(k,n;q), every definable
H;[ f]-independent set has dimension less than k. By the above argument, H; is k-almost
dense, and we are done. n

Lemma 5.1 will be used again in Sections 5.3 and 5.4.

5.2. Restrictions

Fix a nonzero polynomial ¢ € F[xq, ..., x¢]. Given an element g € R4 (k,n;q) and a sub-
set L € £ (k), we use Ry (k,n;q)[g; L] to denote the set of all f € Ry (k,n;q) such
that

fol=gol forallle L.

We view Ry (k,n;q)[g; L] as a definable family of functions, with the evaluation map
inherited from R4 (k,n; q), and call it the (g; L)-restriction of R;(k,n;q). Note that, by
definition, Ry (k,n;q)[g; L] # @ asg € Ry(k,n;q)[g; L]. Asthe set R;z(k,n;q)[g; L]
is cut out from R, (k, n; ¢) by linear equations, it is irreducible.

The next proposition allows us to apply the results of Section 4 to Ry (k,n;q)[g; L]
(it is another reason for the lower bound d > t — 1 in Theorem 2.7):

Proposition 5.8. Fixq € F[xq,...,xx] \ {0}. Let g € Ry(k.n;q) and L € £ i (k).
(a) If |L| < d, then the family R4(k,n;q)[g; L] is comprehensive.
(b) If|L| < d, then the family R (k,n;q)[g; L] is (k — 1)-uncontainable.

Proof. (a) Assume that |L| < d and suppose that R4 (k,n; q)[g; L] is not comprehensive.
Due to Proposition 4.5, there is a definable set C C F” such that dim C < n but

V*feRak,niq)lg: L] V*yeF*  f(y)ecC. (5.9)

We may replace C by its closure and assume that C is closed, i.e., it is the set of common
zeros of a family of n-variable polynomials. Let Z C F¥ be the zero locus of ¢. Since C
is closed, the set

((f.y) € Ralk,n;q)[g: L] x (F*\ Z) : f(y) € C}

is cut out from Ry (k,n;q)[g; L] x (F¥ \ Z) by a family of polynomial equations; in
other words, it is relatively closed in Ry (k,n:;q)[g: L] x (F¥\ Z). Since it is dense
in Ry(k,n;q)[g: L] x (F¥\ Z) by (5.9), we can replace generic quantifiers in (5.9) by
universal ones and conclude that

VfeRalkniq)g:L] VyeFs\zZ  f(y)eC.
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To arrive at a contradiction, we shall exhibit f € Ry (k,n;q)[g: L] and y € F¥\ Z such
that f(y) & C. Actually, for any given x € F", we will find f € R;(k,n;q)[g; L] and
y € F¥\ Z with f(y) = x.

Let L =: {{1,...,4s}, where s < d. Since each function ¢; is defined on a space of
dimension less than k, we can choose nonconstant affine maps ¢;: F¥ — F such that
im(¢;) C ker(p;). Let

P =¢1 Qs
Then p is a nonzero polynomial in k variables of degree s < d such that po{; =0
for all i € [s]. For any sequence of coefficients ay,...,a, € [F, define a rational map
fal,...,an € R(k,n) via
ap anp
fal ..... ani=g+(—,...,—" )
q q

By the choice of p, we have fy, . 4, € Rq(k,n;q)[g: L]. Furthermore, if y € Fk\ Z
is such that p(y) # 0, then, by varying ai, ..., a,, we can force fz,,  q4,(») to take an
arbitrary value x € F”, as desired.

(b) Assume that |L| < d and let € be a (k — 1)-container for Ry (k, n; q)[g; L]. Then
(U1) becomes

V*feRatk,niq)lg; L] Ve Lk —1,k) Y*yeFr  f(y) e Cro
or, equivalently,
Ve £k —1,k) V*feRatk,n;q)lg;L] Y*y eF¥  f(») € Crop. (5.10)
For ¢ € £(k — 1, k), define an equivalence relation Ry on R4 (k,n;q)[g; L] by
(ffh)ye Ry <= fol=hol.

By definition, the Rg-equivalence class of f is the set Ry (k,n;q)[f; L U {£}]. Since Ry
is cut out from Ry (k,n; q)[g; L] x Raq(k,n;q)[g; L] by linear equations, it is irreducible,
and since Ry is reflexive, we have proj; Ry = proj, Ry = R4(k,n;q)[g; L]. Thus, we
may apply implication (ii) = (i) of Corollary 3.17 to rewrite (5.10) as follows:

Ve E(k—1,k)y Y*feRak,niq)lg:L]
Ve Ralk,n;q)[f;LU] V*y eFF h(y) € Cpop

Note thatif (f, /) € R¢,thenhof = f of,and hence €po¢ = Cyop. Also, since [L| < d,
by part (a), the family R, (k,n; q)[f; L U {{}] is comprehensive. Therefore, we have

V*he Ralk,n;q)[f: LUL)] V*y e F¥ h(y) € Cpo

= YheRikn:ilf:LU{L)] V*y eF*Y h(y) €Crop  [Chot = Cro
— V'xeF" xeCry [comprehensiveness].

(5.11)

Hence, (5.11) is equivalent to
V8ieLk—-1,k) V'feRsk,n;q)g:L] V*x €F" x € Cyrop,

which turns into (U2) after switching the order of the first two quantifiers. ]
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5.3. Iterative applications of Theorem 4.15

Let r = 1 and let £ C (F")! be a definable set. Let s <t — 1. Given f € R(k,n) and
affine maps {1, ...,€s € £(r, k), define E(f;4£1,...,4s) C (F™)'~* as the set of all tuples
(X1,...,X7—s) € (F™)'~ such that

Azq,...,zs €F" ((f oL1)(z1),...,(f ols)(zs), X1,...,X—5) € E.
Fors = 0, we set E( f; @) := E.Itis clear from this definition that for s > 1,
E(fily,....ls) = E(f:l1,.... 40— (f:4y).

We view E(f;£1,...,%s) as a subset of the product space (F")"~5 with the coordinates
indexed by [t — s].

Lemma 5.12. Let t > 1 and let E C (F")" be an injective r-almost dense irreducible

definable set. Fix d =t — 1 and a nonzero polynomial q € Flxy,...,x¢]. If k =r + 1
and s <t — 1, then, for generic elements f € Rg(k,n;q) and £y, ..., s € L(r, k), the
subset E(f; 41, ...,45) of (F™")'™S is nonempty and all its irreducible components are

r-almost dense.

Proof. The proof is by induction on s. The base case s = 0 is trivial, so assume s = 1.
We first show that the set E(f;¢q,...,£;) itself is r-almost dense (and, in particular,
nonempty). The same argument as in the proof of Proposition 5.8 (b) shows that the
sequence of quantifiers

V*feRalk,n;q) VY*,..., 4 € £(rk)
can be replaced by

V¥g e Rylk,n;q) V*y,...,4s—1 € £(r, k)
V¥ feRalk.n:iq)g: by, ... Li—1}] Y5 € £(r. k).

Consider generic g € Ry (k,n;q)and £q,...,4s_; € L£(r, k) and let
F=Rak,n;q)[g:{l1,....4s—1}] and E' = E(g:{1....,Ls—1).
Notice that if ' € &, then E(f;{1,...,£5—1) = E’, and thus for any {5 € £(r, k),
E(fily.....4s) = E'(f:4y).

By the inductive assumption, E’ # & and every irreducible component of E’ is r-almost
dense. Let H be any component of E’ (so H is r-almost dense) and let @ # S C [t — s].
SetS":={i +1:i €S} C[t—s+ 1]. Then foreach {; € £(r, k), we have

projs (E(f:1.....4s)) = projs (E'(f:4s)) 2 projs(H(f:£s)) = (projgyus H)(f:Ls).

Define A := projy;ys H. We can view A as a subset of the product space F" x (]F”)S,.
Then

A(f5ls) = Projz(Af0€5)7
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where Ay denotes the fiber of A over f o {; (as defined in Section 4.4). Since H is
r-almost dense, we have

dim proj; A = dimproj; H = n,

i.e., the set A is dominant. As r <k ands —1 <t —2 < d, Proposition 5.8 (b) implies that
the family ¥ is (k — 1)-uncontainable, and, by Proposition 4.13, the family ¥ ® £(r, k)
is (r — 1)-uncontainable. Therefore, since A is irreducible, we can apply Lemma 4.14 and
Theorem 4.15 to conclude that, for generic f € ¥ and {5 € L(r, k),

dim projg(E(f; 1, ..., Ls)) = dimproj,(Asoq,) 5.13)
= min{dim A — n + r, dim proj, A}.
Observe that, since H is r-almost dense,
dim A = dim projgyys H = [{1} U S'|n — ({1} U S| = Dr = (IS| + Dn — |S]r,
sodimA —n +r = |S|n—(|S|— 1)r. Similarly,
dim proj, A = dimprojg/ H = |S'|n — (|S’| = D)r = |S|n — (|IS| = Dr.
Thus, (5.13) yields
dimprojg(E(f;£1,....4s)) = |S|n— (S| = Dr,

and hence E(f;¢1,...,£s) is r-almost dense, as claimed.
To prove that every component of E(f; {1, ..., ¥s) is r-almost dense, let X be the set
of all tuples

(fily, .o lsix1, .o xi—s) € Ra(k,n;q) x (L(r,k))* x (F™")!S
such that (xq,...,x;—5) € E(f;41,...,%).
Claim 5.12.1. The set X is irreducible.
Proof. Writing f = (p1/q.--., pn/q), let 3 be the set of all tuples

(fily, oo s ls 21, e 253 Vs ooy Vi X1y v ey Xt)
€ Ry(k,n;q) x (L(r,k))* x (F")* x (FF)* x (F™)!

such that £; (z;) = y; and (p1(¥i), ..., pn(¥i)) = q(y;) - x; forall i € [s]. Let D denote
the set of all tuples (y1, ..., ys) € (FX)* of pairwise distinct points such that ¢(y;) # 0
forall i € [s], and let

W= 3N (Ra(k,n;q) x (£(r,k))’ x (F")* x D x E).

Note that D is irreducible, as D = (F¥)*. Since E is injective, ¥ is the image of ) under
the projection

(fila, ool 2 V1o s Vs X1y e s X)) > (f3la, oo sy X1y - o2 X2)s
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so it suffices to prove that %) is irreducible. The defining equations for 3 are linear in
the coefficients of py,..., p, and £q,...,¢s, so we may use Corollary 3.14. The set
(F")* x D x E is irreducible, so we just need to show that for all

(Z1s e 253 Y1s e V53 X1 oo X)) € (FT) X D X E,
the dimension of the set
{(fily,....8s) € Rglk,n;q) x (£(r, k))* :
(fily, o o ls21, oo 255 V1o e s Vsi X1, -+ -, Xt) € 3}

is the same. But since (yy, ..., ys) € D, this is indeed the case by Lemma 5.1, according
to which the dimension of this set equals dim R (k,n;q) —sn + s(dim £(r,k) — k). =

We can now finish the proof of Lemma 5.12. To this end, take any @ # S C [t — 5]
and let X5 C X be the set such that for all f € Ry(k,n;q) and £4,...,¢s € £(r, k),
the fiber of X5 over (f;¢y,...,{s) is the union of all the irreducible components H of
E(f;€q,...,4) with

dimproj¢H = |S|n — (|S| — Dr. (5.14)

It follows from the results of Section 3.1 that X s is definable. We already know that for
generic f,4y,...,¢s, theset E(f;4y,...,Ls) is r-almost dense, and hence

dimprojg (E(f: 1. .... L)) = [S|n — (IS| = Dr,

which means that E(f;{q,...,£s) has a component H satisfying (5.14), i.e., the fiber
of Xg over (f;41,...,4{s) is nonempty. Since X is irreducible, Corollary 3.12 implies
that for generic f, €1,...,¥s, the fiber of Xg over (f;¢;,...,£s) must be equal to
E(f;£4,...,4s). In other words, every irreducible component H of E(f;4,...,4s)
satisfies (5.14), as desired. [

Applying Lemma 5.12 with s = ¢ — 1 yields the following:

Corollary 5.15. Lett = 1 and let E C (F")! be an injective r-almost dense irreducible
definable set. Fix d =t — 1 and a nonzero polynomial ¢ € Flxy,...,x¢]. Ifk = r + 1,
then

V*feRalk,niq) V... 01 € £(rk) V*yeFk

Az4,...,z4—1 € FT (l1(z1)s. .., Li—1(zs=1). y) € E[f].
Proof. We again observe that the sequence of quantifiers
V*feRglk,n;q) V*,....8i—1 € £(r. k)
can be replaced by
V¥¢ge Rylk,n;q) V*y,....0_1 € £(r,k) V*'feRatk.n;q)g;:{l1,....Lr—1}]
Consider generic g € Ry (k,n;q) and £y, ..., £;—1 € £(r, k) and let
F=Ratk,n;q)g;{€1,....4,—1}] and C := E(g;¥{y,...,4;—1) CF".
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Note that for all f € ¥, E(f;£1,...,£,—1) = C. Since d =t — 1, Proposition 5.8 (a)
shows that F is comprehensive, and hence we obtain

Vfe¥ V*'yeFk 3z,....zi4€F" (Ui(z1),.... Li—1(zi—1). y) € E[f]
— Y*'feF V'yeFr f()eE(:l,....0 1)

— V*fe¥F V'yeFr f(y)ecC

< V*xeF" xeC

& dimC =n.

But dim C = n is precisely the conclusion of Lemma 5.12 for s = ¢ — 1, so we have
proved the corollary. ]

5.4. Finishing the proof

We are finally ready to prove Theorem 2.7. For the reader’s convenience, we state it again
below:

Theorem 5.16. Let 1 = 1 and let E C (F")! be an r-almost dense irreducible defin-
able set. Fix d =t — 1 and a nonzero polynomial q € Fxy,...,x;]. If k = r + 1, then,
for generic f € Ry(k,n;q), the following holds: Every definable E| f-independent set
I C F* has dimension less than k. Furthermore, if E is injective, then every irreducible
component of E[f] is r-almost dense.

Proof. Let us first assume that E is injective. As in the proof of Lemma 5.12, we start
by showing that for generic f € R4 (k,n;q), the set E[ f] itself is r-almost dense (hence
nonempty). Consider any @ # S C [¢]. For concreteness, we may assume S = [s] U {¢}
for some s <t — 1. It follows from Corollary 5.15 that a generic map f € Ry(k,n;q)
satisfies

V¥, ...ty e £(r k) Yy eF* 3z, . .zg€F" 3Aysir.....y1 € FF
(li(z1), - ls(25), Yst1s- ooy Ye-1.¥) € E[f],
which can be rewritten as
V¥, ... by € L(r k) Y*yeFK 3z,... z,€F"
(€1(z1), ... Ls(25). y) € projs(E[f]).
Let & be the set of all tuples
1, s V1o Ys+13 21, - - -5 25) € (L(r k))° x projg(E[f]) x (F7)*
such that ¢; (z;) = y; for alli € [s]. From (5.17), we conclude that
dim® = sdim £(r, k) + k. (5.18)

(5.17)

On the other hand, for all y € Fkandz € F" , we have

dim{f € £(r,k) : £(z) =y} =dimL(r, k) — k
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by Lemma 5.1. Hence, for all (y1,..., Vs, ¥s+1) € projg(E[f]) and z1,...,zs € F', the
set of all tuples (41, ...,£5) € (£(r, k))* with £1(z1) = y1,...,€s(25) = ys has dimen-
sion s(dim £(r, k) — k), so

dim & = dimprojg(E[f]) + sr + s(dim £(r, k) — k). (5.19)
Comparing (5.18) and (5.19), we obtain
dimprojg(E[f]) = (s + Dk —sr = [S|k — (|S| = Dr,

as desired.
To deduce that every irreducible component of E[f] is r-almost dense, we use the
same trick as in the proof of Lemma 5.12. Define

X:=A(fsy1,--.y0) € Ralle,n;q) x FX) - (y1,...,y:) € E[f]}.
Claim 2.7.1. The set X is irreducible.

Proof. The argument is analogous to the proof of Claim 5.12.1 above. Indeed, writing
f =(p1/q,--..,pn/q),let 3 be the set of all tuples

(fiY1see s Vei X1s.vn, Xt) € :Rd(k,n;q)x(IFk)t x (F™)f

such that (p1(¥;),..., pn(¥i)) = q(y;) - x; for all i € [¢t]. Let D denote the set of all
tuples (y1, ..., ys) € (F¥)! of pairwise distinct points such that ¢(y;) # 0 forall i € [t],
and let

W :=3N(Rgk,n;q) x D xE).

Since E is injective, X is the image of YY) under the projection

(f;ylv""yl;xl»"'»xt)'_)(f;yla"'9yl‘)’

so it suffices to prove that ) is irreducible. The defining equations for 3 are linear in the
coefficients of pi,..., pn, so we may use Corollary 3.14. The set D x E is irreducible,
so we just need to show that for all (yq,..., y¢; x1,...,X;) € D x E, the dimension of
the set

{f eRaltk.niq): (fiyio....yeix1,....x) € 3}

is the same. But since (y1,...,y;) € D and d =t — 1, this is the case by Lemma 5.1,
according to which the dimension of this set is equal to dim R4 (k,n; q) — tn. |

Treating each f € R4(k,n;q) as a point in the space R4 (k,n; q), we may consider
the fiber X5 of X over f. By definition,

Xr = {010 € FY 2 (fiyns.... ) € %) = E[f].

Now take any @ # S C [t] and let Xg C X be the set such that for all f € Ry (k,n;q),
the fiber

Xs)r ={01.....y0) € 5 (fiy1.....y) € s} S E[f]
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is the union of all the irreducible components H of E[ f] with
dimprojgH = |S|k — (|S| — Dr.

Then Xy is definable, and we have shown that for generic f € R4(k,n;q), (Xs)r # 9.
Since X is irreducible, it follows from Corollary 3.12 that for generic f € Ry (k,n;q),
(Xs)r = E[f],i.e., every component H of E[f] satisfies

dimproj¢H = |S|k — (|S| — Dr,

as desired. Recall that since, for generic f € Ry (k,n;q), the set E[ f] is nonempty and
all its components are r-almost dense, Observation 2.5 yields that there is no k-dimen-
sional definable E| f]-independent set.

Now suppose that E is not necessarily injective. We need to show that for generic ele-
ment f € Ry(k,n;q), every definable E|[ f]-independent set has dimension less than k.
Towards a contradiction, let E be a counterexample with the smallest value of 7. Let

Eo ={(x1,...,x;) € E : Xx1,...,Xx; are pairwise distinct},
andfor 1 <i < j <t, define
E,’j = {(xl,...,x,) eE:xi= x_/}.

Since E is irreducible, at least one of the sets Eg, E;;, 1 <i < j <t,is dense in E.
If E_o = E, then the set Ey is irreducible and, by Corollary 3.11, r-almost dense. Since
E is injective by definition, we conclude that for generic f € R4 (k,n;q), the set Eg[ f]
does not admit a k-dimensional definable independent set, and hence the same is true for
E[f] 2 Eo[f]. If, on the other hand, E;; = E for some i and j with 1 <i < j <1,
then the set E;; is irreducible and r-almost dense. Let S := [¢] \ {j} and E’ := projg E;.
Then E’ is also irreducible and r-almost dense, so, by the minimality of ¢, for generic
f € Ra(k,n;q), there is no k-dimensional definable E'[ f]-independent set. But a set
I CF¥ is E'[f]-independent if and only if it is E;;[ f]-independent. Hence, the set
E;;[f], and thus also E[f] 2 E;;[f], does not admit a k-dimensional definable inde-
pendent set, and the proof is complete. ]

6. Further directions

In this paper we worked with hypergraphs definable in an algebraically closed field F.
A natural next step would be to study hypergraphs definable in strongly minimal struc-
tures, with Morley rank assuming the role of dimension. It seems especially promising
to look at strongly minimal structures with the so-called definable multiplicity prop-
erty, which was isolated by Hrushovski in [10], as they satisfy natural analogs of many
basic facts stated in Section 3. While it appears likely that most our arguments could be
extended to this more general setting without too much difficulty, at certain places we
invoke properties that are very special to algebraically closed fields. In particular, the
proofs of Claims 5.12.1 and 2.7.1 use Corollary 3.14 and Lemma 3.13, which ultimately
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rely on P” being a complete variety — a fact that has no obvious analog in arbitrary
strongly minimal structures. Nevertheless, we suspect that at least the results of Section 4
should have their counterparts in the strongly minimal setting.

Another structure of interest is the real field R. There our arguments cannot be easily
adapted, because, in contrast to algebraically closed fields, R lacks a well-behaved notion
of irreducibility. In particular, the “size” of an R-definable set is characterized not only
by its dimension, but also by its measure. It makes sense, therefore, to define the indepen-
dence ratio a(E) of an R-definable hypergraph E C ([0, 1]")! as a(E) := sup; A, (1),
where A,, is the n-dimensional Lebesgue measure and the supremum is taken over all R-
definable E-independent sets I C [0, 1]”. (We are considering hypergraphs on [0, 1]* to
make the total measure of the vertex set 1.) The goal is to isolate the properties of £ which
guarantee that, for a generic R-definable map f: [0, 1]¥ — [0, 1]*, the induced subhyper-
graph E[f] C ([0, 1]%)" satisfies a(E[ f]) < «(E). A similar problem can also be studied
over finite fields [F,, using the (normalized) counting measure instead of the Lebesgue
measure.
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