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Abstract  

The formation of neuronal networks is a complex phenomenon of fundamental importance for 

understanding the development of the nervous system. The basic process underlying the network 

formation is axonal growth, a process involving the extension of axons from the cell body and 

axonal navigation towards target neurons. Axonal growth is guided by the interactions between 

the tip of the axon (growth cone) and its extracellular environmental cues which include 

intercellular interactions, the biochemical landscape around the neuron, and the mechanical and 

geometrical features of the growth substrate. Here, we present a comprehensive experimental and 

theoretical analysis of axonal growth for neurons cultured on micropatterned polydimethylsiloxane 

(PDMS) surfaces. We demonstrate that closed-loop feedback is an essential component of axonal 

dynamics on these surfaces: the growth cone continuously measures environmental cues and 

adjusts its motion in response to external geometrical features.  We show that this model captures 

all the characteristics of axonal dynamics on PDMS surfaces for both untreated and chemically 

modified neurons. We combine experimental data with theoretical analysis to measure key 

parameters that describe axonal dynamics: diffusion (cell motility) coefficients, speed and angular 

distributions, and cell-substrate interactions. The experiments performed on neurons treated with 

Taxol (inhibitor of microtubule dynamics) and Y-27632 (disruptor of actin filaments) indicate that 

the internal dynamics of microtubules and actin filaments plays a critical role for the proper 

function of the feedback mechanism. Our results demonstrate that axons follow geometrical 

patterns through a contact-guidance mechanism, in which high-curvature geometrical features 

impart high traction forces to the growth cone. These results have important implications for our 

fundamental understanding of axonal growth as well as for bioengineering novel substrate to guide 

neuronal growth and promote nerve repair. 
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SIGNIFICANCE 

Decades of research have shown that environmental guidance cues (biochemical, 

mechanical, geometrical) control the dynamics of neuronal axons, and the wiring up of the nervous 

system. However, a detailed quantitative model of the axonal growth is still missing. We 

demonstrate that axonal dynamics on substrates with periodic micropatterns is governed by a 

closed-loop feedback control mechanism that leads to axonal alignment on these surfaces. Axons 

follow geometrical patterns through a contact-guidance mechanism, in which high-curvature 

geometrical features impart high traction forces to the tip of the axon. We develop a quantitative 

theoretical model that incorporates mechanical interactions between the axon and the growth 

substrate. This model fully accounts for the experimental data including diffusion coefficients, 

speed distributions and angular alignment.  
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INTRODUCTION  

Neurons are the basic constituents that make up the nervous system, establishing neuronal 

networks to transmit information throughout the body. During their growth, neurons extend axons 

and dendrites, which navigate to other neurons and build complex interwoven networks that in 

many organisms grow to contain billions of synapses. The extension of the axon is guided by its 

growth cone, a dynamic unit that is located at the distal tip of the axon (1,2). To navigate its 

environment, the growth cone uses environmental cues such as electrical, chemical, mechanical, 

and geometrical stimuli (1-4). The dynamics of the growth cone throughout the external 

environment is controlled by the cell cytoskeleton, a flexible ensemble of actin and microtubule 

filaments and their associated molecular motors (1-7). 

Previous research has characterized many of the molecular pathways (1-7) responsible for 

intercellular signaling in developing neuronal systems (2,5-8), however the description of the 

fundamental mechanisms behind the growth cone response to geometrical and mechanical cues 

has not been determined at the same level of detail. Much of the research into geometric and 

mechanical cues has studied neurons on substrates in vitro where the geometry of the substrate can 

be controlled. These studies have shown that neurons grown on substrates with periodic 

geometrical features develop different growth patterns as a population when compared to neurons 

grown on surfaces lacking a periodic geometry (3,5,9-14). Observational differences include 

populations of axons which are markedly longer and which strongly tend to align their growth 

along preferred spatial directions (9,10,12,13,15-18). Most of this previous work has focused on 

qualitative or semi-quantitative models to describe the influence of a substrate with controlled 

geometric features on neuronal development. However, a detailed quantitative model of the growth 
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dynamics on these substrates, which incorporates the mechanisms of axonal alignment and cell-

surface interactions is still missing. 

Fundamentally, axonal growth on surfaces with controlled geometries arises as the result 

of an interplay between deterministic and stochastic components of growth cone motility (12,18-

21).  An example of a deterministic influence is the presence of a preferred direction of growth 

along a specific geometric pattern on a substrate (18,21). Examples of stochastic influences are the 

effects of polymerization of cytoskeletal features such as actin filaments and microtubules, cell 

signaling, low concentration biomolecule detection, biochemical reactions within the neuron, and 

the formation of lamellipodia and filopodia (1,2,7,22). The resultant growth cannot be predicted 

for individual neurons due to this stochastic-deterministic interplay, however the defining features 

of a population of neurons can be modeled by probability functions that satisfy a set of well-defined 

stochastic differential equations (12,19,20). Foremost examples include the Langevin and Fokker-

Planck equations, which have been used previously to capture the effects of both deterministic and 

stochastic influences on cellular motion, which is treated as a form of biased random motion 

(9,12,19,20,23-27).  

In previous work (20,21) we have shown that axonal dynamics on uniform glass surfaces 

is described by an Ornstein-Uhlenbeck (OU) process, defined by a linear Langevin equation and  

stochastic white noise (28,29). We have also reported that neurons cultured on poly-D-lysine 

coated polydimethylsiloxane (PDMS) substrates with periodic parallel ridge micropatterns of 

spatial periodicity d (henceforth referred to as the pattern spatial period), grow axons parallel to 

the surface patterns (18,21). We have studied axonal growth as a function of time on these 

micropatterned surfaces and found that axonal alignment increases as a function of time (18). 

While initially the growth can be represented as an OU process, at times greater than 48 hours 
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axonal growth can no longer be described as standard diffusion, following instead a superdiffusive 

behavior. This growth is characterized by non-Gaussian speed distributions and power law 

dependence of the axonal mean square length with time (18). Moreover, axonal dynamics is 

described by non-linear Langevin equations, involving quadratic velocity terms and non-zero 

coefficients for the angular orientation of the growing axon (21). In another paper we have used 

the Langevin and Fokker-Planck equations to quantify axonal growth on surfaces with ratchet-like 

topography (asymmetric tilted nanorod: nano-ppx surfaces), and we have investigated the 

diffusion coefficient of axons on this type of surface geometry (12). It was shown that the axonal 

growth is aligned with a preferred spatial direction as a result of a “deterministic torque” that drives 

the axons to directions determined by the substrate geometry. We have also measured the angular 

distributions and the coefficients of diffusion and angular drift on these substrates (12).   

In this paper we demonstrate that the motion of axons on surfaces with micropatterned 

periodic geometrical patterns is governed by a closed-loop feedback control mechanism that leads 

to axonal alignment on these surfaces. We develop a quantitative stochastic framework based on 

the Fokker-Planck equation that treats each growth cone as a system with a closed feedback loop. 

We demonstrate that a simple mechanical model based on the axon bending-induced strain justifies 

the use of the Fokker-Planck equation and allows us to extract the main dynamical parameters for 

both untreated and chemically modified neurons. This theoretical model fully accounts for the 

experimental data measured on ensembles of axons, including speed distributions and angular 

alignment. Furthermore, our experiments show that inhibition of cytoskeletal dynamics by 

treatment of neurons with Taxol (inhibitor of microtubules) and Y-27632 (inhibitor of myosin II 

and actin dynamics) results in a significant decrease of the axonal alignment, by altering the 

feedback mechanism of the cell. Feedback control means that the growth cone is guided towards 
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a target by using information retrieved from the environment (external stimuli). This is a powerful 

technique for describing the dynamical properties of many types of physical and biological systems 

including particle trapping (30-32), optical tweezers (33-35), neuron firing (36,37) and cellular 

dynamics (38-40). We demonstrate that this approach provides significant insight into the neuronal 

response to external mechanical and topographical stimuli. In particular our results show that 

axonal dynamics is controlled by a contact-guidance mechanism, which stems from cellular 

feedback in an external periodic potential imparted by the surface geometry.  This work has a 

significant impact for designing new platforms for guiding growth and regeneration of neurons 

and provides new insights for developing a general model to describe cellular motility.  

 

MATERIALS AND METHODS 

Surface preparation, cell culture and imaging 

The periodic micropatterns on PDMS surfaces are made of parallel ridges separated by troughs. 

Each surface is characterized by a different value of the pattern spatial period d, defined as the 

distance between two neighboring ridges (Fig.1 a). To make these periodic patterns we used a 

simple fabrication method based on imprinting diffraction grids with different grating constants 

onto PDMS substrates (additional experimental details are given in Supporting Materials). 
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FIGURE 1. (a) Top: Atomic Force Microscope (AFM) topographic image of a PDL coated 

PDMS patterned surface. Bottom: line scan (cross section) along the red line shown in the AFM 

image. (b) Coordinate system and the definition of the angular coordinate q . The x axis is defined 

as the axis perpendicular to the direction of the PDMS patterns. The directions corresponding to  

q = 0, p/2 and 3p/2 , and the pattern spatial period d are also shown in Fig. 1 a. The line scan in 

Fig. 1 a shows that the micropatterns are periodic in the x direction with the spatial period d = 4 

µm, and have a constant profile shape with a depth of approximately 0.6 µm.  

 

The direction of the patterns is shown in Fig. 1 by the parallel bright stripes (ridges), and 

by the parallel dark stripes (troughs). We have performed control experiments which demonstrate 

that the micropatterns used in our experiments have constant shape and depth. Examples of 

topographical images are presented in Fig. 1 a, and  Fig. S1 a in the Supporting Materials). The 

micropatterned surfaces were spin-coated with PDL (Sigma-Aldrich, St. Louis, MO) solution of 

concentration 0.1 mg/mL. Neuronal cells were imaged using an MFP3D atomic force microscope 

(AFM) equipped with a BioHeater closed fluid cell, and an inverted Nikon Eclipse Ti optical 

microscope (Micro Video Instruments, Avon, MA). Control experiments demonstrate that the 
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topographical and mechanical properties of the micropatterned PDMS substrates do not change 

significantly among surfaces with different spatial periods or upon coating with PDL (Fig. S1 b, 

Fig. S2, and Fig. S3 in the Supporting Materials).  

The cells used in this work are cortical neurons obtained from embryonic day 18 rats. For 

cell dissociation and culture we have used established protocols presented in our previous work 

(9,12,18,20,21,41-43). Cortical neurons were cultured on micro-patterned polydimethylsiloxane 

(PDMS) substrates coated with poly-D-lysine (PDL). The cells were cultured at a surface density 

of 4,000 cells/cm2. We have previously reported that neurons cultured at relatively low densities 

(in the range 3000 – 7000 cells/cm2) are optimal for studying axonal growth on surfaces with 

different mechanical, geometrical and biochemical properties (9,12,18,21,41). 

Fluorescence images were acquired using a standard Fluorescein isothiocyanate -FITC 

filter: excitation: 495 nm and emission: 521 nm (details on acquiring the fluorescence images are 

provided in the Supporting Materials).  For the experiments on chemically modified cells, we have 

treated the neurons with either: 1) Taxol  (10 µM concentration) or 2) the chemical compound Y-

27632 (10 µM concentration), which have been added to the neuron growth medium at the time of 

plating. Previous work has shown that a concentration of 10 µM of Taxol is very effective in 

suppressing the microtubule dynamics (12,22,41), and that 10 µM of Y-27632 is very efficient in 

disrupting actin polymerization and the formation of actin bundles, thus reducing traction forces 

between the neurons and the growth substrates (42).   

 

Data Analysis  

Growth cone position, axonal length, and angular distributions have been measured and 

quantified using ImageJ (National Institute of Health). The displacement of the growth cone was 
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obtained by measuring the change in the center of the growth cone position. Examples of images 

that shows the tracked position for axons are shown in Fig. S4 in the Supporting Materials. To 

measure the growth cone velocities the samples were imaged every Dt = 5 min for a total period 

of 1 hr per sample. The 5 min time interval between measurements was chosen such that the typical 

displacement 𝛥𝑟 of the growth cone in this interval satisfies two requirements: a) is larger than the 

experimental precision of our measurement (~ 0.1 µm) (20,21); b) the ratio 𝛥𝑟/𝛥𝑡 accurately 

approximates the instantaneous velocity 𝑉'⃗  of the growth cone. The speed of the growth cone is 

defined as the magnitude of the velocity vector: 𝑉(𝑡) = |𝑉'⃗ (𝑡)|, and the growth angle q(t) is 

measured with respect to the x axis (growth angle and the x axis are defined in Fig. 1).  

To obtain the speed distributions (Fig. 3 c and d, Fig. S6 c and d, Fig. S7), the range of 

growth cone speeds at each time point was divided into 15 intervals of equal size 

|𝛥𝑉'⃗!|.	Experimental data (Fig. S4) shows that over a distance of ~ 20 μm the axons can be 

approximated by straight line segments, with a high degree of accuracy. Therefore, to obtain the 

angular distributions for the growth angle q  (Fig. 3 a and b, Fig. 4 c and d, and Fig. S6 a and b we 

have tracked all axons using ImageJ and then partitioned them into segments of 20 μm in length, 

following the same procedure outlined in our previous work (18,21). Next, we have recorded the 

angle that each segment makes with the x axis (schematic shown in Fig. 1). The total range [0, 2p] 

of growth angles was divided into 18 intervals of equal size ∆𝜃! = 𝜋/9 (Fig. 3 a and b, Fig. 4 c 

and d, Fig. S6 a and b).  Experimentally, the average for the absolute value of sin q  for each type 

of surface is obtained according to the formula: 

< |sin	𝜃| >	= 	
1
𝑁 ∙:

(|sin	𝜃"|)
#

"$%

												(1) 
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where N is the total number of axonal segments of 20 μm in length, measured on a given type of 

surface, and  represents the angle that ith segment makes with the x axis. 

	

RESULTS 

 

Axonal alignment and speed distributions for untreated neurons 

Cortical neurons are cultured on PDL coated PDMS surfaces with parallel micropatterns 

(periodic parallel ridges separated by troughs). The surfaces differ by the value of the pattern 

spatial period d defined as the distance between two neighboring ridges (Fig. 1). We analyze the 

growth of both untreated and chemically modified neuronal cells on surfaces with spatial periods 

in the range d = 1 µm to 10 µm (in increments of 1 µm). Fig. 2 shows examples of images of 

axonal growth for untreated cells, captured at t = 40 hrs after cell plating. Examples of the 

corresponding axonal normalized angular and speed distributions are shown, respectively, in Fig. 

3 a and Fig. 3 c (for d = 1 µm), and Fig. 3 b and Fig. 3 d (for d = 4 µm). Additional angular and 

speed distributions are shown in Fig. S6 in the Supporting Materials. We have previously 

demonstrated (21) that axons of untreated neurons display maximum alignment along PDMS 

patterns for surfaces where the pattern spatial period d matches the linear dimension of the growth 

cone l, where l is in the range 3 to 6 µm. The experimental data shown in Fig. 2 b and c is in 

agreement with our previous findings. Furthermore, the speed distributions for these growth cones 

are close to Gaussian distributions, which are expected for t = 40 hrs after cell plating (18). We 

note that, in contrast to axons, dendrites do not display angular alignment along the surface 

micropatterns (examples of angular distributions for dendrites are shown in Fig. S5). 

iq
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FIGURE 2. Examples of cultured cortical neurons on PDL coated PDMS surfaces with 

periodic micropatterns. The main structural components of a neuronal cell are labeled in Fig. 2 a. 

The angular coordinate q used in this paper is defined in the inset of Fig. 2 a. All angles are 

measured with respect to the x axis, defined as the axis perpendicular to the direction of the PDMS 

patterns (see Fig. 1). The pattern spatial period is: d =1 µm in Fig. 2 a; d =4 µm in Fig. 2 b; d =6 

µm in Fig. 2 c; d =9 µm in Fig. 2 d. All images are captured 40 hrs after neuron plating. The scale 

bar shown in (a) is the same for all images. 
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FIGURE 3. (a-b) Examples of normalized experimental angular distributions for axonal growth 

measured on micropatterned PDMS surfaces with different pattern spatial periods d. The 

continuous red curves in each figure are the predictions of the theoretical model discussed in the 

main text. The vertical axis (labeled Normalized Frequency) represents the ratio between the 

number of axonal segments growing in a given direction and the total number N of axon segments. 

Each axonal segment is of 20 µm in length (see section on data analysis). All distributions show 

data collected at t =40 hrs after neuron plating. (a) Angular distribution obtained for N = 1404 

different axon segments on surfaces with d =1 µm. (b) Angular distribution obtained for N = 1560 

different axon segments on surfaces with d =4 µm. The data shows that the axons display strong 

directional alignment along the surface patterns (peaks at 𝜃 = 	𝜋/2		and	𝜃 = 	3𝜋/2), with the 

highest degree of alignment (sharpness of the distribution) measured for d =4 µm. (c-d) Examples 

of normalized speed distributions for growth cones measured on micropatterned PDMS surfaces 
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with different pattern spatial period d. (c) Speed distribution for N = 210 different growth cones 

measured on surfaces with d =1 µm.  (d) Speed distribution for N = 242 different growth cones 

measured on surfaces with d =4 µm. The continuous red curves in each figure represent the 

predictions of the theoretical model discussed in the main text.  

 

Axonal alignment and speed distributions for neurons treated with Taxol and Y-27632 

To further investigate the axonal dynamics on PDMS surfaces with periodic micropatterns 

we measure angular and speed distributions for neurons treated with chemical compounds known 

to inhibit the dynamics of the cell cytoskeleton. Fig. 4 a shows an example of axonal growth for 

neurons treated with 10 µM of Taxol. Fig. 4 b shows a similar image obtained for neurons treated 

with 10 µM of Y-27632. The pattern spatial period of the PDMS surfaces is d =4 µm for both 

images. Taxol is a chemical compound which is commonly used to inhibit the normal functioning 

of the cytoskeleton, due to the disruption of microtubule dynamics (12,22,41). Y-27632 is known 

to inhibit the formation of actin bundles and the reorganization of actin based structures during 

neuronal growth (42,44). Both of these compounds have been shown to be effective at the 

concentration of 10 µM used in our experiments (12,22,41,42,44). The normalized angular 

distributions for axonal growth are shown in Fig. 4 c for Taxol and in Fig. 4 d for Y-27632. The 

neurons treated with either Taxol or Y-27632 show a dramatic decrease in the degree of alignment 

with the surface patterns compared to the unmodified cells (Fig. 2 and Fig. 3). The data show that 

while the axonal directionality is greatly reduced by the chemical treatment, the treated neurons 

still grow long axons and form cell-cell connections (Fig. 4 a and b). These results demonstrate 

that the disruption of the cytoskeletal dynamics for chemically treated neurons affects only the 
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degree of alignment with the surface pattern, leaving the navigation of the growth cone and axonal 

outgrowth uninhibited.  

  

FIGURE 4. (a-b) Examples of axonal growth for cortical neurons treated with chemical 

compounds that inhibit the cytoskeletal dynamics: (a) Taxol and (b) Y-27632. The growth 

substrates are PDL coated PDMS surfaces with periodic micropatterns with the pattern spatial          

d =4 µm. The images are captured at t =40 hrs after neuron plating. The scale bar shown in (a) is 

the same for both images. (c-d) Normalized experimental angular distributions corresponding to 

the images shown in (a) and (b), respectively. The neurons treated with Taxol or Y-27632 show a 

significant decrease in the degree of alignment with the surface patterns, compared to the untreated 

cells (Fig. 2 and Fig. 3). The continuous red curves in each figure are the predictions of the 

theoretical model discussed in the main text.  
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Stochastic model of axonal growth on surfaces with periodic micropatterns 

Axonal motion on the PDMS substrates is characterized by both deterministic and 

stochastic components (12,18-21). The dynamics of the growth cones is described by the spatial 

probability distribution 𝑝(𝑟, 𝑡), whose time evolution is governed by the Smoluchowski (spatial 

Fokker-Planck) equation (28,29): 

&
&'
𝑝(𝑟⃗, 𝑡) = 𝐷 ∙ ∇(𝑝(𝑟, 𝑡) + %

)
∇ ∙ (𝑝(𝑟⃗, 𝑡) ∙ ∇𝑉(𝑟))                 (2) 

where D represents the diffusion (cell motility) coefficient, 𝛾 is the damping coefficient (friction 

constant of the corresponding Langevin equation), and 𝑉(𝑟)  is the effective potential that 

determines the axonal motion. The net force per unit mass acting on the growth cone is                   

𝑓 = −∇𝑉(𝑟#⃗ )  (21). We write the effective potential as a sum of three terms: 

𝑉(𝑟) = 𝑉*+'(𝑟) + 𝑉,(𝑟) + 𝑉"-'(𝑟,''⃗ 𝑝)                                    (3) 

where 𝑉*+'(𝑟)   is the neuron-substrate coupling potential (external potential imposed by the 

substrate geometry), 	𝑉,(𝑟)  is the potential responsible for the closed-loop feedback (to be 

discussed below), and 𝑉"-'(𝑟, 𝑝)  is the neuron-neuron interaction potential (quantifies the 

interactions between neuronal cells).   

In this paper we consider the motion of an ensemble of N growth cones when the neuron-

neuron signaling potential 𝑉"-'(𝑟, 𝑝) is negligible compared to the neuron-substrate interactions 

described by the periodic potential (see Eq. 4 below). This is indeed the case for the low values of 

the cell culture density (4,000 cells/cm2) used in our experiments, as shown in previous work (9). 

The micropatterned PDMS substrates have uniform geometry in the y direction, and periodic 

geometry along the x axis (Fig. 1). Thus, the mechanical coupling between the growth cone and 

the substrate results in a constant potential along the y direction, and a periodic external potential 

along the x axis: 
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𝑉ext(𝑥) = 𝑉! ∙ sin(
1+
2
																																																								(4)	

 

where V0 is the maximum strength of the external potential imposed by the surface geometry, d 

represents the pattern spatial period, and x is the coordinate along the x axis defined in (Fig. 1 b). 

We note that the PDMS surfaces are coated with a uniform layer of PDL (Fig. S1, S2 and S3 in 

the supporting materials), and thus the substrate chemistry contributes with a constant value to 

𝑉*+'(𝑟) and does not influence the axonal dynamics described  by Eq. (2). 

 Experimental data shows that the motion of growth cones along the x axis on the 

micropatterned surfaces is similar to the dynamics of particles inside a harmonic trap centered 

around the mean position, similar to the dynamics of polarizable colloids inside optical traps 

(30,33-35,45). This type of dynamics is described by the harmonic potential (30,34,35): 

𝑉F(𝑥, 𝑝) = 𝑉 ∙ (𝑥 − ⟨𝑥⟩)(                                          (5) 

where V is the strength of the harmonic confinement, and ⟨𝑥(𝑡)⟩ is the time dependent growth cone 

mean position along the x axis. We emphasize that in our model the time evolution of the 

probability density in Eq. 2 is explicitly written in real space (as opposed to velocity space treated 

in previous work (18,20,21)), and thus it allows us to separate the effects of periodic geometry 

(Vext given by Eq. 4) from the feedback control (VF  given by Eq. 5).  

Equations 3 - 5 imply that the spatial probability distribution 𝑝(𝑟, 𝑡)	 admits the following 

separation of variables: 𝑝(𝑟⃗, 𝑡) = 𝑝(𝑥, 𝑡) ∙ 𝑝(𝑦, 𝑡) where 𝑝(𝑥, 𝑡) and 𝑝(𝑦, 𝑡) represent the cellular 

probability distributions in the y and x directions respectively. Furthermore, the approximation  

𝑉int(𝑟, 𝑝) = 0 and the uniform geometry in the y direction implies that  𝑝(𝑦, 𝑡)  is a constant, and 

thus: 

𝑝(𝑟, 𝑡) = 𝐴 ∙ 𝑝(𝑥, 𝑡)                                        (6) 

where A is an overall normalization constant.  	
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 With the geometric and feedback potentials given by Eqs. 4 and 5, and the probability 

distribution given by Eq. 6, the equation of motion for the growth cone (Eq. 2) in the x direction 

becomes: 

&
&'
𝑝(𝑥, 𝑡) = 𝐷 ∙ &

2

&+!
𝑝(𝑥, 𝑡) + %

)
&
&+
K𝑝(𝑥, 𝑡) ∙ &

&+
(𝑉*+'(𝑥) + 𝑉,(𝑥, ⟨𝑥⟩)L													(7)	

 

with the time dependent growth cone mean position along the x axis: 

 ⟨𝑥(𝑡)⟩ = %
# ∫ 𝑑𝑥 𝑥	𝑝(𝑥, 𝑡)																																																																																												(8)  

The model described by the Equations 4 to 8 predicts that the overall motion for the axons 

has two components: a) a uniform drift along the directions of minimum 𝑉ext(𝑥), (i.e., along the y 

axis in Fig. 1), and b) a random walk around these equilibrium positions. This is indeed what is 

observed experimentally. At small times the growth cone dynamics resembles a Brownian motion, 

resulting in a slow increase in the mean growth cone position ⟨𝑥⟩ along the x axis. As time 

progresses the feedback control which depends on ⟨𝑥⟩ steers the axonal motion along the minimum 

values of the periodic potential, i.e., along the micropatterned parallel PDMS lines (Fig. 1 and Fig. 

2). Furthermore, in the absence of the confinement imposed by the periodic potential (Eq. 4) and 

feedback control potential (Eq. 5), the equation of motion for the growth cones (Eq. 2) reduces to 

a regular diffusion (Ornstein - Uhlenbeck) process characterized by exponential decay of the 

autocorrelation functions with a characteristic time 𝜏 = %
)
 , axonal mean square length that 

increases linearly with time, and velocity distributions that approach Gaussian functions (28,29). 

In our previous work we have shown that this is indeed the case for axonal growth on PDL coated 

glass and PDMS surfaces characterized by large pattern spatial periods: d  > 9 µm (21).   
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FIGURE 5. (a-b) Examples of experimentally measured probability distributions for the motion of 

the growth cones in the x direction. The red curves represent fits to the data with the solutions of 

the theoretical model given by Eq. 7. The fit parameters are the diffusion (cell motility) coefficient 

D, the damping coefficient g  , and the magnitudes V0 and V of the external and feedback potential, 

respectively.  (a) Data obtained for N = 331 untreated neurons measured at t = 40 hrs on PDMS 

surfaces with  d =4 µm.  (b) Data obtained for N = 298 neurons treated with Taxol measured at t 

= 40 hrs on PDMS surfaces with d =4 µm. (c-d) Simulated neuronal growth for untreated (c) and 

Taxol - treated neurons (d). The simulations are performed by using the values of the growth 

parameters obtained from the fit of the experimental data with solutions of Eq. 7 (seen main text).  

 

To model the motion of the growth cones on micropatterned PDMS periodic surfaces we 

solve Eq. 7 numerically, subject to the stationary solutions (18,28,29): 

𝑝(𝑥) = (1/𝑍) ∙ expT−T𝑉 ∙ 𝑥( + 𝑉ext(𝑥)U/𝐷 ∙ 𝛾U																																			(9) 
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where Z is a normalization constant. Fig. 5 a and b show examples of experimentally measured 

probability distributions for the motion of the growth cones in the x direction. Fig. 5 a shows data 

obtained for untreated neurons, while Fig. 5 b displays data obtained for neurons treated with 

Taxol. The pattern spatial period for both Fig. 5 a and b is d =4 µm. The red curves in Fig. 5 a and 

b represent fits to the data with the solutions of the theoretical model given by Eq. 7.  For the case 

of untreated neurons, the solutions of Eq. 7 fit the experimental data for the probability distribution 

𝑝(𝑥, 𝑡) (Fig. 5 a) with the following values of the growth parameters: diffusion coefficient  𝐷 =

(22 ± 4)µm(/hr , damping coefficient 𝛾 = (0.14 ± 0.05)	hr6%  , and strengths of the external 

and feedback potentials 𝑉! = (1.9 ± 0.3)µm(/hr( , and  𝑉 = (0.23 ± 0.08)hr6( , respectively. 

The values for the diffusion and damping coefficients are close to the ones we have previously 

reported for growth cones on glass and PDMS surfaces (18,20,21). The probability distribution in 

the case of neurons treated with Taxol (Fig. 5 b) is fitted with the solutions of Eq. 7 for the 

following values of the growth parameters: diffusion coefficient 𝐷 = (14 ± 3)µm(/hr , damping 

coefficient 𝛾 = (0.11 ± 0.03)	hr6%, and strengths of the external and feedback potentials 𝑉! =

(0.6 ± 0.2)µm(/hr(, and 𝑉 = (0.08 ± 0.04)hr6(, respectively. We note that the values for the 

growth parameters decrease either upon the chemical treatment of the neuron, or with increasing 

spatial period d (see Table S11 in the Supporting Materials for a summary of these parameters). 

We use the solutions of Eq. 7 for the probability distribution to simulate axonal growth 

trajectories, as well as axonal speed and angular distributions. The simulations are performed using 

the above values for the growth parameters and strengths of the periodic and feedback potentials 

(obtained from the data fit in Fig. 5 a and b) with no additional adjustable parameters (see the 

Supporting Materials for simulation details). Fig. 5 c and d show examples of simulation results 

for untreated (Fig. 5 c) and Taxol-treated neurons (Fig. 5 d) grown on surfaces with d =4 µm. 
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Similar experimental data and simulations obtained for untreated neurons grown on surfaces with 

d =6 µm, as well as neurons treated with Y-27632 are shown in Fig. S8 in the Supporting Materials. 

Simulations performed for untreated neurons cultured on surfaces with d =9 µm and d =10 µm 

are shown in Fig. S9. We emphasize that the angular distributions and speed distributions obtained 

from these simulations match the experimental data for untreated (Fig. 3 and Fig. S6), Taxol and 

Y-27632 treated neurons (Fig. 4 and Fig. S7) without the introduction of any additional 

parameters. The simulated axon trajectories in Fig. 5 c and Fig. S8 c reproduce the high degree of 

alignment observed experimentally for untreated neurons grown on surfaces with d =4 µm or            

d =6 µm (Fig. 2 b and c), Fig. 3 b and Fig. S6 a). Fig. 5 d and Fig. S8 d show simulated growth 

trajectories with intermediate degree of alignment (similar to the data measured on Taxol and Y-

27632 treated neurons in Fig. 4). Fig. S9 shows simulated axon trajectories with low degree of 

alignment, similar to the growth data measured on surfaces with d =9 µm and d =10 µm (Fig. S6 

b). In the limit of very large d the dynamics reduces to simple Brownian motion as discussed 

above. The Table S11 in the Supporting Materials presents a summary of the values for the growth 

parameters obtained from the comparison between the theoretical model (solutions of Eq. 7) and 

the experimental data for different cells and substrates. The decrease in the parameters V and V0  

observed for chemically treated cells, as well as for untreated neurons cultured on surfaces with 

large d reflects the lower degree of alignment measured in these cases. 

 

Mechanical model for axonal dynamics 

We justify the stochastic model described in the previous section by introducing a simple 

mechanical model that takes into account the cell-substrate interactions when the axon grows close 

to the top of the micropattern (this is indeed the case for most axons at t =40 hrs after cell culture 
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as we have shown in (18), see also Fig. S10). We first note that the micropatterned PDMS lines 

can be approximated locally with semi-cylinders with radius of curvature R (Fig. S1 a).  The model 

considers the bending-induced strained sustained by the axon while growing close to the top of the 

semi-cylindrical surface: axonal adhesion to the micropattern leads to axonal bending, which in 

turn leads to increased mechanical strain energy in the axon cytoskeleton. The mechanical strain 

energy E depends on the axon bending stiffness B, and the local surface curvature 𝐾(𝜃, 𝑅) (4,46): 

𝐸 = %
(
𝐵 ∙ 𝐾((𝜃, 𝑅)                                            (10) 

In the case of axonal growth on the micropatterned surfaces, the curvature of the axon on the 

surface of the semi-cylinder is given by:  

𝐾(𝜃, 𝑅) = |89:	(=)|
?

                                               (11) 

where R is the radius of curvature of the semi-cylindrical pattern. Under the assumption of 

maximum entropy (close to growth equilibrium), the probability of axon growing in a given 

direction is given by Boltzmann distribution:  

𝑝(𝜃) = 𝐴% ∙ exp d−
@
@"
e                                                     (12) 

where E0 is the characteristic energy scale for axonal bending, and A1 is an overall normalization 

constant. By combining Eqs. 10, 11 and 12 we can write the following expression for the angular 

probability distribution: 

𝑝(𝜃) = 𝐴 ∙ exp d− A
@"∙?!

∙ 𝑐𝑜𝑠((𝜃)e                                   (13) 

When the axon grows close to top of the semi-cylindrical pattern the external potential Vext  

is approximatively constant (close to its maximum value, see Eq. 4). In this limit Eq. 13 has the 

general form of Eq. 9, given that the relationship between the displacement in the x direction and 

the axon growth angle q is: ∆𝑥 = ∆𝑟 ∙ cos(𝜃) (Fig. 1 b), where ∆𝑟 = 20	µm (see section on data 
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analysis). Therefore, a direct comparison between Eq. 13 (derived from the mechanical beam 

model) and Eq. 2 (solution of the stochastic Fokker-Planck equation) leads to the following 

relationship between the stochastic parameters (diffusion coefficient 𝐷, damping coefficient 𝛾, 

strength of the feedback potential V) and the mechanical parameters (axon bending stiffness B, the 

characteristic energy scale E0 , and the surface radius of curvature R): 

!∙#$!

%∙&
= '

("∙)!
                                                                (14) 

We emphasize that Eq. 13 is a special case of Eq. 9 (obtained at growth equilibrium and when the 

growth cone is close to the top of the micropattern). However, we can use Eq. 14 (derived by direct 

comparison between Eqs. 9 and 13) together with the values for the stochastic parameters found 

in the previous section to calculate the ratios between the axon bending modulus B and the 

characteristic energy scale E0  for untreated as well as chemically modified neurons. The radius of 

curvature of the micropatterns could be measured directly by AFM (Fig. S1 a). For example, for 

neurons grown on surfaces with d = 4 µm we AFM measurements give R ~ 0.5 µm.  From Eq. 14 

we then obtain: 𝐵/𝐸! = (6.9 ± 0.9)	µmC for untreated neurons, and 𝐵/𝐸! = (5.5 ± 0.9)	µm( for  

neurons treated with Taxol.  The corresponding value for Y-27632 treated cells is 𝐵/𝐸! = (5.1 ±

0.9)	µm()	( all values are obtained for cells cultured on surfaces with d = 4 µm). A summary of 

the values for B/E0 for different types of surfaces and chemical treatment are given in Table S11 

in the Supporting Materials. Eq. 14 gives only the ratio between the bending modulus B and the 

characteristic energy scale E0 for mechanical interactions between the axons and the PDMS 

micropatterns on the growth substrate. Assuming a constant energy scale E0 for all these cases, we 

can perform a joint fit for all data points using the maximum likelihood method (12,20).  The  

constant value of the characteristic energy scale which maximizes the likelihood of measuring the 
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given data set is: 𝐸! = (3.2 ± 0.7) ∙ 106%D	J . Using this constant value for E0 we obtain the 

following values for the axonal bending rigidities: 𝐵 = (23.7 ± 0.8)	J ∙ µm(  for untreated 

neurons, 𝐵 = (17.6 ± 0.8)	J ∙ µm( for neurons treated with Taxol, and 𝐵 = (16.3 ± 0.8)	J ∙ µm( 

for neurons treated with Y-27632 (cells cultured on surfaces with d = 4 µm). These values for the 

axonal bending rigidity are comparable to the values for axon bending rigidity reported in the 

literature (4,43,46,47), and are consistent with our previous values for the elastic modulus of the 

neuronal cells (41-43), if we assume a simple rigid beam model for the axon (48). 

 

Feedback control dynamics for axonal growth in periodic potentials  

The stochastic model described in the previous sections shows that the feedback potential 

VF depends on the dynamical state of the whole system, through the ensemble average ⟨𝑥(𝑡)⟩ (Eq. 

5). Thus, this model implies that the axonal motion on surfaces with periodic geometries exhibits 

a simple closed-loop behavior: the growth cone detects the geometrical cues on the surface and 

tends to align its motion along certain preferred directions that maximize the cell-surface 

interactions. In general, closed-loop feedback control means that the system is steered towards a 

target behavior by using information which is retrieved from the environment through continuous 

measurements.  

To further investigate this model, we determine the average value for  |sinq | (absolute 

value for the sine of the axonal growth angle), which measures axonal alignment for each type of 

surface. We use the absolute value |sin q | due to the growth symmetry with respect to the x axis 

(directions 𝜃 = 	0		and	𝜃 = 	𝜋 are equivalent, see Fig. 1 and Fig. 2). As shown in references (38-

40) on work performed for galvanotaxis and chemotaxis dose-response curves for the motion of 
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human granulocytes and keratinocytes, the feedback control model leads to the following 

expression for the average of the absolute value for the sine of the growth angle: 

< |sin𝜃| >≡ ∫ 𝑝(𝜃) ∙ |sin𝜃|𝑑𝜃 = E#(F∙2)
E!(F∙2)

(1
! 																								(15)					

where I1 and I0 are the modified Bessel functions of the first kind, and 𝛼 is a parameter with 

dimensions of inverse length. 

 

FIGURE 6. Variation of the average value for |sin q | (absolute value for the sine of the axonal 

growth angle) with the pattern spatial period d. The black squares represent the values for 

obtained from the experimental data for untreated neurons. The blue squares correspond 

to the experimental data obtained for neurons treated with Taxol, while the red squares correspond 

to the data measured for neurons treated with Y-27632.  Error bars indicate the standard error of 

the mean for each data set. The dotted curves represent fit of the data points with Eq. 15, performed 

in the range d = 1 to 6 µm. The graph shows that data points in this range are fitted by the feedback 

control model for the following values of the parameters: 𝛼 = (1.9 ± 0.4)	µm6%  for untreated 

 |sin| >< q
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neurons, 𝛼 = (0.5 ± 0.2)	µm6%  for neurons treated with Taxol, and 𝛼 = (0.3 ± 0.2)	µm6%  for 

neurons treated with Y-27632. 

 

Fig. 6 shows the variation of the experimentally measured values for < |sin𝜃| > with the 

pattern spatial period d, for untreated neurons (black squares), as well as for neurons treated with 

Taxol (blue squares) and Y-27632 (red squares). The dotted curves represent fits to the data with 

the predictions of the closed-loop feedback model given by Eq. 15. Only the data points in the 

range d = 1 to 6 µm are included in the fit.  The data demonstrate that axonal dynamics on micro-

patterned PDMS surfaces is described by a simple linear response model, when the pattern spatial 

period is in the range d =1 to 6 µm, that is when d matches the linear dimension of the growth 

cone: . This conclusion applies to both untreated cells and cells treated with Taxol and Y-

27632. This type of response is known as “automatic controller” in the theory of feedback control 

systems (49) and it is exhibited by a large class of biological and non-biological systems as 

discussed below. In our experiments the pattern spatial period d plays the role of an effective 

control parameter that determines the axonal alignment, similar to the electric field in the case of 

galvanotaxis of human granulocytes and keratinocytes (23,38), or the concentration gradient in the 

case of cellular chemotaxis (39). Furthermore, Fig. 6 demonstrates that the response of the 

automatic controller is affected by the inhibition of cytoskeletal dynamics: the actual response 

(measured by the coefficient a) is different for the untreated and chemically treated cells (see the 

caption in Fig. 6, and Table S11 in the Supporting Materials).  

 

 

 

ld »
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DISCUSSION 

Neurons respond to a variety of external cues (biochemical, mechanical, geometrical) while 

wiring up the nervous system in vivo (1,2,4-7). In many cases these cues consist of periodic 

geometrical patterns with dimensions of the order of a few microns (1,4,5). Examples of 

physiological growth scaffolds include curved brain folding (4-6), radial glial fibers (4,5), and 

extracellular matrix tracks (1,2,6,7). Our results show that growth substrates containing 

micropatterned periodic features promote axonal growth along the direction of the pattern. The 

range for the micropattern spatial periods in our experiments (d = 1 to 10 µm) is relevant both for 

neuronal growth in vivo as well as for many proposed biomaterial implants for nerve regeneration 

(13,17). Furthermore, our experiments show that neurons grown on PDMS substrates display a 

significant increase in the overall axonal length and a high degree of alignment when the pattern 

spatial period d matches the linear dimension of the growth cone: 𝑑	 ≈ 	𝑙.  

We have shown that the Fokker-Planck equation with closed-loop feedback control and 

periodic external potential (Eqs. 1 -9) provides a general stochastic framework that describes the 

main characteristic of the axonal dynamics on micropatterned PDMS substrates.  The limitations 

of this model are due to its phenomenological nature: the growth parameters are obtained from fit 

to experimental data, and not predicted from the underlying cellular biophysics. However, we have 

demonstrated that a simple mechanical model based on the axon bending-induced strain (Eqs. 10 

– 13) justifies the use of the Fokker-Planck equation, and allows us to extract the main dynamical 

parameters that characterize axonal growth for both untreated and chemically modified neurons. 

Our results show that the additional cues necessary to guide the axonal dynamics result from the 

interplay between the geometrical features of the substrate and the physical properties (stiffness) 

of the nerve process.  
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The theoretical model captures all the characteristics of axonal growth on the PDMS 

surfaces for untreated and chemically modified neurons, including diffusion (cell motility) 

coefficients, angular and speed distributions (Fig. 2 - Fig. 5, Fig. S6 – S8). Furthermore, Eqs. 2-9 

imply a simple closed-loop “automatic controller” model for axonal motion: the growth cone 

detects geometrical features on the substrate and orients its motion in the directions that maximize 

the interaction between the axon and the substrate. This behavior is displayed by both untreated 

and chemically modified neurons, as shown in Fig. 6. In this figure each data set (for untreated, 

Taxol and Y-27632 treated cells) is fitted with a unique parameter a, which demonstrates a linear 

response characteristic to a proportional controller: the response is proportional to the signal 

received from the guidance cue (38,39).  The coefficients a obtained from the data fit (Fig. 6 and 

Table S11) measure the neuronal responses to periodic geometrical cues, and play a similar role 

to the galvanotaxis and chemotaxis coefficients used to describe the cellular motion in external 

electric fields or chemical gradients (23,38-40).  

Models based on the theory of automatic controllers have been successfully used by other 

groups to characterize the galvanotaxis (motion in external electric fields) of human granulocytes 

and keratinocytes (23,38), as well as the chemotactic response of bacteria and of various types of 

virus modified cells (39,40). We note that the closed-loop feedback displayed by neurons is 

different than the case of external (or open-loop) control, where the parameters are set externally 

without involving the reaction of the system. Open-loop control does not involve measurements 

of the environment and it is the type of control encountered in systems with predictable dynamics. 

Examples of open-loop systems include many types of devices such as fluorescent lamps or 

watches controlled by quartz crystals (49), or systems under the influence of oscillating forces, 

such as mixing devices or ratchet structures (50-52). In the case of complex dynamics, such as the 
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stochastic motion of cells, closed-loop feedback control is a much more reliable control 

mechanism. In the case of neurons the closed-loop feedback control underlies the mechanism of 

axonal alignment on micropatterned PDMS substrates. Within this model the growth cone behaves 

similarly to a “device” that senses geometrical cues, and as a result generates traction forces that 

align the axon with the surface pattern. 

The parameters V0 , V, a, and B/E0  (see Table S11 shown in Supporting Materials) are 

obtained from the comparison between experimental data and the theoretical model, and represent 

a measure of the interactions between cells and the geometrical cues on the growth substrates. 

These parameters allow for a meaningful comparison of the cellular response to geometrical cues, 

among different types of cells and growth substrates. For example, the high degree of alignment 

observed for untreated neurons grown on surfaces with 𝑑	 ≈ 	𝑙 (e.g. d = 4 µm or d = 6 µm) is 

reflected by the higher strengths of the geometric and feedback potentials V0 and V compared to 

neurons grown on surfaces with other pattern spatial periods (e.g. d = 1 µm or  d = 9 µm, see 

Table S11 shown in the Supporting Materials). Furthermore, the reduction in axonal alignment 

observed for chemically treated cells is measured quantitatively by the significant decrease in the 

values of the parameters V0 , V, and a, compared to the corresponding values obtained for untreated 

neurons grown on the same type of micropatterned surface (d = 4 µm). Table S11 (Supporting 

Materials) shows a decrease by a factor ~ 3 to 4 in the values of V0 and V for chemically treated 

cells compared to the untreated neurons grown on the same type of substrate. The unique fit 

parameter a obtained in each case (untreated, Taxol, and Y-27632 treated cells) for neuronal 

growth on surfaces with pattern spatial period in the range d =1 to 6 µm demonstrates a linear 

response characteristic to a proportional controller. However, the value of a for Taxol - treated 

cells is a factor of  ~ 4 smaller than the value for the corresponding parameter obtained for 
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untreated cells (Fig. 6 and Table S11). This result is in very good quantitative agreement with the 

experimentally observed decrease in the peak of the angular distributions for Taxol treated cells 

(Fig. 4 c) compared to Fig. 3 b). A similar decrease in the value of a is measured for neurons 

treated with Y-27632 (Fig. 6 and Table S11). The smaller value of the parameter a for the 

chemically treated neurons implies a less effective guidance mechanism for these cells compared 

to the untreated ones. Within the feedback control model, these results show an alteration of the 

automatic controller responsible for directional motion of axons in the case of chemically treated 

neurons. 

The comparison between the stochastic and mechanical model given by Eqs. 10 -13, allows 

us to calculate the ratios between the axon bending modulus B and the characteristic energy scale 

of axon – substrate interactions E0 ,  for untreated as well as chemically modified neurons (Eq. 

14). This ratio is almost constant for untreated neurons grown on surfaces with different pattern 

spatial periods d (Table S11), showing a constant axon-surface bending energy. The model also 

shows a statistically significant decrease in the value B/E0 for cells treated with Taxol or Y-27632  

(Table S11), and thus indicates a decrease in the bending rigidity for chemically modified neurons, 

which is consistent with the alteration of cytoskeletal dynamics and axon-substrate coupling forces 

for these cells, as discussed below.   

The biophysical mechanisms responsible for the observed changes in the dynamical 

behavior involve changes in the cell-substrate coupling forces, that could occur through different 

cellular processes. Growth cones are filled up with actin filaments, which polymerize at their 

leading edge (1-7). At the same time, myosin II motors pull on actin filaments and generate traction 

forces via point contacts (integrins, viniculin, talin etc.). Furthermore, interactions between actin 

filaments and microtubules, modify the distribution of mechanical stress in the growth cone and 
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affect its adhesion properties, and its ability to navigate and turn. In consequence, both 

microtubules and actin filaments inside the growth cone act as stiff load-bearing structures that 

generate surface adhesion and traction forces (1,2,4). Inhibition of microtubule or actin dynamics 

will therefore result in a decrease in cell-substrate interactions and cellular adhesion. Our 

experiments are consistent with these predictions: we have demonstrated that disruption of the 

cytoskeletal dynamics for cells treated with Taxol (inhibitor of microtubule dynamics), and Y-

27632 (disruption of actin filaments) results in a decrease in the degree of alignment and a 

reduction in cell-substrate interactions (Fig. 4, Fig. 5 b and d, Fig. S8 b and d, and Table S11).  

These results support previous work which has shown that neurons follow geometrical 

patterns through a contact – guidance mechanism (12,21,53). Contact guidance is the behavior 

displayed by many different types of cells which can change their motion in response to 

geometrical cues present in the surrounding environment. This property has been observed for 

several types of cells including neurons, fibroblasts, and tumor cells (12,17,21,53). Previous work 

(17,53-55) has shown that growth cones develop several different types of curvature sensing 

proteins (such as amphipathic helices and bin-amphiphysin-rvs (BAR) - domains) that act as 

sensors of geometrical cues and are involved in the generation of traction forces. Moreover, the 

degree of directional alignment of cellular motion is increasing with the increase in the density of 

curvature sensing proteins (17,53-55). In our experiments the growth cone filopodia and 

lamellipodia wrap around the ridges of the PDMS micropatterns (18), which results in a minimal 

contact area with the surface, and thus a maximum density of curvature sensing proteins. 

Consequently, high-curvature geometrical features such as ridges on PDMS substrates will impart 

higher forces to the focal contacts of filopodia wrapped over these features, compared to the low-

curvature patterns. This means that the contact guidance mechanism leads to an increase in the 
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traction force along the direction of the surface pattern (defined as the y direction in Fig. 1), which 

ultimately results in the observed directional alignment of axons on these surfaces.  

Proper wiring of the nervous system in vivo is carried out precisely and robustly as growth 

cones respond to their environment by integrating external cues. While the fundamental stochastic 

nature of self-wiring obscure the details of how it is achieved, it is likely that there are general 

emergent rules that apply across large patterns of connections (56, 57). Previous growth models 

have simulated multiple axons growing in complex domains with multiple guidance factors (56, 

57). However, many of the parameters that control axonal dynamics have not been quantified. In 

previous work we have investigated axonal growth on substrates with different geometrical 

patterns, and have measured speed and acceleration distributions as a function of substrate 

geometry (21), axonal alignment as a function of time (18), as well as axonal angular distributions, 

angular drift and diffusion coefficients (12,18,21). In this paper we show that axonal stiffness and 

substrate curvature can act together to direct axonal growth on filamentous surfaces. This work 

also opens up several important directions for future investigations of surface – driven axonal 

growth. For example, the ability to control and direct biomechanical responses in vitro has 

important consequences for neural repair and tissue engineering, along with in vitro-in vivo device 

interfaces. Such control is critical for example to repair nerve damage, to guide and optimize nerve 

interfaces to prosthetics and to integrate medical devices for physiological functions.  

The role played by curvature sensing proteins and other cellular processes such as changes 

in expression of BAR proteins, or the opening of stress activated ion channels, which could lead 

to changes in the cell-substrate coupling forces will be investigated in future experiments. This 

future work will involve the measurement of both cell-surface coupling forces using traction force 

microscopy and the density of cell surface receptors and curvature sensing proteins using 
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fluorescence techniques. The effect that these biomolecules have on the generation of traction 

forces can be determined in experiments where their activity is selectively inhibited while 

simultaneously measuring cell-substrate interactions and the axonal dynamics. Furthermore, 

combined with traction-force experiments, the automatic controller model presented here could be 

further extended to account for the explicit dependence of the growth parameters on the mechanical 

and biochemical guidance cues, such as changes in the geometry or stiffness of the growth 

substrate, or external chemical gradients. This general model could also be applied to other types 

of cells to give new insight into the nature of cellular motility. In principle these future 

investigations will enable researchers to quantify the influence of environmental cues 

(geometrical, mechanical, biochemical) on cellular dynamics, and to relate the observed cell 

motility behavior to cellular processes, such as cytoskeletal dynamics, cell-surface interactions, 

and signal transduction.  

  

 

CONCLUSION 

In this paper, we have performed a detailed analysis of axonal growth on micropatterned 

PDMS surfaces. We have demonstrated that the axonal dynamics on these surfaces is described 

by a theoretical model based on the motion of a closed-loop automatic controller in a periodic 

external potential imparted by the surface geometry. We have used this model to measure the 

parameters that characterize the axonal growth. Our results show that the motion of the growth 

cone is mediated by a contact-guidance mechanism, which originates from cellular feedback in an 

external periodic potential: the growth cone responds to geometrical cues by directing its motion 

along the surface micropatterns. This work implies that the cues that guide the axonal dynamics 
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result from the interplay between the geometrical features of the substrate and the physical 

properties (stiffness) of the nerve process. The general model presented here could be applied to 

describe the dynamics of other types of cells in different environments including external electric 

fields, substrates with various mechanical properties, and biomolecular cues with different 

concentration gradients.  
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Supplemental Materials 

Text S1:  

Surface preparation and cell culture  

 To fabricate micro-patterned substrates we start with 20mL polydimethylsiloxane (PDMS) 

solution (Silgard, Dow Corning) with a mixing ratio silicone base/curing agent 15:1 (15 Sylgard 

184 silicone elastomer base to 1 Sylgard 184 silicone elastomer curing agent). The PDMS solution 

is poured over diffraction gratings with slit separations: 1 µm - 10 µm (in increments of 1 µm) and 

total surface area 25 x 25 mm2 (Scientrific Pty. and Newport Corp. Irvine, CA). The PDMS films 

were left to polymerize for 48 hrs at room temperature, then peeled away from the diffraction 

gratings and cured at 550 C for 3 hrs. We use AFM imaging to ensure that the pattern was 

successfully transferred from the diffraction grating to the PDMS surface (Fig. 1 a and Fig. S1 a). 

The result is a series of periodic patterns (parallel lines with crests and troughs) with constant 

distance d between two adjacent lines. The AFM images in Fig. 1 and Fig. S1 show that the patterns 

are periodic and have constant depth. The surfaces were then glued to glass slides using silicone 

glue and dried for 48 hours. Next, each surface was cleaned with sterile water and spin-coated with 

3 mL of Poly-D-lysine (PDL) (Sigma-Aldrich, St. Louis, MO) solution of concentration 0.1 

mg/mL. The spinning was performed for 10 minutes at 1000 RPM. Prior to cell culture the surfaces 

have been sterilized using ultraviolet light for 30 minutes.  
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 Cortical neurons have been obtained from rat embryos (day 18 embryos obtained from 

Tufts Medical School). The brain tissue protocol was approved by Tufts University Institutional 

Animal Care Use Committee and complies with the NIH guide for the Care and Use of Laboratory 

Animals. The cortices have been incubated in 5 mL of trypsin at 37ºC for 20 minutes. To inhibit 

the trypsin we have used 10 mL of soybean trypsin inhibitor (Life Technologies). Next, the 

neuronal cells have been mechanically dissociated, centrifuged, and the supernatant was removed. 

After this step the neurons have been re-suspended in 20 mL of neurobasal medium (Life 

Technologies) enhanced with GlutaMAX, b27 (Life Technologies), and pen/strep. Finally, the 

neurons have been re-dispersed with a pipette, counted, and plated on PDL coated glass, or PDL 

coated PDMS substrates, at a density of 4,000 cells/cm2. Fig. S1 b shows the average value for the 

surface roughness measured on micropatterned PDMS surfaces with spatial periods considered in 

this paper (d in the range 1 – 10 µm). These values are measured before (blue data points) and 

after (red data points) each surface is coated with PDL. The variation of the average roughness 

among these substrates is less than 10%. Fig. S2 shows an example of an AFM force map image 

used to measure the substrate elastic modulus. Fig. S3 shows examples of histograms for the 

distribution of elastic modulus E, which are obtained from AFM force maps measured, 

respectively, before (Fig. S3 a) and after (Fig. S3 b) coating of the PDMS substrate with PDL. The 

two histograms display similar ranges for E, while the corresponding values for the average elastic 

modulus differs by only 5% between the two maps. The experimental data thus demonstrates that 

the surface topography and elastic modulus does not vary significantly among the micropatterned 

PDMS surfaces with different spatial periods d.  

 

 



	 40	

Text S2: 

Fluorescence and AFM imaging  

For fluorescence imaging the cortical neurons cultured on glass or PDMS surfaces, were 

rinsed with phosphate buffered saline (PBS) and then incubated for 30 minutes at 37ºC with 50 

nM Tubulin Tracker Green (Oregon Green 488 Taxol, bis-Acetate, Life Technologies, Grand 

Island, NY) in PBS. The samples were then rinsed twice with PBS and re-immersed in PBS 

solution for imaging. Fluorescence images were acquired using a standard Fluorescein 

isothiocyanate -FITC filter: excitation of 495 nm and emission 521 nm. Axon outgrowth was 

tracked using ImageJ (National Institute of Health). To obtain the angular distributions (Fig. 3, 

Fig. 4 and Fig. S6) all axons have been tracked and then partitioned into segments of 20 μm in 

length. We have then recorded the angle that each segment makes with the x axis (Fig. 1), and the 

results were plotted as angular histograms (Figs. 3, 4 and S6). All surfaces were imaged using an 

MFP3D Atomic Force Microscope (AFM), equipped with a BioHeater closed fluid cell, and an 

inverted Nikon Eclipse Ti optical microscope (Micro Video Instruments, Avon, MA). The AFM 

topographical images of the surfaces were obtained using the AC mode of operation, and AC 

160TS cantilevers (Asylum Research, Santa Barbara, CA). Surfaces were imaged both before and 

after neuronal culture, and no significant change in topography was observed.  

 

Text S3: 

Simulations of growth cone trajectories 

We perform simulations of growth cone trajectories using the stochastic Euler method with N steps 

(26,27). With this method the change in position of the growth cone and the turning angle at each 

step are parametrized by the arclength s from the axon’s initial position: 
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∆𝑥(𝑠) = cos(𝜃) ∙ ∆s                         

∆𝑦(𝑠) = sin(𝜃) ∙ ∆𝑠                         

∆𝜃(𝑠) = −𝛾 ∙ cos(𝜃) + 𝐷 ∙ 𝑑𝑊       

where  −𝛾 ∙ cos(𝜃) is a deterministic steering torque (12, 18), and 𝐷 ∙ 𝑑𝑊  is an uncorrelated 

Wiener process representing the randomness in the axon steering (𝛾	and	𝐷 represent the damping 

and diffusion coefficients, respectively, which are defined in the main text, see Eq. 2). The angle 

𝜃 is determined from the spatial probability distribution, which is the solution of the Fokker-Planck 

(Eq. 2 and Eq. 7 in the main text). The velocity distributions are obtained from the change in 

position of the growth cone at each step (26,27).   

 

 

 

FIGURE S1. (a) Atomic Force Microscope (AFM) topographic image of a PDL coated PDMS 

micropatterned surface. The image shows that the micropatterns have a periodic profile, with a 

spatial period d =4 µm, and a constant depth of approximately 0.6 µm. (b) Variation of the surface 

roughness on micropatterned PDMS surfaces with spatial periods considered in this paper (d in 

the range 1 – 10 µm). The surface roughness is measured with the AFM. The blue data points show 
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the average surface roughness measured before PDL coating. The red data points show the average 

surface roughness measured on the same surfaces after coating with PDL. The error bars indicate 

the standard error of the mean. The data demonstrates that the surface roughness does not vary 

significantly among the PDMS surfaces with different spatial periods d, and it does not change 

significantly upon surface coating with PDL. The variation of the average roughness among these 

substrates is less than 10%.   

 

 

 

FIGURE S2. Examples of (a) AFM topographic image, and (b) AFM force map image measured 

on a micropatterned PDMS surface coated with PDL. Each pixel corresponds to a value of the 

elastic modulus. The maps for the elastic modulus are measured following the procedure presented 

in detail in references (41) and (42). The scale bar shown in (a) is the same for both images. 
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FIGURE S3. Examples of histograms for the substrate elastic modulus E measured from AFM 

force maps shown in Fig. S2. (a) Histogram for elastic modulus for a PDMS surface with d = 4 

µm, measured before coating the surface with PDL.  (b) Histogram for elastic modulus for the 

same PDMS surface shown in (a), measured after coating the surface with PDL. The two maps 

display similar ranges for E. The average elastic modulus between the two maps differs by only 

5%. The data demonstrates that PDL coating does not change the elastic modulus of the PDMS 

substrate.   

 



	 44	

 

 

FIGURE S4. Examples of tracked positions for two axons. The segments marked in yellow are 

superimposed on the axon and show the growth trajectory. The numbers on each segment represent 

different positions of the growth cone during growth. The locations of the corresponding 

micropatterns are shown by the dotted blue lines. Each segment is 20 µm in length as described in 

the Data Analysis section in the main text. 
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FIGURE S5. Examples of normalized experimental angular distributions for dendrites growth 

measured on micropatterned PDMS surfaces with different pattern spatial periods. The vertical 

axis (labeled Normalized Frequency) represents the ratio between the number of dendrite segments 

growing in a given direction and the total number N of axon segments. Each dendrite segment is 

of 20 µm in length. All distributions show data collected at t = 40 hrs after neuron plating. (a) 

Angular distribution obtained for N = 647 different dendrite segments on surfaces with d = 4 µm. 

(b) Angular distribution obtained for N = 720 different dendrite segments on surfaces with d = 6 

µm. The data shows that, in contrast to axons, the dendrites do not display directional alignment 

along the surface micropatterns. 
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FIGURE S6. (a-b) Examples of normalized experimental angular distributions for axonal growth 

for untreated neurons measured on micropatterned PDMS surfaces with different pattern spatial 

period d. The continuous red curves in each figure are the predictions of the theoretical model (see 

the main text). The vertical axis (labeled Normalized Frequency) represents the ratio between the 

number of axonal segments growing in a given direction and the total number N of axon segments. 

Each axonal segment is of 20 µm in length (see section on data analysis in the main text). All 

distributions show data collected at t =40 hrs after neuron plating. (a) Angular distribution obtained 

for N = 1328 different axon segments on surfaces with d = 6 µm. (b) Angular distribution obtained 

for N = 1261 different axon segments on surfaces with d = 9 µm. The data shows that the axons 

display strong directional alignment along the surface patterns (peaks at 𝜃 = 	𝜋/2		and	𝜃 =

	3𝜋/2), with the high degree of alignment (sharpness of the distribution) measured for d =6 µm. 

The degree of alignment is greatly reduced for neuronal growth on surfaces with d =9 µm. (c-d) 
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Examples of normalized speed distributions for growth cones measured on micropatterned PDMS 

surfaces with different pattern spatial period d. (c) Speed distribution for N = 305 different growth 

cones measured on surfaces with d =6 µm.  (d) Speed distribution for N = 285 different growth 

cones measured on surfaces with d =9 µm. The continuous red curves in each figure represent the 

predictions of the theoretical model discussed in the main text.  

 

 

FIGURE S7. Examples of normalized speed distributions obtained for growth cones of cortical 

neurons treated with chemical compounds that inhibit the cytoskeletal dynamics. The growth 

substrates are PDL coated PDMS surfaces with periodic micro-patterns with the pattern spatial d 

=4 µm. The images are captured at t =40 hrs after neuron plating.  (a) Speed distribution measured 

for N = 274 different growth cones for neurons treated with Taxol (inhibitor of microtubule 

dynamics).  (d) Speed distribution measured for N = 256 different growth cones for neurons treated 

with Y-27632 (inhibitor of actin dynamics). The continuous red curves in each figure represent 

the predictions of the theoretical model discussed in the main text. 
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FIGURE S8. (a-b) Examples of experimentally measured probability distributions for the motion 

of the growth cone in the x direction. The red curves represent fits to the data with the solutions of 

the theoretical model given by Eq. 7. The fit parameters are the diffusion (cell motility) coefficient 

D, the damping coefficient 𝛾,  and the magnitudes V0 and V of the external and feedback potential, 

respectively.  (a) Data obtained for N = 341 untreated neurons measured at t = 40 hrs on PDMS 

surfaces with d =4 µm.  (b) Data obtained for N = 316 neurons treated with Y-27632 measured at 

t = 40 hrs on PDMS surfaces with d =4 µm. (c-d) Simulated neuronal growth for untreated (c) and 

Y-27632 - treated neurons (b). The simulations are performed by using the values of the growth 

parameters obtained from the fit of the experimental data with solutions of Eq. 7 (seen main text).  
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FIGURE S9. Example of simulated axonal growth for untreated neurons cultured on PDMS 

surfaces with relatively large spatial periods: (a):  d =9 µm and (b): d =10 µm. The axons display 

a low degree of alignment, in agreement with the experimental observations (see Fig. S6 b and 

reference (21). The simulations are performed by using the values of the growth parameters 

obtained from the fit of the experimental data with solutions of Eq. 7 (seen main text).  
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FIGURE S10.  Examples of fluorescence images showing the position of axons with respect to the 

patterns. The images have been taken using the high magnification objective (60x) of the Nikon 

Eclipse Ti microscope, at different locations on 3 different PDMS substrates. The images show 

the fluorescently labeled microtubules (green), i.e. the C domain (see reference (1, 2)) inside the 

axons. The microtubules are labeled using Tubulin Tracker Green (see main text). The position of 

the micro-patterned troughs is shown by the vertical black lines. The 3µm white scale bar shows 

the distance between two adjacent troughs, and it has the same size for all images. The images 

show that the axons are located on the ridges of the patterns. The position of the ridges and troughs 

has been verified using AFM (images similar to the one shown in Fig. 1 a and Fig. S1 a).      
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Cell/ 

Substrate 

𝐷(µm!/hr)
 

𝛾(hr"#)
 

𝑉$(µm!/hr!)
 

𝑉(hr"!)
 

𝛼(µm)"#

 
B/E0 (µm!) 

Untreated
  

 d=1 µm
 

19 ± 2
 

0.13 ± 0.04
 

1.4 ± 0.5
 

0.18 ± 0.05
 

1.9 ± 0.4
 

7.3 ± 0.9 

Untreated/
  

 d=4 µm
 

22 ± 4
 

0.14 ± 0.05
 

1.9 ± 0.3
 

0.23 ± 0.08
 

1.9 ± 0.4
 

7.4 ± 0.9 

Untreated/
  

 d=6 µm
 

21 ± 3
 

0.15 ± 0.05
 

2.0 ± 0.4
 

0.24 ± 0.08
 

1.9 ± 0.4
 

7.6 ± 0.9 

Untreated
  

 d=9 µm
 

17 ± 3
 

0.12 ± 0.05
 

1.1 ± 0.05
 

0.14 ± 0.06
 

No value 6.8 ± 0.9
 

Untreated  

d=10 µm
 

16 ± 3 0.10 ± 0.06 0.9 ± 0.05 0.11 ± 0.06 No value 6.8 ± 0.9
 

Taxol  

 d=4 µm
 

14 ± 3
 

0.11 ± 0.03
 

0.6 ± 0.2
 

0.08 ± 0.04
 

0.5 ± 0.2
 

5.5 ± 0.9 

Y-27632 

 d=4 µm
 

12 ± 4
 

0.09 ± 0.03
 

0.5 ± 0.03
 

0.06 ± 0.04
 

0.3 ± 0.2
 

5.1 ± 0.9 

 

TABLE S11. Summary of the parameter values for untreated and chemically modified neurons. 

The table shows the values for the growth parameters of untreated and chemically modified 

neuronal cells, grown on different types of micropatterned PDMS substrates. The uncertainty for 

each parameter represents the uncertainties from the fit of the corresponding data points. The 

values for the parameter 𝛼	 are obtained for d in the range d =1 to 6 µm, as discussed in the main 

text. 


