Feedback-controlled dynamics of neuronal cells on directional surfaces

Marc Descoteaux', Jacob. P. Sunnerberg!, Donovan D. Brady', Cristian Staii'*

1. Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155,

USA

[*] Corresponding Author: Prof. C. Staii, E-mail: Cristian.Staii@tufts.edu

Keywords: Neuron, Axonal Growth, Fokker-Planck Equation, Nonlinear Dynamics, Stochastic

Process, Cellular Mechanics

To be submitted to Biophysical Journal



Abstract

The formation of neuronal networks is a complex phenomenon of fundamental importance for
understanding the development of the nervous system. The basic process underlying the network
formation is axonal growth, a process involving the extension of axons from the cell body and
axonal navigation towards target neurons. Axonal growth is guided by the interactions between
the tip of the axon (growth cone) and its extracellular environmental cues which include
intercellular interactions, the biochemical landscape around the neuron, and the mechanical and
geometrical features of the growth substrate. Here, we present a comprehensive experimental and
theoretical analysis of axonal growth for neurons cultured on micropatterned polydimethylsiloxane
(PDMS) surfaces. We demonstrate that closed-loop feedback is an essential component of axonal
dynamics on these surfaces: the growth cone continuously measures environmental cues and
adjusts its motion in response to external geometrical features. We show that this model captures
all the characteristics of axonal dynamics on PDMS surfaces for both untreated and chemically
modified neurons. We combine experimental data with theoretical analysis to measure key
parameters that describe axonal dynamics: diffusion (cell motility) coefficients, speed and angular
distributions, and cell-substrate interactions. The experiments performed on neurons treated with
Taxol (inhibitor of microtubule dynamics) and Y-27632 (disruptor of actin filaments) indicate that
the internal dynamics of microtubules and actin filaments plays a critical role for the proper
function of the feedback mechanism. Our results demonstrate that axons follow geometrical
patterns through a contact-guidance mechanism, in which high-curvature geometrical features
impart high traction forces to the growth cone. These results have important implications for our
fundamental understanding of axonal growth as well as for bioengineering novel substrate to guide

neuronal growth and promote nerve repair.



SIGNIFICANCE

Decades of research have shown that environmental guidance cues (biochemical,
mechanical, geometrical) control the dynamics of neuronal axons, and the wiring up of the nervous
system. However, a detailed quantitative model of the axonal growth is still missing. We
demonstrate that axonal dynamics on substrates with periodic micropatterns is governed by a
closed-loop feedback control mechanism that leads to axonal alignment on these surfaces. Axons
follow geometrical patterns through a contact-guidance mechanism, in which high-curvature
geometrical features impart high traction forces to the tip of the axon. We develop a quantitative
theoretical model that incorporates mechanical interactions between the axon and the growth
substrate. This model fully accounts for the experimental data including diffusion coefficients,

speed distributions and angular alignment.



INTRODUCTION

Neurons are the basic constituents that make up the nervous system, establishing neuronal
networks to transmit information throughout the body. During their growth, neurons extend axons
and dendrites, which navigate to other neurons and build complex interwoven networks that in
many organisms grow to contain billions of synapses. The extension of the axon is guided by its
growth cone, a dynamic unit that is located at the distal tip of the axon (1,2). To navigate its
environment, the growth cone uses environmental cues such as electrical, chemical, mechanical,
and geometrical stimuli (1-4). The dynamics of the growth cone throughout the external
environment is controlled by the cell cytoskeleton, a flexible ensemble of actin and microtubule
filaments and their associated molecular motors (1-7).

Previous research has characterized many of the molecular pathways (1-7) responsible for
intercellular signaling in developing neuronal systems (2,5-8), however the description of the
fundamental mechanisms behind the growth cone response to geometrical and mechanical cues
has not been determined at the same level of detail. Much of the research into geometric and
mechanical cues has studied neurons on substrates in vifro where the geometry of the substrate can
be controlled. These studies have shown that neurons grown on substrates with periodic
geometrical features develop different growth patterns as a population when compared to neurons
grown on surfaces lacking a periodic geometry (3,5,9-14). Observational differences include
populations of axons which are markedly longer and which strongly tend to align their growth
along preferred spatial directions (9,10,12,13,15-18). Most of this previous work has focused on
qualitative or semi-quantitative models to describe the influence of a substrate with controlled

geometric features on neuronal development. However, a detailed quantitative model of the growth



dynamics on these substrates, which incorporates the mechanisms of axonal alignment and cell-
surface interactions is still missing.

Fundamentally, axonal growth on surfaces with controlled geometries arises as the result
of an interplay between deterministic and stochastic components of growth cone motility (12,18-
21). An example of a deterministic influence is the presence of a preferred direction of growth
along a specific geometric pattern on a substrate (18,21). Examples of stochastic influences are the
effects of polymerization of cytoskeletal features such as actin filaments and microtubules, cell
signaling, low concentration biomolecule detection, biochemical reactions within the neuron, and
the formation of lamellipodia and filopodia (1,2,7,22). The resultant growth cannot be predicted
for individual neurons due to this stochastic-deterministic interplay, however the defining features
of a population of neurons can be modeled by probability functions that satisfy a set of well-defined
stochastic differential equations (12,19,20). Foremost examples include the Langevin and Fokker-
Planck equations, which have been used previously to capture the effects of both deterministic and
stochastic influences on cellular motion, which is treated as a form of biased random motion
(9,12,19,20,23-27).

In previous work (20,21) we have shown that axonal dynamics on uniform glass surfaces
is described by an Ornstein-Uhlenbeck (OU) process, defined by a linear Langevin equation and
stochastic white noise (28,29). We have also reported that neurons cultured on poly-D-lysine
coated polydimethylsiloxane (PDMS) substrates with periodic parallel ridge micropatterns of
spatial periodicity d (henceforth referred to as the pattern spatial period), grow axons parallel to
the surface patterns (18,21). We have studied axonal growth as a function of time on these
micropatterned surfaces and found that axonal alignment increases as a function of time (18).

While initially the growth can be represented as an OU process, at times greater than 48 hours



axonal growth can no longer be described as standard diffusion, following instead a superdiffusive
behavior. This growth is characterized by non-Gaussian speed distributions and power law
dependence of the axonal mean square length with time (18). Moreover, axonal dynamics is
described by non-linear Langevin equations, involving quadratic velocity terms and non-zero
coefficients for the angular orientation of the growing axon (21). In another paper we have used
the Langevin and Fokker-Planck equations to quantify axonal growth on surfaces with ratchet-like
topography (asymmetric tilted nanorod: nano-ppx surfaces), and we have investigated the
diffusion coefficient of axons on this type of surface geometry (12). It was shown that the axonal
growth is aligned with a preferred spatial direction as a result of a “deterministic torque” that drives
the axons to directions determined by the substrate geometry. We have also measured the angular
distributions and the coefficients of diffusion and angular drift on these substrates (12).

In this paper we demonstrate that the motion of axons on surfaces with micropatterned
periodic geometrical patterns is governed by a closed-loop feedback control mechanism that leads
to axonal alignment on these surfaces. We develop a quantitative stochastic framework based on
the Fokker-Planck equation that treats each growth cone as a system with a closed feedback loop.
We demonstrate that a simple mechanical model based on the axon bending-induced strain justifies
the use of the Fokker-Planck equation and allows us to extract the main dynamical parameters for
both untreated and chemically modified neurons. This theoretical model fully accounts for the
experimental data measured on ensembles of axons, including speed distributions and angular
alignment. Furthermore, our experiments show that inhibition of cytoskeletal dynamics by
treatment of neurons with Taxol (inhibitor of microtubules) and Y-27632 (inhibitor of myosin II
and actin dynamics) results in a significant decrease of the axonal alignment, by altering the

feedback mechanism of the cell. Feedback control means that the growth cone is guided towards



a target by using information retrieved from the environment (external stimuli). This is a powerful
technique for describing the dynamical properties of many types of physical and biological systems
including particle trapping (30-32), optical tweezers (33-35), neuron firing (36,37) and cellular
dynamics (38-40). We demonstrate that this approach provides significant insight into the neuronal
response to external mechanical and topographical stimuli. In particular our results show that
axonal dynamics is controlled by a contact-guidance mechanism, which stems from cellular
feedback in an external periodic potential imparted by the surface geometry. This work has a
significant impact for designing new platforms for guiding growth and regeneration of neurons

and provides new insights for developing a general model to describe cellular motility.

MATERIALS AND METHODS

Surface preparation, cell culture and imaging

The periodic micropatterns on PDMS surfaces are made of parallel ridges separated by troughs.
Each surface is characterized by a different value of the pattern spatial period d, defined as the
distance between two neighboring ridges (Fig.1 a). To make these periodic patterns we used a
simple fabrication method based on imprinting diffraction grids with different grating constants

onto PDMS substrates (additional experimental details are given in Supporting Materials).
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FIGURE 1. (a) Top: Atomic Force Microscope (AFM) topographic image of a PDL coated
PDMS patterned surface. Bottom: line scan (cross section) along the red line shown in the AFM
image. (b) Coordinate system and the definition of the angular coordinate &. The x axis is defined
as the axis perpendicular to the direction of the PDMS patterns. The directions corresponding to
0= 0, /2 and 31/2 , and the pattern spatial period d are also shown in Fig. 1 a. The line scan in
Fig. 1 a shows that the micropatterns are periodic in the x direction with the spatial period d = 4

um, and have a constant profile shape with a depth of approximately 0.6 um.

The direction of the patterns is shown in Fig. 1 by the parallel bright stripes (ridges), and
by the parallel dark stripes (troughs). We have performed control experiments which demonstrate
that the micropatterns used in our experiments have constant shape and depth. Examples of
topographical images are presented in Fig. 1 a, and Fig. S1 a in the Supporting Materials). The
micropatterned surfaces were spin-coated with PDL (Sigma-Aldrich, St. Louis, MO) solution of
concentration 0.1 mg/mL. Neuronal cells were imaged using an MFP3D atomic force microscope
(AFM) equipped with a BioHeater closed fluid cell, and an inverted Nikon Eclipse Ti optical

microscope (Micro Video Instruments, Avon, MA). Control experiments demonstrate that the



topographical and mechanical properties of the micropatterned PDMS substrates do not change
significantly among surfaces with different spatial periods or upon coating with PDL (Fig. S1 b,
Fig. S2, and Fig. S3 in the Supporting Materials).

The cells used in this work are cortical neurons obtained from embryonic day 18 rats. For
cell dissociation and culture we have used established protocols presented in our previous work
(9,12,18,20,21,41-43). Cortical neurons were cultured on micro-patterned polydimethylsiloxane
(PDMS) substrates coated with poly-D-lysine (PDL). The cells were cultured at a surface density
of 4,000 cells/cm?. We have previously reported that neurons cultured at relatively low densities
(in the range 3000 — 7000 cells/cm?) are optimal for studying axonal growth on surfaces with
different mechanical, geometrical and biochemical properties (9,12,18,21,41).

Fluorescence images were acquired using a standard Fluorescein isothiocyanate -FITC
filter: excitation: 495 nm and emission: 521 nm (details on acquiring the fluorescence images are
provided in the Supporting Materials). For the experiments on chemically modified cells, we have
treated the neurons with either: 1) Taxol (10 uM concentration) or 2) the chemical compound Y-
27632 (10 uM concentration), which have been added to the neuron growth medium at the time of
plating. Previous work has shown that a concentration of 10 uM of Taxol is very effective in
suppressing the microtubule dynamics (12,22,41), and that 10 uM of Y-27632 is very efficient in
disrupting actin polymerization and the formation of actin bundles, thus reducing traction forces

between the neurons and the growth substrates (42).

Data Analysis
Growth cone position, axonal length, and angular distributions have been measured and

quantified using ImagelJ (National Institute of Health). The displacement of the growth cone was



obtained by measuring the change in the center of the growth cone position. Examples of images
that shows the tracked position for axons are shown in Fig. S4 in the Supporting Materials. To
measure the growth cone velocities the samples were imaged every At = 5 min for a total period
of 1 hr per sample. The 5 min time interval between measurements was chosen such that the typical
displacement A7 of the growth cone in this interval satisfies two requirements: a) is larger than the
experimental precision of our measurement (~ 0.1 pum) (20,21); b) the ratio A7/At accurately
approximates the instantaneous velocity V of the growth cone. The speed of the growth cone is
defined as the magnitude of the velocity vector: V(t) = |I7(t)|, and the growth angle &) is
measured with respect to the x axis (growth angle and the x axis are defined in Fig. 1).

To obtain the speed distributions (Fig. 3 ¢ and d, Fig. S6 ¢ and d, Fig. S7), the range of
growth cone speeds at each time point was divided into 15 intervals of equal size
|Al70|. Experimental data (Fig. S4) shows that over a distance of ~ 20 um the axons can be
approximated by straight line segments, with a high degree of accuracy. Therefore, to obtain the
angular distributions for the growth angle & (Fig. 3 a and b, Fig. 4 ¢ and d, and Fig. S6 a and b we
have tracked all axons using ImageJ and then partitioned them into segments of 20 um in length,
following the same procedure outlined in our previous work (18,21). Next, we have recorded the
angle that each segment makes with the x axis (schematic shown in Fig. 1). The total range [0, 27]
of growth angles was divided into 18 intervals of equal size A8, = /9 (Fig. 3 a and b, Fig. 4 ¢
and d, Fig. S6 a and b). Experimentally, the average for the absolute value of sin & for each type

of surface is obtained according to the formula:

N
1
<|sinf| > = N-Z(|sin9i|) )
i=1
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where N is the total number of axonal segments of 20 um in length, measured on a given type of

surface, and &; represents the angle that i segment makes with the x axis.

RESULTS

Axonal alignment and speed distributions for untreated neurons

Cortical neurons are cultured on PDL coated PDMS surfaces with parallel micropatterns
(periodic parallel ridges separated by troughs). The surfaces differ by the value of the pattern
spatial period d defined as the distance between two neighboring ridges (Fig. 1). We analyze the
growth of both untreated and chemically modified neuronal cells on surfaces with spatial periods
in the range d = 1 um to 10 pum (in increments of 1 pum). Fig. 2 shows examples of images of
axonal growth for untreated cells, captured at ¢+ = 40 hrs after cell plating. Examples of the
corresponding axonal normalized angular and speed distributions are shown, respectively, in Fig.
3 a and Fig. 3 ¢ (for d = 1 um), and Fig. 3 b and Fig. 3 d (for d = 4 pm). Additional angular and
speed distributions are shown in Fig. S6 in the Supporting Materials. We have previously
demonstrated (21) that axons of untreated neurons display maximum alignment along PDMS
patterns for surfaces where the pattern spatial period d matches the linear dimension of the growth
cone /, where / is in the range 3 to 6 um. The experimental data shown in Fig. 2 b and c is in
agreement with our previous findings. Furthermore, the speed distributions for these growth cones
are close to Gaussian distributions, which are expected for ¢t = 40 hrs after cell plating (18). We
note that, in contrast to axons, dendrites do not display angular alignment along the surface

micropatterns (examples of angular distributions for dendrites are shown in Fig. S5).
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FIGURE 2. Examples of cultured cortical neurons on PDL coated PDMS surfaces with
periodic micropatterns. The main structural components of a neuronal cell are labeled in Fig. 2 a.
The angular coordinate & used in this paper is defined in the inset of Fig. 2 a. All angles are
measured with respect to the x axis, defined as the axis perpendicular to the direction of the PDMS
patterns (see Fig. 1). The pattern spatial period is: d =1 um in Fig. 2 a; d =4 um in Fig. 2 b; d =6
um in Fig. 2 ¢; d =9 pm in Fig. 2 d. All images are captured 40 hrs after neuron plating. The scale

bar shown in (a) is the same for all images.
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FIGURE 3. (a-b) Examples of normalized experimental angular distributions for axonal growth
measured on micropatterned PDMS surfaces with different pattern spatial periods d. The
continuous red curves in each figure are the predictions of the theoretical model discussed in the
main text. The vertical axis (labeled Normalized Frequency) represents the ratio between the
number of axonal segments growing in a given direction and the total number N of axon segments.
Each axonal segment is of 20 pum in length (see section on data analysis). All distributions show
data collected at =40 hrs after neuron plating. (a) Angular distribution obtained for N = 1404
different axon segments on surfaces with 4 =1 um. (b) Angular distribution obtained for N = 1560
different axon segments on surfaces with d =4 um. The data shows that the axons display strong
directional alignment along the surface patterns (peaks at 6 = m/2 and 6§ = 3m/2), with the
highest degree of alignment (sharpness of the distribution) measured for d =4 pm. (c-d) Examples

of normalized speed distributions for growth cones measured on micropatterned PDMS surfaces
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with different pattern spatial period d. (c) Speed distribution for N = 210 different growth cones
measured on surfaces with d =1 um. (d) Speed distribution for N = 242 different growth cones

measured on surfaces with d =4 um. The continuous red curves in each figure represent the

predictions of the theoretical model discussed in the main text.

Axonal alignment and speed distributions for neurons treated with Taxol and Y-27632

To further investigate the axonal dynamics on PDMS surfaces with periodic micropatterns
we measure angular and speed distributions for neurons treated with chemical compounds known
to inhibit the dynamics of the cell cytoskeleton. Fig. 4 a shows an example of axonal growth for
neurons treated with 10 uM of Taxol. Fig. 4 b shows a similar image obtained for neurons treated
with 10 uM of Y-27632. The pattern spatial period of the PDMS surfaces is d =4 um for both
images. Taxol is a chemical compound which is commonly used to inhibit the normal functioning
of the cytoskeleton, due to the disruption of microtubule dynamics (12,22,41). Y-27632 is known
to inhibit the formation of actin bundles and the reorganization of actin based structures during
neuronal growth (42,44). Both of these compounds have been shown to be effective at the
concentration of 10 uM used in our experiments (12,22,41,42,44). The normalized angular
distributions for axonal growth are shown in Fig. 4 ¢ for Taxol and in Fig. 4 d for Y-27632. The
neurons treated with either Taxol or Y-27632 show a dramatic decrease in the degree of alignment
with the surface patterns compared to the unmodified cells (Fig. 2 and Fig. 3). The data show that
while the axonal directionality is greatly reduced by the chemical treatment, the treated neurons
still grow long axons and form cell-cell connections (Fig. 4 a and b). These results demonstrate

that the disruption of the cytoskeletal dynamics for chemically treated neurons affects only the
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degree of alignment with the surface pattern, leaving the navigation of the growth cone and axonal

outgrowth uninhibited.
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FIGURE 4. (a-b) Examples of axonal growth for cortical neurons treated with chemical
compounds that inhibit the cytoskeletal dynamics: (a) Taxol and (b) Y-27632. The growth
substrates are PDL coated PDMS surfaces with periodic micropatterns with the pattern spatial
d =4 um. The images are captured at =40 hrs after neuron plating. The scale bar shown in (a) is
the same for both images. (c-d) Normalized experimental angular distributions corresponding to
the images shown in (a) and (b), respectively. The neurons treated with Taxol or Y-27632 show a
significant decrease in the degree of alignment with the surface patterns, compared to the untreated
cells (Fig. 2 and Fig. 3). The continuous red curves in each figure are the predictions of the

theoretical model discussed in the main text.
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Stochastic model of axonal growth on surfaces with periodic micropatterns

Axonal motion on the PDMS substrates is characterized by both deterministic and
stochastic components (12,18-21). The dynamics of the growth cones is described by the spatial
probability distribution p(#,t), whose time evolution is governed by the Smoluchowski (spatial
Fokker-Planck) equation (28,29):

SPED =D VpF 0 +1V: (G0 V() @)
where D represents the diffusion (cell motility) coefficient, y is the damping coefficient (friction
constant of the corresponding Langevin equation), and V(#) is the effective potential that
determines the axonal motion. The net force per unit mass acting on the growth cone is
f=—=VV({#) (21). We write the effective potential as a sum of three terms:

V(@) = Vext () + Ve (F) + Vine (T ) 3)
where V,,;(7#) is the neuron-substrate coupling potential (external potential imposed by the
substrate geometry), Vp(7) is the potential responsible for the closed-loop feedback (to be
discussed below), and V,.(7,p) is the neuron-neuron interaction potential (quantifies the
interactions between neuronal cells).

In this paper we consider the motion of an ensemble of N growth cones when the neuron-
neuron signaling potential V;,,; (7, p) is negligible compared to the neuron-substrate interactions
described by the periodic potential (see Eq. 4 below). This is indeed the case for the low values of
the cell culture density (4,000 cells/cm?) used in our experiments, as shown in previous work (9).
The micropatterned PDMS substrates have uniform geometry in the y direction, and periodic
geometry along the x axis (Fig. 1). Thus, the mechanical coupling between the growth cone and
the substrate results in a constant potential along the y direction, and a periodic external potential

along the x axis:
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Vet () = Vo * sin? = )

where Vo is the maximum strength of the external potential imposed by the surface geometry, d
represents the pattern spatial period, and x is the coordinate along the x axis defined in (Fig. 1 b).
We note that the PDMS surfaces are coated with a uniform layer of PDL (Fig. S1, S2 and S3 in
the supporting materials), and thus the substrate chemistry contributes with a constant value to
V.. () and does not influence the axonal dynamics described by Eq. (2).

Experimental data shows that the motion of growth cones along the x axis on the
micropatterned surfaces is similar to the dynamics of particles inside a harmonic trap centered
around the mean position, similar to the dynamics of polarizable colloids inside optical traps
(30,33-35,45). This type of dynamics is described by the harmonic potential (30,34,35):

Ve(x,p) =V - (x — (x))? 5
where Vis the strength of the harmonic confinement, and (x(t)) is the time dependent growth cone
mean position along the x axis. We emphasize that in our model the time evolution of the
probability density in Eq. 2 is explicitly written in real space (as opposed to velocity space treated
in previous work (18,20,21)), and thus it allows us to separate the effects of periodic geometry
(Vex: given by Eq. 4) from the feedback control (VF given by Eq. 5).

Equations 3 - 5 imply that the spatial probability distribution p(7,t) admits the following
separation of variables: p(7,t) = p(x, t) - p(y, t) where p(x, t) and p(y, t) represent the cellular
probability distributions in the y and x directions respectively. Furthermore, the approximation
Vint (7, p) = 0 and the uniform geometry in the y direction implies that p(y, t) is a constant, and
thus:

p(r,t) = A-p(x,t) (6)

where 4 is an overall normalization constant.
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With the geometric and feedback potentials given by Eqs. 4 and 5, and the probability
distribution given by Eq. 6, the equation of motion for the growth cone (Eq. 2) in the x direction

becomes:

2P0 =D p(,0) + 22 (p00 ) 2 Ve () + Ve (0)) ()

with the time dependent growth cone mean position along the x axis:
(x(0)) = 3 [ dxxp(x, 1) ®)

The model described by the Equations 4 to 8 predicts that the overall motion for the axons
has two components: a) a uniform drift along the directions of minimum V. (x), (i.e., along the y
axis in Fig. 1), and b) a random walk around these equilibrium positions. This is indeed what is
observed experimentally. At small times the growth cone dynamics resembles a Brownian motion,
resulting in a slow increase in the mean growth cone position (x) along the x axis. As time
progresses the feedback control which depends on (x) steers the axonal motion along the minimum
values of the periodic potential, i.e., along the micropatterned parallel PDMS lines (Fig. 1 and Fig.
2). Furthermore, in the absence of the confinement imposed by the periodic potential (Eq. 4) and
feedback control potential (Eq. 5), the equation of motion for the growth cones (Eq. 2) reduces to

a regular diffusion (Ornstein - Uhlenbeck) process characterized by exponential decay of the

. . . .. . 1
autocorrelation functions with a characteristic time t =5 axonal mean square length that

increases linearly with time, and velocity distributions that approach Gaussian functions (28,29).
In our previous work we have shown that this is indeed the case for axonal growth on PDL coated

glass and PDMS surfaces characterized by large pattern spatial periods: d > 9 um (21).
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FIGURE 5. (a-b) Examples of experimentally measured probability distributions for the motion of
the growth cones in the x direction. The red curves represent fits to the data with the solutions of
the theoretical model given by Eq. 7. The fit parameters are the diffusion (cell motility) coefficient
D, the damping coefficient y , and the magnitudes Vp and V of the external and feedback potential,
respectively. (a) Data obtained for N = 331 untreated neurons measured at ¢ = 40 hrs on PDMS
surfaces with d =4 um. (b) Data obtained for N = 298 neurons treated with Taxol measured at ¢
=40 hrs on PDMS surfaces with d =4 um. (c-d) Simulated neuronal growth for untreated (c) and
Taxol - treated neurons (d). The simulations are performed by using the values of the growth

parameters obtained from the fit of the experimental data with solutions of Eq. 7 (seen main text).

To model the motion of the growth cones on micropatterned PDMS periodic surfaces we

solve Eq. 7 numerically, subject to the stationary solutions (18,28,29):

p(x) = (1/Z) - exp(—(V * x? + Ve (x)) /D - ¥) (9)
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where Z is a normalization constant. Fig. 5 a and b show examples of experimentally measured
probability distributions for the motion of the growth cones in the x direction. Fig. 5 a shows data
obtained for untreated neurons, while Fig. 5 b displays data obtained for neurons treated with
Taxol. The pattern spatial period for both Fig. 5 @ and b is d =4 pm. The red curves in Fig. 5 a and
b represent fits to the data with the solutions of the theoretical model given by Eq. 7. For the case
of untreated neurons, the solutions of Eq. 7 fit the experimental data for the probability distribution
p(x,t) (Fig. 5 a) with the following values of the growth parameters: diffusion coefficient D =
(22 + 4)um? /hr , damping coefficient y = (0.14 + 0.05) hr™! , and strengths of the external
and feedback potentials Vy = (1.9 £+ 0.3)um?/hr?, and V = (0.23 + 0.08)hr~2, respectively.
The values for the diffusion and damping coefficients are close to the ones we have previously
reported for growth cones on glass and PDMS surfaces (18,20,21). The probability distribution in
the case of neurons treated with Taxol (Fig. 5 b) is fitted with the solutions of Eq. 7 for the
following values of the growth parameters: diffusion coefficient D = (14 £ 3)um?/hr , damping
coefficient y = (0.11 £ 0.03) hr™1, and strengths of the external and feedback potentials V, =
(0.6 + 0.2)um?/hr?, and V = (0.08 + 0.04)hr~2, respectively. We note that the values for the
growth parameters decrease either upon the chemical treatment of the neuron, or with increasing
spatial period d (see Table S11 in the Supporting Materials for a summary of these parameters).
We use the solutions of Eq. 7 for the probability distribution to simulate axonal growth
trajectories, as well as axonal speed and angular distributions. The simulations are performed using
the above values for the growth parameters and strengths of the periodic and feedback potentials
(obtained from the data fit in Fig. 5 @ and b) with no additional adjustable parameters (see the
Supporting Materials for simulation details). Fig. 5 ¢ and d show examples of simulation results

for untreated (Fig. 5 ¢) and Taxol-treated neurons (Fig. 5 d) grown on surfaces with d =4 um.
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Similar experimental data and simulations obtained for untreated neurons grown on surfaces with
d =6 um, as well as neurons treated with Y-27632 are shown in Fig. S8 in the Supporting Materials.
Simulations performed for untreated neurons cultured on surfaces with d =9 um and d =10 um
are shown in Fig. S9. We emphasize that the angular distributions and speed distributions obtained
from these simulations match the experimental data for untreated (Fig. 3 and Fig. S6), Taxol and
Y-27632 treated neurons (Fig. 4 and Fig. S7) without the introduction of any additional
parameters. The simulated axon trajectories in Fig. 5 ¢ and Fig. S8 ¢ reproduce the high degree of
alignment observed experimentally for untreated neurons grown on surfaces with d =4 pm or
d =6 um (Fig. 2 b and ¢), Fig. 3 b and Fig. S6 a). Fig. 5 d and Fig. S8 d show simulated growth
trajectories with intermediate degree of alignment (similar to the data measured on Taxol and Y-
27632 treated neurons in Fig. 4). Fig. S9 shows simulated axon trajectories with low degree of
alignment, similar to the growth data measured on surfaces with d =9 um and d =10 um (Fig. S6
b). In the limit of very large d the dynamics reduces to simple Brownian motion as discussed
above. The Table S11 in the Supporting Materials presents a summary of the values for the growth
parameters obtained from the comparison between the theoretical model (solutions of Eq. 7) and
the experimental data for different cells and substrates. The decrease in the parameters V and V)
observed for chemically treated cells, as well as for untreated neurons cultured on surfaces with

large d reflects the lower degree of alignment measured in these cases.

Mechanical model for axonal dynamics
We justify the stochastic model described in the previous section by introducing a simple
mechanical model that takes into account the cell-substrate interactions when the axon grows close

to the top of the micropattern (this is indeed the case for most axons at # =40 hrs after cell culture
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as we have shown in (18), see also Fig. S10). We first note that the micropatterned PDMS lines
can be approximated locally with semi-cylinders with radius of curvature R (Fig. S1 a). The model
considers the bending-induced strained sustained by the axon while growing close to the top of the
semi-cylindrical surface: axonal adhesion to the micropattern leads to axonal bending, which in
turn leads to increased mechanical strain energy in the axon cytoskeleton. The mechanical strain

energy E depends on the axon bending stiffness B, and the local surface curvature K (6, R) (4,46):
E=>B-K*(6,R) (10)

In the case of axonal growth on the micropatterned surfaces, the curvature of the axon on the

surface of the semi-cylinder is given by:

K(6,R) == (11)

where R is the radius of curvature of the semi-cylindrical pattern. Under the assumption of

maximum entropy (close to growth equilibrium), the probability of axon growing in a given

direction is given by Boltzmann distribution:
E
p(©) = A, -exp(— 1) (12)
where Ejis the characteristic energy scale for axonal bending, and 4, is an overall normalization

constant. By combining Eqgs. 10, 11 and 12 we can write the following expression for the angular

probability distribution:

B
Ey'R?

p(6) = A-exp(——=cos*(6)) (13)

When the axon grows close to top of the semi-cylindrical pattern the external potential Ve
is approximatively constant (close to its maximum value, see Eq. 4). In this limit Eq. 13 has the
general form of Eq. 9, given that the relationship between the displacement in the x direction and

the axon growth angle 81is: Ax = Ar - cos(0) (Fig. 1 b), where Ar = 20 pm (see section on data
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analysis). Therefore, a direct comparison between Eq. 13 (derived from the mechanical beam
model) and Eq. 2 (solution of the stochastic Fokker-Planck equation) leads to the following
relationship between the stochastic parameters (diffusion coefficient D, damping coefficient y,
strength of the feedback potential V) and the mechanical parameters (axon bending stiffness B, the
characteristic energy scale Ey, and the surface radius of curvature R):

v-AL? B
Dy EO'R2

(14)

We emphasize that Eq. 13 is a special case of Eq. 9 (obtained at growth equilibrium and when the
growth cone is close to the top of the micropattern). However, we can use Eq. 14 (derived by direct
comparison between Egs. 9 and 13) together with the values for the stochastic parameters found
in the previous section to calculate the ratios between the axon bending modulus B and the
characteristic energy scale Ey for untreated as well as chemically modified neurons. The radius of
curvature of the micropatterns could be measured directly by AFM (Fig. S1 a). For example, for
neurons grown on surfaces with d = 4 um we AFM measurements give R ~ 0.5 um. From Eq. 14
we then obtain: B/E, = (6.9 + 0.9) um3 for untreated neurons, and B/E, = (5.5 + 0.9) um? for
neurons treated with Taxol. The corresponding value for Y-27632 treated cells is B/E, = (5.1 +
0.9) um?) ( all values are obtained for cells cultured on surfaces with d = 4 pm). A summary of
the values for B/E) for different types of surfaces and chemical treatment are given in Table S11
in the Supporting Materials. Eq. 14 gives only the ratio between the bending modulus B and the
characteristic energy scale Ey for mechanical interactions between the axons and the PDMS
micropatterns on the growth substrate. Assuming a constant energy scale Ey for all these cases, we
can perform a joint fit for all data points using the maximum likelihood method (12,20). The

constant value of the characteristic energy scale which maximizes the likelihood of measuring the
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given data set is: E, = (3.2 £ 0.7) - 10715 ]. Using this constant value for £y we obtain the
following values for the axonal bending rigidities: B = (23.7 + 0.8) ] - um? for untreated
neurons, B = (17.6 + 0.8) ] - um? for neurons treated with Taxol, and B = (16.3 &+ 0.8) ] - um?
for neurons treated with Y-27632 (cells cultured on surfaces with d = 4 um). These values for the
axonal bending rigidity are comparable to the values for axon bending rigidity reported in the
literature (4,43,46,47), and are consistent with our previous values for the elastic modulus of the

neuronal cells (41-43), if we assume a simple rigid beam model for the axon (48).

Feedback control dynamics for axonal growth in periodic potentials

The stochastic model described in the previous sections shows that the feedback potential
V'r depends on the dynamical state of the whole system, through the ensemble average (x(t)) (Eq.
5). Thus, this model implies that the axonal motion on surfaces with periodic geometries exhibits
a simple closed-loop behavior: the growth cone detects the geometrical cues on the surface and
tends to align its motion along certain preferred directions that maximize the cell-surface
interactions. In general, closed-loop feedback control means that the system is steered towards a
target behavior by using information which is retrieved from the environment through continuous
measurements.

To further investigate this model, we determine the average value for |siné | (absolute
value for the sine of the axonal growth angle), which measures axonal alignment for each type of
surface. We use the absolute value [sin 8| due to the growth symmetry with respect to the x axis
(directions 8 = 0 and 6 = m are equivalent, see Fig. 1 and Fig. 2). As shown in references (38-

40) on work performed for galvanotaxis and chemotaxis dose-response curves for the motion of

24



human granulocytes and keratinocytes, the feedback control model leads to the following

expression for the average of the absolute value for the sine of the growth angle:

11 (a-d)

. 2 1
< |sinf| >= fonp(H) *|sinf|d6 = L (a-d)

(15)

where /; and Iy are the modified Bessel functions of the first kind, and a is a parameter with

dimensions of inverse length.

Untreated
m  Taxol
1.0k = Y27632 4
e _
| A1 +

<Isin(6)|>

0.0

d(um)
FIGURE 6. Variation of the average value for |sin 8| (absolute value for the sine of the axonal
growth angle) with the pattern spatial period d. The black squares represent the values for
<|sin@ > obtained from the experimental data for untreated neurons. The blue squares correspond
to the experimental data obtained for neurons treated with Taxol, while the red squares correspond
to the data measured for neurons treated with Y-27632. Error bars indicate the standard error of
the mean for each data set. The dotted curves represent fit of the data points with Eq. 15, performed
in the range d = 1 to 6 um. The graph shows that data points in this range are fitted by the feedback

control model for the following values of the parameters: @ = (1.9 + 0.4) um™? for untreated
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neurons, @ = (0.5 &+ 0.2) um™?! for neurons treated with Taxol, and & = (0.3 + 0.2) um~? for

neurons treated with Y-27632.

Fig. 6 shows the variation of the experimentally measured values for < |sinf| > with the
pattern spatial period d, for untreated neurons (black squares), as well as for neurons treated with
Taxol (blue squares) and Y-27632 (red squares). The dotted curves represent fits to the data with
the predictions of the closed-loop feedback model given by Eq. 15. Only the data points in the
range d = 1 to 6 um are included in the fit. The data demonstrate that axonal dynamics on micro-
patterned PDMS surfaces is described by a simple linear response model, when the pattern spatial
period is in the range d =1 to 6 um, that is when d matches the linear dimension of the growth
cone: d =/ . This conclusion applies to both untreated cells and cells treated with Taxol and Y-
27632. This type of response is known as “automatic controller” in the theory of feedback control
systems (49) and it is exhibited by a large class of biological and non-biological systems as
discussed below. In our experiments the pattern spatial period d plays the role of an effective
control parameter that determines the axonal alignment, similar to the electric field in the case of
galvanotaxis of human granulocytes and keratinocytes (23,38), or the concentration gradient in the
case of cellular chemotaxis (39). Furthermore, Fig. 6 demonstrates that the response of the
automatic controller is affected by the inhibition of cytoskeletal dynamics: the actual response
(measured by the coefficient ) is different for the untreated and chemically treated cells (see the

caption in Fig. 6, and Table S11 in the Supporting Materials).

26



DISCUSSION

Neurons respond to a variety of external cues (biochemical, mechanical, geometrical) while
wiring up the nervous system in vivo (1,2,4-7). In many cases these cues consist of periodic
geometrical patterns with dimensions of the order of a few microns (1,4,5). Examples of
physiological growth scaffolds include curved brain folding (4-6), radial glial fibers (4,5), and
extracellular matrix tracks (1,2,6,7). Our results show that growth substrates containing
micropatterned periodic features promote axonal growth along the direction of the pattern. The
range for the micropattern spatial periods in our experiments (d = 1 to 10 um) is relevant both for
neuronal growth in vivo as well as for many proposed biomaterial implants for nerve regeneration
(13,17). Furthermore, our experiments show that neurons grown on PDMS substrates display a
significant increase in the overall axonal length and a high degree of alignment when the pattern
spatial period d matches the linear dimension of the growth cone: d = L.

We have shown that the Fokker-Planck equation with closed-loop feedback control and
periodic external potential (Egs. 1 -9) provides a general stochastic framework that describes the
main characteristic of the axonal dynamics on micropatterned PDMS substrates. The limitations
of this model are due to its phenomenological nature: the growth parameters are obtained from fit
to experimental data, and not predicted from the underlying cellular biophysics. However, we have
demonstrated that a simple mechanical model based on the axon bending-induced strain (Egs. 10
— 13) justifies the use of the Fokker-Planck equation, and allows us to extract the main dynamical
parameters that characterize axonal growth for both untreated and chemically modified neurons.
Our results show that the additional cues necessary to guide the axonal dynamics result from the
interplay between the geometrical features of the substrate and the physical properties (stiffness)

of the nerve process.
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The theoretical model captures all the characteristics of axonal growth on the PDMS
surfaces for untreated and chemically modified neurons, including diffusion (cell motility)
coefficients, angular and speed distributions (Fig. 2 - Fig. 5, Fig. S6 — S8). Furthermore, Egs. 2-9
imply a simple closed-loop “automatic controller” model for axonal motion: the growth cone
detects geometrical features on the substrate and orients its motion in the directions that maximize
the interaction between the axon and the substrate. This behavior is displayed by both untreated
and chemically modified neurons, as shown in Fig. 6. In this figure each data set (for untreated,
Taxol and Y-27632 treated cells) is fitted with a unique parameter , which demonstrates a linear
response characteristic to a proportional controller: the response is proportional to the signal
received from the guidance cue (38,39). The coefficients « obtained from the data fit (Fig. 6 and
Table S11) measure the neuronal responses to periodic geometrical cues, and play a similar role
to the galvanotaxis and chemotaxis coefficients used to describe the cellular motion in external
electric fields or chemical gradients (23,38-40).

Models based on the theory of automatic controllers have been successfully used by other
groups to characterize the galvanotaxis (motion in external electric fields) of human granulocytes
and keratinocytes (23,38), as well as the chemotactic response of bacteria and of various types of
virus modified cells (39,40). We note that the closed-loop feedback displayed by neurons is
different than the case of external (or open-loop) control, where the parameters are set externally
without involving the reaction of the system. Open-loop control does not involve measurements
of the environment and it is the type of control encountered in systems with predictable dynamics.
Examples of open-loop systems include many types of devices such as fluorescent lamps or
watches controlled by quartz crystals (49), or systems under the influence of oscillating forces,

such as mixing devices or ratchet structures (50-52). In the case of complex dynamics, such as the
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stochastic motion of cells, closed-loop feedback control is a much more reliable control
mechanism. In the case of neurons the closed-loop feedback control underlies the mechanism of
axonal alignment on micropatterned PDMS substrates. Within this model the growth cone behaves
similarly to a “device” that senses geometrical cues, and as a result generates traction forces that
align the axon with the surface pattern.

The parameters Vo, V, o, and B/Ey (see Table S11 shown in Supporting Materials) are
obtained from the comparison between experimental data and the theoretical model, and represent
a measure of the interactions between cells and the geometrical cues on the growth substrates.
These parameters allow for a meaningful comparison of the cellular response to geometrical cues,
among different types of cells and growth substrates. For example, the high degree of alignment
observed for untreated neurons grown on surfaces withd = [(e.g d =4 pum or d = 6 um) is
reflected by the higher strengths of the geometric and feedback potentials ¥ and V" compared to
neurons grown on surfaces with other pattern spatial periods (e.g. d = 1 um or d = 9 um, see
Table S11 shown in the Supporting Materials). Furthermore, the reduction in axonal alignment
observed for chemically treated cells is measured quantitatively by the significant decrease in the
values of the parameters V9, V, and ¢, compared to the corresponding values obtained for untreated
neurons grown on the same type of micropatterned surface (d = 4 um). Table S11 (Supporting
Materials) shows a decrease by a factor ~ 3 to 4 in the values of V' and V for chemically treated
cells compared to the untreated neurons grown on the same type of substrate. The unique fit
parameter ¢ obtained in each case (untreated, Taxol, and Y-27632 treated cells) for neuronal
growth on surfaces with pattern spatial period in the range d =1 to 6 um demonstrates a linear
response characteristic to a proportional controller. However, the value of « for Taxol - treated

cells is a factor of ~ 4 smaller than the value for the corresponding parameter obtained for
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untreated cells (Fig. 6 and Table S11). This result is in very good quantitative agreement with the
experimentally observed decrease in the peak of the angular distributions for Taxol treated cells
(Fig. 4 ¢) compared to Fig. 3 b). A similar decrease in the value of « is measured for neurons
treated with Y-27632 (Fig. 6 and Table S11). The smaller value of the parameter « for the
chemically treated neurons implies a less effective guidance mechanism for these cells compared
to the untreated ones. Within the feedback control model, these results show an alteration of the
automatic controller responsible for directional motion of axons in the case of chemically treated
neurons.

The comparison between the stochastic and mechanical model given by Egs. 10 -13, allows
us to calculate the ratios between the axon bending modulus B and the characteristic energy scale
of axon — substrate interactions Eyp , for untreated as well as chemically modified neurons (Eq.
14). This ratio is almost constant for untreated neurons grown on surfaces with different pattern
spatial periods d (Table S11), showing a constant axon-surface bending energy. The model also
shows a statistically significant decrease in the value B/E) for cells treated with Taxol or Y-27632
(Table S11), and thus indicates a decrease in the bending rigidity for chemically modified neurons,
which is consistent with the alteration of cytoskeletal dynamics and axon-substrate coupling forces
for these cells, as discussed below.

The biophysical mechanisms responsible for the observed changes in the dynamical
behavior involve changes in the cell-substrate coupling forces, that could occur through different
cellular processes. Growth cones are filled up with actin filaments, which polymerize at their
leading edge (1-7). At the same time, myosin II motors pull on actin filaments and generate traction
forces via point contacts (integrins, viniculin, talin etc.). Furthermore, interactions between actin

filaments and microtubules, modify the distribution of mechanical stress in the growth cone and
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affect its adhesion properties, and its ability to navigate and turn. In consequence, both
microtubules and actin filaments inside the growth cone act as stiff load-bearing structures that
generate surface adhesion and traction forces (1,2,4). Inhibition of microtubule or actin dynamics
will therefore result in a decrease in cell-substrate interactions and cellular adhesion. Our
experiments are consistent with these predictions: we have demonstrated that disruption of the
cytoskeletal dynamics for cells treated with Taxol (inhibitor of microtubule dynamics), and Y-
27632 (disruption of actin filaments) results in a decrease in the degree of alignment and a
reduction in cell-substrate interactions (Fig. 4, Fig. 5 b and d, Fig. S8 b and d, and Table S11).
These results support previous work which has shown that neurons follow geometrical
patterns through a contact — guidance mechanism (12,21,53). Contact guidance is the behavior
displayed by many different types of cells which can change their motion in response to
geometrical cues present in the surrounding environment. This property has been observed for
several types of cells including neurons, fibroblasts, and tumor cells (12,17,21,53). Previous work
(17,53-55) has shown that growth cones develop several different types of curvature sensing
proteins (such as amphipathic helices and bin-amphiphysin-rvs (BAR) - domains) that act as
sensors of geometrical cues and are involved in the generation of traction forces. Moreover, the
degree of directional alignment of cellular motion is increasing with the increase in the density of
curvature sensing proteins (17,53-55). In our experiments the growth cone filopodia and
lamellipodia wrap around the ridges of the PDMS micropatterns (18), which results in a minimal
contact area with the surface, and thus a maximum density of curvature sensing proteins.
Consequently, high-curvature geometrical features such as ridges on PDMS substrates will impart
higher forces to the focal contacts of filopodia wrapped over these features, compared to the low-

curvature patterns. This means that the contact guidance mechanism leads to an increase in the
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traction force along the direction of the surface pattern (defined as the y direction in Fig. 1), which
ultimately results in the observed directional alignment of axons on these surfaces.

Proper wiring of the nervous system in vivo is carried out precisely and robustly as growth
cones respond to their environment by integrating external cues. While the fundamental stochastic
nature of self-wiring obscure the details of how it is achieved, it is likely that there are general
emergent rules that apply across large patterns of connections (56, 57). Previous growth models
have simulated multiple axons growing in complex domains with multiple guidance factors (56,
57). However, many of the parameters that control axonal dynamics have not been quantified. In
previous work we have investigated axonal growth on substrates with different geometrical
patterns, and have measured speed and acceleration distributions as a function of substrate
geometry (21), axonal alignment as a function of time (18), as well as axonal angular distributions,
angular drift and diffusion coefficients (12,18,21). In this paper we show that axonal stiffness and
substrate curvature can act together to direct axonal growth on filamentous surfaces. This work
also opens up several important directions for future investigations of surface — driven axonal
growth. For example, the ability to control and direct biomechanical responses in vitro has
important consequences for neural repair and tissue engineering, along with in vitro-in vivo device
interfaces. Such control is critical for example to repair nerve damage, to guide and optimize nerve
interfaces to prosthetics and to integrate medical devices for physiological functions.

The role played by curvature sensing proteins and other cellular processes such as changes
in expression of BAR proteins, or the opening of stress activated ion channels, which could lead
to changes in the cell-substrate coupling forces will be investigated in future experiments. This
future work will involve the measurement of both cell-surface coupling forces using traction force

microscopy and the density of cell surface receptors and curvature sensing proteins using
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fluorescence techniques. The effect that these biomolecules have on the generation of traction
forces can be determined in experiments where their activity is selectively inhibited while
simultaneously measuring cell-substrate interactions and the axonal dynamics. Furthermore,
combined with traction-force experiments, the automatic controller model presented here could be
further extended to account for the explicit dependence of the growth parameters on the mechanical
and biochemical guidance cues, such as changes in the geometry or stiffness of the growth
substrate, or external chemical gradients. This general model could also be applied to other types
of cells to give new insight into the nature of cellular motility. In principle these future
investigations will enable researchers to quantify the influence of environmental cues
(geometrical, mechanical, biochemical) on cellular dynamics, and to relate the observed cell
motility behavior to cellular processes, such as cytoskeletal dynamics, cell-surface interactions,

and signal transduction.

CONCLUSION

In this paper, we have performed a detailed analysis of axonal growth on micropatterned
PDMS surfaces. We have demonstrated that the axonal dynamics on these surfaces is described
by a theoretical model based on the motion of a closed-loop automatic controller in a periodic
external potential imparted by the surface geometry. We have used this model to measure the
parameters that characterize the axonal growth. Our results show that the motion of the growth
cone is mediated by a contact-guidance mechanism, which originates from cellular feedback in an
external periodic potential: the growth cone responds to geometrical cues by directing its motion

along the surface micropatterns. This work implies that the cues that guide the axonal dynamics

33



result from the interplay between the geometrical features of the substrate and the physical
properties (stiffness) of the nerve process. The general model presented here could be applied to
describe the dynamics of other types of cells in different environments including external electric
fields, substrates with various mechanical properties, and biomolecular cues with different

concentration gradients.
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Supplemental Materials
Text S1:
Surface preparation and cell culture

To fabricate micro-patterned substrates we start with 20mL polydimethylsiloxane (PDMS)
solution (Silgard, Dow Corning) with a mixing ratio silicone base/curing agent 15:1 (15 Sylgard
184 silicone elastomer base to 1 Sylgard 184 silicone elastomer curing agent). The PDMS solution
is poured over diffraction gratings with slit separations: 1 pm - 10 pm (in increments of 1 um) and
total surface area 25 x 25 mm? (Scientrific Pty. and Newport Corp. Irvine, CA). The PDMS films
were left to polymerize for 48 hrs at room temperature, then peeled away from the diffraction
gratings and cured at 55° C for 3 hrs. We use AFM imaging to ensure that the pattern was
successfully transferred from the diffraction grating to the PDMS surface (Fig. 1 @ and Fig. S1 a).
The result is a series of periodic patterns (parallel lines with crests and troughs) with constant
distance d between two adjacent lines. The AFM images in Fig. 1 and Fig. S1 show that the patterns
are periodic and have constant depth. The surfaces were then glued to glass slides using silicone
glue and dried for 48 hours. Next, each surface was cleaned with sterile water and spin-coated with
3 mL of Poly-D-lysine (PDL) (Sigma-Aldrich, St. Louis, MO) solution of concentration 0.1
mg/mL. The spinning was performed for 10 minutes at 1000 RPM. Prior to cell culture the surfaces

have been sterilized using ultraviolet light for 30 minutes.
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Cortical neurons have been obtained from rat embryos (day 18 embryos obtained from
Tufts Medical School). The brain tissue protocol was approved by Tufts University Institutional
Animal Care Use Committee and complies with the NIH guide for the Care and Use of Laboratory
Animals. The cortices have been incubated in 5 mL of trypsin at 37°C for 20 minutes. To inhibit
the trypsin we have used 10 mL of soybean trypsin inhibitor (Life Technologies). Next, the
neuronal cells have been mechanically dissociated, centrifuged, and the supernatant was removed.
After this step the neurons have been re-suspended in 20 mL of neurobasal medium (Life
Technologies) enhanced with GlutaMAX, b27 (Life Technologies), and pen/strep. Finally, the
neurons have been re-dispersed with a pipette, counted, and plated on PDL coated glass, or PDL
coated PDMS substrates, at a density of 4,000 cells/cm?. Fig. S1 b shows the average value for the
surface roughness measured on micropatterned PDMS surfaces with spatial periods considered in
this paper (d in the range 1 — 10 um). These values are measured before (blue data points) and
after (red data points) each surface is coated with PDL. The variation of the average roughness
among these substrates is less than 10%. Fig. S2 shows an example of an AFM force map image
used to measure the substrate elastic modulus. Fig. S3 shows examples of histograms for the
distribution of elastic modulus E, which are obtained from AFM force maps measured,
respectively, before (Fig. S3 a) and after (Fig. S3 b) coating of the PDMS substrate with PDL. The
two histograms display similar ranges for £, while the corresponding values for the average elastic
modulus differs by only 5% between the two maps. The experimental data thus demonstrates that
the surface topography and elastic modulus does not vary significantly among the micropatterned

PDMS surfaces with different spatial periods d.
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Text S2:
Fluorescence and AFM imaging

For fluorescence imaging the cortical neurons cultured on glass or PDMS surfaces, were
rinsed with phosphate buffered saline (PBS) and then incubated for 30 minutes at 37°C with 50
nM Tubulin Tracker Green (Oregon Green 488 Taxol, bis-Acetate, Life Technologies, Grand
Island, NY) in PBS. The samples were then rinsed twice with PBS and re-immersed in PBS
solution for imaging. Fluorescence images were acquired using a standard Fluorescein
isothiocyanate -FITC filter: excitation of 495 nm and emission 521 nm. Axon outgrowth was
tracked using ImageJ (National Institute of Health). To obtain the angular distributions (Fig. 3,
Fig. 4 and Fig. S6) all axons have been tracked and then partitioned into segments of 20 pm in
length. We have then recorded the angle that each segment makes with the x axis (Fig. 1), and the
results were plotted as angular histograms (Figs. 3, 4 and S6). All surfaces were imaged using an
MFP3D Atomic Force Microscope (AFM), equipped with a BioHeater closed fluid cell, and an
inverted Nikon Eclipse Ti optical microscope (Micro Video Instruments, Avon, MA). The AFM
topographical images of the surfaces were obtained using the AC mode of operation, and AC
160TS cantilevers (Asylum Research, Santa Barbara, CA). Surfaces were imaged both before and

after neuronal culture, and no significant change in topography was observed.

Text S3:

Simulations of growth cone trajectories

We perform simulations of growth cone trajectories using the stochastic Euler method with N steps
(26,27). With this method the change in position of the growth cone and the turning angle at each

step are parametrized by the arclength s from the axon’s initial position:
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Ax(s) = cos(0) - As
Ay(s) = sin(0) - As
AB(s) = —y-cos(0) + D -dW

where —y - cos(@) is a deterministic steering torque (12, 18), and D - dW is an uncorrelated
Wiener process representing the randomness in the axon steering (y and D represent the damping
and diffusion coefficients, respectively, which are defined in the main text, see Eq. 2). The angle
0 is determined from the spatial probability distribution, which is the solution of the Fokker-Planck
(Eq. 2 and Eq. 7 in the main text). The velocity distributions are obtained from the change in

position of the growth cone at each step (26,27).
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FIGURE S1. (a) Atomic Force Microscope (AFM) topographic image of a PDL coated PDMS
micropatterned surface. The image shows that the micropatterns have a periodic profile, with a
spatial period d =4 um, and a constant depth of approximately 0.6 um. (b) Variation of the surface
roughness on micropatterned PDMS surfaces with spatial periods considered in this paper (d in

the range 1 — 10 um). The surface roughness is measured with the AFM. The blue data points show
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the average surface roughness measured before PDL coating. The red data points show the average
surface roughness measured on the same surfaces after coating with PDL. The error bars indicate
the standard error of the mean. The data demonstrates that the surface roughness does not vary
significantly among the PDMS surfaces with different spatial periods d, and it does not change

significantly upon surface coating with PDL. The variation of the average roughness among these
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FIGURE S2. Examples of (a) AFM topographic image, and (b) AFM force map image measured

substrates is less than 10%.

on a micropatterned PDMS surface coated with PDL. Each pixel corresponds to a value of the
elastic modulus. The maps for the elastic modulus are measured following the procedure presented

in detail in references (41) and (42). The scale bar shown in (a) is the same for both images.
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FIGURE S3. Examples of histograms for the substrate elastic modulus £ measured from AFM
force maps shown in Fig. S2. (a) Histogram for elastic modulus for a PDMS surface with d = 4
pm, measured before coating the surface with PDL. (b) Histogram for elastic modulus for the
same PDMS surface shown in (a), measured after coating the surface with PDL. The two maps
display similar ranges for E. The average elastic modulus between the two maps differs by only
5%. The data demonstrates that PDL coating does not change the elastic modulus of the PDMS

substrate.
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FIGURE S4. Examples of tracked positions for two axons. The segments marked in yellow are
superimposed on the axon and show the growth trajectory. The numbers on each segment represent
different positions of the growth cone during growth. The locations of the corresponding
micropatterns are shown by the dotted blue lines. Each segment is 20 um in length as described in

the Data Analysis section in the main text.
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FIGURE SS. Examples of normalized experimental angular distributions for dendrites growth
measured on micropatterned PDMS surfaces with different pattern spatial periods. The vertical
axis (labeled Normalized Frequency) represents the ratio between the number of dendrite segments
growing in a given direction and the total number N of axon segments. Each dendrite segment is
of 20 um in length. All distributions show data collected at 1 = 40 hrs after neuron plating. (a)
Angular distribution obtained for N = 647 different dendrite segments on surfaces with d = 4 um.
(b) Angular distribution obtained for N = 720 different dendrite segments on surfaces with d = 6

um. The data shows that, in contrast to axons, the dendrites do not display directional alignment
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FIGURE S6. (a-b) Examples of normalized experimental angular distributions for axonal growth
for untreated neurons measured on micropatterned PDMS surfaces with different pattern spatial
period d. The continuous red curves in each figure are the predictions of the theoretical model (see
the main text). The vertical axis (labeled Normalized Frequency) represents the ratio between the
number of axonal segments growing in a given direction and the total number N of axon segments.
Each axonal segment is of 20 um in length (see section on data analysis in the main text). All
distributions show data collected at # =40 hrs after neuron plating. (a) Angular distribution obtained
for N = 1328 different axon segments on surfaces with d = 6 um. (b) Angular distribution obtained
for N = 1261 different axon segments on surfaces with d = 9 um. The data shows that the axons
display strong directional alignment along the surface patterns (peaks at 6 = m/2 and 8 =
3m/2), with the high degree of alignment (sharpness of the distribution) measured for d =6 pm.

The degree of alignment is greatly reduced for neuronal growth on surfaces with d =9 um. (c-d)
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Examples of normalized speed distributions for growth cones measured on micropatterned PDMS
surfaces with different pattern spatial period d. (¢) Speed distribution for N = 305 different growth
cones measured on surfaces with d =6 um. (d) Speed distribution for N = 285 different growth
cones measured on surfaces with d =9 um. The continuous red curves in each figure represent the

predictions of the theoretical model discussed in the main text.
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FIGURE S7. Examples of normalized speed distributions obtained for growth cones of cortical
neurons treated with chemical compounds that inhibit the cytoskeletal dynamics. The growth
substrates are PDL coated PDMS surfaces with periodic micro-patterns with the pattern spatial d
=4 um. The images are captured at # =40 hrs after neuron plating. (a) Speed distribution measured
for N = 274 different growth cones for neurons treated with Taxol (inhibitor of microtubule
dynamics). (d) Speed distribution measured for N = 256 different growth cones for neurons treated
with Y-27632 (inhibitor of actin dynamics). The continuous red curves in each figure represent

the predictions of the theoretical model discussed in the main text.
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FIGURE S8. (a-b) Examples of experimentally measured probability distributions for the motion
of the growth cone in the x direction. The red curves represent fits to the data with the solutions of
the theoretical model given by Eq. 7. The fit parameters are the diffusion (cell motility) coefficient
D, the damping coefficient y, and the magnitudes Vp and ¥ of the external and feedback potential,
respectively. (a) Data obtained for N = 341 untreated neurons measured at ¢ = 40 hrs on PDMS
surfaces with d =4 um. (b) Data obtained for N = 316 neurons treated with Y-27632 measured at
¢t =40 hrs on PDMS surfaces with d =4 um. (c-d) Simulated neuronal growth for untreated (c) and
Y-27632 - treated neurons (b). The simulations are performed by using the values of the growth

parameters obtained from the fit of the experimental data with solutions of Eq. 7 (seen main text).

48



200 = 200
€ B
= d=9pum “'_SE

100 + 100

a
o™ L o™ N
0 100 200 0 100 200
X (um) X (um)

FIGURE S9. Example of simulated axonal growth for untreated neurons cultured on PDMS
surfaces with relatively large spatial periods: (a): d =9 um and (b): d =10 um. The axons display
a low degree of alignment, in agreement with the experimental observations (see Fig. S6 b and
reference (21). The simulations are performed by using the values of the growth parameters

obtained from the fit of the experimental data with solutions of Eq. 7 (seen main text).
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(a) (b) (c)

FIGURE S10. Examples of fluorescence images showing the position of axons with respect to the

patterns. The images have been taken using the high magnification objective (60x) of the Nikon
Eclipse Ti microscope, at different locations on 3 different PDMS substrates. The images show
the fluorescently labeled microtubules (green), i.e. the C domain (see reference (1, 2)) inside the
axons. The microtubules are labeled using Tubulin Tracker Green (see main text). The position of
the micro-patterned troughs is shown by the vertical black lines. The 3um white scale bar shows
the distance between two adjacent troughs, and it has the same size for all images. The images
show that the axons are located on the ridges of the patterns. The position of the ridges and troughs

has been verified using AFM (images similar to the one shown in Fig. 1 @ and Fig. S1 a).
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Cell DGum?/h) |y | Vo@um?/he?) | V() | aGum) | B/E (um?)
Substrate

Untreated 19+ 2 0.13 £ 0.04 1.4+05 0.18+0.05 | 1.9+04 734109
d=1 pm

Untreated/ 22t4 0.14 + 0.05 19+0.3 0.23+0.08 | 1.9+04 74409
d=4 pm

Untreated/ 21+3 0.15 + 0.05 20+04 0.24+0.08 | 1.9+04 7.6+ 0.9
d=6 pm

Untreated 17 +3 0.12 + 0.05 1.1+ 0.05 0.14+0.06 | N value 6.8+ 0.9
d=9 pm

Untreated 16 +3 0.10 £+ 0.06 0.9 £ 0.05 0.11+0.06 | N value 6.8+ 0.9
d=10 pm

Taxol 14 +3 0.11 4+ 0.03 0.6 +0.2 0.08+0.04 | 054+0.2 55409
d=4 pm

Y-27632 12+ 4 0.09 £+ 0.03 0.5+ 0.03 0.06+0.04 | 03+0.2 51409
d=4 pm

TABLE S11. Summary of the parameter values for untreated and chemically modified neurons.

The table shows the values for the growth parameters of untreated and chemically modified

neuronal cells, grown on different types of micropatterned PDMS substrates. The uncertainty for

each parameter represents the uncertainties from the fit of the corresponding data points. The

values for the parameter a are obtained for d in the range d =1 to 6 um, as discussed in the main

text.

51




