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Abstract—We consider the problem of coded computing, where
a computational task is performed in a distributed fashion in the
presence of adversarial workers. We propose techniques to break
the adversarial toleration threshold barrier previously known
in coded computing. More specifically, we leverage list-decoding
techniques for folded Reed-Solomon codes and propose novel
algorithms to recover the correct codeword using side information.
In the coded computing setting, we show how the master node
can perform certain carefully designed extra computations to
obtain the side information. The workload of computing this side
information is negligible compared to the computations done by
each worker. This side information is then utilized to prune the
output of the list decoder and uniquely recover the true outcome.
We further propose folded Lagrange coded computing (FLCC)
to incorporate the developed techniques into a specific coded
computing setting. Our results show that FLCC outperforms LCC
by breaking the barrier on the number of adversaries that can be
tolerated. In particular, the corresponding threshold in FLCC is
improved by a factor of two asymptotically compared to that of
LCC.

Index Terms—Coded computing, secure computing, Byzantine
adversaries, list-decoding, folded Reed-Solomon codes.

I. INTRODUCTION

Recently, ideas from the coding theory literature have been
widely leveraged in large-scale distributed computing and
learning problems to alleviate major performance bottlenecks
including latency in computations, communication overheads,
and stragglers [[I]-[4]. This has led to the emergence of the
coded computing paradigm by combining coding theory and
distributed computing, also addressing critical issues such
as security and privacy in distributed settings. More specifi-
cally, there has been an increasing interest in recent years to-
ward adopting coded computing techniques in computationally-
demanding machine learning tasks that give rise to several
privacy and security issues [5]-[10]. In such settings, the un-
derlying dataset must remain private from the cloud and the
contributing computational workers, as it may contain highly
sensitive information such as biometric data of patients in a
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hospital [11]] or customers’ data of a company [12]. Moreover,
the outcome of a distributed learning scheme, e.g., model
parameters trained on a dataset, must be secured against Byzan-
tine (malicious) adversaries that attack the cloud or are present
as adversarial workers aiming at altering the outcome either for
their benefits or to deceive the other users.

A well-established architecture often considered in coded
computing consists of a master node and a set of workers hav-
ing communication links with the master node. The goal for the
master is to perform a certain computational job, e.g., training
a model on its dataset, with the help of the workers. To this end,
the master disperses its dataset among the workers that operate
in parallel and return their results to the master to recover the
outcome of the computational job efficiently. Then a problem of
significant interest is the following: what fraction of adversarial
workers can be tolerated, i.e., the master is still able to recover
the true outcome even though the adversaries have returned
corrupted results, in such coded computing schemes? To answer
this question, the well-known classical results on the error cor-
rection capability of linear codes and, in particular, maximum
distance separable (MDS) codes such as Reed-Solomon (RS)
codes are leveraged, see, e.g., [3[]. The tightness of such results
on adversarial toleration is based on certain assumptions on
the underlying code and the corresponding decoder employed
by the master node. For instance, it is implicitly assumed that
the master node performs the decoding only given the returned
results by the workers and does not perform any extra computa-
tions to gain side information about the computation outcome.
Also, the decoder employed by the master is assumed to be the
classical decoder that recovers errors up to half the minimum
distance bound. However, the list-decoding paradigm offers the
potential to decode errors beyond this bound [|13]]. In fact, there
is a long history on list-decoding algorithms for RS codes with
the end result of achieving the information-theoretic Singleton
bound 1 — R, where R is the code rate, on the decoding radius
for a variant of RS codes, called folded RS (FRS) codes [14]-
[17]. This improves upon the half the minimum distance bound,
expressed as (1 — R)/2 for MDS codes, by a factor of 2 closing
the gap with the Singleton bound [17].

We consider the following fundamental question in this pa-
per: is it possible to break the adversarial toleration threshold
barrier established in the coded computing literature? We show
that the answer to this question is yes. To this end, we leverage
the advances in the list-decoding literature as well as the par-
ticular coded computing setting that naturally allows the master
node to have access to side information and uniquely determine
the computation outcome.

A. Our contributions

In this paper, we show how to adapt the folding technique in
algebraic coding to the realm of coded computing, where the



underlying computational job is a polynomial evaluation over
the dataset. Then it is shown how the master node can employ
an off-the-shelf FRS list-decoding algorithm, e.g., the linear-
algebraic algorithm proposed in [18]], to the results returned
from the workers. This results in a low-dimensional linear
subspace that contains the true outcome of the computation
assuming a certain bound on the number of adversaries. In order
to uniquely recover the true outcome, we propose two schemes
which involve the master node performing certain carefully
designed extra computations to obtain side information about
the outcome. This side information is then utilized to prune the
subspace of possible outcomes, i.e., the output of the FRS list-
decoding algorithm, to uniquely recover the true outcome. In
both schemes, the cost of computing the side information is
negligible compared to the computation load of each worker.
Specifically, our contributions are as follows.

1) We propose a deterministic pruning algorithm, in which
the master node waits until the results are returned by
the worker nodes and the FRS list-decoding algorithm
is applied to the returned results. Then the master node
carefully selects a certain small subset of evaluation points
and computes the polynomial evaluation over these points
to obtain the side information. It is shown that this can
be done in such a way that the true outcome is uniquely
recovered from the output list.

2) We also propose a probabilistic pruning algorithm in which
the side information is obtained by computing the polyno-
mial evaluation over a randomly selected set of evaluation
points. This can be done in parallel to the tasks being
performed by the workers resulting in a lower latency com-
pared to the first approach. Then it is shown that the true
outcome can be uniquely recovered with a high probability.
Moreover, if the unique recovery is not possible in this case,
the master node can identify it as a decoding failure. We
show results outperforming the state-of-the-art schemes in
terms of the lower bound on the probability of successful
decoding and the amount of side information needed for
unique decoding.

3) To illustrate how our proposed protocols break the ad-
versarial toleration thresholds in a certain class of coded
computing schemes, we consider the Lagrange coded com-
puting (LCC) scheme. We introduce a folded version of
LCC, referred to as FLCC. Similar to other mainstream
coded computing schemes, the master node in LCC at-
tempts to decode the computation outcome merely based
on the computations of the workers. By relaxing this re-
striction, the master node in FLCC invokes our proposed
pruning algorithms together with list-decoding FRS codes
and uniquely recovers the outcome. The performance of
FLCC with both the deterministic and the probabilistic
pruning algorithms is characterized and compared to that
of LCC. Our results indicate that the cost of overcoming a
Byzantine worker in FLCC can be reduced to be almost the
same as that of a straggler worker, in the characterization of
recovery thresholds, as opposed to LCC in which Byzantine
adversaries cost twice as stragglers.

B. Related work

The problem of list-decoding with side information was
initially considered in [19]] for binary codes in a communication
setup. In this setting, a clean noise-free channel is assumed
over which a small amount of side information, compared to
the length of the message, is provided to the receiver. This side
information consists of a random hash function along with its
value over the message. Another variant of RS codes, known
as derivative codes that also achieve the optimal performance
have been studied in [18]], [20]. In [18]], a linear-algebraic
list-decoding approach along with pruning algorithms with
side information specific to derivative codes were proposed
to uniquely recover the codeword either deterministically or
with high probability. This approach also can list-decode FRS
codes with side information to recover the codeword with high
probability. However, this approach was not extended to deter-
ministically recover the codeword. The reason for this is that
to deterministically recover the codeword using this approach,
the side information may not be decided before starting to
decode. While this is inconvenient in communication setups,
it is possible in coded computing as the master node plays the
role of both the encoder and the decoder. List-decoding of FRS
codes has been also incorporated in the context of secret sharing
to enhance the security [21]]-[23]]. However, these works do not
consider computations over data and are only concerned with
recovering the data from the secret shares.

Coded computing has recently gained much interest due to
its promise to overcome several issues raised in large-scale
distributed computing and machine learning. It has been uti-
lized for straggler mitigation in various distributed computing
tasks [24]]-[30]]. Several schemes for distributed matrix-matrix
multiplication, which is one of the main building blocks for
various machine learning algorithms, have been also proposed
in the literature [31]-[35]. Moreover, certain protocols have
been introduced for computations over real-valued data [36]—
[39]]. Also, recently, analog coded computing protocols have
been introduced to enable privacy for large-scale distributed
machine learning in the analog domain [8f], [40]. Improving
the adversarial toleration threshold of LCC has been also con-
sidered recently in [41]] for Boolean computations and sparse
polynomials and in [42] for matrix-matrix multiplication. In
addition, this problem was also studied for the probabilistic
noise model in [43]], [44]. Our work, however, considers any
polynomial-based computations and the worst-case adversarial
model. Moreover, none of these prior works incorporated list-
decoding ideas into the coded computing protocols.

The rest of this paper is organized as follows. In SectionI]
some background on list-decoding of RS codes and their vari-
ants is provided. The system model considered in this paper is
discussed in Section[[Tl]and FLCC is proposed. Our results on
list-decoding of FRS codes with side information are shown in
Section[[V] In Section[V]it is shown how our techniques applied
to FLCC improve upon the security of LCC against Byzantine
adversaries. Finally, the paper is concluded in Section|[VI]

II. BACKGROUND

In this section, we first provide a brief background on list-
decoding. Then, we briefly overview Lagrange coded comput-



ing (LCC) that will be used later in Section[V]to showcase how
the list decoding ideas are leveraged to improve the adversar-
ial toleration threshold in a well-established coded computing
scheme.

A. List decoding FRS codes

We begin by introducing the notations that are used
throughout this paper. For a positive integer i, the set
{1,2,---,i} is denoted by [i]. The number of positions at
which two strings of length n, y and y’ , differ is denoted by
Aly, y/)d§f|{i : y; # y.}| and their relative distance is denoted
by cS(}/,]/’)défA(y7 y')/n. A code C : X*F s X" of length
n over alphabet ¥, where || = ¢, is denoted by [n,k],. A
finite field of size ¢ is denoted by I, and the set of all non-zero
elements of I, is represented by Fy'.

An [n, k], MDS code such as a Reed-Solomon code can
always correct up to py(R) = (1 — R)/2 normalized number
of errors, also referred to as decoding radius, where Rdgf k/n
is the rate of the code and normalization is done by dividing the
number of errors by n. In order to correct errors beyond this
bound, list-decoding [13]l, [14]], [45], [46] relaxes the unique
decoding requirement and allows the decoder to output a list
of codewords. Specifically, given 0 < p < 1, an [n, k],
code C' < X" is said to be (p, L)-list decodable if for every
y € X", the set £%%c e Cld(y,c) < pn} has at most
L elements. Based on this relaxation, Guruswami and Sudan
[15] showed that Reed-Solomon codes can be list-decoded up
to the decoding radius of pgs(R) = 1 — +/R. However, it
is well-known that there exist codes that can be list-decoded
up to a decoding radius of 1 — R — € with a list size of at
most O(1/¢) [47], [48]. Parvaresh and Vardy further improved
Guruswami-Sudan decoding radius by introducing a variant of
Reed-Solomon codes, also referred to as Parvaresh-Vardy codes
[16], followed by Guruswami and Rudra [[17]] who showed that
such variations can be more efficiently realized by folding the
Reed-Solomon codes, thereby improving the decoding radius
to approach the ultimate Singleton bound 1 — R. Next, the
definition of folded Reed-Solomon codes is provided.

Definition 1: (m-Folded Reed-Solomon Code [17]]) Let v be
a primitive element of Fy, n < g — 1 be a multiple of m, and
k with 1 < k& < n be the degree parameter. The folded Reed-
Solomon (FRS) code FRSSI’”) [, k] is a code over alphabet Fy"
that encodes a polynomial f € F [X] of degree at most k — 1
as

(1) f&™) Fe" ™)
F(v) fem™h fTm
Fiy D) F(rEm) Fiy D)

where the block length of FRSSI’”) [n, k] is N = n/m, and its
rate is R = k/n.

Guruswami and Rudra [17]] showed that FRS codes can be
efficiently list-decoded up to the decoding radius pgr(R) =
1— R — e with a list size of L = n©(/9)_ Later, it was shown in
[18] that this can be done using an alternative linear-algebraic
approach. Next, we recall this result.

Lemma 1 (List-Decoding of FRS codes [18]): For the FRS
code FRSE;"’) of block length N = n/m and rate R = k/n,
the following holds for all integers s € [m]. Given a received
word y € (F7")N, using O(n? + sk?) operations over I, one
can find a subspace of dimension at most s — 1 that contains all
encoding polynomials f € F,[X] of degree less than k& whose
FRS encoding differs from y in at most a fraction

s < mR ) 0
s+ 1 m—s+1

of the N codeword positions.

Note that choosing s = m = 1 in Lemmall| corresponds to the
unique decoding radius of (1 — R)/2, while choosing s ~ 1/¢
and m ~ 1/¢? ensures a decoding radius of 1 — R — e.

We note that the work of Guruswami and Wang [49]] only
considers errors and not symbol erasures. In other words, it is
assumed that all coordinates of the received word are either
error-free or corrupt and none of them is erased during the
transmission. However, it can be observed that the same algo-
rithm also works if S number of coordinates in y are erased, as
provided in the following lemma.

Lemma 2: The result of Lemmal[I]still holds if N is replaced
by N — S for the case where S out of IV symbols are erased.

We provide the proof of Lemma2]in the Appendix.

While list-decoding allows for correcting more errors as
compared to unique decoding, it is often required to output
a unique codeword in certain applications. If the decoder has
access to some noise-free side information, then it can use it to
prune the list and output a unique codeword. This problem was
studied in [19] in a communication setup. More specifically,
a probabilistic scheme was proposed in [19] in which the
transmitter sends a random error-free symbol generated by a
random hash function along with this hash function as a side
information. The receiver then checks whether there is a unique
message in the list that is consistent with the side information
or not. If yes, the receiver outputs this message. Otherwise, the
receiver declares a decoding failure.

Guruswami and Wang [ 18] also developed an alternative linear-
algebraic list-decoding approach with side information for
derivative codes. In this approach, a subspace of candidate
polynomials is first determined. The unique message can be
then found with high probability by pruning this subspace
using the side information. The main advantage of this ap-
proach compared to the hashing approach developed in [19]
is that the decoder does not need to compute the full list,
which may have an exponential size in s, and then prune it
to get the unique solution. Kopparty et. al [50]] also provide
a randomized decoding algorithm for FRS codes that returns
a constant-size list which is much smaller than the number of
candidate polynomials in the subspace returned by the approach
of Gursuwami-Wang described in Lemmam As a subroutine,
one can prune the list by looking at one random symbol of
FRS code, i.e., (f(a), f(ay), -, f(ay™™1)) for a random
a € F¥, and recover the true polynomial with high probability.
However, using a similar approach and following the result of
[51, Lemma 12], one can show that the unique polynomial can



be decoded successfully with a probability py that is at least

pd>1—$, )

using s—1 extra evaluations instead of m evaluations. However,
this approach requires the field size to be larger than a certain
threshold, i.e., ¢ > k(s — 1). To avoid such a constraint for the
case where the field size is not relatively large, the result of [52}
Lemma 2] implies that by using a similar approach of [50] the
unique codeword can be found with probability at least

t ]{ t—1+1

where [ < s is the dimension of subspace returned by
the list decoding algorithm provided that ¢ extra evaluations
f(a1), f(az)---, f(a;) for randomly picked a; € F* with
a; # a; forall i, j € [t] are available at the decoder.

In this work, we provide a new lower bound on the prob-
ability of successful decoding of FRS codes using at most
s — 1 extra evaluations of f(-) and compare our result with the
aforementioned existing works in Section[[V]

B. Lagrange coded computing

Consider a coded computing setup consisting of a master
node and a set of NV workers. We consider the worst-case
adversarial model with up to A computationally-unbounded
Byzantine (or malicious) adversarial workers, up to .S stragglers
and a privacy model where any set of up to 7' workers can
collude. Let (X3, --,Xxk) denote a batch of » x h matrices
over IF,. The goal is to compute a D,-degree polynomial
function g(-) : IE‘qTXh — IFqT/Xhl , over this dataset, i.e., g(X;)
for all i € [K], where ' and h’ are the dimensions of the
output matrix. More specifically, we say g(-) is a Dy-degree
polynomial function if all entries of the output matrix are
multivariate polynomial functions of the entries of the input
with total degree at most Do, i.e., Y = g(X) implies that

7xrh)a (4)
where y;; is the (4, j)-th entry of Y, for i € [r'] and j € [R/],
xyk is the (I, k) entry of X, for [ € [r] and k € [h], and, g;;

is a multivariate polynomial of total degree at most Ds. Let
def

Yij = gij(fEu,CCu, cee

E'={a1, - ,an} for some distinct elements oy, -+ ,any €
F, and [ def {B1, -+, Br+r} for some other distinct elements
Bi,-+ ,Br+r € F,. The sets E and I are referred to as the

set of evaluation points and the set of interpolation points,
respectively. Note that E and I do not intersect, i.e., ENnI = (.
The underlying encoding polynomial in LCC is the Lagrange
interpolation polynomial of degree Dy = K +7T —1 constructed
as

K K+T
u(z) = 2 Xil(2) + Y Zity(2), (5)

j=1 j=K+1
where Z;’s for j € {K + 1,--- , K + T} are random matrices

whose entries are independent and uniformly distributed over
I, and ¢;(z)’s are called Lagrange monomials specified as
z= P
Gz = ] e ©6)
le[K+TNG} T

[K + T]. The master node offloads the coded
matrix Xidéfu(ai) to the worker node i whose task is to

for j €

compute Yidifg(u(ai)) — ¢(X;). The composed polyno-
mial f(z) Lef g(u(z)) can be recovered provided that at least
D1Dy + 2A + 1 workers return their computation results,
ie., Yi’s, to the master node. This can be done by invoking
Berlkamp-Welch (BW) decoder [|53]] individually for all entries
of the output matrix of the polynomial function f(z). Note
that BW decoder can successfully reconstruct a polynomial of
degree D1 D5 provided that D Do + 2A + 1 evaluations of the
polynomial are available and up to A of the evaluations can
be erroneous. Note that since X; = u(3;) for all j € [K],
then f(8;) = g(u(B;)) = ¢(X;). The master then evaluates
g(-) over the interpolation points 81, - , 8k to recover the
desired computation outcome, i.e., g(X1), -+, 9(Xk ). We say
that LCC is S-resilient and A-secure if it is robust against .S
stragglers and A Byzantine adversaries, respectively, and that it
is T-private if any set of size up to 7" workers remain oblivious
to the content of dataset. It is shown in [3] that the number
of required workers for an S-resilient, A-secure, and T'-private
LCC to compute {g(X;)} X, for a Dy-degree polynomial g(-)
is lower bounded as

N=(K+T—-1)Dy+85+2A+1, @)

where D = (K + T — 1)Ds is the degree of the composed
polynomial f(-) to be interpolated at the master node during
the decoding step. The lower bound provided in (7)) implies that
tolerating Byzantine adversaries in LCC is twice as costly as
stragglers, i.e., the additional number of workers required to
tolerate each Byzantine worker is equal to what is needed to
tolerate two stragglers.

III. SYSTEM MODEL

We consider a coded computing setup consisting of a master
node and a set of IV workers. The goal is to design a coded
computing scheme that is S-resilient, A-secure and 7-private,
where we consider the worst-case adversarial model with up to
A computationally-unbounded Byzantine adversarial workers.
Unlike LCC [54]], where the master node does not do any com-
putations except encoding and decoding, we allow the master
node to do a tiny amount of extra computations that is negligible
compared to the computations of each worker. Specifically, the
normalized extra computation cost of the master node with
respect to the workload of each worker must go to 0 as the
workload of each worker grows.

A well-known class of coded computing schemes extensively
studied in the literature for this setup employs polynomial
evaluations to encode data. We refer to them as polynomial-
based coded computing schemes. In such schemes, the shares
sent to the worker nodes are evaluations of a certain polynomial
over a finite field If;,. The worker nodes perform a predefined
computation task over their share(s), e.g., polynomial evalua-
tion, matrix multiplication, etc., and return the results to the
master node. The master node then follows a decoding process
involving a polynomial interpolation to recover the overall
computation outcome. We denote the D-degree polynomial to
be interpolated at the decoding step by f(-). Such a class of



coded computing schemes includes, but is not limited to, LCC
[3]], polynomial codes [55]] and MatDot codes [56]. It is well-
known that the polynomial f(-) can be uniquely recovered
provided that up to (N — D — 1)/2 evaluations, out of N
available evaluation points, are erroneous. This can be done
by utilizing efficient Reed-Solomon decoding algorithms at the
master node. This, in a high level, imposes a limit on the maxi-
mum number of Byzantine workers that can be tolerated in prior
works on polynomial-based coded computing. In this work, we
break this barrier by employing folded Reed-Solomon (FRS)
codes instead of RS codes often used in the polynomial-based
schemes together with leveraging their list-decoding algorithms
instead of the unique decoding algorithm for RS codes. The
output of the list decoder is then pruned using a tiny amount of
side information to recover the unique computation outcome.
The computation cost of this side information is negligible
compared to the computation cost of each worker. This will be
clarified more later in Section[V]

In order to illustrate the key idea of our method more ex-
plicitly, we consider the LCC scheme [3]] described earlier in
Section[[T-B] We propose a variant of LCC, referred to as folded
LCC (FLCC), inspired by the folded RS code construction.
Consider m batches of size K which can be considered as a
larger batch of size ket mK, ie., (X1, ,Xy), where the
goal is to compute g(X;) for all ¢ € [k]. The parameter m
is an arbitrary integer, referred to as the folding parameter.
We also assume N = (K + T — 1)Dy + S + 24 + 1
which is the minimum number of workers required in LCC.
Let E,, “ {a; = ai~1|i € [N]} denote the set of evaluation
points in our proposed scheme, where « is a primitive element
of IF; and ¢ > N. Note that the evaluation points here are picked
more specifically compared to those of LCC, but that does not
impose any limitations on the scheme. Furthermore, instead
of the polynomial in (5)), we construct the following encoding
polynomial

Km (K+T)m
um(2) = Y Xili(2) + D Zity(2), (8)
j=1 j=Km+1
where Z;’s for j € {Km +1,--- , (K +T)m} are random ma-

trices whose entries are independent and uniformly distributed
over F, and /;(z)’s are Lagrange monomials defined as

z—B
le[(K+T)m]\j "7 !

€))

where I, def {81, , Bm(x+r)} for distinct 3;’s belonging to
I, such that E,,, n I,;, = &&. We refer to this scheme as FLCC.
In FLCC, the share of encoded data sent to the worker ¢ consists
of the evaluations of u,, (-) over the points cv,,,(;—1)+1 ** » Cmi>
e, Um(mi—1)41), " > Um(@mi). Let fn(2) défg(um(z))
denote the composed polynomial to be interpolated at the
decoder in our scheme. The task of each worker node is then to
compute g(-) on all of its associated evaluations separately, i.e.,
node i computes fr, (Qm(i—1)4+1), " 5 fm(Qmi) and returns the
results to the master node.

Intuitively speaking, the encoding polynomial considered in
our scheme is similar to that of LCC in which m batches of

data are regarded as a single dataset of size m-times larger.
In other words, in the encoding step of our protocol, we first
encode the data according to the RS encoder and the coded
symbols are then folded with parameter m, resembling the FRS
encoding procedure. Consequently, we can apply list-decoding
algorithms developed for FRS in the literature to gain a better
resiliency-security-privacy trade-off in FLCC compared to that
of LCC. A linear-algebraic list-decoding algorithm for FRS
codes is considered in the next section along with our proposed
methods to improve it when certain side information is available
at decoder. We then discuss in Section[V]how this result can be
utilized to improve upon the performance of LCC decoder in
terms of the achievable triples of (S, A, T).

IV. LIST DECODING FRS CODES WITH SIDE INFORMATION

In this section, we provide our approach to adapt list-

decoding techniques to make the polynomial-based coded com-
puting protocols more robust against malicious adversaries.
This is done in such a way that it can be used as a black box and
regardless of the technical details associated with the encoder
and decoder of the underlying coded computing scheme. We
then illustrate in Section[Vlhow the proposed techniques can be
applied to LCC.
In particular, we consider the linear-algebraic FRS list decoder
introduced in [49]. Let WV denote the linear space of univariate
polynomials of degree at most & — 1 over I, and £ denote the
list of candidate polynomials at the output of the list decoder
that can be represented by an affine subspace U. The elements
of U can be represented as f = Mx + z for x € F., where | < s,
M € FF*!and z € FF. The vector f = (fo, f1,-+ , fr—1)T
denotes the coefficients of the corresponding polynomial in
U. It is also shown in [49]] that M can be assumed to have
I x [ identity matrix I; as a submatrix, without any extra
computation. Note that the location of the identity submatrix
is not known prior to applying the list-decoding algorithm at
the decoder.

Now, suppose that the decoder of the FRS code can request to
have access to [ < s additional error-free evaluations of f(-) as
a side information. This can be done with the aim of pruning the
output of the list-decoding algorithm specified in Lemmal[I] to
uniquely recover f(-). In the next theorem, we provide a result
that this is always possible provided that the [ < s evaluation
points can be decided after applying the list-decoding algorithm
to the received word y.

Theorem I: For the FRS code of length N = - and rate
R = % and forall s € [m], the polynomial f(-) can be uniquely
recovered if

i) the received word y € (F;")" differs from the FRS code-
word corresponding to f(-) in at most -3 (1 — m’fiil)
fraction of the /N symbols and

ii) up to s — 1 additional evaluations of f(-) can be requested
and are provided error-free, and assuming that the cor-
responding evaluation points can be decided after y is
received.

Moreover, the entire algorithm is run with O(n? + sk?) com-
plexity.



Proof: Llet V e IF(;”’C be an arbitrary Vandermonde
matrix. Let also the affine subspace U that contains the true
polynomial be represented by f = Mx + z for x € Ej,
where | < s, M € FF*! and z € FF, as discussed above.
Then, VM is full rank since both V and M are full rank
and n > k > [. By using the fast multiplication algorithm
available for Vandermonde matrices [57]], VM can be formed in
O(nllogn). Furthermore, an [ x [ full-rank submatrix of VM
can be found in time O(nl?) by Gaussian elimination. Then,
the rows in V associated to this [ x [ submatrix form an [ x k
Vandermonde matrix, namely,

1\ Ab—t
1 X \b—1

ve | >, (10)
1N Ayt

such that VM is full rank. The evaluations of f(-) over the
points A, - - - , \; associated to the Vandermonde matrix suffice
to uniquely recover f(-). To see that, let y, ef Vf denote the
vector of extra evaluations of f(-) over Ay, --- , A;. Therefore,

one can write
Yo = VMx + Vz. (11

This implies that if VM is full rank, then (TI)) can be solved
for x which is then utilized to determine f, thereby uniquely
recovering the polynomial f(-). The computational complexity
of the entire algorithm is dominated by that of the list-decoding
algorithm described in Lemma which is O(n? + sk?) by
noting that [ < s. ]

The result of Theorem[I] implies that if the set of extra
evaluation points Adif{)\l, -++, A1} can be decided by the de-
coder after observing the entire received vector, the output
subspace provided by the list-decoding algorithm, as specified
in Lemmall] can be efficiently pruned to uniquely recover
the polynomial f(-) in a deterministic fashion. This provides
a pruning algorithm with a computational complexity that is
dominated by that of the corresponding list-decoding algorithm.
Note that in a communication setting, with the encoder and the
decoder being separate entities, such an assumption on the side
information would necessitate multiple rounds of communica-
tion that may not be desirable in practice. However, in coded
computing settings, the encoding and decoding are both done
by the same entity, i.e., the master node. Hence, obtaining error-
free side information after the results are received from the
workers does not impose any major hurdle to the protocol. This
comes only at the cost of extra computation complexity and
latency, which can be characterized and optimized based on the
limitations of the master node.

In order to mitigate the latency of computing the side in-
formation, we propose an alternative probabilistic algorithm.
In this algorithm, the master node does not have to wait till
the results are received from the workers and can compute the
side information in parallel to them. This is described in the
following theorem. It is shown that the polynomial f(-) can be
uniquely recovered using this algorithm with high probability
if the size of the underlying finite field I, is large enough.
Moreover, if the unique recovery is not possible, then the

decoder can identify it as a decoding failure, i.e., the output of
this decoding scheme with the probabilistic pruning algorithm
is either the true outcome or a decoding failure, provided that
the number of errors is bounded by a certain threshold.

To provide our result for the probabilistic scheme, we need
the following definition and Lemma that are provided below.

Definition 2: A vector v € Ef is a called a Vandermonde-type
vector, or a V-vector in short, if v = (1, \, A2, --- | A*=1)T for
some A € F,\{0}.

The following lemma is used to prove our main result in this
section.

Lemma 3: For any arbitrary matrix Ay.; (k > [) over F, of
rank 7 < [, there exist at most 7 distinct V-vectors of length &
that lie in the column space of A.

Proof: Assume to the contrary that there exist +1 distinct
V-vectors that lie in the subspace spanned by the columns of
A, namely, V1, " ,0p41. Let ka(7.+1) déf [7]1|7J2| e |7]r+1],
which is a Vandermonde matrix. Then, the column space of
V is a subspace of the linear space spanned by the columns
of A. On the other hand, it is well-known that a Vandermonde
matrix with distinct columns is always full rank, i.e., the column
space of V has dimension 7 + 1 while rank(A) = r which is a
contradiction. [ ]

Theorem 2: For the FRS code of length N = ' and rate R =
% and for any s € [m], the polynomial f(-) can be uniquely
recovered with probability

t
—k+I—1Y (k=1
S () ()
Pd = (q—l) , (12)
t
where [ < s is the dimension of subspace returned by the list
decoding algorithm, provided that

i) the received word y € (F;")" differs from the FRS code-

word corresponding to f(-) in at most -5 (1 — mTﬁl)
fraction of N symbols, and
ii) the side information f(A1),---, f(A:) are given to the

decoder, where \; is drawn uniformly at random from
IFq\{O, /\1, cee 7/\1'_1}, for i e [t]

Furthermore, if the unique recovery is not possible, the decoder
can identify it.

Proof: Recall that by applying the linear-algebraic list-
decoding algorithm, discussed in Lemrna we have f = Mx +
z for which M has I; as its submatrix for some [ < s. Then,
without loss of generality, we can assume

M=|:Mk—l><l:|7 (13)

I

where M is an (k — ) x [ matrix over F, since the locus of iden-
tity submatrix is determined after the list-decoding algorithm
is applied. Let V and y,. be as characterized in (TI0) and (TT),
respectively.

Then, if VM is full rank, (TI)) can be solved for x which is
then utilized to determine f, thereby uniquely recovering the
polynomial f(-). Furthermore, note that all the following are



equivalent:

VM s full rank. == M?TV7T s full rank.

(VT n (N = {0},

where Nj, (y—;) is a matrix whose columns span the null-
space of MlTxk, ie., MTN = 0. Moreover, note that <VT> N
(N) = {0}, where 0 denotes the all-zero vector, if and only
if [Nix(s—1)|Vixi] is full rank. According to the result of
Lemma[3] there exist at most k& — [ V-vectors of length & that
lie in (N). The field elements that correspond to these vectors
are referred to as bad choices for \;’s. Hence, there are at most
k — 1 bad choices for \;’s in F. Suppose that we randomly
pick t distinct A;’s from F. The number of cases where at
least [ out of t random choices of \;’s do not fall into this set

t
of size at most k — [ is equal to Zl (a7 1ok (’::f) In such

(14)
5)

<

K3

cases, we set V to be the corresp(;ﬁding Vandermonde matrix
and [Ny, (,—)| V] would be full rank. There are (97" different
choices of t-subsets of F. Consequently, the probability of
£ (6
[Nk x (k—1)|V] being full rank is at least % by
picking ¢ extra evaluation points uniformly at random from Fy.
Note that in the event that [Ny, ()| V] is not full-rank, the
system of linear equations characterized in (TI)) does not have a
unique solution. In such a case, the decoder verifies the unique
recovery is not possible and declares recovery failure.
|

We now compare the lower bound on py provided in Theo-
rem[2] with (Z) and (@) that follow from [51, Lemma 12] and
[52, Lemma 2], respectively, as described in Section The
lower bound provided in ) is compared with our result in
Figure[l] for & = 1000 and £ = 10000. We set t = s — 1
in our proposed scheme to have a fair comparison with the
lower bound provided in (@). For & = 1000, our result is
almost the same as what is guaranteed by (@) as k(s — 1)
is well below the field size ¢ = 10003. For the case where
k = 10000, the lower bound in (@) is trivial for s > 10
where our result still provides a non-trivial bound on pg. In
other words, the lower bound characterized in Theorem[Z] is
non-trivial for a wider range of encoding parameters. Moreover,
our result allows having ¢t > s extra evaluation points and the
lower bound on pg provided in (I2) improves as the number of
extra evaluations ¢ increases. Consequently, our result does not
necessarily require ¢ » k(s — 1) as one can improve the lower
bound on py; with a few more extra evaluations. For instance,
with ¢ = s + 3, i.e., having 4 more evaluations, the lower
bound provided in Theorem[2] on pq significantly improves as
demonstrated in Figure[} This illustrates the superiority of our
result over the one that is established based on the result in [51),
Lemma 12], provided in (2). Roughly speaking, the advantage
of our approach over the one established based on the result
in [51, Lemma 12] is due to the difference in how the extra
evaluation points are picked. In our approach, we pick all extra
evaluation points independently and uniformly at random from
[ where the extra evaluation points in the latter approach
keeps the same structure as FRS symbols, i.e., they are equal
to a,ay,- - ,a’ysfl, for some random a € IF(;“. In a sense,

we require more randomness than what is needed in the latter
approach.

As discussed in Section[[I-A] the lower bound on p4 provided
in (@) that follows from the results in [52, Lemma?2] is also
improved when more than s — 1 extra evaluations are available.
Consequently, the large field size is not required for the lower
bound on pg characterized in (3)) as in our result in Theorem[2}
In Figure[2] we compare the lower bound provided in (3) with
our result for two different field sizes ¢ = 10007, 100003. The
bounds are plotted versus ¢, the number of extra evaluations
available at the decoder, for s = 10. It is illustrated that our
result requires a significantly smaller number of extra evalua-
tions to guarantee a reasonable successful decoding probability
pq. The advantage of our approach might be justified by noting
that the result in [52| Lemma 2] is valid for any linear code and
not necessarily FRS codes. Intuitively, we leverage the certain
structure of the encoding matrix of FRS codes to arrive at a
better bound on the decoding probability compared to the one
provided in [52| Lemma 2] for a general linear code.

V. FOLDED LAGRANGE CODED COMPUTING

In this section, we demonstrate how the FRS list-decoding
algorithm together with the pruning algorithms proposed in
Section[[V] can be utilized to break the barrier on the number
of Byzantine workers that can be tolerated in LCC.

Let the parameters m, N and K be associated with our
proposed FLCC, specified in Section[[TI} The main result of this
section is that the lower bound on N in FLCC can be well-
approximated by (K +T) Dy + A+ S —1 for sufficiently large,
but fixed, folding parameter m. This implies that Byzantine
adversaries are as costly as stragglers in terms of the number
of additional workers required in FLCC reducing their effect
by a factor of 2 compared to LCC.

Similar to LCC, the decoding algorithm is performed over
the received matrices element-wise. In theory, one can apply
the decoding algorithm for FRS codes with side information as
discussed in Sectionindividually for all ' x h' elements of
the returned matrices. In the rest of this Section, we assume that
all the steps discussed below are performed element-wise on
the entries of ¥;’s individually. In practice, one might be able to
perform the algorithm collaboratively on all entries at once and
amortize the computational cost over all entries. A similar ap-
proach is provided recently in [44] to decode polynomial codes
by utilizing a collaborative decoder for interleaved generalized
RS codes. It is shown that up to N — K — 1 Byzantine workers
can be tolerated under the additive Gaussian model with high
probability. The main difference between our proposed method
and that of [44] is that we do not make assumptions on the error
model and its probability distribution. That is, we consider the
worst-case adversarial model.

In FLCC, the master node first finds the linear subspace U of
dimension at most s — 1 containing the legitimate polynomial
by applying the linear-algebraic list-decoding algorithm. Then
it determines the extra evaluation points needed to uniquely
identify f(-) in U according to the procedure described in
the proof of Theorem[I] The master node then performs extra
computations to evaluate f(-) over these points which results
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Fig. 1: Comparison of the lower bounds provided in (Z)) and (T2)
for £ = 1000 and £ = 10000. The field size is ¢ = 100003.
Note that in both case, our proposed lower bound improves
significantly by adding 4 more evaluations, i.e., t = s + 3.

in uniquely determining f(-) by solving the system of linear
equations in (TT)). Let
dot (K +T —L1)Dy+1
r =
N-S ’
which is referred to as the modified rate of FLCC. The fraction

of adversaries tolerated in FLCC is characterized in the follow-
ing theorem.

Theorem 3: An FLCC with folding parameter m and the
number of worker nodes equal to IV is S-resilient, A-secure and
T-private to compute {g(X;)}E for a Dy-degree polynomial
g(+) as long as

A s* mr
< 1-— , 16
N-S5 s*+1( m—s*+1) (16)
where s* is equal to [§] — 1 or [§], where § =
\/m(mﬂ)(mfnl;? +2)T7(m+1), depending on which one results

in a larger RHS in (16).

Proof: We first note that the degree of the composed poly-
nomial interpolated at FLCC decoder is (m(K +71)—1)D5. By
the result of Lemmaf2] we can use the result of Lemmall] with
S straggling nodes by replacing N with V — S, i.e., replacing

def g

R in () by the modified rate r. Let a(s) = -5 (1 — - 207).

Then, the result of Theorem[T]implies that FLCC is S-resilient
and A-secure as long as

A < 17
m < a(S)a (17)

for any arbitrary integer s € [m]. Let s* 4 arg max a(s) and

se[m]
5 denote the solution to the same optimization problem with
a difference that the underlying variable s is assumed to be

. . ~ def
continuous, i.e., § = argmax a(s). One can check that a(s)
seR,0<s<m

- ©- [52] - %= Ours, qg=100003, = %~ Ours, qg=10007.
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Fig. 2: Comparison of the lower bounds provided in (3) and (T2).
The plots show the lower bounds on pg versus the number of
extra evaluation points available at the decoder for s = 10. Other
parameters are ¢ = 10007, 100003 and n = 2000.

is a concave function which implies that s* is either equal to

[5] — 1 or [5], whichever maximizes a(s) and also belongs to
da(s)

dcctlgs)
ds

[m]. The concavity of a(s) also implies that § is a root of

or it is equal to one of the boundary values. The roots of
are

vm(m+1)(m(1l—r)+2)r £ (m+ 1).

mr —1 (18)

By =

One can check that 5 is not a feasible solution since it does not
satisfy the constraints of the continuous optimization problem,
i.e., it is always the case that 5, < 0 or m < 5. Furthermore,
wehave 0 < 5_ < mfor = < r,and, m < 5_ < m+ 1,
otherwise. Note that for the latter case the boundary condition
implies § = m. Then, at least one of [§] — 1 and [3] is always
a feasible solution for the discrete optimization problem and,
consequently, s* is either equal to [$] — 1 or [3], whichever
is feasible and returns a larger value for a(s). The proof of
T-privacy is similar to the one in LCC by noting that both
the number of random mask matrices in the encoding polyno-
mial of FLCC, characterized in (@), and the number of shares
available at each worker node are larger than those in LCC
by a multiplicative factor of m. Hence, the dataset is perfectly
masked by mT" random matrices Z;’s against any coalition of
T worker nodes, each having m evaluations of w,, (-). [ |

In order to compare the performance of FLCC with LCC,
we consider evaluating g(-) over m batches of data where each
batch contains K input matrices, as explained in Section [ITI}
To this end, LCC is run m times in the first scenario, each
time computing ¢(-) over a single batch of matrices. Then, the
total amount of computations performed at the master node for
decoding is m times the decoding complexity of running LCC
once. More specifically, the overall decoding complexity when
LCC is employed is O(m(N — S)log*(N — S)loglog(N —



S)r'h’). Furthermore, (7)) implies that the maximum number of
Byzantine workers tolerated in this scenario can be expressed
as follows

Arce = 3 (19)

def {N_(K+T_1)D2_S_1
In FLCC, the computations performed at the master node can be
considered as two separate procedures. The first one is running
the list-decoding algorithm and pruning it as well as solving
(TT)) to uniquely interpolate f(-), referred to as the interpolation
step. The second one corresponds to computing evaluations
of g(-) over the set of extra evaluation points returned by the
underlying pruning algorithm used and is referred to as the
extra computation step. The computational complexity of the
interpolation step is O((N?m? + m?K?s)r'h’) according to
Theorem([I] In the extra computation step, the master node
evaluates g(-) over at most s* — 1 points. This implies that the
amount of extra computations performed over the master node
normalized by the computational complexity of each worker
node, referred to as normalized extra computation, is at most
%. Moreover, the computation load of the worker nodes
in both FLCC and LCC is the same, i.e., each worker node
evaluates ¢(-) over a batch of data consisting of m matrices
in either of these scenarios. Also, the amount of commutations
required, referred to as the communication complexity, in FLCC
is equal to that of running LCC m times as well. The result of
Theorem[3] implies that the number of adversaries tolerated in
FLCC is expressed as follows

s* mDs 1 J

AFLccd:efL*_’_l(N* m—s*+1(K+Tia)7571) )
(20)
where s* is characterized in Theorem[3] Note that by setting
m = 1, (20) is reduced to (T9) since an FRS code withm = 11is
an RS code, implying that LCC and FLCC are in fact identical
for this special case, as expected. Note also that the decoding
complexity in LCC and interpolation complexity in FLCC grow
linearly with the dimensions of the output, i.e., 7’ and I/, as
in both schemes the decoding procedure must be performed
element-wise for all the elements of the output matrix and
also both are independent of the size of input matrices, i.e.,
r x h, as well as the degree of polynomial function evaluated
over the dataset, i.e., Do. However, the decoding complexity
in FLCC is quadratic in the number of worker nodes N while
it is almost linear in N in LCC. In Figure[3] the normalized
extra computation is plotted versus the folding parameter m,
for a certain set of parameters. It is illustrated that the ratio
of the computational cost of extra evaluations of f(-) at the
master node to the workload of a worker node approaches zero
as m grows. In particular, by using the result of Theorem[3]
it can be observed that this ratio approaches zero in O(ﬁ)
For instance, when m = 100 and N = 1000, one can observe
that the amount of extra computations needed is less than 5%
of the computational task of each individual worker node or,
equivalently, is less than 0.005% of the total computational
job. Figure[d] demonstrates the advantage of FLCC over LCC
by comparing the maximum number of adversaries tolerated
in each scheme for the same set of parameters. The ratio of
the maximum number of adversaries tolerated in FLCC to that

of LCC is plotted versus the folding parameter m. It shows
that FLCC can tolerate almost twice as many as adversaries
tolerated in LCC for the same parameters IV, .S, K and 7.
The result of Theorem[3]is simplified for large enough m in the
following corollary.

Corollary 1: The FLCC specified in Theorem[3] can tolerate
up to

ArLcc = l(l — 6)(N — S) — (K + T)D2 — 1J 20

Byzantine adversaries for m = O(Z%) and s* = O(1).

Remark 1: Note that (2T)) implies the marginal cost of toler-
ating one more Byzantine adversary in FLCC is one additional
worker node, the same as that of tolerating one more straggler.
This demonstrates the advantage of FLCC over LCC in which
two additional worker nodes are needed to tolerate one more
Byzantine adversary. In other words, FLCC improves the trade-
off between the number of adversaries and stragglers can be
tolerated while other parameters are fixed by removing the
factor 2 in (7)), thereby providing a scheme in which both
adversaries and stragglers cost evenly, as opposed to LCC.

Remark 2: In this paper, we have assumed that the extra
computations needed to obtain the side information are done
at the master node. The numerical results shown in Figure[3]
confirms the soundness of this approach in practice. However,
for scenarios where even this tiny amount of extra computation
must be avoided, the master node can employ a few trusted
nodes that can perform this computation without error, e.g.,
by using software guard extensions (SGX) technology imple-
mented in Intel central processing units (CPU).

The decoding algorithm provided for FLCC in this section
always guarantees uniquely recovering the computation out-
come, i.e., the computation result is deterministically provided
by the decoder. This algorithm is established upon the novel
deterministic pruning algorithm for FRS code characterized in
Theorem[I]in Section[[V} In this algorithm, the extra evaluation
points are determined after the list-decoding algorithm is ap-
plied. In other words, it is assumed that the side information
symbols are allowed to be constructed based on the output
of the list-decoding algorithm. In a practical scenario where
parallelization of tasks is preferred to reduce the latency, the
side information can be specified simultaneously by the mas-
ter node as the workers perform computations, as shown by
Theorem[2] In this case, the evaluation of f(-) over s* — 1
points picked uniformly at random from IF, are provided as
the side information to the list decoder. Theorem[2]implies that
the system of linear equations specified in (TI)) has a unique
solution with high probability, establishing that each element
of the computation outcome can be uniquely determined with
the same probability.

VI. CONCLUSION

In this work, we considered a coded distributed computing
setting with a master node and a set of workers. We proposed
a coding-theoretic approach that boosts the adversarial tolera-
tion threshold in such systems. In particular, we adapted the
folding technique in coding theory to the context of coded
computing and leveraged the list-decoding algorithms for FRS
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Fig. 3: Demonstration of the ratio between the extra compu-
tations performed at the master node to the workload of each
worker (Stn—_l), referred to as normalized extra computation,
versus the folding parameter m in FLCC. The relative compu-
tational cost of evaluating f(-) over the set of extra points at the
master node approaches zero in O(im) Other parameters are
N =1000, K =180,T = 11,5 =20,and D = 2.

codes for recovering the overall computation outcome at the
master node. Furthermore, in order to guarantee unique re-
covery of the outcome, we proposed novel deterministic and
probabilistic pruning algorithms for list-decoding FRS codes
with side information that are of independent interest in the
list-decoding literature. By utilizing our proposed techniques,
we introduced the folded Lagrange coded computing (FLCC)
protocol that outperforms LCC by improving the number of
adversaries that can be tolerated almost by a factor of two. More
specifically, we showed that in FLCC adversaries and stragglers
cost almost evenly in terms of the number of workers required,
compared to LCC in which tolerating one adversary costs twice
as overcoming one straggler.
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APPENDIX

Proof of Lemmal2}: The first step in the algebraic list decoding
algorithm when .S symbols are erased is to interpolate the fol-
lowing multivariate polynomial by using non-erased symbols:

Q(X, Y1, ,Ys) = Ag(X) + A1 (X)Y1 + - - - + A(X)Y5,
(22)
where deg(A4;) < Dfori =1,---,s,anddeg(4g) < D+k—
1, with degree parameter D = (N_S)(msjrslﬂ)_kH . Then,
the number of unknown coefficients in Q is (D+1)s+D+k =
(D+1)(s+1)+k—1> (N—S)(m—s+1). The interpolation
requirements are

Q(’yim+j7yim+j7 o Yimaj4s—1) = 0 (23)

for all indices ¢ corresponding to the non-erased symbols and
j=0,1,--- ,m — s. Since S symbols are erased, the number
of interpolation conditions is (N — S)(m — s + 1) which is
less than the number of unknown coefficients in (). Hence,
a solution for Q(-) can be found by solving a homogeneous
linear system over I, with the same complexity claimed in
Lemma[I] By using the interpolation requirements, one can
show that Q(X7 f(X)’ f(’YX>7 e >f(’ys_1X)) = 0if f() is
a polynomial of degree at most k¥ — 1 whose FRS encoding
agrees with the received word in ¢ > 2 f’:: locations. For our
choice of D, the requirement on ¢ is met if t(m — s + 1) >
(N_S)(m_sil)“(k_l). Alternatively, the fractional disagree-
ment is at most 3 (1 — %)
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